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Cutaneous squamous cell carcinoma (cSCC) is a common cutaneous malignant

tumor, with its development and progression closely linked to immune

dysregulation within the tumor microenvironment (TME). This review highlights

cSCC-specific TME features—such as UV-induced mutational burden and the

immunosuppressive effects observed in transplant recipients—and systematically

outlines the composition and functional roles of tumor cells, immune cells

(Tregs, MDSCs, TAMs), and stromal cells (CAFs) within the TME. The

immunosuppressive mechanisms mediated by these cellular components are

clarified, particularly through pathways including PD-L1/PD-1 and TGF-b/Smad.

Building on this foundation, the potential clinical value of immune checkpoint

inhibitors (cemiplimab, pembrolizumab) in treating advanced cSCC is

summarized based on data from relevant clinical trials. Additionally, the impact

of gender differences on cSCC incidence and therapeutic outcomes is discussed.

This review is distinguished from general tumor immunotherapy reviews by

offering dedicated references for cSCC precision immunotherapy. In addition,

priority is emphasized for future investigations into combination therapy

regimens and the development of personalized tumor vaccines.
KEYWORDS

cutaneous squamous cell carcinoma, tumor microenvironment, immunotherapy,
immunosuppression, immune checkpoint inhibitors
1 Preamble

1.1 Clinical epidemiological characteristics of cSCC

Squamous cell carcinoma of the skin (cSCC) accounts for 20%–30% of cutaneous

malignant tumors, and its incidence has been increasing steadily over the years. Although

the fatality rate of squamous cell carcinoma of the skin is significantly lower than that of

melanoma—with a 5-year survival rate of approximately 60% for melanoma and around
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30%–40% for advanced cSCC (1)—it remains higher than that of

basal cell carcinoma, which has a 5-year survival rate exceeding 95%

and rarely metastasizes. Therefore, effective treatment of cSCC is

crucial for reducing mortality associated with skin cancer. The

primary etiological factor of cSCC is exposure to ultraviolet (UV)

radiation. Prolonged UV exposure can cause DNA damage in skin

cells, leading to gene mutations—such as those in TP53—which in

turn promote tumor development (2).
1.2 cSCC morbidity and prognostic gender
differences

A higher incidence of cSCC has been observed in males, with

incidence rates approximately 2–3 times greater than those in

females. This disparity may be attributed to prolonged outdoor

exposure to ultraviolet radiation and lower awareness of skin

protection among men (3). Regarding tumor progression, male

patients with cSCC tend to exhibit greater tumor aggressiveness and

higher rates of lymph node metastasis. These differences are

underpinned by immunological and biological mechanisms rather

than solely by environmental exposure. In a cohort of 1,178

primary cSCC cases, males demonstrated significantly higher risks

of high-grade tumors, thick-walled lesions, lymph node

involvement, and long-term recurrence compared to females (P <

0.001). Analysis of the tumor microenvironment showed that

the densities of intralesional CD8+/CD4+ T cells and M1

macrophages in males were 40%–60% lower than those in

females, indicating that insufficient immune infiltration may

contribute to a more aggressive tumor phenotype (4). Currently,

no dedicated studies have investigated gender differences in the

efficacy of immune checkpoint inhibitors (ICI) for cSCC, and thus,

it remains unclear whether objective response rates differ between

males and females. It is recommended that future clinical trials

systematically incorporate sex-based analyses to better elucidate

this issue.
1.3 Association between the tumor
microenvironment and immunotherapy in
cSCC

The TME of cSCC constitutes a complex network of cellular and

molecular components, with its immunosuppressive state playing a

pivotal role in immune surveillance evasion and the emergence of

therapeutic resistance. In recent years, significant advances have

been achieved with immune checkpoint inhibitors in the treatment

of advanced cSCC. However, a proportion of patients still

experience either primary or acquired resistance, which is closely

linked to the accumulation of MDSCs and functional dysregulation

of Tregs within the TME (5, 6). Therefore, a comprehensive

investigation into the composition and regulatory mechanisms of

the TME in cSCC is essential for optimizing immunotherapeutic

strategies and enhancing clinical outcomes.
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2 The role of the tumor
microenvironment in cSCC

2.1 Composition of the tumor
microenvironment

The tumor microenvironment (TME) is a complex and dynamic

system that plays a pivotal role in tumor initiation, progression, and

metastasis (7). As the central component of the TME, Tumor Cells

exhibit a range of distinctive biological characteristics that allow them

to bypass normal physiological regulatory mechanisms, leading to

uncontrolled proliferation, invasion, and metastatic potential (8).

Rather than existing in isolation, Tumor Cells actively secrete various

Cytokines and Chemokines, which significantly influence the behavior

of surrounding cells. Through these interactions, a microenvironment

favorable to tumor growth and Immune Evasion is established (9)

(Figure 1). A high Mutational Burden induced by UV has been

observed in cSCC Tumor Cells, with an average mutation frequency

of approximately 50 mutations per Megabase, which is markedly

higher than that found in most other Solid Tumors. This elevated

mutational load can result in the production of more Tumor Antigens,

such as mutant TP53 protein. However, immune evasion is also

facilitated through mechanisms including the downregulation of

Major Histocompatibility Complex (MHC) class I molecules and the

upregulation of PD-L1 (10).The link between mutational burden and

immune evasion is especially evident in areas such as the face and scalp,

which are chronically exposed to UV radiation, leading to a higher

propensity for local tumor progression.

immune cells exhibit highly complex roles within the TME,

characterized by dual biological functions (11). On one hand, they

can recognize and attack Tumor Cells, thereby suppressing tumor

growth (11, 12); on the other hand, under certain conditions,

immune cells may be subverted by Tumor Cells, ultimately

facilitating tumor progression (12). Among the various subsets of

immune cells, T cells are recognized as pivotal players in the anti-

tumor immune response. Effector T cells, especially CD8+ T cells,

function as precise “killers” capable of specifically identifying

antigens presented on the surface of Tumor Cells. Upon

activation, they initiate a cascade of cytotoxic responses that

directly eliminate Tumor Cells (13).In contrast, regulatory T cells

(Tregs) play an opposing role in the TumorMicroenvironment. The

activity of effector T cells is suppressed by Tregs through the

secretion of various inhibitory Cytokines, including IL-10 and

TGF-b (14). These inhibitory Cytokines disrupt the proliferation,

activation, and cytotoxic functions of effector T cells (15, 16),

thereby impairing the body’s Immune Surveillance and antitumor

response, and facilitating the Immune Evasion of Tumor Cells.

Myeloid-derived suppressor cells (MDSCs) are a population of

myeloid-origin cells with potent immunosuppressive properties

(17). Their immunosuppressive effects are mediated through

multiple mechanisms, with the secretion of inhibitory molecules

such as arginase and nitric oxide (NO) being one of the primary

pathways (18).Arginine, an amino acid essential for T cell

proliferation and activation, is degraded by arginase, resulting in
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impaired T cell function (19, 20). Nitric oxide further suppresses T

cell proliferation and activity by disrupting normal physiological

functions through mechanisms such as oxidative stress (18, 21),

thereby weakening the body’s anti-tumor immune response.

High plasticity has also been observed in macrophages within the

TME, with their phenotype and function dynamically altered in

response to various signaling molecules present in the

microenvironment (22). In the Tumor Microenvironment, these

macrophages can differentiate into pro-tumor M2-type macrophages,

also known as tumor-associated macrophages (TAMs).Various

Cytokines, such as IL-10 (23) and TGF-b (24), are secreted by

TAMs. Acting synergistically, IL-10 and TGF-b establish an

immunosuppressive microenvironment that inhibits anti-tumor

immune responses. This environment not only suppresses T cell

activity but also promotes the proliferation and invasion of Tumor

Cells, thereby directly contributing to tumor progression (25,

26).Additionally, growth factors secreted by TAMs, including

vascular endothelial growth factor (VEGF) (27), stimulate tumor

angiogenesis (28). This neovascularization supplies Tumor Cells with

ample nutrients and oxygen, thereby supporting sustained tumor

growth and metastasis (29).

Stromal cells are also essential components of the TME,

primarily comprising cancer-associated fibroblasts (CAFs) and

endothelial cells. Multiple roles have been attributed to CAFs in

tumor initiation and progression. By secreting a variety of

Cytokines, such as TGF-b and HGF, along with growth factors

like VEGF, significant influences are exerted on the biological

behavior of Tumor Cells (30). These factors have been shown to

promote the proliferation of Tumor Cells, facilitating their rapid

growth and expansion. Additionally, they enhance the migratory

capacity of Tumor Cells, thereby contributing to tumor invasion

and metastasis (30, 31).

Endothelial cells are primarily involved in tumor angiogenesis

(32).In the early stages of tumor development, a series of angiogenic

factors, such as VEGF, are secreted by Tumor Cells, which attract

endothelial cells to migrate toward the tumor site and promote their

proliferation and lumen formation (33). The role of VEGF in the

Tumor Microenvironment extends beyond angiogenesis. It also

modulates intercellular interactions within the Tumor

Microenvironment, including the regulation of pericyte proliferation

and migration, as well as the mediation of interactions between tumor-

associated macrophages and carcinoma cells. These interactions

contribute to PDL-1-mediated immunosuppression and Nrf2-driven

epithelial-mesenchymal transition (EMT) (34). The newly formed

tumor vasculature not only ensures an adequate blood supply to

meet the high metabolic demands of Tumor Cells for nutrients and

oxygen, but also facilitates their metastasis by providing a direct route

for dissemination through the bloodstream to distant sites, where

secondary metastatic lesions can form.

The extracellular matrix (ECM), as a crucial structural and

functional component of the TME, has been shown to significantly

influence the invasion and metastasis of Tumor Cells through

alterations in its composition and architecture (35). It is primarily
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composed of collagen, fibronectin, and laminin (36). In terms of

compositional changes, increased collagen deposition has been

observed in the Tumor Microenvironment, particularly with

upregulated expression of collagen types I and III (37). This

accumulation contributes to tissue stiffening, thereby facilitating the

invasive behavior of Tumor Cells (35). Elevated levels of hyaluronic

acid (HA) have also been detected in various tumors, especially low-

molecular-weight HA oligosaccharides, which interact with CD44

receptors to activate pro-tumor signaling pathways and enhance cell

migration and invasion (37).Alterations in the expression and

deposition of fibronectin have been observed, which affect cell

adhesion and migration (35). Structurally, increased cross-linking of

collagen fibers results in greater stiffness and rigidity of the extracellular

matrix (ECM). This enhanced stiffness activates intracellular

mechanotransduction pathways, including the integrin and focal

adhesion kinase (FAK) signaling cascades, thereby promoting the

invasion of Tumor Cells. In the Tumor Microenvironment, collagen

fibers becomemore orderly aligned, forming channels that facilitate the

migration of Tumor Cells (37).

Within the TME, Cytokines and signaling molecules act as

messengers, establishing a complex and efficient communication

network between Tumor Cells and surrounding cells, and playing a

pivotal regulatory role (38).Cytokines are small-molecule proteins

secreted by various types of cells, including interleukins (IL),

interferons (IFN), and tumor necrosis factors (TNF). They exert

dual functions within the TME, both promoting tumor growth,

metastasis, and Immune Evasion, and activating immune cells to

suppress tumor progression (39). For instance, Cytokines such as

IL-6 and TGF-b, secreted by Tumor Cells, have been shown to

inhibit the activity of immune cells, thereby facilitating Immune

Evasion. This is achieved through the suppression of immune cells

proliferation, differentiation, and Cytokines production, ultimately

weakening the body’s Immune Surveillance and cytotoxic response

against tumors. As a result, Tumor Cells are able to survive and

proliferate within a relatively “safe” immune environment, enabling

the realization of Immune Evasion (39).immune cells (such as

tumor-associated macrophages TAMs) have been shown to

secrete Cytokines (such as IL-1b and IL-18), which promote the

proliferation and metastasis of Tumor Cells (38).

Moreover, metabolic byproducts within the TME have been

found to play a significant role in tumor progression. Glutamine

metabolism is critically involved in the function of Tumor Cells

(40). A high dependency on glutamine is exhibited by Tumor Cells,

as it is utilized through the glutamine fermentation pathway to

generate energy necessary for their rapid growth and proliferation.

Glutamine serves as a nitrogen source for the biosynthesis of amino

acids and nucleotides, and also as a carbon source to replenish the

tricarboxylic acid (TCA) cycle, thereby sustaining accelerated

cellular proliferation (41).Meanwhile, the acid-base balance of the

TME has been shown to be altered by Tumor Cells through

metabolic byproducts such as lactate (42). The accumulation of

lactate results in the acidification of the TME, creating an acidic

microenvironment that suppresses immune cells by diminishing
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their activity and function. This immunosuppressive environment

further promotes the immune evasion of Tumor Cells and creates

more favorable conditions for their invasion and metastasis (42, 43).

Pyroptosis, a form of programmed cell death, contributes to the

remodeling of the TME by promoting the release of pro-

inflammatory cytokines and sustaining chronic inflammation,

thereby affecting processes such as Immune Evasion and

angiogenesis. However, its dual role in both cancer progression

and treatment-related complications—such as cytokine release

syndrome—poses significant challenges for its therapeutic

application in oncology (44).

Key cellular components and their interactions within the

Tumor Microenvironment are illustrated. The death of Tumor

Cells is induced by CD8+ T cells through direct cytotoxic

mechanisms. The activity of CD8+ T cells is suppressed by Tregs

via the secretion of IL-10 and TGF-b. T cell function is inhibited by

MDSCs through the production of arginase and nitric oxide (NO).

CAFs and TAMs contribute to tumor growth and angiogenesis

by releasing TGF-b, HGF, and VEGF, thereby fostering an

immunosuppressive microenvironment. Collectively, these cellular

interactions shape tumor progression and influence the response

to therapy.
2.2 Immunoregulatory role of the tumor
microenvironment

The TME has been identified as a central target for elucidating

the mechanisms underlying tumor initiation and progression, as

well as for addressing therapeutic challenges. As a dynamic and

complex multicellular ecosystem, the TME encompasses not only

Tumor Cells but also immune cells, stromal cells, and components

of the extracellular matrix. It plays a pivotal role in tumor Immune

Evasion and progression through tightly regulated cellular

and molecular pathways. Clarifying the immunoregulatory

mechanisms of the TME, especially the activation patterns of

immunosuppressive pathways and potential strategies for their

modulation, is of great clinical significance for the development

of effective anti-tumor therapies.

2.2.1 Core pathways of immunosuppressive
mechanisms

Multiple core pathways have been identified in the TME of

cSCC that contribute to the formation of an immunosuppressive

barrier. Among them, the PD-L1/PD-1 and TGF-b/Smad pathways

represent key molecular mechanisms driving Immune Evasion.

These pathways impair anti-tumor immune responses by

respectively inhibiting the activation signals and proliferative

capacity of effector T cells.

The PD-L1/PD-1 pathway, a principal target in current

immunotherapy, displays distinct cell-type specificity during its

activation. In the TME of cSCC, high levels of PD-L1 expression

have been observed in both Tumor Cells and TAMs (45). Upon

binding of PD-L1 to PD-1 on effector T cells, immunosuppressive

signaling cascades such as the PI3K/Akt pathway are activated
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within the T cells (46).Activation of this signaling pathway has been

shown to directly suppress the proliferative capacity of T cells and

reduce the secretion of cytotoxic molecules such as perforin and

granzymes. As a result, effector T cells are unable to effectively

recognize and eliminate Tumor Cells, thereby promoting tumor

Immune Evasion (47). Clinical studies have demonstrated that

immune checkpoint inhibitors targeting this pathway (e.g.,

Cosibelimab) can restore the antitumor activity of T cells by

blocking the interaction between PD-L1 and PD-1, leading to

significant survival benefits in patients with cSCC (48).

The TGF-b/Smad pathway primarily relies on TGF-b secreted

by Tregs and cancer-associated CAFs. Upon binding of TGF-b to its
receptor on the surface of effector T cells, a downstream Smad

signaling cascade is initiated. This involves the phosphorylation of

Smad2/3 transcription factors, which then form a heterotrimeric

complex with Smad4. The resulting complex translocates into the

nucleus, where it directly regulates the expression of target genes.

The primary effect of this process is the downregulation of the co-

stimulatory molecule CD28 on the surface of T cells, accompanied

by a decrease in IL-2 secretion. CD28, a critical “second signal”

molecule required for T cell activation, when downregulated, results

in impaired activation of T cells (49, 50). Concurrently, IL-2, a key

Cytokines essential for T cell proliferation, when secreted in

reduced amounts, directly suppresses the clonal expansion of T

cells. Sustained activation of this pathway maintains effector T cells

in the TME in a functionally suppressed state, thereby hindering the

development of an effective antitumor immune response.

It is important to note that immunosuppression within the

TME is not driven by a single pathway, but rather arises from the

synergistic effects of multiple signaling cascades, including the PD-

L1/PD-1 and TGF-b/Smad pathways. For example, the activation of

the Smad pathway by Tregs through TGF-b secretion is

accompanied by the release of IL-10, which further amplifies their

immunosuppressive effects (51). In parallel, the overexpression of

PD-L1 on Tumor Cells enables its interaction with PD-L1 on the

surface of TAMs, forming a “dual barrier” that intensifies

the suppression of T cell activity (52). This synergistic

immunosuppressive network involving multiple pathways is a

key factor contributing to the limited effectiveness of

conventional immunotherapy.

2.2.2 Association between TME cellular and
molecular pathways and tumor progression

Cellular and molecular pathways within the TME have been

shown to not only regulate immune responses but also directly

contribute to malignant behaviors such as invasion and migration

of Tumor Cells. Notably, the EMT pathway mediated by CAFs and

the STAT3 pathway associated with MDSCs represent critical hubs

that link immunosuppression to tumor progression. By modulating

the phenotype of Tumor Cells and the function of immune cells,

these pathways collectively drive the malignant advancement

of cSCC.

The EMT pathway mediated by CAFs is recognized as a central

mechanism facilitating the invasion and metastasis of cSCC. As the

predominant type of stromal cells within the TME, CAFs secrete
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TGF-b, which activates the TGF-b/Smad signaling cascade in

Tumor Cells, thereby inducing EMT (53). Specifically, TGF-b
secreted by CAFs binds to the TGF-b receptor complex (TGF-b
R1/R2) on the surface of Tumor Cells, initiating conformational

changes that activate downstream Smad2/3 proteins (54). Once

phosphorylated, Smad2/3 forms a transcriptional complex with

Smad4, which translocates into the nucleus. This complex

simultaneously downregulates the epithelial marker E-cadherin—

whose loss disrupts intercellular adhesion among Tumor Cells and

reduces cell cohesion (55)—and upregulates mesenchymal markers

such as N-cadherin and vimentin, thereby enhancing the motility

and stromal invasiveness of Tumor Cells (56).Multiple clinical

studies have demonstrated a significant association between the

activation level of this pathway and the depth of invasion in cSCC,

underscoring its critical role in tumor progression (57, 58).

The STAT3 pathway in MDSCs has been shown to promote

both Immune Evasion and tumor proliferation through a dual

mechanism involving immunosuppression and metabolic

deprivation. MDSCs, a key immunosuppressive cell population

within the TME, rely heavily on the sustained activation of signal

transduction and the STAT3 pathway for their functional

maintenance (59). During the initiation and progression of cSCC,

UV irradiation serves as a major contributing factor, markedly

increasing IL-6 secretion within the TME (60). IL-6 binds to its

receptor on the surface of MDSCs, leading to the activation of Janus

kinase (JAK), which in turn phosphorylates STAT3 (61). Once

activated, STAT3 translocates into the nucleus, where it directly

regulates the expression of arginase-1 (Arg-1) and inducible nitric

oxide synthase (iNOS) (62).Arg-1 depletes arginine, an amino acid

essential for T cell activation in the TME, thereby impairing T cell

proliferation due to “metabolic starvation” (63). Meanwhile, iNOS

produces large amounts of nitric oxide (NO), which damages T cell

DNA and suppresses their cytotoxic function, resulting in a dual

immunosuppressive effect of “metabolic deprivation + toxic injury”

(64). In animal studies, treatment with STAT3 inhibitors (such as

WP1066) has been shown to significantly reduce the accumulation

of MDSCs in murine tumor models, while restoring T cell

proliferation and cytotoxic activity (65), supporting the potential

of this pathway as a therapeutic target.

Beyond these two core pathways, the Cytokines network within

the TME also contributes to tumor progression through a

mechanism of cross-regulation. For example, activation of the

MDSCs STAT3 pathway by the pro-inflammatory Cytokines IL-6

has been identified as a key signaling event. In addition, IL-6

promotes STAT3 activation in Tumor Cells, thereby enhancing

their resistance to apoptosis and increasing their proliferation rate

(66). Meanwhile, the immunosuppressive Cytokines TGF-b not

only inhibits T cell function but also upregulates the expression of

matrix metalloproteinases (MMPs) on the surface of Tumor Cells,

enhancing their capacity to degrade the extracellular matrix and

further facilitating invasive metastasis (67). This intercellular

signaling crosstalk between immune and tumor cells establishes a

self-perpetuating malignant cycle within the TME, thereby

accelerating tumor progression and metastasis.
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2.2.3 cSCC TME immunosuppressive mechanisms
and corresponding regulatory strategies

From a clinical translational perspective, targeting a

single pathway has often proven insufficient to overcome the

immunosuppressive network of the TME, making combination

therapy strategies a growing focus of research. For instance, the

co-administration of anti-PD-1 antibodies with STAT3 inhibitors

has been shown to simultaneously disrupt PD-L1/PD-1-mediated

immunosuppression and the functional maintenance pathways of

MDSCs, thereby significantly enhancing T cell activation efficiency

(68). Similarly, the combination of anti-TGF-b and anti-PD-L1

antibodies has been demonstrated to suppress tumor EMT

progression while improving the efficacy of immune checkpoint

inhibitors (69) (Table 1). Looking ahead, molecular subtyping based

on key pathways within the cSCC TME is expected to guide the

development of individualized combination therapy regimens,

representing a promising direction for enhancing the therapeutic

outcomes of cSCC.
3 Justification for the priority of
immunotherapy in cSCC

3.1 Comparison with surgical treatment

Surgical resection, owing to its advantage of directly eliminating

lesions, is considered the first-line curative approach for early-stage

cSCC (characterized by localized tumors without lymph node or

distant metastasis), achieving a 5-year cure rate of over 90% (70).

However, its primary limitation lies in spatial dependence. In

advanced-stage (III–IV) cSCC, where tumors invade major blood

vessels in the head and neck (e.g., the carotid artery), cranial nerves,

or are accompanied by multiple metastases to organs such as the

lungs or liver, complete surgical removal becomes challenging, with

a curative rate of less than 10%. Moreover, surgery may result in

serious complications, including major intraoperative bleeding and

postoperative swallowing dysfunction, and could even accelerate

tumor dissemination—surgical trauma may activate platelet-

derived growth factors within the TME, thereby promoting

Tumor Cells migration (71, 72). Immunotherapy has addressed

this limitation by “remodeling the TME immune balance.” In a

phase II clinical trials (NCT02760498) evaluating the first-line agent

cemiplimab for advanced cSCC, 59 patients with metastatic cSCC

were enrolled. An objective response rate (ORR) of 47% was

observed, and the median overall survival (OS) was not reached;

at a median follow-up of 7.9 months, 82% of responders maintained

their response (73). In comparison, conventional treatment—

surgery combined with postoperative chemotherapy—has been

associated with poorer outcomes. Analysis of the SEER database

revealed that patients with advanced cSCC, particularly those with

regional lymph node metastases or locally advanced disease, who

underwent surgery and adjuvant radiotherapy, had a median OS

often below 12 months, indicating a significant disparity (74). More

critically, “tumor downstaging conversion” can be achieved through
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immunotherapy by inhibiting the PD-L1/PD-1 pathway within the

TME and reducing the accumulation of MDSCs (75). Clinical data

indicate that, following neoadjuvant immunoradiotherapy, 90% of

patients with locally advanced head and neck squamous cell

carcinoma (HNSCC) experienced clinical-to-pathological

downstaging, and 67% achieved a pathological complete response

(pCR) (76).
3.2 Comparison with radiotherapy

Radiotherapy induces DNA damage in Tumor Cells via

localized ionizing radiation and is applicable to locally advanced

cSCC (e.g., tumors infiltrating the deep dermis without distant

metastasis), with a five-year local control rate of approximately

65%. However, its limitations include a restricted treatment scope

and damage to the TME. On one hand, radiotherapy is ineffective

against distant metastases, with a distant metastasis rate of 15%–

20% observed in patients with advanced cSCC receiving this

treatment (77). On the other hand, radiotherapy induces local

skin fibrosis, characterized by a 30% increase in collagen fiber

deposition, and leads to depletion of immune cells within the

TME. Following radiotherapy, PD-1 expression on T cells

increases by 40%, and the proportion of M2-type TAMs rises by

20%, thereby further aggravating immunosuppression (78).

The characteristic of “systemic immune activation” in

immunotherapy effectively addresses this limitation. First, a

significant reduction in the rate of distant metastasis in advanced

cSCC has been observed with immunotherapy, primarily through the

activation of circulating effector T cells that recognize and eliminate

metastatic lesions (79).Secondly, Immunotherapy also contributes to

the restoration of the radiation-damaged TME. Tumor antigens

released by radiotherapy, such as mutant TP53 protein, can be

presented by dendritic cells. Concurrently, immune checkpoint

inhibitors (e.g., pembrolizumab) can block the PD-L1/PD-1

signaling pathway, thereby preventing effector T cell exhaustion

and promoting a synergistic effect between radiotherapy-induced

antigen release and immune activation (80). A combined trial

demonstrated that the use of radiotherapy in conjunction with

pembrolizumab in patients with locally advanced cSCC resulted in

a higher response rate, with a complete response (CR) rate reaching

up to 50%, and was well tolerated (79). Furthermore, the combination

of radiotherapy and immunotherapy has been shown to enhance the

production of antitumor Cytokines such as IFN-g, while reducing the
infiltration of immunosuppressive cells, including M2-type TAMs.

This mechanism has been validated in multiple Solid Tumors, such as

non-small cell lung cancer (80).In addition, immunotherapy has been

shown to reduce adverse reactions associated with radiotherapy.

Multiple studies have demonstrated that the safety profile of

immunotherapy combined with radiotherapy is generally

manageable, with immune-related adverse events (such as skin

reactions) typically being mild to moderate. For instance, in the

KEYNOTE-629 trial, the incidence of grade ≥3 treatment-related

adverse events with pembrolizumab monotherapy was reported to be

5.7% (81).
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3.3 Comparison with targeted therapy

Targeted therapy for cSCC primarily relies on EGFR inhibitors

(such as cetuximab), which act by blocking EGFR-mediated Tumor

Cells proliferation signaling. However, three major limitations have

been identified: rapid development of resistance, limited

applicability, and lack of improvement in the TME. First, the

median time to resistance with cetuximab is only 6–9 months

(82), and this resistance is associated with changes in the TME—

following resistance, increased secretion of HGF by CAFs within the

TME activates the MET bypass pathway, thereby counteracting the

inhibitory effects of EGFR (83). Second, the efficacy of cetuximab is

restricted to patients with high EGFR expression (IHC score ≥2+),

yet only 60% of cSCC patients exhibit such expression levels (84),

with an objective response rate (ORR) of merely 20%–30% (85).

Finally, targeted therapy does not modulate the immunosuppressive

state of the TME, and even after resistance develops, the proportion

of Tregs within the TME remains above 15%, thereby failing to elicit

a sustained anti-tumor immune response (86).

Immunotherapy has demonstrated advantages through its “broad-

spectrum efficacy” and “TME remodeling.” In terms of applicability,

immune checkpoint inhibitors have shown effectiveness in both PD-

L1-positive (TPS ≥ 1%) and -negative patients (87, 88). Regarding the

durability of response, multiple trials have reported that the median

duration of response (DOR) has not been reached; for example, in the

KEYNOTE-001 trial, the median DOR was 12.5 months, with some

patients experiencing responses lasting over two years. A notably high

proportion of patients in KEYNOTE-001 maintained a response for ≥1

year (87), which is believed to be associated with the induction of

immune memory. Following treatment, the proportion of memory

T cells (CD45RO+) in the TME increases, enabling long-term

surveillance of tumor recurrence (89).Regarding adverse events, the

incidence of grade 3 rash with targeted therapy is approximately 6.1%–

13% (90), and diarrhea is also relatively common. In contrast, the

incidence of grade 3 adverse events associated with immunotherapy—

such as thyroid dysfunction and rash—ranges from about 9.5% to

29.6%, most of which can be effectively managed with hormonal

intervention (87, 91, 92).More importantly, the TME can be

fundamentally improved through immunotherapy. Treatment with

anti-PD-1 has been shown to reduce the expression of MDSCs

functional markers, such as arginase-1, while enhancing the

infiltration of effector T cells. For instance, preclinical studies have

demonstrated that PD-1 blockade decreases the presence of

immunosuppressive cells within the TME (93), enabling some

patients to regain responsiveness to treatment—an effect on TME

modulation that cannot be achieved by targeted therapies.
4 Application of immunotherapy in
cSCC

4.1 Immune checkpoint inhibitors

The emergence of immune checkpoint inhibitors (ICIs) in

recent years has revolutionized tumor therapy, offering renewed
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hope to countless cancer patients. By precisely blocking the

signaling pathways of immune checkpoint molecules, ICIs

effectively restore the antitumor activity of effector T cells and

markedly enhance the immune response (94), thereby ushering in a

new era of cancer immunotherapy.

Immune checkpoint molecules serve as critical regulatory

components of the immune system, functioning under normal

physiological conditions to prevent excessive immune activation

that could harm healthy tissues. However, Tumor Cells have

evolved to exploit these molecules, converting them into

mechanisms that suppress T cell activity. This enables them to

evade immune surveillance and establish conditions conducive to

their growth and metastasis. Currently, among the various immune

checkpoint molecules, CTLA-4, PD-1, and PD-L1 have been the

most extensively studied and hold significant clinical relevance.

CTLA-4 plays a critical role during the early activation phase of

T cells. By binding to members of the B7 family (95, 96), it

modulates T cell activation or suppression. Inhibitors of CTLA-4,

such as ipilimumab (97), function by precisely blocking the

interaction between CTLA-4 and its ligands, thereby lifting the

inhibitory signal. This facilitates enhanced activation and

proliferation of T cells (96), effectively acting as a potent

“vanguard” for the ensuing anti-tumor immune response.

In contrast, PD-1 is primarily involved during the effector phase

of T cell responses. Upon binding of PD-1 to its ligand PD-L1, an

inhibitory signal is transmitted to T cells, resulting in the

suppression of their activity and impairing their ability to

effectively recognize and eliminate Tumor Cells (98). By precisely

blocking this signaling pathway, PD-1/PD-L1 inhibitors—such as

pembrolizumab (99) and cemiplimab (100)—have been shown to

successfully restore the antitumor function of T cells, enabling them

to regain activity and mount effective attacks against Tumor

Cells (101).

immune checkpoint inhibitors have demonstrated impressive

therapeutic efficacy across a range of tumors, standing out like

brilliant pearls in the vast landscape of cancer treatment.

4.1.1 Key clinical trials results
cSCC (CSCC) is the second most common type of skin cancer

after basal cell carcinoma. While most CSCC cases can be cured

surgically, recurrence occurs in approximately 15% to 28% of

patients following excision. For those with advanced CSCC who

are ineligible for curative surgery or radiotherapy, treatment

options remain limited and the prognosis is generally poor. In

recent years, immune checkpoint inhibitors (ICI) have offered new

therapeutic possibilities for advanced CSCC. Extensive efforts have

been made by research teams to investigate the role of CPI in cSCC

treatment through systematic reviews, meta-analyses, and cohort

studies. These reviews have consistently demonstrated that CPI

therapy yields favorable clinical outcomes in advanced cSCC, with

manageable toxicity profiles (102–104) (Table 2).

Among them, cemiplimab (105) and pembrolizumab (106–108)

have distinguished themselves with outstanding therapeutic

efficacy. Demonstrated in clinical trials, their strong antitumor
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activity and relatively favorable safety profiles have garnered

significant attention from the global medical community. Based

on this robust clinical evidence, the U.S. Food and Drug

Administration (FDA) approved cemiplimab for the treatment of

advanced cSCC, marking a milestone that effectively addressed the

lack of treatment options for advanced cSCC. Cemiplimab, a PD-1

inhibitor, achieved an overall response rate (ORR) of 47% in a phase

I/II clinical trials for CSCC, making it the first PD-1 antibody

approved by the FDA for the treatment of advanced CSCC (102).In

addition, a pooled analysis demonstrated that the objective response

rate (ORR) of Cemiplimab in treating advanced CSCC was 52.9%,

with a disease control rate (DCR) of 69.4%. The median overall

survival (OS) was not reached, suggesting a survival duration

exceeding 6.3 months. Another pooled analysis of 392 patients

showed that immune checkpoint inhibitors (including

Cemiplimab) achieved an ORR of 42.43% and a DCR of 58.05%,

with 92% of patients maintaining a response at the data cut-off

(103). Pembrolizumab, another PD-1 inhibitor, was assessed in two

phase II trials (KEYNOTE-629 and the CARSKIN trial), which

reported an ORR ranging from 34.3% to 41% for advanced CSCC,

with a median progression-free survival (PFS) of 6.7 to 6.9

months (102).

A systematic review and meta-analysis that included 13 studies

and a total of 980 patients reported that immune checkpoint

inhibitors achieved an ORR of 47.2% and a DCR of 64.4%. The

6-month and 12-month progression-free survival rates were 59.3%

and 52.8%, respectively, while the 6-month and 12-month overall

survival rates were 80.6% and 76.4%, respectively (102). A

retrospective real-world cohort study conducted in Australia

included 286 patients, reporting an objective response rate (ORR)

of 60%, a 12-month overall survival rate of 78%, and a progression-

free survival rate of 65% (104). In another single-center

retrospective cohort study from Canada involving 36 patients, a

partial response rate of 41.7% and a complete response rate of 27.8%

were observed. The 1-year progression-free survival rate reached

58.1%, with a median progression-free survival of 21.3 months

(109). Regarding drug safety, among the 392 patients included in

the pooled analysis, grade 3 or higher adverse events were observed

in only 27.12% of cases. In the Australian study, 19% of patients

experienced grade 2 or higher immune-related adverse events, with

no treatment-related deaths reported. In a Canadian study, grade

3–4 immune-related adverse events were reported in 13.9%

of patients.

In the field of melanoma, nivolumab as a first-line treatment

has offered new hope for therapy-naive melanoma patients

(110). Significant survival benefits have been demonstrated in

clinical studies, with notable extensions in overall survival and

improvements in quality of life. In the treatment of non-small cell

lung cancer, the superiority of PD-1/PD-L1 inhibitors in first-line

therapy has been consistently supported by multiple studies.

Compared with conventional chemotherapy, these inhibitors not

only significantly increase survival rates but also improve the overall

treatment experience, presenting a promising therapeutic

alternative for patients with non-small cell lung cancer (111).
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The objective response rate (ORR) of cemiplimab in patients

with advanced cSCC has been reported at 47%–52.9%, which is

slightly lower than that observed in other Solid Tumors, such as

melanoma, where the ORR exceeds 50% in some studies.

Nevertheless, given that a substantial proportion of cSCC patients

are elderly (approximately 70% aged ≥65 years), have impaired

immune function, and often present with chronic skin conditions

(e.g., chronic eczema), this level of efficacy reflects meaningful

clinical benefit. Furthermore, the incidence of grade ≥3 adverse

events associated with immune checkpoint inhibitors in cSCC

patients ranges from 19.0% to 27.12%, which is lower than the

rates reported in melanoma (exceeding 30% in some studies),

suggesting better overall tolerability in this population.
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4.1.2 Table of clinical impact and
pharmacokinetic characteristics of common
immunotherapies for cSCC

In the immunotherapy of advanced cSCC (cSCC), both

cemiplimab (cemiplimab) and pembrolizumab (pembrolizumab)

have shown notable clinical value, although differences exist in their

pharmacokinetic profiles and predictive markers of efficacy

(Table 3). Over the past five years, multiple trials have reported

that the median overall survival (OS) for cemiplimab has not yet

been reached, with the longest follow-up period being

approximately 16.6 months. The 24-month OS rate has been

estimated at around 62%, indicating a sustained survival benefit

(112). Furthermore, the expression level of PD-L1 (TPS ≥1%) has
FIGURE 1

Composition of the tumor microenvironment.
TABLE 1 cSCC TME Immunosuppressive Mechanisms and Corresponding Regulatory Strategies.

Immunosuppressive
mechanism

Key molecules/
pathways

Regulatory strategies Effects

Tregs suppression of effector
T cells

IL-10, TGF-b
Anti-IL-10 antibodies, Anti-
TGF-b antibodies

Significantly reduce the immunosuppressive activity of Tregs, increase
the proportion of effector T cells in the TME (relative increase +25%),
and enhance the intensity of anti-tumor immune responses

MDSCs deplete arginine/
produce NO

Arginase-1, iNOS, STAT3
STAT3 inhibitors (e.g.,
WP1066), Arginine
supplementation

Reduce the accumulation of MDSCs in the TME (relative decrease
-40%), reverse the “metabolic starvation” state of T cells, and restore
their proliferation and cytotoxic functions

Tumor cell PD-L1/PD-1
binding

PD-L1, PD-1
Anti-PD-1/PD-L1 antibodies
(e.g., Pembrolizumab)

Block PD-L1/PD-1-mediated immunosuppressive signals, significantly
increase the objective response rate (ORR) to 47%-52.9%

CAFs promoting tumor EMT TGF-b/Smad Anti-TGF-b antibodies
Downregulate the expression of mesenchymal markers such as N-
cadherin and vimentin, reduce tumor invasion depth (relative decrease
-48%), and inhibit tumor metastatic potential
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been identified as a potential predictive biomarker for treatment

response. Patients with PD-L1-positive tumors have demonstrated

significantly higher objective response rates (ORR) compared to

those with PD-L1-negative tumors. While data from other cancer

types suggest ORRs of 58% versus 32%, a similar trend has been

observed in cSCC studies, despite some variation in exact values (73,

113).In terms of pharmacokinetics, an increase in the clearance of

pembrolizumab has been observed with increasing body weight—

approximately an 8% rise in clearance for every 10 kg gain—

necessitating weight-based dose adjustments (e.g., 2 mg/kg) to

prevent subtherapeutic exposure that could compromise efficacy.

In contrast, the half-life of cemiplimab remains stable (19–22 days)

and is unaffected by age, sex, body weight, or mild hepatic or renal

impairment, making a fixed-dose regimen (350 mg every 3 weeks)

more suitable for standardization. Taken together, cemiplimab

offers notable efficacy and convenient administration in advanced
Frontiers in Immunology 09
cSCC, with PD-L1 expression serving as a predictive biomarker of

response, whereas pembrolizumab requires individualized dosing to

optimize therapeutic outcomes.

However, the use of immune checkpoint inhibitors is not without

risks, as some patients may develop immune-related adverse events

(irAEs).These adverse reactions are primarily attributed to the “friendly

fire” triggered by excessive activation of the immune system (114). Skin

toxicity is among the most frequently observed side effects across

multiple systems. Symptoms such as rash and pruritus are generally

mild to moderate in severity, yet they can still cause considerable

discomfort and negatively impact patients’ quality of life. Endocrine

toxicity also warrants attention. Conditions like hypothyroidism and

hypophysitis may insidiously disrupt hormonal balance, requiring

regular monitoring and prompt medical intervention. Gastrointestinal

toxicity remains a significant clinical concern. Diarrhea and colitis can

severely compromise digestive function and, in severe cases, may pose
TABLE 2 Key clinical trials Results.

Trial drug
Trial
phase

Sample
size

ORR DCR Median OS Median PFS
Incidence of grade 3 or
higher adverse events

Reference

Cemiplimab Phase I/II 26 50% 65% Not reached Not reached Not reported
Migden et al.,
2018 (73)

Cemiplimab
Phase II
(mCSCC)

59 47% 61% Not reached 18.4 months 9.80%
Migden et al.,
2020 (144)

Cemiplimab
Phase II
(laCSCC)

78 44% 62.80% Not reached Not reached Not reported
Rischin et al.,
2021 (145)

Cemiplimab
Pooled
Analysis

392 52.90% 69.40% Not reached Not reached 27.12%
Mehta et al.,
2021 (103)

Pembrolizumab
Phase II
(KEYNOTE-
629)

105 34.30% 52.40% Not reached 6.9 months 5.70%
Grob et al.,
2020 (81)

Pembrolizumab
Phase II
(CARSKIN)

57 42%
Not
reported

Not reached 6.7 months Not reported
Maubec et al.,
2020 (106)

Cemiplimab/
Pembrolizumab

Real-world
study

286 60%
Not
reported

12 months: 78% 12 months: 65% 19% (Grade 2 or higher)
McLean et al.,
2024 (104)

Immune
checkpoint
inhibitors

Real-world
study

36 69.50%
Not
reported

12 months: 76.7% 21.3 months 13.90%
Koch Hein
et al., 2023
(109)

Immune
checkpoint
inhibitors

Meta-analysis 980 47.20% 64.40%
6 months: 80.6%,
12 months: 76.4%

6 months:59.3%,
12 months: 52.8%

20.20%
Zhang et al.,
2023 (45)
TABLE 3 Clinical Impact and Pharmacokinetic Characteristics of Common Immunotherapies for cSCC.

Drug name Target ORR
Common adverse
reactions

Half-life
Route of
administration

Dosage

Cemiplimab PD-1
47.0%-
52.9%

Rash (35%), Diarrhea (20%)
About 20
days

Intravenous injection 350mg, once every 3 weeks

Pembrolizumab PD-1
38.1%-
47.0%

Thyroid dysfunction (22%),
Fatigue (18%)

About 26
days

Intravenous injection
200mg, once every 3 weeks; or 400mg, once
every 6 weeks

Atezolizumab PD-L1 33.3% Nausea (25%), Fatigue (21%)
About 27
days

Intravenous injection 1200mg, once every 3 weeks
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life-threatening risks. In addition, hepatotoxicity may occur, resulting in

abnormal liver function. This necessitates close monitoring of liver

function parameters during the administration of immune checkpoint

inhibitors to promptly detect and manage potential risks of liver injury.

In recent years, a series of encouraging breakthroughs have been

reported in the field of immune checkpoint inhibitors, marking

significant progress and continuously expanding the boundaries of

our understanding of this therapeutic strategy. In the search for novel

targets, emerging molecules such as LAG-3, TIM-3, and TIGIT have

gained increasing attention, bringing new momentum to the

development of immune checkpoint inhibitors (115–117).

Similarly, substantial progress has been made in the research of

biomarkers. Biomarker studies have focused on PD-L1 expression

levels, tumor mutational burden (TMB), and microsatellite instability

(MSI). Assessment of PD-L1 expression serves as a critical reference

for identifying patients who are likely to benefit from immune

checkpoint inhibitors therapy (118). High TMB in Tumor Cells has

been associated with the release of a greater number of Tumor

Antigens, which can enhance immune activation and improve the

therapeutic response to immune checkpoint inhibitors (119). This

insight provides a novel perspective and valuable tool for predicting

immunotherapy outcomes. Similarly, microsatellite instability (MSI)

plays a key role in forecasting the efficacy of immune checkpoint

inhibitors treatment (120).
4.2 Potential of bispecific antibody in the
treatment of cSCC

Bispecific antibodies are a class of antibody drugs designed to

simultaneously bind two distinct antigens. Their primary advantage

is the targeted recruitment of immune cells, such as T cells, to the

tumor site, thereby enhancing the local anti-tumor immune

response while minimizing the systemic toxicity associated with

off-target T cell activation often observed in conventional

immunotherapy. In the treatment of cSCC, research has

predominantly focused on EGFR/CD3 bispecific antibodys, with

additional investigations exploring other targets such as PD-L1/

CD3 and EpCAM/CD3. The following section presents a detailed

analysis of EGFR/CD3 bispecific antibodies.
4.2.1 Core mechanism of action
High expression of EGFR has been observed on the surface of

cSCC Tumor Cells (121), while CD3 serves as a critical component

of the TCR-CD3 complex on T cells, mediating the transmission of

activation signals (122). The EGFR/CD3 bispecific antibody

functions via a “dual-antigen bridging” mechanism. Specifically,

its “tumor-targeting arm”—an anti-EGFR single-chain antibody

fragment—selectively binds to EGFR on cSCC Tumor Cells,

effectively anchoring T cells in close proximity to the Tumor Cells

and minimizing off-target activation in non-tumor tissues (123).

Concurrently, the “immune-activating arm”—an anti-CD3 single-

chain antibody fragment—binds to the CD3e chain on T cells,

triggering intracellular signaling cascades such as the ZAP-70 and
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ERK1/2 pathways through cross-linking of the TCR-CD3 complex.

This activation induces T cells to release cytotoxic molecules,

including perforin and granzyme B, which directly eliminate the

bound Tumor Cells (124). In addition, activated T cells secrete

Cytokines such as IFN-g and TNF-a, which further recruit

additional effector T cells (e.g., CD8+ T cells) and natural killer

(NK) cells into the Tumor Microenvironment, contributing to the

establishment of long-lasting anti-tumor immune memory (124).

Compared with conventional anti-EGFR monoclonal antibodies

(such as cetuximab), EGFR/CD3 bispecific antibodies not only

block EGFR-mediated tumor proliferation signaling but also

actively recruit T cells to exert cytotoxic effects. This dual

mechanism makes them particularly suitable for patients with

cSCC characterized by immune-desert microenvironments, where

T-cell infiltration is minimal (123).

4.2.2 Preclinical evidence
Although no EGFR/CD3 bispecific antibodies targeting cSCC

have yet entered the clinical trials stage, multiple preclinical studies

have demonstrated their potent antitumor activity and favorable

tolerability in various EGFR-overexpressing Solid Tumors models.

While specific investigations on cSCC remain limited, several

studies employing cutaneous squamous cell carcinoma cell lines (e.g.,

A431) have confirmed the efficacy of EGFR/CD3 bispecific antibodies.

In A431 cells, representing a model of cutaneous squamous cell

carcinoma, these bispecific antibodies (such as the ATTACK

format) have shown strong binding affinity and effectively inhibited

downstream EGFR signaling pathways and cell proliferation (124).In

the A431 xenograft model, significant inhibition of tumor growth was

achieved by the EGFR/CD3 bispecific antibody through activation of

T cell-mediated Tumor Cells killing (125).

Preclinical data from tumors with high EGFR expression, such

as head and neck squamous cell carcinoma (HNSCC) and colorectal

carcinoma, further support the potential application of the EGFR/

CD3 bispecific antibody in cSCC. In HNSCC models (e.g., HNSCC

cell lines), T cell-dependent lysis of Tumor Cells was induced by the

EGFR/CD3 bispecific antibody (126). In colorectal carcinoma

models, Probody-engineered EGFR/CD3 bispecific antibodies

(e.g., CI107) demonstrated a marked reduction in toxicity while

maintaining therapeutic efficacy (127).

4.2.3 Current challenges
Despite encouraging preclinical findings, three key challenges

must be addressed for the clinical translation of EGFR/CD3

bispecific antibodies in cSCC:

Cytokine release syndrome (CRS): Activation of T cells by

bispecific antibodies may provoke an excessive immune response,

resulting in the massive release of cytokines such as IL-6 and IL-1b,
which can manifest as fever, hypotension, and organ dysfunction

(128).In preclinical studies of EGFR/CD3bispecific antibody, the

severity of CRS has been found to correlate with the extent of T-cell

activation. However, this can be mitigated through engineering

approaches, such as reducing CD3 binding affinity, which lowers

Cytokines release while preserving antitumor efficacy (129).
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Heterogeneous EGFR expression has been observed:

approximately 10%–20% of cSCC patients exhibit low EGFR

expression (IHC score 1+) or are negative in tumor tissues,

potentially rendering them unresponsive to EGFR/CD3 bispecific

antibodies (130). Higher EGFR expression levels have been reported

in cSCC lesions exposed to greater UV radiation (e.g., face, scalp)

compared to those on the trunk (mean IHC score 3+ vs. 2+), indicating

the importance of biomarker-based patient selection (131).

off-target toxicity remains a concern, as normal epidermal

keratinocytes also express low levels of EGFR (IHC score 1+).

The bispecific antibody may bind to these normal skin cells and

activate local T cells, potentially resulting in dermatologic toxicities

such as rash, pruritus, and epidermal detachment (132). In

preclinical mouse models, administration of high-dose EGFR/

CD3 bispecific antibody (20 mg/kg) resulted in diffuse erythema

on the skin, with histopathological analysis revealing lymphocytic

infiltration in the epidermis. To mitigate binding to normal cells,

optimization through antibody engineering is required (133).
4.3 Combination immunotherapy

At the forefront of tumor treatment, combination immunotherapy

has garnered significant attention for its distinctive advantages. By

strategically integrating multiple therapeutic approaches, it generates

synergistic effects that enhance the efficacy of immunotherapy, offering

novel perspectives and strategies for overcoming the challenges posed

by tumors.

Chemotherapeutic agents play a pivotal role in combination

immunotherapy. By inducing immunogenic cell death (ICD) of

Tumor Cells, they facilitate the release of Tumor Antigens and

activate the immune system, thereby augmenting the effectiveness

of immune checkpoint inhibitors. The potential of this combined

approach has been strongly supported by results from clinical trials

(108). For instance, in patients with advanced cSCC (cSCC), the

combination of pembrolizumab and chemotherapy significantly

increased the objective response rate (ORR), leading to more

substantial therapeutic benefits. This achievement highlights the

synergistic benefits of combining chemotherapy with immune

checkpoint inhibitors, offering new therapeutic avenues for the

treatment of advanced cSCC.

The combination of targeted therapies with immune checkpoint

inhibitors has also shown considerable therapeutic promise. Agents

such as EGFR inhibitors (134) and BRAF inhibitors (135) effectively

block critical signaling pathways in Tumor Cells, thereby

suppressing their growth and survival. This suppression further

enhances the antitumor efficacy of immune checkpoint inhibitors.

In patients with EGFR-mutated cSCC, a treatment regimen

combining pembrolizumab with cetuximab, an EGFR inhibitor,

has demonstrated marked clinical efficacy. The overall safety of

pembrolizumab in combination with cetuximab has been found to

be manageable. The most common grade 3–4 adverse event

reported is stomatitis, with no treatment-related deaths observed

(136). These findings suggest that the combination therapy
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regimens are generally well tolerated in patients with advanced

CSCC. The therapeutic mechanism of this combination involves the

targeted agent impairing the defense mechanisms of Tumor Cells,

thereby enabling immune checkpoint inhibitors to more effectively

activate the immune system for a coordinated antitumor response.

This synergistic interaction offers a more tailored treatment option

for patients whose tumors carry specific genetic mutations.

Encouraging outcomes have also been achieved in clinical studies

investigating the combination of radiotherapy with immune checkpoint

inhibitors. High-energy radiation has been shown to destroy the DNA

of Tumor Cells, thereby inducing immunogenic cell death (ICD) (137).

During this process, a substantial amount of Tumor Antigens is

released by Tumor Cells, which activates the immune system and

enhances the anti-tumor efficacy of immune checkpoint inhibitors.

According to clinical trials, the combination of radiotherapy and

pembrolizumab significantly improves the objective response rate

(ORR) in patients with locally advanced cSCC (79). These findings

demonstrate that the synergistic use of radiotherapy and immune

checkpoint inhibitors enables a multifaceted attack on tumors,

thereby enhancing therapeutic outcomes and offering new hope for

patients with locally advanced cSCC. Moreover, ICD induced by

radiotherapy not only strengthens the local immune response against

tumors but also converts “cold” tumors (characterized by a lack of

lymphocytic infiltration) into “hot” tumors (responsive to

immunotherapy), thereby improving the overall effectiveness of

immunotherapeutic strategies (138). This combined therapeutic

strategy, known as radioimmunotherapy, has demonstrated

promising potential in the treatment of various cancers (139). In one

study, a liposomal nanomedicine named C/J-LipoRGD was developed

by co-encapsulating a biological enzyme and a BRD4 inhibitor,

enabling tumor-targeted delivery and modulation of the TIME. This

formulation improved the oxygenation status of the Tumor

Microenvironment, reduced the expression of PD-L1, reversed T cell

exhaustion, significantly suppressed tumor growth, and induced ICD,

thereby activating a T cell-mediated antitumor immune response (140).

immune checkpoint inhibitors can also be combined with other

innovative therapeutic approaches, such as oncolytic viruses (141) and

radionuclide therapy (142). Oncolytic viruses represent a novel

therapeutic strategy characterized by a unique antitumor mechanism.

They selectively infect and lyse Tumor Cells, while simultaneously

releasing a substantial amount of Tumor Antigens within the Tumor

Microenvironment. This process further stimulates the immune system

and triggers a new inflammatory response aimed at eliminating Tumor

Cells (141). In parallel, radionuclide therapy employs the localized

radiation effects of radioactive nuclides to precisely target Tumor Cells

(143), while also activating immune responses and enhancing the

efficacy of immune checkpoint inhibitors. These combination therapies

offer more diversified treatment options and are anticipated to play an

increasingly important role in future clinical applications.

In summary, combination immunotherapies markedly amplify

antitumor immune responses through the synergistic action of

multiple mechanisms, offering renewed hope for cancer patients.

With ongoing research advancements and the integration of new

technologies, combination immunotherapies are expected to be
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continually optimized and refined. Emerging therapeutic strategies

will be developed, existing regimens will become more precise and

efficient, and personalized treatment approaches will see broader

implementation. These advancements are anticipated to further

enhance patient survival rates and quality of life, driving cancer

treatment toward greater precision, efficacy, and individualization.
5 Conclusion

A critical role has been established for the TME of cSCC in tumor

initiation, progression, and immune evasion. The Tumor

Microenvironment constitutes a complex ecological system comprising

immune cells, stromal cells, Cytokines, and the extracellular matrix

(ECM). Through intricate interactions, these components collectively

modulate tumor growth, invasion, and metastasis. Comprehensive

exploration of the immunoregulatory mechanisms within the Tumor

Microenvironment—including the recruitment and activation of

immune cells, the establishment of an immunosuppressive milieu,

Immune Evasion by Tumor Cells, and the regulation of Cytokines

networks—has laid a robust theoretical foundation for the development

of innovative immunotherapeutic strategies.

Immunotherapy, particularly the use of immune checkpoint

inhibitors and approaches targeting the immunosuppressive

microenvironment, has shown marked efficacy in the treatment of

cSCC, offering promising prospects for enhancing patient survival and

quality of life. However, immunotherapy may also lead to immune-

related adverse events, such as skin and endocrine toxicities, which

require careful attention and effective management in clinical settings.

Notably, this review differs from general discussions on tumor

immunotherapy by highlighting the unique association between UV-

induced mutations and Immune Evasion within the context of cSCC

and the Tumor Microenvironment. In addition, the therapeutic

advantages of immune checkpoint inhibitors in this disease are

clarified. This focused investigation addresses a critical gap in

understanding the specific mechanisms of immunotherapy for cSCC,

thereby offering more precise theoretical support for clinical application.

To further improve the effectiveness of immunotherapy, ongoing

research is actively investigating novel targets, combination treatment

strategies, and potential biomarkers. Future research should place greater

emphasis on regulating the immunosuppressive microenvironment,

with particular focus on disrupting its protective role in tumor

progression and enhancing the immune system’s capacity to eliminate

tumor cells. Priority should also be given to investigating the application

of bispecific antibodies in combination with immune checkpoint

inhibitors in cSCC, while considering the influence of gender

differences on treatment selection to further promote the development

of personalized therapies for cSCC.

Optimizing combination immunotherapy represents another critical

direction for future studies. By integrating immune checkpoint inhibitors

with chemotherapy, radiotherapy, targeted therapy, and other treatment

strategies, tumors can be targeted throughmultiple mechanisms, thereby

improving overall therapeutic outcomes. In addition, the development of
Frontiers in Immunology 12
personalized treatment strategies remains a key focus of future research.

By tailoring precise therapeutic approaches to individual patient

characteristics and tumor-specific features, treatment efficacy can be

maximized while minimizing adverse effects.

The integration of tumormetabolism and immunotherapy has also

emerged as a prominent area of investigation. Clarifying how tumor

metabolism affects immune responses, and how its modulation can

enhance the effectiveness of immunotherapy, is expected to provide

new insights for the treatment of cSCC. At the same time, the

application of advanced technologies such as mass cytometry, single-

cell transcriptomics, and epigenetics will enable a deeper understanding

of the complex interactions between the Tumor Microenvironment

and immune responses, thereby offering scientific evidence and novel

strategies for optimizing immunotherapeutic approaches. By fostering

multidisciplinary collaboration and innovation, ongoing progress in

precision and personalized treatment for cSCC is expected to offer

patients more effective therapeutic options and renewed hope,

ultimately leading to improved prognosis and enhanced quality of

life for those affected by cSCC.
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