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Background: Ferroptosis, a regulated form of iron-dependent cell death, has
shown promise as an anti-tumor mechanism. However, its role in pancreatic
cancer remains largely unexplored. This study aimed to identify a ferroptosis-
related prognostic signature and key biomarkers.

Methods: Transcriptomic profiles and clinical data of pancreatic cancer patients
were obtained from the GEO and TCGA databases. A prognostic signature was
constructed using LASSO and Cox regression analysis. The role of a key gene,
NOTCH?2, was investigated through somatic mutation, functional enrichment,
immune infiltration, and drug sensitivity analysis. In vitro, the expression of
NOTCH2 was confirmed by Western blot, and its effects on cell proliferation
and migration were assessed using MTT, colony formation, and wound-healing
assays. Its involvement in ferroptosis was further investigated by measuring
intracellular iron, reactive oxygen species (ROS) and C11-BODIPY.

Results: We constructed and validated a ferroptosis-related prognostic signature
consisting of NOTCH2, KRT18, and H1-2. Patients in the high-risk group, as
defined by this signature, exhibited significantly worse overall survival. A
nomogram integrating the risk score and clinical variables demonstrated
excellent accuracy in predicting patient prognosis. We identified NOTCH?2 as a
key biomarker, showing upregulated expression in pancreatic cancer tissues and
cell lines, which correlated with poor prognosis and increased infiltration of M2
macrophages. Functionally, knockdown of NOTCH2 in vitro inhibited the
proliferation and migration of pancreatic cancer cells while increasing both
intracellular iron concentration and lipid peroxidation levels.

Conclusion: Our study establishes a ferroptosis-related signature for prognostic
prediction in pancreatic cancer and identifies NOTCH2 as a critical prognostic
biomarker. NOTCH2 may promote pancreatic cancer progression by
suppressing ferroptosis, highlighting it as a potential therapeutic target.
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1 Introduction

Pancreatic cancer remains one of the most lethal malignancies,
characterized by late diagnosis, rapid progression, and poor
prognosis. Pancreatic ductal adenocarcinoma (PDAC) is the most
common type of pancreatic cancer, accounting for more than 90%
of all solid pancreatic neoplasms. According to the 2022 global
cancer statistics, there were 510,566 new cases and 467,005 deaths of
pancreatic cancer (1). Pancreatic cancer ranks 12th in incidence
among common cancers, yet it is the 6th leading cause of cancer-
related mortality. Surgery is the only potential cure for pancreatic
cancer, but it is only possible in a small percentage of cases.
Pancreatic cancer is often diagnosed at an advanced stage due to
the lack of specific early symptoms and highly sensitive screening
methods (2). Despite advances in therapeutic strategies, the five-
year survival rate for pancreatic cancer patients remains dismally
low (3, 4). Therefore, identifying novel biomarkers and therapeutic
targets is crucial for improving the survival outcomes of pancreatic
cancer patients.

Ferroptosis is an iron-dependent, lipid peroxidation-driven
form of programmed cell death that plays a critical role in cancer
biology (5). Morphologically, ferroptosis is primarily marked by
significant mitochondrial shrinkage, increased membrane density,
and the reduction or disappearance of mitochondrial cristae (6).
Glutathione peroxidase 4 (GPX4) is an important antioxidant
enzyme that inhibits lipid peroxidation and ferroptosis (7). GPX4
relies on reduced glutathione to eliminate lipid peroxides.
Inhibition or depletion of GPX4 leads to the accumulation of
lipid peroxides and triggers ferroptosis. Excessive intracellular
iron levels contribute to the production of reactive oxygen species
(ROS) via the Fenton reaction (8). This leads to the accumulation of
lipid peroxides, particularly polyunsaturated fatty acids (PUFAs)
within cell membranes (5). Enzymes such as ACSL4 and LPCAT3
facilitate the incorporation of PUFAs into cell membrane
phospholipids, leading to their subsequent oxidation (9). This
renders cell membranes more susceptible to ROS attack, resulting
in the generation of more lipid peroxides.

Abbreviations: AUC, area under the curve; DEGs, differentially expressed genes;
DFS, disease-free survival; DSS, disease-specific survival; EMT, epithelial-
mesenchymal transition; FBS, fetal bovine serum; FDR, false discovery rate;
FRGs, ferroptosis-related genes; GEO, Gene Expression Omnibus; GO, Gene
Ontology; GPX4, glutathione peroxidase 4; GSEA, gene set enrichment analysis;
HPA, Human Protein Atlas; HR, hazard ratio; ICIs, immune checkpoint
inhibitors; KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least
absolute shrinkage and selection operator; OS, overall survival; PBS, phosphate-
buffered saline; PCA, principal component analysis; PDAC, pancreatic ductal
adenocarcinoma; PFS, progression-free survival; PPRGs, pancreatic cancer
prognosis-related genes; PUFAs, polyunsaturated fatty acids; qRT-PCR,
Quantitative real-time polymerase chain reaction; ROC, receiver-operating
characteristic; ROS, reactive oxygen species; ssGSEA, single-sample gene set
enrichment analysis; TCGA, The Cancer Genome Atlas; TGF-, transforming
growth factor B; TIDE, Tumor Immune Dysfunction and Exclusion; TIIC,

tumor-infiltrating immune cell; VEGF, vascular endothelial growth factor
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Ferroptosis is associated with various physiological processes
within tumor cells (10). Cancer cells more susceptible to ferroptotic
cell death regulation compared to normal cells (11). Recent studies
have highlighted the potential of ferroptosis as a therapeutic target in
various cancers, such as hepatocellular carcinoma, breast cancer, and
lung cancer (12-14). Pancreatic cancer cells, with their high
metabolic demands for proliferation and DNA synthesis, are
particularly dependent on intracellular iron (15). The oxidation and
reduction of iron promote the production of ROS, thereby
accelerating tumor growth. Therefore, serum ferritin and
transferrin, which reflect iron levels, can serve as potential
diagnostic biomarkers for pancreatic cancer (16). Recent research
has underscored the critical role of ferroptosis in pancreatic cancer
progression and treatment response. Studies have shown that high
expression of NCOA4 in PDAC leads to increased NCOA4-mediated
ferritinophagy, a process that supports tumor cell proliferation by
maintaining iron homeostasis. Evidence from mouse models
indicates that NCOA4 knockout significantly delays tumor
progression and prolongs survival, whereas its overexpression
accelerates tumor growth. This demonstrates that NCOA4-driven
ferritinophagy is a key driver of pancreatic cancer growth and
survival (17). Another study indicates that the destruction of
pancreatic cells via ferroptosis triggers the release of 8-OHG, a
damage-associated molecular pattern (DAMP) that signals
oxidative DNA damage. This release activates the STING-
dependent DNA sensor pathway, promoting macrophage
infiltration and M2 polarization, which in turn facilitates pancreatic
carcinogenesis (18). Furthermore, in terms of metabolic adaptability,
PDAC cells resist oxidative stress by upregulating SLC7A11 and
GPX4, which supports their survival in a hypoxic environment (19).

Erastin and RSL3 have been shown to induce ferroptosis and
exhibit anti-tumor activity (20). Combining ferroptosis inducers
with chemotherapy, radiotherapy, and immunotherapy can
improve treatment outcomes by overcoming drug resistance (20,
21). However, tumor cells can also develop resistance to ferroptosis
and promote cancer progression by upregulating antioxidant
defenses and altering iron metabolism (22). The effect of
ferroptosis on tumor depends on the release of DAMPs and the
activation of immune response triggered by ferroptotic damage
within the tumor microenvironment (23). A comprehensive
analysis of ferroptosis-related genes (FRGs) will provide a more
in-depth understanding of their impact on cancer progression.
However, the role of FRGs in pancreatic cancer and their
association with immune response remains largely unexplored.

In this study, we performed a comprehensive bioinformatics
analysis using publicly available pancreatic cancer datasets to
construct and evaluate a ferroptosis-related gene signature. This
signature demonstrated robust prognostic value for overall survival
(OS). Furthermore, we investigated the role of NOTCH2 in
pancreatic cancer in terms of immune infiltration, prognostic
significance, somatic mutation profiles, and drug sensitivity.
These findings were further substantiated through experimental
validation. Our findings suggest that NOTCH2 may serve as a novel
biomarker and a potential therapeutic target in pancreatic cancer,
offering new avenues for personalized anti-tumor strategies.
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2 Methods

2.1 Data collection

RNA-sequencing, somatic mutation, and associated clinical
data for pancreatic adenocarcinoma cohorts were obtained
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/) and the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/) (24). The TCGA-PAAD
cohort consists of 4 normal tissue samples and 178 tumor samples,
with prognostic data available for 152 patients. The GSE15471
cohort comprises expression data from 39 tumor samples and 39
normal samples. GSE28735 and GSE85916 cohorts contain
expression information and prognostic data for 84 and 79
individuals, respectively. Expression data (transcripts per million)
from 167 normal pancreatic tissue samples were obtained from the
GTEx database (https://www.gtexportal.org). Genes expressed in at
least 50% of samples were included in the analysis. A total of 634
FRGs were retrieved from the FerrDb database (http://www.
zhounan.org/ferrdb/current/). The full gene set is listed in
Supplementary Table S1.

2.2 Construction of a ferroptosis-related
prognostic signature

Differentially expressed genes (DEGs) between pancreatic
tumor and normal tissues in the TCGA-PAAD cohort (Counts
data) were identified using the “limma” package, with thresholds set
at |log fold change| > 1 and false discovery rate (FDR) < 0.05.
Prognosis-related genes were determined via univariate Cox
regression analysis, with a P value < 0.05 considered statistically
significant. FRGs that were both differentially expressed and
prognostically relevant were identified using a Venn diagram.
These genes were subsequently used to construct a prognostic
model through least absolute shrinkage and selection operator
(LASSO) regression and multivariable Cox analysis. The risk
score was calculated using the following formula:

Riskscore = ', (Coefi « Expi)

Coefi is gene coefficient; Expi is gene expression; n is the
number of genes in signature.

Individuals were stratified into high- and low-risk groups based
on the median risk score. Kaplan-Meier survival analysis was
performed to compare survival curves. The prognostic model was
validated in the GSE28735 and GSE85916 cohorts. Principal
component analysis (PCA) was conducted to assess the
discriminative capacity of the model, while receiver-operating
characteristic (ROC) curves were used to evaluate its sensitivity
and specificity in predicting the prognosis of pancreatic cancer.

2.3 Construction and evaluation of the
nomogram

In the TCGA-PAAD cohort, univariate and multivariate Cox
regression analyses were performed to determine whether the risk
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score could serve as an independent prognostic factor. Box plots were
used to evaluate the association between the risk score and
clinicopathologic parameters. A nomogram integrating the risk score
and clinical features was subsequently constructed, and its predictive
performance was assessed using ROC and calibration curves.

2.4 ldentification of NOTCH2 as a potential
biomarker in pancreatic cancer

A pan-cancer analysis of NOTCH2 was conducted using the
Xiantao Academic Tool (https://www.xiantaozi.com/), including
assessments of its differential expression across various cancer types
and its prognostic significance. The predictive accuracy and
sensitivity of NOTCH2 for pancreatic cancer were further
evaluated using ROC curves in the TCGA-PAAD and GSE15471
cohort. Patients in the TCGA-PAAD and GSE28735 datasets were
stratified into high and low NOTCH2 expression groups based on
median expression levels, and Kaplan-Meier analysis was conducted
to assess survival differences. Somatic mutation profiles across
subgroups were visualized with waterfall plots. Drug sensitivity
analysis to chemotherapy and targeted therapy drugs was assessed
using the “oncoPredict” package. In addition, immunohistochemical
data from the Human Protein Atlas (HPA) database (https://
www.proteinatlas.org/) were used to examine NOTCH2 protein
expression in pancreatic cancer and normal pancreatic tissues.

2.5 Functional enrichment analysis

Differential gene expression analysis was performed between
high and low NOTCH2 expression groups in the TCGA-PAAD
cohort. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were conducted using the
“clusterProfiler” package to identify biological processes and
signaling pathways associated with NOTCH2 (g-value < 0.05). In
addition, gene set enrichment analysis (GSEA) was employed to
further investigate the underlying mechanisms of NOTCH?2
involvement. The reference molecular datasets included
“c2.cp.Kegg.Hs.symbols.gmt” and “c2.cp.reactome.v2023.2.Hs.
symbols.gmt”, with |NES| > 1 and g-value < 0.1 considered
statistically significant.

2.6 Immune infiltration and immune
function analysis

To assess the association between NOTCH2 expression and
immune cell infiltration, we first calculated single-sample gene set
enrichment analysis (ssGSEA) scores using the “GSVA” package
across pan-cancer samples. The correlations between NOTCH2
expression and the infiltration levels of 28 tumor-infiltrating
immune cell (TIIC) subtypes were evaluated and visualized using
box plots stratified by high and low NOTCH2 expression groups.
The “CIBERSORT” algorithm was then applied to evaluate the
abundance and expression levels of 22 TIIC populations.
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Subsequently, the “ESTIMATE” algorithm was used to compute
stromal, immune, and ESTIMATE scores to characterize the tumor
microenvironment across pan-cancer datasets. RNA-seq data were
standardized and uploaded to the Tumor Immune Dysfunction and
Exclusion (TIDE) website (http://tide.dfci.harvard.edu/) to calculate
TIDE, Exclusion, and Dysfunction scores for pancreatic
cancer samples.

2.7 Cell culture and lentiviral transfection

Human pancreatic ductal epithelial cells ('TERT-HPNE) and
pancreatic cancer cell lines (ASPC-1 and BXPC-3) were obtained
from the Cell Bank of the Chinese Academy of Sciences. Cell line
authentication was performed using short tandem repeat (STR)
profiling, and all lines tested negative for mycoplasma
contamination. Cells were maintained in RPMI-1640 medium
supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin at 37 °C in a humidified atmosphere with
5% CO,. Lentiviral vectors encoding short hairpin RNA (shRNA)
targeting NOTCH2 were constructed by GeneChem (Shanghai,
China; http://www.genechem.com.cn/). The target lentiviral vector
used was GV493, with the element sequence hU6-MCS-CBh-
gcGFP-IRES-puromycin (Reference number: CON313). The
RNAIi negative control (sh-NC) sequence was TTCTCCGAACG
TGTCACGT. The shRNA sequences targeting NOTCH2 were:

sh-NOTCH2-1, GCATGCATCAGCAATCCTTGG;
sh-NOTCH2-2, GCGGTGTACCATTGACATTGA;
sh-NOTCH2-3, GCACCTGTGAGAGGAATATTG.

ASPC-1 and BXPC-3 cells were seeded into 6-well plates at a
density of 2 x 10* cells per well. After 24 hours, the medium was
replaced, and diluted lentiviral supernatant was added for infection.
Following a 24-hour incubation, cells were transferred to culture
dishes and selected with puromycin (48 hours, repeated 3 times) to
establish stably transduced cell lines. Constructs exhibiting the most
efficient NOTCH2 knockdown were identified and selected for
subsequent experiments.

2.8 Quantitative real-time polymerase
chain reaction

Total RNA was extracted from cells using TRIzol® reagent and
subsequently reverse transcribed into complementary DNA
(cDNA). The qRT-PCR reaction mixture contained 2 pL of
c¢DNA, 7.2 uL of DEPC water, 10 UL of SYBR, and 0.4 uL each of
forward and reverse primers. Thermal cycling was performed under
the following conditions: initial denaturation at 95 °C for 30
seconds, followed by 40 cycles of denaturation at 95 °C for 10
seconds and annealing/extension at 60 °C for 30 seconds. Melting
curve analysis was performed with the following steps: 95 °C for 15
seconds, 60 °C for 60 seconds, and 95 °C for 15 seconds. Primer

sequences are provided as follows:
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NOTCH2-F (5'-ATGCCGGGTTTCAAAGGTGT-3").
NOTCH-R (5'-ATGTCGATCTGGCACACTGG-3").
B-actin F (5-GACCACCTTCAACTCCATCAT-3).
B-actin R (5’-CCTGCTTGCTAATCCACATCT-3).

All experiments were performed in triplicate. B-actin was used
as an internal control, and relative gene expression levels were
calculated using the 2 — AACt method.

2.9 Western blot analysis

Cells were lysed using IP lysis buffer, and the supernatant was
collected by centrifugation. Proteins (20 pg per sample) were
separated by 10% SDS-PAGE and transferred onto polyvinylidene
difluoride (PVDF) membranes (10600023, Cytiva, USA).
Membranes were blocked with 5% skim milk for 1 hour at
room temperature and then incubated overnight at 4 °C with
primary antibodies (RabMab, ab307700, 1:1000, Abcam, UK).
After washing three times with TBST (10 minutes per wash),
membranes were incubated with secondary antibodies (M21002,
Abmart, China) at 37 °C for 1 hour, followed by another three
washes with TBST. Protein bands were visualized using an
enhanced chemiluminescence detection system.

2.10 MTT assay

sh-NC and sh-NOTCH?2 of ASPC-1 and BXPC-3 cell lines were
seeded in 24-well plates at a density of 7 x 10* cells per well. After 48
hours of incubation, 500 pL. MTT solution (0.5 mg/mL, Aladdin,
M158055) prepared with FBS-free medium was added to each well
and incubated for at least 2 hours at 37 °C. Formazan crystals
formed by viable cells were then dissolved in an equal volume of
DMSO. Absorbance was measured at 490 nm using a microplate
reader (BioTek, USA). Cell viability was calculated as follows: cell
viability (%) = experimental group OD value/control group OD
valuex100%. Cell proliferation was assessed every 24 hours for three
consecutive days. All data were processed using Microsoft Excel and
visualized with GraphPad Prism 9.

2.11 Colony formation and wound-healing
assays

For the colony formation assay, 1,000 cells were seeded into
each well of a 6-well plate and cultured in a humidified incubator at
37 °C with 5% CO,. The culture medium was refreshed every two
days. After 14 days, cell colonies were fixed at room temperature
with 4% paraformaldehyde, stained with crystal violet, and imaged.

For the wound healing assay, pancreatic cancer cells were
seeded into 6-well plates following transfection with sh-NC or sh-
NOTCH?2 lentivirus. When the cell density of the sh-NC group
reached 80%-90% of the area per well, a wound was made in the cell
monolayer using a 200 uL tip. After washing with phosphate-
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buffered saline (PBS) to remove detached cells, adherent cells were
incubated in FBS-free medium. The images were obtained at 0 and
48 h. The scratch area was measured three times to evaluate the cell
healing rate. The data were analyzed using ImageJ software and
graphs were generated using GraphPad Prism 9 software.

_ (Oh scratch area — 48h scratch area)

Cell healing rate( %) = oh scratch % 100 %
scratc

2.12 Iron, ROS and C11-BODIPY detection

ASPC-1 and BXPC-3 cells were seeded into 24-well plates and
cultured for 48 hours at 37 °C in a humidified incubator with 5%
carbon dioxide. Cells were then incubated with FerroOrange
(Dojindo, China) of 1 umol/L for 30 minutes under identical
conditions. The level of iron ion was assessed using an inverted
fluorescence microscope (Nikon, Japan).

For ROS detection, H,DCFDA (DCF, 10 mmol/L) and
dihydroethidium (DHE, 10 mmol/L) dyes were prepared in FBS-
free RPMI-1640 medium and diluted to a final concentration of 10
pmol/L. Cells were pre-seeded in 24-well plates and incubated for
48 hours. Cells were incubated with the respective dye for 1 hour,
washed twice with PBS. Fluorescence imaging was conducted using
an inverted fluorescence microscope (Nikon, Japan).

For lipid peroxidation detection, ASPC-1 and BXPC-3 cells
were seeded in small dishes and incubated for 48 hours, then 1 uM
C11 BODIPY was added, and the cells were further incubated at 37 °
C for 30 minutes. Subsequently, the cells were washed three times
with PBS and stained with Hoechst 33342 to label cell nuclei. The
level of lipid peroxidation was assessed by detecting the increase in
green fluorescent signal or changes in the red-to-green fluorescent
ratio. All fluorescent images were captured using a confocal
microscope (Leica, Germany).

2.13 Statistical analysis

All statistical analyses were performed using R (version 4.4.0).
Differential gene expression analysis was conducted using the
“limma” package, with significance thresholds defined as |log fold
change| >1 and P < 0.05. Box plots and volcano plots were generated
using the “ggplot2” and “ggpubr” packages. Survival analysis was
performed using the Kaplan-Meier method and log-rank tests,
implemented through the “survival” and “survminer” packages.
Nomogram was constructed with the “rms” and “regplot” packages.
Mutation landscapes were visualized using the “maftools” package.
Between-group comparisons were assessed using the Wilcoxon test,
and correlation analyses were performed using Spearman’s
correlation coefficients. One-way ANOVA and Student’s t-test
were performed using GraphPad Prism (version 9.3.1).
Densitometric analysis of Western blot bands, wound-healing
images, and merged fluorescence images were conducted with
Image]. A P-value < 0.05 was considered statistically significant.
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Significance levels were annotated as follows: ns P>0.05; *P < 0.05;
P < 0.01; ***P < 0.001.

3 Results

3.1 Identification of prognosis-related
differentially expressed ferroptosis-
associated genes

Most cancer-associated mutations are somatic mutations. In the
TCGA-PAAD cohort, we performed somatic mutation analysis and
visualized the top 15 most frequently mutated genes using a
waterfall plot (Figure 1A). The results revealed that KRAS
exhibited the highest mutation frequency (62%), followed by
TP53 and CDKN2A, with missense mutations being the
predominant mutation type. Differential expression analysis
identified 2,616 genes with statistically significant differences
between pancreatic tumor and normal tissues (P < 0.05),
including 1,003 upregulated in tumors and 1,613 upregulated in
normal tissues (Figure 1B). Univariate Cox regression analysis
further identified 8,526 pancreatic cancer prognosis-related genes
(PPRGs) (p < 0.05). By intersecting the 2,616 DEGs, 634 FRGs, and
the 8,526 PPRGs, we identified 17 prognosis-related differentially
expressed ferroptosis-associated genes (PR-DE-FRGs) (Figure 1C).
Boxplot analysis showed that MCU, ITGA6, QSOX1, H1-2,
EPHA2, STEAPI, SLC7A1l, MAL2, STYK1, and NQOI1 were
highly expressed in pancreatic cancer tissues, whereas NOTCH2
was predominantly expressed in normal pancreatic tissues
(Figure 1D). The relationships among the PR-DE-FRGs were
assessed using Spearman correlation analysis, which revealed a
significant inverse correlation between NOTCH2 and FOXA2,
and positive correlations between NOTCH2 and the majority of
the other genes, including MCU, ITGA®6, and SLC7A11 (Figure 1E).
Univariate Cox regression analysis indicated that FOXA2 was the
only gene associated with a favorable prognosis (hazard ratio [HR]
< 1, p < 0.05), while the remaining 16 genes were significantly
associated with poorer OS (HR > 1, p < 0.05) (Figure 1F).

3.2 Development and validation of a
ferroptosis-related prognostic signature

To minimize the risk of overfitting, LASSO regression with
cross-validation was applied to the 17 PR-DE-FRGs, yielding five
genes (NOTCH2, KRT18, ANOI1, H1-2, and MGST1) (Figure 2A).
Subsequently, multivariate Cox regression analysis identified a
three-gene prognostic signature comprising NOTCH2, KRT18,
and H1-2 (Figure 2B). Among them, NOTCH2 exhibited the
highest coefficient and the most significant association with
prognosis (P<0.005). The risk score was calculated according to
the following formula:

Risk score = (0.45326 x NOTCH2 expression) + (0.32491 x
KRT18 expression) + (0.23260 x HI1-2 expression).
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FIGURE 1

Identification and prognostic analysis of PR-DE-FRGs in pancreatic cancer. (A) Waterfall plot illustrating the somatic mutation frequency in the
TCGA-PAAD cohort. (B) Volcano plot showing the differentially expressed genes in the TCGA-PAAD cohort. (C) Venn diagram identifying 17 PR-DE-
FRGs. (D) Expression levels of PR-DE-FRGs in pancreatic cancer and normal samples from the TCGA database. (E) Spearman correlation analysis of
PR-DE-FRGs. (F) Univariate Cox regression analysis of PR-DE-FRGs. ns P>0.05; *P < 0.05; **P < 0.01; ***P < 0.001. PR-DE-FRGs, prognosis-related
differentially expressed ferroptosis-related genes; TCGA, The Cancer Genome Atlas.

In the TCGA-PAAD cohort, patients were stratified into high-
risk and low-risk groups based on the median risk score
(Supplementary Table S2). As shown in Figure 2C, expression
levels of NOTCH2, KRT18, and H1-2 were significantly elevated
in the high-risk group (P<0.001). PCA demonstrated clear
separation between the two risk groups, indicating the model’s
discriminatory capacity. Kaplan-Meier analysis revealed a
significantly longer OS in the low-risk group (P < 0.001), and
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survival outcome analyses further confirmed that higher risk scores
were associated with increased mortality risk (Figure 2D). Similar
findings were observed in the GSE28735 and GSE85916 validation
cohort (Figures 2E, F). Moreover, in the TCGA-PAAD cohort,
patients in the low-risk group exhibited significantly improved
progression-free survival (PFS), disease-specific survival (DSS),
and disease-free survival (DFS), as compared with those in the
high-risk group (Figure 3A). Time-dependent ROC curves
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demonstrated the predictive accuracy of this signature. The areas
under the curve (AUC) for 1-year, 3-year, and 5-year overall
survival (OS) were 0.702, 0.762, and 0.827, respectively, indicating
its high sensitivity and specificity. This signature was further
validated in the GSE28735 and GSE85916 cohorts (Figure 3B).
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Univariable Cox regression analysis incorporating clinical variables
revealed that age (HR = 1.031, 95% CI: 1.005-1.056, P = 0.017) and
risk score (HR = 2.094, 95% CI: 1.460-3.004, P < 0.001) was
significantly associated with OS. Multivariable analysis confirmed
age (HR =1.039, 95% CI: 1.014-1.065, P = 0.002) and risk score (HR
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=2.343,95% CI: 1.597-3.437, P < 0.001) as independent prognostic
factors (Figure 3C). Further subgroup analyses showed that risk

scores were significantly elevated among patients who were 60 years

of age or younger, had high-grade tumors (G3), lymph node
metastasis (N1), or had died. No statistically significant
differences in risk score were observed across sex, tumor stage, T

stage, or M stage subgroups (Figure 3D).

10.3389/fimmu.

2025.1659652

3.3 Construction of a risk score-related
prognostic nomogram

A prognostic nomogram was developed by integrating the risk
score with clinicopathologic factors, including age, sex, tumor stage,
and grade, to enhance the accuracy of survival prediction in patients

with pancreatic cancer (Figure 4A). The AUC of 1-, 2-, and 3-year
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FIGURE 3

Evaluation of the risk signature and its relationship with clinicopathological parameters. (A) Kaplan-Meier analysis of PFS, DSS, and DFS for the risk
signature in the TCGA-PAAD cohort. (B) ROC curves evaluating the risk signature for 1-, 3-, and 5-year survival. (C) Cox regression analyses of the
risk score and other clinical parameters in the TCGA cohort. (D) Distribution of risk scores across subgroups of different clinicopathological
parameters. ns P>0.05; *P < 0.05; **P < 0.01; ***P < 0.001. PFS, progression-free survival; DSS, disease-specific survival; DFS, disease-free survival;
TCGA, The Cancer Genome Atlas; ROC, Receiver Operating Characteristic.
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FIGURE 4

Construction of nomogram and validation of NOTCH2 expression. (A) A nomogram constructed based on the risk score and other clinicopathological
parameters. (B) Calibration curves and ROC curves for the nomogram's prediction of 1-, 2-, and 3-year survival. (C) Pan-cancer expression of NOTCH2 in
unpaired samples from the TCGA database. (D) NOTCH?2 expression levels in GTEx-TCGA cohort and the GSE15471 cohort. (E) Immunohistochemistry
staining for NOTCH2 from the HPA database. (F) Western blot analysis of NOTCH2 expression levels in the hTERT-HPNE, ASPC-1, and BXPC-3 cell lines.
ns P>0.05; *P < 0.05; **P < 0.01; ***P < 0.001. ROC, Receiver Operating Characteristic; TCGA, The Cancer Genome Atlas; HPA, Human Protein Atlas.

survival was 0.687, 0.743, and 0.814, respectively. Calibration curves
demonstrated strong concordance between predicted and observed
survival probabilities, indicating high predictive performance of the
nomogram (Figure 4B). These findings suggest that the nomogram
provides a potential tool for individualized survival prediction in
pancreatic cancer patients.

Frontiers in Immunology

09

3.4 Identification of NOTCHZ2 as a potential
biomarker in pancreatic cancer

Among the prognostic signature genes, NOTCH2 was selected

for further investigation based on its highest regression coefficient
and most significant P-value. Pan-cancer analysis of the TCGA
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dataset revealed elevated NOTCH2 expression in several tumor
types, including CHOL, GBM, KIRP, and STAD, whereas its
expression was markedly reduced in BLCA, KICH, and PAAD
(Figure 4C). However, given that the TCGA-PAAD dataset includes
only four normal pancreatic tissue samples, potential sampling bias
may affect these findings. To address this limitation, we integrated
transcriptomic data from the TCGA and GTEx databases to
compare NOTCH2 expression between pancreatic tumor and
normal tissue. This analysis demonstrated significantly higher
expression of NOTCH2 in pancreatic cancer. Consistent findings
were observed in the GSE15471 cohort (Figure 4D).
Immunohistochemical staining from the HPA database confirmed
higher NOTCH2 protein expression in pancreatic cancer tissue,
with predominant nuclear localization (Figure 4E). This
observation was further supported by Western blot analysis,
which showed significantly increased NOTCH2 protein levels in
ASPC-1 and BXPC-3 cell lines (Figure 4F).

To evaluate the prognostic significance of NOTCH2 expression
across tumor types, univariate Cox regression analysis were
performed in the TCGA pan-cancer cohort. NOTCH2 expression
was found to be significantly associated with poor prognosis in
several cancers. In analyses of OS and DSS, elevated NOTCH2
expression was identified as a risk factor in ACC, BLCA, and PAAD
(HR>1, P<0.05). Conversely, in KIRC, NOTCH2 appeared to serve
as a protective factor (HR<1, P<0.05). ROC analysis demonstrated
that NOTCH2 had strong diagnostic performance for pancreatic
cancer, with an AUC of 0.829 in the TCGA-PAAD cohort and 0.823
in the GSE15471 cohort (Figure 5B). Pancreatic cancer patients
were stratified into high- and low-NOTCH2 expression groups
based on the median expression level. Kaplan-Meier analysis
demonstrated that patients in the high-NOTCH2 group had
significantly shorter OS (Figure 5C). Notably, NOTCH2 also
demonstrated excellent prognostic accuracy for 5-year survival,
with an AUC>0.9 in the TCGA-PAAD cohort, which was
validated in the GSE28735 cohort (Figure 5D). Somatic mutation
analysis of NOTCH2 subgroups showed a higher overall mutation
frequency in the high-NOTCH2 group (82.28% vs. 80.72%). TP53
was the most frequently mutated gene in the high-NOTCH2 group
(65%), whereas KRAS mutations predominated in the low-
NOTCH2 group (63%) (Figure 5E). These observations suggest
that NOTCH2 expression may be linked to distinct patterns of
driver mutations, potentially contributing to variations in
clinical outcomes.

3.5 Drug sensitivity analysis

We assessed the sensitivity of 198 therapeutic agents based on
data derived from the Genomics of Drug Sensitivity in Cancer
(GDSC) database. The results suggested that the expression level of
NOTCH2 may influence the responsiveness to several commonly
used chemotherapeutic and targeted agents. As shown in Figure 5F,
patients with high NOTCH2 expression exhibited elevated ICs,
values for Gemcitabine, 5-fluorouracil, irinotecan, and oxaliplatin,
indicating potential resistance to these agents. Conversely, lower
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ICs, values were observed for osimertinib and dasatinib, suggesting
that patients with high NOTCH2 expression may derive greater
benefit from these treatments.

3.6 Functional enrichment analysis

Differential expression analysis between the high and low
NOTCH2 expression groups identified a total of 737 DEGs,
comprising 679 upregulated and 58 downregulated genes (|log fold
change| > 1, FDR < 0.05). To explore the biological relevance of these
genes, functional enrichment analysis were performed. As illustrated
in Figure 6A, GO enrichment revealed that, at the Biological Process
(BP) level, these DEGs were primarily involved in “leukocyte
mediated immunity,” “lymphocyte mediated immunity,” and “B
cell mediated immunity.” At the Cellular Component (CC) level,
significant enrichment was observed in the “immunoglobulin
complex” and the “collagen-containing extracellular matrix.” In
terms of Molecular Function (MF), DEGs were enriched in

» o«

pathways such as “antigen binding,” “cytokine binding,” and
“immune receptor activity.” Collectively, these findings suggest that
NOTCH2 may play a role in immune responses and antigen-
antibody interactions, thereby contributing to the regulation of host
immune surveillance. Moreover, KEGG pathway enrichment analysis
revealed that the DEGs were significantly associated with key
oncogenic signaling pathways, including the PI3K-Akt, Rapl, and
transforming growth factor B (TGF-B) pathways, as well as with cell
adhesion (Figure 6B), all of which are known to be critical in tumor
initiation and metastasis (Supplementary Table S3). To further
investigate the functional differences between high and low
NOTCH2 expression groups, GSEA was performed based on
KEGG and Reactome datasets. The high-NOTCH2 expression
group showed significant enrichment in multiple tumor-promoting
pathways, including PI3K-AKT, TGF-B, MAPK, mTOR, and
KEAP1-NFE2L2 signaling. In contrast, tumors with low NOTCH2
expression were primarily enriched in mitochondrial metabolic
pathways, such as oxidative phosphorylation (Figure 6C). To
further explore the regulatory role of NOTCH2, we generated bar
charts to analyze the correlation between NOTCH2 and genes in
these pathways. Among them, NOTCH2 exhibits a significant
positive correlation with most genes in the PI3K-AKT, TGF-f3, and
mTOR pathways; in particular, the correlation coefficients between
NOTCH2 and genes such as PIK3CA, TGFBR2, STRN, and HIF1A
exceed 0.75, with statistically significant differences. These genes may
be key upstream or downstream genes of NOTCH2. These findings
suggest that elevated expression of NOTCH2 may promote tumor
progression and metastasis by activating oncogenic signaling,
ultimately contributing to adverse clinical outcomes.

3.7 Assessment of immune cell infiltration
and immune function

TIICs represent critical components of the tumor
microenvironment and play critical role in regulating tumor
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FIGURE 5

Prognostic, somatic mutation, and drug sensitivity analysis of NOTCHZ2. (A) Pan-cancer Cox regression analysis of NOTCH2 on OS, PFS, and DSS in
the TCGA cohort. (B) Diagnostic ROC curves for NOTCH2 in the TCGA-PAAD and GSE15471 cohorts. (C) Kaplan-Meier analysis of OS in patients
with high and low NOTCH2 expression in the TCGA-PAAD and GSE28735 cohort. (D) ROC curves evaluating the NOTCH2 for predicting survival in
the TCGA-PAAD and GSE28735 cohorts. (E) Waterfall plots illustrating somatic mutations in the high- and low-NOTCH2 expression groups. (F) Drug
sensitivity analysis of chemotherapy drugs between high- and low-NOTCH2 expression groups. OS, overall survival; PFS, progression free survival;
DSS, disease specific survival; TCGA, The Cancer Genome Atlas; ROC, Receiver Operating Characteristic.

initiation, progression, and immune evasion. To examine the
relationship between NOTCH2 expression and immune
infiltration, we employed a comprehensive pan-cancer analysis
using the ESTIMATE, CIBERSORT, and ssGSEA algorithms.
ssGSEA revealed that NOTCH2 expression was significantly
correlated with immune cell infiltration across multiple tumor
types, with particularly strong associations observed in COAD,
LUSC, and PAAD (Figure 7A). In the TCGA-PAAD cohort, high
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NOTCH?2 expression was associated with increased infiltration of
several immune cells, including macrophages, mast cells, myeloid-
derived suppressor cells (MDSCs), monocytes, and regulatory T cells
(Tregs) (Figure 7B). Spearman correlation analysis further
demonstrated a significant positive association between NOTCH2
expression and the degree of immune cell infiltration mentioned
above. (Figure 7C). Subsequently, the CIBERSORT algorithm was
employed to quantify the relative abundance of 22 TIICs in each
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Functional enrichment analysis. GO (A) and KEGG (B) pathway enrichment analysis of DEGs between the high- and low-NOTCH2 expression groups.
(C) GSEA analysis for the high- and low-NOTCH2 expression groups based on the KEGG and Reactome gene sets. (D) The Correlation between
NOTCH2 and the Expression of Genes in Multiple Signaling Pathways. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes;

DEGs, differentially expressed genes; GSEA, gene set enrichment analysis.

tumor sample. Compared with the low-NOTCH2 group, patients
with high NOTCH2 expression exhibited a significantly higher
proportion of M2 macrophages, a subtype associated with
immunosuppressive phenotypes and malignant tumor progression.
In contrast, increased plasma cell infiltration was observed in the low-
NOTCH?2 group, suggesting a potential role in anti-tumor immunity.
Spearman correlation analysis revealed a significant positive
association between NOTCH2 expression and neutrophil
infiltration, and an inverse correlation with activated NK cells
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(Figures 7D, E). Similar findings were obtained using the
ESTIMATE algorithm, which demonstrated that NOTCH?2
expression was positively correlated with StromalScore,
ImmuneScore, and ESTIMATEScore across multiple cancer types,
including pancreatic cancer, implying a role for NOTCH2 in
modulating the tumor immune microenvironment (Figure 7F). We
further explored the potential influence of NOTCH2 on tumor
immune evasion. As shown in Figure 7G, patients in the high
NOTCH?2 group had elevated TIDE scores and Dysfunction Scores.
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Immune cell infiltration analysis. (A) Correlation analysis between NOTCH?2 expression and immune cells using the ssGSEA algorithm in the TCGA
pan-cancer cohort. (B) Infiltration levels of TIICs in the high- and low-NOTCH2 expression group in the TCGA-PAAD cohort. (C) Correlation analysis
between NOTCH2 expression and TIICs. (D) The relationship between NOTCH2 expression and immune cells using the CIBERSORT algorithm in the
TCGA pan-cancer cohort. (E) The infiltration and correlation of TIICs and NOTCH2 expression using the CIBERSORT algorithm. (F) Correlation
between NOTCH2 expression and the Stromal Score, Immune Score, and ESTIMATE Score using the ESTIMATE algorithm in the TCGA pan-cancer
cohort. (G) The tumor immune dysfunction, exclusion score, and predicted immunotherapy response of different NOTCH2 expression groups. ns

P>0.05; *P < 0.05; **P < 0.01; ***P < 0.001. ssGSEA, single-sample gene set
infiltrating immune cells.
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enrichment analysis; TCGA, The Cancer Genome Atlas; TIICs, tumor-

Moreover, NOTCH2 expression levels were significantly lower in
immunotherapy responders compared to non-responders. These
findings suggest that high NOTCH2 expression may contribute to
immune escape by fostering an immunosuppressive
tumor microenvironment.
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3.8 Functional validation of NOTCH?2 in
pancreatic cancer

To further elucidate the role of NOTCH2 in the progression of
pancreatic cancer, we performed a series of in vitro functional
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FIGURE 8

Functional validation of NOTCH2 in pancreatic cancer cells. (A) The expression of NOTCH2 in control (sh-NC) and knockdown (sh-NOTCH2) group
of ASPC-1 and BXPC-3 cell was examined using gRT-PCR. (B) Western blot analysis confirmed the expression level of NOTCH2 in the sh-NC and
sh-NOTCH2 group. (C, D) The colony formation and MTT assays in and sh-NC and sh-NOTCH2 group of ASPC-1 and BXPC-3 cell lines. (E) The
wound-healing experiment assessed the migration capacity of ASPC-1 and BXPC-3 cells. ns P> 0.05; *P < 0.05; **P < 0.01; ***P < 0.001. ****

P <0.0001. gRT-PCR, quantitative real-time polymerase chain reaction.

assays. Lentiviral vectors carrying short hairpin RNAs targeting
NOTCH2 (sh-NOTCH2) and negative control vectors (sh-NC)
were constructed and transduced into ASPC-1 and BXPC-3 cell
lines. Knockdown efficiency was confirmed by qRT-PCR
(Figure 8A, Supplementary Table S4) and Western blotting
(Figure 8B, Supplementary Table S5). Among the constructs, sh-
NOTCH2-2 in ASPC-1 and sh-NOTCH2-3 in BXPC-3
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demonstrated the most pronounced knockdown efficiency and
were thus selected for subsequent experiments.

In MTT and colony formation assays, NOTCH2 knockdown
markedly reduced cell viability and clonogenic potential in both cell
lines (Figures 8C, D). Furthermore, in 48-hour wound-healing
assays, cells in the sh-NOTCH2 group exhibited significantly
impaired migratory capacity compared to controls (Figure 8E).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1659652
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

Collectively, these findings indicate that knockdown of NOTCH2
suppresses the proliferation and migration of pancreatic
cancer cells.

To investigate whether NOTCH2 is involved in the regulation
of ferroptosis and oxidative stress, we performed intracellular iron
detection, ROS assay, and C11 BODIPY staining. The fluorescent
probe FerroOrange was used to detect intracellular Fe** levels. In
both ASPC-1 and BXPC-3 cell lines, cells transduced with sh-
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NOTCH2 exhibited a significant increase in FerroOrange
fluorescence intensity, indicating elevated intracellular free iron
levels (Figures 9A, B). To evaluate ROS accumulation, we used
the fluorescent probes DCFH-DA and DHE to measure the levels of
total ROS and superoxide anions, respectively. The sh-NOTCH2
group showed significantly higher fluorescence intensity, suggesting
increased oxidative stress (Figures 9C, D, Supplementary Table S6).
Furthermore, the results of C11 BODIPY staining revealed that the
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to assess cellular lipid peroxidation levels. ROS, reactive oxygen species; *P <0.05; **P <0.01; ***P < 0.001
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intracellular lipid peroxidation level was significantly increased in
the sh-NOTCH?2 group (Figures 9E, F). These findings indicate that
NOTCH2 knockdown leads to significant increases in intracellular
iron accumulation, ROS levels, and lipid peroxidation. Therefore,
NOTCH2 is a potential regulator of ferroptosis and redox
homeostasis in pancreatic cancer.

4 Discussion

Pancreatic cancer is characterized by aggressive biological
behavior and high mortality, and exhibits limited responsiveness
to conventional chemoradiotherapy. Most patients with pancreatic
cancer present with advanced-stage disease at diagnosis, rendering
them ineligible for curative surgical resection (25). Although
immune checkpoint inhibitors (ICIs) have shown considerable
efficacy across various solid tumors in recent years, their
effectiveness in pancreatic cancer remains poor, which may be
due to the immunosuppressive tumor microenvironment (26).
Emerging evidence suggests that the induction of ferroptosis can
suppress pancreatic tumor growth and metastasis (27, 28).
Moreover, vaccination with early-stage ferroptotic cancer cells has
been shown to elicit durable antitumor immune responses (29).
Accordingly, elucidating the regulatory mechanisms of ferroptosis
and identifying reliable ferroptosis-related prognostic biomarkers in
pancreatic cancer are of critical importance for improving
patient outcomes.

This study focused on ferroptosis and established a ferroptosis-
related prognostic signature. A corresponding risk score was
developed, which effectively stratified patients with pancreatic
cancer into high- and low-risk subgroups. Patients in the high-
risk group exhibited significantly reduced OS. Notably, the risk
score was identified as an independent prognostic factor. By
integrating the risk score with key clinical variables, we
constructed a nomogram that demonstrated good predictive
performance, offering a novel approach for prognostic assessment
and individualized management in pancreatic cancer.

In this study, NOTCH2 was identified as a potential biomarker
for pancreatic cancer. As a key member of the NOTCH receptor
family, NOTCH2 signaling is initiated by ligand binding (e.g.,
Jagged or Delta-like), followed by sequential proteolytic cleavages
mediated by ADAM metalloproteinases and the y-secretase
complex (30). This process releases the NOTCH2 intracellular
domain (N2ICD), which translocates into the nucleus, associates
with the transcription factor CSL (also known as RBP-Jk), and
activates downstream target genes such as HES and HEY (31),
thereby regulating proliferation, differentiation, apoptosis, and stem
cell maintenance (32). Dysregulation of the NOTCH signaling is
implicated in the pathogenesis of many cancers, yet the specific role
of NOTCH2 in solid tumors remains controversial. In gastric
cancer, some studies have reported that strong cytoplasmic or
nuclear NOTCH?2 expression correlates with favorable prognosis,
suggesting a tumor-suppressive role (33). Conversely, other
evidence indicates that high NOTCH2 expression is associated
with increased gastric cancer risk, advanced TNM stage, and poor
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outcomes (34). Mechanistically, it has been shown that NUSAP1
can stabilize NOTCH2 by inhibiting its ubiquitination, thereby
activating NOTCH2 signaling and promoting tumor progression
and chemoresistance (35). Similarly, in a mouse model of
esophageal disease, overexpression of activated NOTCH2
impaired goblet cell maturation, increased crypt fission, and
accelerated tumor development at the squamocolumnar junction
(36). By contrast, in esophageal squamous cell carcinoma, NOTCH
signaling promoted keratinocyte differentiation and exerted an anti-
cancer eftect (37).

During the development of pancreatic cancer, NOTCH?2
exhibits a dynamic expression pattern and contradictory roles. In
a KRAS mutation-driven mouse model, NOTCH2 knockout
prevented the progression of pancreatic intraepithelial neoplasia
(PanIN) and prolonged survival. However, it also led to a
phenotypic transition toward a more invasive and
undifferentiated form of PDAC, a process that was closely
associated with EMT. In PDAC cells, the Midkine-NOTCH2
interaction activated NOTCH signaling, induced EMT, and
upregulated NF-xB, thereby promoting invasion and metastasis
(38). Moreover, NOTCH2 overexpression was significantly
associated with chemoresistance (39), and analysis of clinical
samples demonstrated that NOTCH2 protein expression was
elevated in PDAC tissues and positively correlated with metastatic
tendency (40). Mechanistically, NOTCH2 exerted its oncogenic
functions through the activation of a cascade of downstream targets.
1.MYC signaling: NOTCH2 acted as a direct upstream regulator of
MYC transcription. During the early stages of pancreatic cancer,
activation of NOTCH2 signaling led to abnormal MYC
upregulation, which drove proliferation and malignant
transformation of precancerous lesions (41). 2.HES/HEY
transcriptional repressors: As classical downstream targets of the
NOTCH pathway, HES1 and HEY1 played pivotal roles in
mediating the functions of NOTCH2. HESI expression was
significantly upregulated in pancreatic cancer tissues and
correlated with poor prognosis (42), while HEY1 was also
identified as a prognostic biomarker (43). By regulating genes
involved in cell cycle progression and differentiation, these
transcriptional repressors supported tumor cell survival and
proliferation. 3.EMT and tumor invasion-metastasis: NOTCH2
signaling acted as a potent inducer of EMT by directly
upregulating core EMT transcription factors such as Slug and
Snail-1 (39). Inhibition of NOTCH2 or its ligands reversed the
EMT phenotype and attenuated the invasive potential of tumor cells
(44). Taken together, these findings suggested that during the
PanIN stage, NOTCH2 primarily exerted tumor-suppressive
functions by maintaining differentiation and suppressing aberrant
proliferation. In contrast, at the PDAC stage, NOTCH2
overexpression mediated oncogenic effects by regulating MYC
signaling, driving EMT, and promoting chemoresistance. These
functional transitions appeared to be tightly modulated by
microenvironmental factors, epigenetic regulation, and signaling
pathway crosstalk.

GEM is a cornerstone chemotherapeutic agent for pancreatic
cancer treatment, yet acquired resistance remains a leading cause of
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treatment failure. The Notch signaling pathway has consistently
been identified as a critical mediator of this resistance, with multiple
studies explicitly linking NOTCH2 to this resistant phenotype. In
pancreatic cancer cells with in vitro-induced GEM resistance (GR
cells), NOTCH2 and its ligand Jagged-1 are significantly
upregulated. This upregulation is accompanied by epithelial-
mesenchymal transition (EMT), a process known to be a key
driver of chemoresistance. The occurrence of EMT is evidenced
by the downregulation of the epithelial marker E-cadherin and the
upregulation of the mesenchymal marker Vimentin. Notably, either
pharmacological or genetic inhibition of the NOTCH signaling
pathway can partially reverse this EMT phenotype and restore
sensitivity to GEM (44, 45). Furthermore, pancreatic stellate cells
(PSCs) within the TME have been found to promote GEM
resistance in pancreatic cancer cells by activating the NOTCH
signaling pathway, specifically involving Jagged-1 and its
downstream target gene Hesl (42).

This study demonstrated the upregulated expression of
NOTCH2 in pancreatic cancer tissues and its correlation with
adverse clinical outcomes. In vitro functional assays confirmed
that knockdown of NOTCH2 inhibited the proliferation and
migration of pancreatic cancer cells. Functional enrichment
analysis further supported the oncogenic role of NOTCH2,
revealing significant associations between its high expression and
hallmark signaling pathways implicated in cancer progression,
including the PI3K-AKT, TGF-f, MAPK, mTOR, and KEAP1-
NFE2L2 signaling. The PI3K/AKT pathway is a pivotal signaling
cascade that governs cell growth, survival, and metabolism, and it is
frequently hyperactivated in pancreatic cancer. Extensive evidence
demonstrates that extensive crosstalk exists between the NOTCH
signaling pathway and the PI3K/AKT pathway (46). Specifically,
activation of the NOTCH signaling pathway in pancreatic cancer
cells modulates the expression level of p-AKT, thereby influencing
cell growth and migration (47). This finding strongly suggests that
NOTCH?2 may exert its biological effects by modulating the PI3K/
AKT axis. High-throughput approaches such as chromatin
immunoprecipitation sequencing (ChIP-seq) have demonstrated
that NOTCHI1 and NOTCH?2 exhibit distinct chromatin binding
profiles in pancreatic cancer cell lines (e.g., BXPC3), suggesting
functional divergence and target gene specificity. Enrichment
analysis indicates that NOTCH2 target genes are involved in
multiple critical pathways, including PI3K-AKT, Ras, MAPK, and
metabolism-related signaling. In addition to MYC, several other
candidate targets such as CDKNI1A and MET have also been
identified (48). However, further experimental studies are still
required to confirm the direct regulatory role of NOTCH2 in
pancreatic cancer. In addition, we observed a potential association
between NOTCH?2 expression levels and the mutational status of
key oncogenic drivers. TP53 mutations were more frequently
detected in tumors with high NOTCH2 expression, whereas
KRAS mutations predominated in tumors with low NOTCH2
expression. These findings suggest that NOTCH2 may play a role
in the progression of distinct molecular subtypes of pancreatic
cancer, or that its expression may be modulated by differing
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genomic contexts. Such observations may offer new insight into
the molecular heterogeneity of pancreatic cancer.

Furthermore, KRT18 and H1-2 were included in the prognostic
signature we constructed; however, these two are not common core
regulators of ferroptosis. KRT18, a type I intermediate filament
protein, is essential for maintaining cell cytoskeleton and has been
reported to be upregulated in several malignancies, including
gastric, colorectal, and liver cancers (49). Its oncogenic role is
thought to be mediated through PI3K/AKT, Wnt, and MAPK/
ERK pathways (50). Notably, experimental evidence in rat models
of hypobaric hypoxia suggests that KRT18 may also regulate both
apoptosis and ferroptosis through the JNK pathway, highlighting a
possible mechanistic link (51). H1-2, a member of the histone H1
family, is primarily known for its role in maintaining genomic
stability and participating in the DNA damage response. Under
certain conditions, H1-2 can translocate from the nucleus to
mitochondria and contribute to apoptosis regulation (52).
However, to date, no published studies have reported the
regulatory mechanism of H1-2 on the ferroptosis process.

With respect to the TME, tumors with high NOTCH2
expression exhibited increased infiltration of M2 macrophages. As
a key subset of tumor-associated macrophages (TAMs), M2
macrophages are closely linked to immunosuppression and tumor
progression (53). It has been reported that global activation of
NOTCH signaling generally induces the M1 phenotype, while
inhibition of this pathway tends to promote the M2 phenotype
(54). However, studies focusing on NOTCH2 have uncovered more
complex and context-specific regulatory patterns. Particularly in the
TME, NOTCH?2 function is more inclined to drive the formation of
M2-like tumor-associated macrophages (TAMs). For example, in
colorectal cancer, NOTCH2 expression was shown to enhance
GATA3-mediated IL-4 secretion, directly promoting M2-type
TAM polarization. This evidence confirms NOTCH2 acts as a
positive regulator of M2 polarization under specific pathological
conditions (55). Additionally, miR-487a derived from osteosarcoma
cells can be transferred into macrophages via small extracellular
vesicles (SEVs) before promoting macrophage polarization toward
an M2-like phenotype. This effect is mediated by targeting
NOTCH2 and activating the GATA3 pathway (56). Therefore,
NOTCH2 may represent a crucial node in the M2 polarization
regulatory network, yet its specific downstream signaling
mechanisms in pancreatic cancer require further investigation.
Consistent with these findings, patients with high NOTCH2
expression exhibited elevated TIDE and immune dysfunction
scores, both of which are associated with poor responsiveness to
ICIs. Overall, these findings suggest that NOTCH2 may facilitate
immune evasion by fostering an immunosuppressive tumor
microenvironment, ultimately contributing to tumor progression
and therapeutic resistance.

Finally, results from iron staining and oxidative stress analysis
revealed that knockdown of NOTCH2 was associated with iron
accumulation and increased lipid peroxidation, suggesting that
NOTCH2 may contribute to pancreatic cancer progression by
modulating ferroptosis and redox homeostasis. Although direct

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1659652
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

evidence linking NOTCH2 to the regulation of ferroptosis is
currently lacking, our analysis revealed enrichment of the KEAP-
NFE2L2 signaling pathway in tumors with high NOTCH2
expression. KEAP-NFE2L2 pathway is recognized as a principal
regulatory axis in the cellular response to oxidative and electrophilic
stress. Studies have suggested that the ROS-Nrf2 pathway can
mediate TGF-B-induced EMT and is involved in the activation of
NOTCH signaling (57). Furthermore, crosstalk exists between the
NRF2 and NOTCH signaling pathways in lung cancer (58).
Therefore, NOTCH2 may indirectly affect cellular redox
homeostasis and ferroptosis sensitivity by regulating the activity
or expression of NRF2.

Given the multiple pro-cancer roles of NOTCH?2 in the
initiation, progression, maintenance of CSC properties, and
chemoresistance of pancreatic cancer, NOTCH2 represented an
attractive potential therapeutic target. Drug development targeting
the NOTCH signaling pathway had mainly focused on the
following directions: 1.y-Secretase Inhibitors (GSIs): These drugs
block the activation of all NOTCH receptors by inhibiting the
activity of y-secretase, making them the most extensively studied
NOTCH pathway inhibitors. Several GSIs, like PF-03084014, had
undergone preclinical or early-phase clinical trials in various
tumors, including pancreatic cancer. However, their pan-NOTCH
activity resulted in poor selectivity, simultaneously inhibiting
NOTCHI1 and NOTCH2, which were essential for normal tissue
function (particularly in the gastrointestinal tract). This induces
severe dose-limiting gastrointestinal toxicity, greatly restricting
their clinical application (59, 60). 2.Monoclonal Antibodies
(mAbs): To overcome the toxicity issues of GSIs, the development
of monoclonal antibodies targeting specific NOTCH receptors or
ligands has emerged as a more promising strategy. Several
antibodies, including tarextumab and brontictuzumab, entered
early-phase clinical trials. In theory, the development of highly
selective anti-NOTCH2 antibodies was expected to provide
therapeutic efficacy while minimizing gastrointestinal toxicity
caused by NOTCHI inhibition (61). 3.Emerging Technologies:
Other approaches included small molecules or peptides that
interfered with the NICD-CSL complex, RNA interference to
specifically downregulate NOTCH2 expression, and Proteolysis-
Targeting Chimeras (PROTACs) designed to degrade NOTCH2.
However, to date, no highly selective inhibitors, antibodies, or
PROTAC molecules specifically targeting NOTCH2 had
progressed into clinical trials. Most clinical-stage agents remained
pan-NOTCH inhibitors or were directed against other NOTCH
family members (62). This indicates that there is still a long way to
go from the basic research discovery of NOTCH2’s importance to
the successful development of specific targeted drugs applicable in
clinical practice.

Taken together, NOTCH2 plays a complex yet critical pro-
tumorigenic role in the pathophysiological progression of
pancreatic cancer. It not only drove the transition from
precancerous lesions to invasive tumors but also regulated
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proliferation, invasion, stemness, and chemoresistance. These
functions established NOTCH?2 as a promising prognostic marker
and therapeutic target. Nonetheless, major challenges persisted in
validating its clinical relevance, elucidating its mechanisms in
greater depth, and developing specific targeted therapeutics.
Future research is urgently needed to overcome these barriers and
translate NOTCH2-directed strategies into clinical applications.

5 Conclusions

In this study, we established a robust prognostic signature for
pancreatic cancer and identified NOTCH2 as a potential prognostic
biomarker. Preliminary evidence suggests that NOTCH2 may
contribute to the malignant progression of pancreatic cancer by
regulating ferroptosis and promoting an immunosuppressive tumor
microenvironment. These findings indicate that NOTCH2-
mediated ferroptosis modulation may represent a promising
therapeutic target in pancreatic cancer.
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