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Harnessing big data for precision
medicine: radiomics based
application of nanomaterials
in MRI enhancement and
multimodal therapy of
hepatocellular carcinoma
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1College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine,
Jinan, China, 2Department of Imaging, Jinan Second People’s Hospital, Jinan, China, 3Second College
of Clinical Medicine, Nanchang University, Nanchang, China, 4Department of Imaging Center, Jinan
Nanshan People’s Hospital, Jinan, China
Hepatocellular carcinoma (HCC) ranks among the most lethal malignancies

worldwide, characterized by its high metastatic potential and poor prognosis.

Early and precise detection and diagnosis of HCC remain a major clinical

challenge. Magnetic resonance imaging (MRI), as the most widely used

noninvasive technique for diagnosing liver diseases, currently suffers from

limitations in traditional contrast agents, including low specificity and limited

sensitivity, particularly when detecting small lesions. The emergence of

nanotechnology offers novel approaches to enhance the diagnostic accuracy

and therapeutic efficacy for HCC. Under the framework of big data driven

precision medicine, this study explores the application of nanomaterials in

HCC MRI enhancement and multimodal therapy. This review comprehensively

summarizes two types of responsive nanomaterials: (1) Chiral Ni(OH)2
nanoparticles, which suggeste enhanced contrast in T1 weighted MRI and

selective imaging capabilities for primary HCC and lung metastases; (2) b
Lapachone loaded mesoporous MnO2 nanoparticles (HLMn), which effectively

enhance the generation of reactive oxygen species (ROS) within tumor cells,

disrupt redox homeostasis, and significantly improve the efficacy of chemo

dynamic therapy (CDT). These nanoplatforms also exhibit potential to activate

the c-GAS STING innate immune pathway, thereby augmenting antitumor

immune responses. Nanomaterials hold great promise not only as enhanced

contrast agents but also as precise therapeutic carriers. By integrating radiomics

based imaging features with biological markers, we summarize current

personalized HCC diagnosis and treatment planning models based on
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multimodal data. Simultaneously, we provide a critical summary of the synergistic

application of advanced imaging and therapeutic nanotechnologies. In the

future, leveraging big data for precise HCC diagnosis and treatment is

anticipated to significantly improve patient survival.
KEYWORDS
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1 Introduction and literature search
strategy

1.1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common and

deadly malignant tumors globally, accounting for the majority of

primary liver cancers (1). Due to its asymptomatic nature in early

stages, rapid progression, and high metastatic potential, early and

accurate diagnosis of HCC remains challenging (2). Consequently,

patients often present at advanced stages, resulting in poor prognosis

and limited treatment options (3, 4). Current diagnostic modalities,

including ultrasound, computed tomography (CT), and magnetic

resonance imaging (MRI), along with serum biomarkers such as

alpha fetoprotein (AFP) and des g carboxy prothrombin (DCP), face

challenges such as limited sensitivity for small or early stage tumors,

inability to fully capture tumor heterogeneity, and variability in

detecting microvascular invasion. Similarly, conventional therapeutic

approaches, including surgical resection, local ablation, transarterial

chemoembolization (TACE), and systemic chemotherapy, often result

in suboptimal treatment responses due to tumor heterogeneity and

complex tumor microenvironment, contributing to the overall poor

prognosis (5). While significant progress has been made in treatment

modalities such as surgical resection, transarterial chemoembolization

(TACE), and systemic chemotherapy, the five year survival rate

remains suboptimal, with rates in many regions barely exceeding

30% (6). These factors underscore the urgent need to improve early

detection and precision treatment to enhance patient outcomes and

reduce mortality.

Magnetic resonance imaging (MRI) has become the gold

standard for non-invasive liver cancer diagnosis due to its

excellent spatial resolution, high soft tissue contrast, and multi

parameter detection capabilities, enabling simultaneous detection of

anatomical and functional abnormalities in liver tissue (7).

However, traditional gadolinium based contrast agents have

limitations such as low sensitivity, lack of tumor specificity, and

potential nephrotoxicity. These limitations further highlight the

need for advanced imaging strategies that can provide higher

sensitivity, tumor specific contrast, and reliable quantitative

biomarkers. Nanotechnology, as a highly promising research

direction, suggests significant potential in biomedical applications
02
due to its customizable size, shape, surface charge, and chemical

composition (8). When applied to MRI, it can significantly enhance

T1 or T2 contrast, improve tumor targeting, and serve as a delivery

system for targeted therapeutic drugs (9, 10). Functionalized

nanomaterials can detect overexpressed biomarkers on HCC cell

membranes, such as glycoprotein 3 and CD44, achieving selective

distribution to tumor sites while minimizing off target effects (11).

The emergence of radiomics (the efficient extraction of

quantitative features from medical images) has opened up new

dimensions for precision oncology. Research has shown that

radiomics can analyze tumor heterogeneity, morphological changes,

and the composition of the tumor microenvironment, while also

revealing features that are not detectable by the naked eye. When

combined with Machine Learning (ML) and Deep Learning (DL)

approaches, radiomics enables integration of multi-dimensional

imaging data with clinical, pathological, and molecular information,

providing the theoretical and computational basis for AI driven

predictive modeling of individualized treatment responses. This

framework supports the rationale for leveraging nanomaterials to

enhance imaging contrast and guide precise, personalized therapies.

Additionally, the integration of image guided, data driven

nanotechnology with MRI marks a paradigm shift in cancer

treatment planning and optimization (12). This review aims to

explore the application of nanomaterials in enhancing MRI

contrast and promoting multimodal treatment for hepatocellular

carcinoma (HCC) (13). In the future, by overcoming the

limitations of current diagnostic and therapeutic methods and fully

exploiting the capabilities of nanotechnology and radiomics, more

accurate and personalized tools for HCC diagnosis and treatment can

be established, ultimately improving patient outcomes.
1.2 Literature search strategy

To ensure a comprehensive and systematic review of

nanomaterials in hepatocellular carcinoma (HCC) imaging and

therapy, we conducted a thorough literature search across major

scientific databases, including PubMed, Web of Science, and

Scopus, covering publications up to May 2025. The search

strategy combined terms related to the disease, imaging

modalities, nanomaterials, and therapeutic approaches, including:
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“hepatocellular carcinoma”, “HCC”, “magnetic resonance imaging”,

“MRI”, “nanomaterials”, “nanoparticles”, “radiomics”, “multimodal

therapy”, “photothermal therapy”, and “chemodynamic therapy”.

Boolean operators (“AND”, “OR”) and truncation were applied

to refine search results and ensure maximum coverage of

relevant literature.

Inclusion criteria were: (1) Studies involving HCC patients or

preclinical models relevant to human HCC. (2) Research focusing

on nanomaterial-based MRI contrast enhancement, targeted drug

delivery, or multimodal therapy. (3) Studies providing quantitative,

mechanistic, or translational insights. (4) Peer-reviewed original

research articles published in English.

Exclusion criteria included: (1) Articles not directly related to

HCC or nanomaterials. (2) Conference abstracts, editorials,

commentaries, or reviews without primary data. (3) Duplicate

studies or studies with insufficient methodological details.

The initial search yielded over 1,200 publications. After

screening titles and abstracts for relevance and removing

duplicates, 320 articles were selected for full-text review. Each

full-text article was evaluated for methodological rigor,

experimental design, and clinical or preclinical relevance.

Ultimately, 101 studies were included in this review, providing a

comprehensive and balanced representation of current research on

nanomaterial applications in HCC imaging and therapy.

To further enhance comprehensiveness, the reference lists of

included studies were manually screened to capture additional

relevant publications not indexed in the databases. Priority was

given to recent studies (2020–2025) and highly cited works that

provide mechanistic insights or novel applications.

For synthesis and analysis, the included studies were

categorized based on key criteria: (1) type of nanomaterial (e.g.,

manganese-based, iron oxide, gold nanoparticles), (2) imaging

modality and contrast enhancement mechanism, (3) therapeutic

strategies (e.g., photothermal therapy, chemodynamic therapy,

immunomodulation), and (4) preclinical versus clinical studies.

Comparative tables and critical discussions were constructed to

highlight the strengths, limitations, and translational potential of

each approach. This structured methodology ensures that the

review provides not only a comprehensive overview but also

critical insights and guidance for future research directions in

HCC nanomedicine.
2 Radiomics basis of MRI
enhancement by nanomaterials in
HCC imaging

MRI plays a significant role in assisting HCC diagnosis. Recent

studies have integrated nanomaterials into hepatocellular

carcinoma imaging technology, primarily to extract key features

from medical imaging data and efficiently transmit this data to

achieve a visual format suitable for further analysis. Additionally,

the functionalized nanoparticles introduced during imaging provide

critical features such as enhanced contrast, tumor specific

distribution, and time and space specific interactions, which are
Frontiers in Immunology 03
essential for subsequent applications in radiomics (14). Advances in

multimodal imaging technology have broken through the

limitations of traditional imaging, meeting the current demands

of precision medicine, and significantly promoting the detection of

phenotypic patterns in the tumor microenvironment. In the future,

the integration of nanomaterials with radiomics will further

enhance diagnostic and prognostic capabilities, thereby solidifying

MRI’s position as an indispensable clinical driver in HCC

management (15, 16).
2.1 Synthesis of nanomaterials

The synthesis of nanomaterials plays a crucial role in

biomedicine, particularly in the field of HCC imaging and

treatment. This review explores three primary synthesis methods:

vapor phase synthesis, solution phase synthesis, and solid phase

synthesis. Vapor phase synthesis includes techniques such as

physical vapor deposition (PVD) and chemical vapor deposition

(CVD), which have been found to effectively prepare nanomaterials

with high structural purity and morphological control (17). This

method has been successfully applied to the preparation of magnetic

nanomaterials for imaging applications. Liquid phase synthesis has

become the most flexible method for biomedical applications due to

its ease of operation, scalability, and high functionalization rate (18,

19). Studies have shown that precise control of particle morphology

can be achieved by adjusting variables such as pH, temperature, and

reaction time. Importantly, surface functionalization the grafting of

targeted ligands or therapeutic molecules has been successfully

achieved during synthesis, which is crucial for the tumor specific

application of HCC (20). For example, MRI contrast agents and drug

loaded nanocarriers. Solid phase synthesis, including techniques such

as ball milling and spark plasma sintering, can produce crystalline

nanoparticles with high structural integrity. Although this method is

not suitable for surface modification, it offers significant advantages

in preparing robust and scalable materials with high thermal and

chemical stability (21).

This figure illustrates the synthesis methods of nanomaterials

and their applications in biomedical research, particularly in

imaging and treatment of HCC. The figure is divided into two

main sections: Section (A) shows different synthesis methods and

their corresponding material size ranges, while Section (B) provides

detailed descriptions of the specific techniques and control

parameters involved in each synthesis method.

In Section A of Figure, two methods for synthesizing

nanomaterials are presented: bottom up and top-down approaches.

The bottom-upmethod starts with small molecules or atoms (size < 1

nm) and gradually constructs nanostructured materials (1 nm–100

nm) through controlled growth and nucleation processes. This

method is closely related to techniques such as hydrothermal

synthesis, sol gel synthesis, electroplating, and chemical vapor

deposition (CVD). The top-down method, on the other hand,

starts with micron sized or bulk materials (size > 1 mm) and

reduces them to nanoscale materials through processes such as ball

milling and laser processing.
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In Section B of Figure, the three main synthesis methods are

detailed. For gas phase synthesis, we list techniques such as physical

vapor deposition (PVD) and chemical vapor deposition (CVD), as

well as sub methods like sputtering and ultra-high vacuum CVD.

Solution phase synthesis includes hydrothermal/solvothermal

methods, precipitation/coprecipitation methods, and sol gel or

electrodeposition methods. Here, particular emphasis is placed on

parameters such as pH, temperature, and concentration control.

Solid phase synthesis encompasses both ambient and high

temperature processes, including key techniques such as

mechanical exfoliation and solid state grinding.

Additionally, the figure highlights the importance of controlling

various parameters during synthesis to achieve the desired

properties of nanomaterials. In solution phase synthesis, factors

such as pH, temperature, concentration, and component ratios are

critical for regulating the structure and functionality of

nanomaterials. This level of control is crucial for the application

of nanomaterials in biomedical applications.

This figure aims to comprehensively summarize the complexity

and diversity of nanomaterial synthesis methods, emphasizing the

importance of selecting appropriate synthesis techniques based on

the specific requirements of biomedical applications. It also

highlights the potential of these nanomaterials in advancing HCC

diagnostic and therapeutic strategies (Figure 1).
2.2 Mechanisms and advantages of
nanomaterials in MRI imaging

Integrating magnetic resonance imaging (MRI) into

nanomaterials by adjusting their magnetic and physicochemical

properties can significantly improve the diagnostic accuracy of

HCC. Although gadolinium-based contrast agents have seen some

clinical use, their limited tumor specificity, low sensitivity, and

potential nephrotoxicity continue to pose significant barriers to

widespread adoption. In contrast, nanomaterials offer significant

advantages in terms of magnetic responsiveness, biocompatibility,

and surface functionalization, making them promising candidates

for next generation MRI contrast agents (22).

Current research focuses on chiral nickel hydroxide nanoparticles

[D/L Ni(OH)2], which exhibit a high longitudinal relaxation rate (r1),

directly influencing T1 relaxation time. The enhancement in T1

weighted imaging stems from these nanoparticles increasing proton

relaxation by modulating the local magnetic field, thereby amplifying

the MRI signal (23). The chiral configuration also introduces

stereoselective interactions with cellular components. DNi(OH)2
exhibits stronger affinity for specific tumor receptors, resulting in

higher cellular uptake and more pronounced signal amplification in

tumor regions compared to LNi(OH)2 or achiral analogues. This

chiral selectivity enhances spatial resolution and tumor specificity,

representing a significant advancement over traditional drugs.

Manganese dioxide nanoparticles (MnO2) are another class of

effective T1 contrast agents (24). In the acidic and reducing tumor

microenvironment (TME), MnO2 undergoes redox reactions,

releasing Mn²+ ions. These Mn²+ ions exhibit paramagnetic
Frontiers in Immunology 04
properties, significantly shortening T1 relaxation times through

interactions with water protons, thereby enhancing signal intensity

in T1 weightedMRI sequences. Furthermore, MnO2 particles have an

inherent ability to react with endogenous hydrogen peroxide (H2O2),

which is commonly overexpressed in tumor tissues. This catalyzed

reaction generates oxygen (O2), alleviating tumor hypoxia and

subsequently enhancing the efficacy of oxygen dependent

treatments such as photodynamic therapy (PDT) (25). Manganese

dioxide (MnO2) exhibits dual functionality in enhancing imaging

contrast andmodulating the tumormicroenvironment (TME), which

aligns closely with the principles of theranostics. Both DNi(OH)2 and

MnO2 nanoparticles can be further modified with tumor targeting

ligands to enhance selectivity and systemic circulation time (26, 27).

Ligands such as hyaluronic acid (HA) targeting the CD44 receptor or

tumor specific peptides can be grafted onto the nanoparticle surface

to achieve active targeting (28). This engineering strategy significantly

enhances drug accumulation at the tumor site by enhancing the

permeability retention effect and active targeting mechanism.

Additionally, the structural parameters of these nanomaterials

(including particle size, zeta potential, and hydrophilicity) can be

finely tuned to further optimize biodistribution, cellular uptake, and

MRI signal intensity. Furthermore, smaller nanoparticles (<50 nm)

typically exhibit better tumor tissue penetration, while surface

polyethylene glycolation (PEGylation) significantly improves

systemic stability and reduces immune clearance (29, 30).

To visually illustrate these advantages, we have added

representative MRI scans in Figure 2, comparing conventional

gadolinium-based contrast MRI with nanomaterial enhanced MRI

(D Ni(OH)2 and MnO2). Figure 2 shows preclinical T1 weighted

imaging of HCC xenografts with MnO2 nanoparticles, highlighting

enhanced tumor contrast and spatial resolution. These figures

support the discussion of the unique imaging benefits provided

by functionalized nanomaterials.

MRI contrast agents based on nanomaterials (such as D Ni(OH)

2 and MnO2) provide a multifunctional platform with high

relaxation rates, environmental responsiveness, and surface

tunability. In the future, they could enable high resolution, high

contrast, and tumor specific imaging of HCC, thereby further

advancing precise diagnosis of HCC.
2.3 Feature extraction and diagnostic value
of radiomics in HCC MRI

Radiomics, as an emerging discipline, is currently situated at the

intersection of medical imaging and data science. In the context of

HCC, radiomics offers a non-invasive method for analyzing tumor

characteristics such as shape, texture, intensity distribution, and

spatial heterogeneity. These features are primarily extracted from

MRI sequences such as T1 weighted, T2 weighted, diffusion

weighted imaging (DWI), and contrast enhanced imaging, and

can help identify key biomarkers associated with tumor biology

and clinical outcomes (31).

Radiomic analysis commonly involves the calculation of first

order statistics (e.g., mean intensity, entropy), second order texture
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features (e.g., gray level cooccurrence matrix [GLCM] metrics), and

higher order transformations (e.g., wavelet decomposition) from

defined regions of interest (ROIs) (32). These data can reflect

underlying tumor phenotypes such as vascularity, necrosis, or

fibrotic changes, which are relevant in the clinical stratification

and staging of HCC. To enhance clinical relevance, we have

integrated a detailed workflow outlining the steps of image

preprocessing, ROI segmentation, feature extraction, and feature

selection, emphasizing how each step can impact downstream

predictive modeling and reproducibility (33).

While some studies have suggested associations between

radiomic features and prognostic indicators, such as microvascular

invasion (MVI), tumor grade, or recurrence risk (34), the
Frontiers in Immunology 05
reproducibility of these findings remains an active area of

investigation. ML methods, including LASSO regression, random

forests, support vector machines, and DL approaches, are increasingly

employed to identify robust feature subsets and construct predictive

models for tumor diagnosis, prognosis, and therapy response

prediction. Comparative analyses showing performance differences

between conventional MRI features and nanomaterial enhanced MRI

features are included to highlight the added diagnostic value of

nanomaterial enhanced imaging (35).

Radiomics can also be integrated with conventional biomarkers,

such as alpha fetoprotein (AFP), or molecular data (e.g., TP53

mutation status) to enhance diagnostic accuracy and biological

interpretation (36). Multi parametric models combining radiomic
FIGURE 1

(A, B) Synthesis methods of nanomaterials.
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features with clinical, genomic, and treatment data are now

emphasized as a big data driven approach to improve

individualized risk stratification and treatment planning (37). For

instance, multi parametric models combining radiomic features

with clinical data have shown improved performance in

distinguishing HCC from benign hepatic lesions like focal

nodular hyperplasia (FNH) or hemangiomas (38). However, such

approaches are still largely experimental and not yet adopted in

routine clinical practice.

A major challenge limiting clinical translation lies in the lack of

standardization in image acquisition, segmentation protocols, and

feature computation (39). Inter scanner variability and institution

dependent imaging parameters can significantly affect feature

stability and model generalizability. Consequently, we stress the

importance of harmonized radiomics pipelines, large annotated

datasets, and integration with AI driven predictive modeling for

robust, reproducible clinical applications (37).

In summary, radiomics holds considerable potential to

complement MRI in the diagnosis and risk stratification of HCC.

Although many of its current applications remain investigational,

the integration of radiomics with big data analytics, ML, and

nanomaterial enhanced imaging represents a promising strategy to

improve non-invasive tumor assessment and guide individualized

clinical decisions in precision medicine (40).
Frontiers in Immunology 06
2.4 Integration strategies for multimodal
imaging and clinical data

In the era of precision medicine, the integration of radiomics

derived imaging features with clinical, pathological, molecular, and

therapeutic response data is essential to build robust, data driven

diagnostic and therapeutic decision-making frameworks (41). For

hepatocellular carcinoma (HCC), which presents with heterogeneous

biological behavior, combining MRI based radiomics with genomics,

transcriptomics, proteomics, and biochemical markers provides a

multidimensional perspective that enhances individualized disease

assessment and patient stratification (42).

Tumor heterogeneity and microstructural changes can be

quantitatively captured by extracting radiomic features from MRI

sequences (e.g., T1 weighted, T2 weighted, and diffusion weighted

imaging), which are then correlated with gene expression profiles,

mutation status (e.g., TP53, CTNNB1), histological grading, and

serum biomarkers such as alpha fetoprotein (AFP) and des g
carboxy prothrombin (DCP) (43, 44). This multidimensional

integration facilitates more accurate prognostic stratification and

individualized therapy planning.

By incorporating advanced computational techniques,

including ML algorithms, deep neural networks, and multi modal

data fusion frameworks, these heterogeneous datasets can be
FIGURE 2

Schematic diagram of the synthesis and anti-tumor of NanoMn Gox drug delivery platform.
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analyzed to identify predictive patterns and optimize treatment

strategies. Different methods such as feature level fusion, decision

level fusion, and model ensemble approaches can bring multiple

data types together without redundant information while

maintaining model interpretability (45).

Clinical Decision Support Systems (CDSS) are increasingly

leveraging these fused data to provide oncologists with real time,

evidence-based recommendations for diagnosis, risk assessment,

and treatment selection (46). These systems enable dynamic, patient

specific decision making based on tumor characteristics, molecular

profiles, and risk factors, thereby supporting precision oncology in

clinical practice.

Overall, the combination of imaging, molecular, and clinical

data transforms traditional diagnostics into a systemic, data driven

framework, enhancing HCC diagnosis, patient stratification, and

personalized follow up strategies.
3 Mechanistic analysis and strategic
design of nanomaterial mediated
multimodal synergistic therapy

3.1 ROS amplification and mechanism of
chemodynamic therapy

A study delved into the mechanistic analysis of nanomaterial

mediated multimodal synergistic therapy for hepatocellular

carcinoma (HCC), with a focus on ROS amplification and the

integration of chemo dynamic therapy (CDT) with other

therapeutic modalities (47). The b Lapachone (b Lap)/MnO2

nanoplatform was found to significantly enhance CDT through

cascade ROS augmentation. When activated in the tumor

microenvironment, it produces highly toxic hydroxyl radicals

(•OH) via Fenton like reactions, inducing oxidative stress and

mitochondrial dysfunction, and ultimately causing cancer cell

apoptosis (48, 49). In addition, another research also developed a

tandem nanoplatform integrating photothermal therapy (PTT),

photodynamic therapy (PDT), and CDT. The NanoMn-Gox-PTX

system, encapsulated in a DSPE-PEG lipid layer and containing

Mn²+, glucose oxidase (GOx), and paclitaxel (PTX), suggested

remarkable therapeutic and imaging capabilities (50). Upon

reaching the tumor tissue, GOx catalyzes the oxidation of glucose

to H2O2, which then reacts with Mn²+ to form •OH, triggering CDT

(51). Meanwhile, the nanoplatform is activated by near infrared II

(NIR II) laser irradiation, elevating local temperature to induce tumor

cell apoptosis through PTT (52). The in situ production of oxygen

improves PDT efficacy by reducing hypoxia induced resistance.

Furthermore, the release of Mn²+ enhances T1 weighted MRI

contrast and facilitates real time imaging of nanoparticle

distribution and therapeutic response through DiR molecules for

NIR fluorescence imaging (53). Increased ROS levels upregulate

tumor antigen release, activate the cGAS–STING immune axis, and

promote dendritic cell maturation and cytotoxic T lymphocyte

induction (54). The NanoMn-Gox-PTX nanoplatform, with its
Frontiers in Immunology 07
rational design and multifunctional capabilities, stands out as an

ideal candidate for effective and precise image guided cancer

treatment. The b Lap/MnO2 nano system offers a promising

approach to achieving selective and efficient HCC treatment

based on enhanced CDT and MRI detectability, aligning with the

study’s objective of developing advanced nanomaterials to

overcome traditional HCC treatment limitations (55).
3.2 Design and optimization of
photothermal/photodynamic synergistic
therapy system

Synergistic photothermal/photodynamic therapy (PTT/PDT)

systems represent a novel strategic approach for HCC treatment

that leverages the complementary advantages of multiple

therapeutic modalities (56). The NanoMn-Gox-PTX platform

integrates photothermal therapy (PTT), photodynamic therapy

(PDT), and chemotherapy driven therapy (CDT) into a single

nanostructure, thereby enabling precise drug delivery, real time

imaging, and enhanced therapeutic efficacy.

Another nanoplatform employs a DSPE-PEG lipid bilayer to

encapsulate components such as manganese ions (Mn²+), glucose

oxidase (GOx), paclitaxel (PTX), and the fluorescent dye DiR (57).

While ensuring near perfect biocompatibility and circulatory

stability, it can achieve controlled, precise release under tumor

specific stimulation. Following systemic administration, the

nanoparticle platform passively accumulates in tumor tissues via

the enhanced permeability and retention (EPR) effect (58). Once

localized in the tumor microenvironment (TME), the platform

automatically responds to its unique biochemical conditions and

external irradiation. Mechanistically, GOx catalyzes the oxidation of

intratumoral-glucose to gluconic acid and hydrogen peroxide

(H2O2), leading to two critical outcomes (59): (1) depletion of

glucose disrupts tumor cell metabolism and promotes starvation

induced apoptosis; (2) the generated H2O2 reacts with Mn²+ via a

Fenton like reaction to yield highly cytotoxic hydroxyl radicals

(•OH), which induce oxidative stress and cellular damage—

constituting the CDT component (60).

Simultaneously, under near infrared II (NIR II) laser irradiation,

the nanostructure absorbs light and converts it into heat, elevating

local temperatures to trigger apoptosis in cancer cells through PTT

(61). This localized hyperthermia not only disrupts cellular integrity

but also increases membrane permeability, facilitating drug

penetration and potentiating chemotherapy. Furthermore, the

elevated temperature accelerates ROS production, synergistically

enhancing PDT. In the PDT mechanism, the DiR dyeactivated by

NIR irradiation—transfers energy to surrounding oxygen molecules

to produce singlet oxygen (^1O2), a potent ROS that damages

intracellular organelles and DNA (62). However, the hypoxic

nature of solid tumors often impairs PDT efficacy. To counter this,

MnO2 reacts with H2O2 to generate oxygen in situ, thereby alleviating

hypoxia and supporting continuous ROS generation (63). In terms of

imaging, Mn²+ released from the platform improves T1 weighted

MRI contrast due to its strong paramagnetic properties, enabling real
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time localization of the nanoplatform and monitoring of treatment

progression (64). Concurrently, DiR fluorescence imaging supports

near infrared visualization of nanoparticle biodistribution and

tumor response.

The schematic diagram illustrates the modular design and

mechanistic interactions of the NanoMn-Gox-PTX nanoplatform

for hepatocellular carcinoma (HCC) therapy. The figure outlines

each stage of the nanoparticle’s fabrication process, beginning with

the integration of therapeutic and diagnostic components—

including manganese ions (Mn²+), DSPE PEG for enhanced

stability and biocompatibility, hydrogenated poly(glycerol)

(HPG), paclitaxel (PTX), cholesterol PEG, cationic lipid DOTAP,

magnetically active material MAG, and the near infrared

fluorescent dye DiR. These components are co assembled via

molecular lipid core formation, followed by chloroform

evaporation and aqueous phase hydration to yield a stable,

uniform nanostructure. This formulation strategy ensures precise

control over particle size, zeta potential, and encapsulation

efficiency, all critical parameters influencing tumor penetration

and systemic circulation time.

Following intravenous administration, the nanomaterials

passively accumulate in tumor tissues via the enhanced

permeability and retention (EPR) effect. Once successfully

localized, the platform is functionally activated through

endogenous tumor microenvironment stimulation and external

near infrared II (NIR II) laser irradiation. At this point, in the

tumor site, glucose oxidase (GOx) catalyzes glucose oxidation,

producing hydrogen peroxide (H2O2) and inducing glucose

starvation (65). This metabolic effect makes tumor cells more

sensitive to further treatment. The generated H2O2 acts as a

substrate for a Fenton like reaction with Mn²+, producing highly

reactive hydroxyl radicals (•OH), which trigger chemotherapy

driven therapy (CDT) through DNA damage and oxidative stress

(66). Simultaneously, the release of Mn²+ enhances T1 weighted

MRI signal intensity, enabling real time anatomical localization and

monitoring of therapeutic progression. DiR encapsulated in the

lipid bilayer supports NIR fluorescence imaging, offering dynamic

tracking of nanoparticle distribution and therapeutic response.

Laser triggered photothermal conversion elevates the local

temperature of the tumor microenvironment, inducing direct

thermal ablation of malignant cells and improving tumor

perfusion. This not only amplifies the effectiveness of photothermal

therapy (PTT) but also facilitates greater intratumoral drug delivery

and immune infiltration. The temperature increase also enhances

reactive oxygen species (ROS) generation, thereby synergizing with

photodynamic therapy (PDT) mechanisms mediated by the DiR

molecule. A particularly significant outcome of the ROS cascade is its

immunological impact. The increased oxidative stress promotes

immunogenic cell death (ICD), leading to the release of damage

associated molecular patterns (DAMPs) such as calreticulin and

HMGB1. These DAMPs activate the cyclic GMP AMP synthase

(cGAS)–stimulator of interferon genes (STING) pathway in antigen

presenting cells. As a result, dendritic cells (DCs) mature and prime

cytotoxic T lymphocytes (CTLs), mounting a systemic anti-tumor
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immune response that may suppress both primary tumors and

distant metastases.

In summary, the diagram not only visualizes the structural

complexity and synthetic methodology of the NanoMn GOx PTX

system but also encapsulates its multi-dimensional therapeutic

strategy. Through the integration of CDT, PTT, PDT,

chemotherapy, imaging, and immune activation within a single

platform, this nanoplatform embodies the future of precision

oncology offering highly localized, image guided, and

immunologically engaged treatment for advanced HCC.
3.3 Application of manganese based
nanomaterials in medical imaging

Manganese-based nanomaterials have gained significant

attention in HCC imaging due to their intrinsic paramagnetic

properties, particularly the presence of Mn²+ ions, which enhance

T1-weighted MRI contrast. This makes them highly effective for T1

weighted MRI contrast enhancement (67). Unlike gadolinium-

based agents, Mn based materials offer better biocompatibility

and lower risk of nephrogenic systemic fibrosis. Importantly,

many manganese containing compounds, such as MnO2 or

manganese carbonate (MnCO3), are designed to be “activatable”

undergoing redox reactions or pH triggered dissolution within the

tumor microenvironment to release Mn²+ ions precisely where

imaging contrast is needed (68). This site-specific release

improves imaging sensitivity while minimizing systemic exposure.

Comparative analyses of different manganese-based formulations

indicate that MnO2 nanoparticles are particularly effective in the

acidic and reductive tumor microenvironment, where they release

Mn²+ ions in situ, shortening T1 relaxation times and enhancing MRI

sensitivity. From a mechanistic standpoint, MnO2 nanoparticles play

a dual role in both imaging and therapy. In the reductive and acidic

conditions of the tumor microenvironment—characterized by

elevated glutathione (GSH) and H2O2 levels MnO2 is reduced to

free Mn²+, which shortens the T1 relaxation time and enhances

imaging contrast (69). Concurrently, MnO2 acts as a catalyst for the

decomposition of H2O2 into oxygen, alleviating hypoxia—a major

barrier to photodynamic therapy (PDT) efficacy. This oxygen

generating capability restores ROS production during PDT and

boosts treatment response (70). Moreover, the acidic tumor

environment triggers degradation of the nanoparticle structure,

improving payload release (e.g., drugs or immunostimulants), thus

linking the imaging signal with therapeutic action—a concept known

as “image guided therapy.

In addition to common diagnostic functions, manganese-based

nanomaterials are increasingly being used as an important

component of multimodal treatment systems. When combined

with photothermal therapy (PTT), chemotherapy, and

immunomodulators, the insiturelease of Mn²+ ions can not only

promote MRI tracking but also directly activate the cGAS STING

innate immune pathway, enhancing type I interferon production

and dendritic cell maturation. Recent studies have suggested that
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manganese nanoparticles, such as TPA Mn and ROS sensitive

NPMn, trigger cGAS STING signaling, increase secretion of pro

inflammatory cytokines (TNF a, IL 6, IL 2), promote cytotoxic T

lymphocyte infiltration, and reduce immunosuppressive regulatory

T cells. Furthermore, when combined with DNA damaging agents

or anti PD 1 therapy, these manganese-based systems synergistically

remodel the tumor immune microenvironment and improve

immunotherapy efficacy (71) (72). Moreover, manganese

nanoparticles functionalized with tumor targeting ligands (e.g.,

folate, RGD peptides) or surface modifiers (e.g., PEG, lipids)

exhibit improved tumor selectivity, circulation halflife, and

biosafety. Overall, manganese-based nanomaterials offer a highly

integrated solution for the diagnosis and treatment of hepatocellular

carcinoma. They can serve not only as contrast agents but also as

active drugs to trigger or guide therapeutic responses.
4 Construction of big data driven
precision medical pathways and
clinical prospects

4.1 Synergistic role of big data and
radiomics in optimizing individualized
treatment pathways

The integration of multimodal data analysis and radiomics

provides key insights for precision treatment of HCC. Radiomics

can systematically extract high dimensional quantitative features

from MRI and other medical imaging data, capturing tumor

heterogeneity, microstructural patterns, and spatial complexity

that are not apparent to clinicians. When combined with clinical

biomarkers, genomics, transcriptomics, and patient history, these

features provide a robust, data driven framework for individualized

clinical decision making (41).
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ML and DL algorithms play a central role in this framework by

processing multi parametric MRI data, including T1, T2, diffusion

weighted imaging (DWI), and apparent diffusion coefficient (ADC)

maps, and converting them into predictive models for treatment

response, recurrence risk, and survival outcomes (73, 74). Feature

selection, model training, and validation strategies are highlighted

to ensure reproducibility and generalizability across heterogeneous

datasets. Although promising, many models remain in the research

stage, constrained by limited prospective validation and inter

institutional variability (37) (Table 1).

This integrated framework underscores the pivotal role of

radiomics and big data in enhancing the granularity and

precision of HCC management across diagnostic, prognostic, and

therapeutic dimensions. By leveraging quantitative imaging features

—many of which are imperceptible to human observers—radiomics

offers a non-invasive, reproducible, and high throughput

methodology to characterize tumor phenotypes. When aligned

with ML algorithms, these features can be transformed into

robust predictive tools for assessing microvascular invasion,

tumor differentiation, or therapeutic response potential, all of

which are critical in informing individualized treatment strategies.

Importantly, recent studies have suggested that combining

radiomics with conventional clinical biomarkers such as AFP or

DCP significantly improves the accuracy of early HCC detection

and recurrence prediction. For example, multi parametric models

integrating arterial phase texture features with AFP levels have

shown superior predictive performance (AUC > 0.85) compared to

either modality alone (75). Similarly, radiomics signatures

extracted from contrast enhanced MRI and DWI sequences have

been correlated with immunotherapy outcomes and TACE

responsiveness, suggesting their utility in patient stratification and

treatment personalization (76).

Beyond predictive modeling, big data driven approaches

facilitate the integration of diverse data layers, including

genomics, proteomics, histopathology, and therapeutic history,
TABLE 1 Radiomics and big data integration in precision therapy for hepatocellular carcinoma (HCC).

Component Function
Application in HCC
precision therapy

Representative Metrics/Results

Radiomic Features
Extract quantitative image traits (e.g.,

texture, shape, intensity)
Identify tumor heterogeneity, microvascular

invasion (MVI), or early recurrence
GLCM based entropy, sphericity, wavelet features

correlated with MVI (AUC: 0.81)

Multi parametric
MRI Data

Provide anatomical and functional
imaging (T1, T2, DWI, ADC)

Enable lesion localization, necrosis evaluation,
vascular pattern differentiation

ADC histogram features predict recurrence (AUC:
0.74)

Machine learning
(ML) Algorithms

Feature selection, classification, risk
scoring

Develop predictive models for treatment
response, survival, and staging

LASSO for MVI, Random Forest for TACE
response (AUCs 0.78–0.85)

Deep learning (DL)
Models

Automated feature extraction, data
fusion

Integrate imaging with genomics or pathology
CNN based models predict immunotherapy

response with >85% accuracy

Clinical Biomarkers
AFP, DCP, liver enzymes, TNM

staging
Enhance model stratification and clinical

interpretability
AFP + radiomics improves early HCC detection

sensitivity from 0.72 to 0.87

Nanoparticle
Characteristics

Size, charge, coating, ligand targeting,
drug loading/release

Guide drug carrier design for tumor subtype
specificity

Smaller (~50nm) PEGylated MnO2 shows higher
EPR accumulation in HCC xenografts

Integrated Prognostic
Models

Combine radiomics, lab tests,
genomics, and clinical history

Predict recurrence, survival, or response to
therapy

Combined models yield C index >0.80 for 1 year
recurrence prediction
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into unified analytical pipelines. This multidimensional perspective

enables the construction of comprehensive patient profiles that

account for tumor biology, host response, and environmental

variables (77). The insights gained can inform not only the

selection of optimal therapeutic regimens (e.g., systemic therapy

vs. local ablation) but also the design of drug delivery systems, such

as nanoparticle size and surface modification, tailored to specific

tumor characteristics. Despite this progress, the clinical translation

of radiomics and AI based models remains limited by several

challenges. These issues include inconsistent imaging protocols

between different hospital institutions, a lack of standardized

feature definitions, and insufficient relevant datasets (78).

Additionally, many ML models have limited interpretability,

which are key barriers to clinical adoption of AI models. To

overcome these limitations, future research should prioritize multi

center collaboration, standardization of radiomics workflows, and

the construction of large annotated datasets incorporating

longitudinal follow up results (79). Initiatives such as the Imaging

Biomarker Standardization Initiative (IBSI) and the establishment

of FAIR (Findable, Accessible, Interoperable, Reproducible) data

principles in the field of radiomics are critical steps toward

enhancing model reproducibility and clinical trustworthiness (80).

The synergistic integration of radiomics, big data analysis, and

clinical information has brought significant progress to personalized

HCC treatment. As this field continues to evolve, it is expected to

transition from retrospective risk assessment to real time clinical

decision support. Additionally, it will find comprehensive

applications from treatment selection to nanomedicine design and

long-term monitoring. Under appropriate validation and regulatory

frameworks, precision oncology based on radiomics has the potential

to become a key solution for the next generation of clinical diagnosis

and treatment in HCC therapy.
4.2 Tumor microenvironment modulation
and response prediction modeling

The tumor microenvironment (TME) promotes cell invasion,

metastasis, immune evasion, and treatment resistance. The TME is

a dynamic, highly heterogeneous system characterized by hypoxia,

acidic pH, abnormal vascular structures, and abundant immune

suppressive cells, which collectively influence therapeutic outcomes.

These unique features significantly impair the efficacy of systemic

therapies, particularly immunotherapy and photodynamic therapy

(81). Therefore, precise characterization and dynamic monitoring

of the TME are critical for precision oncology strategies.

Multi parametric MRI techniques, including diffusion weighted

imaging (DWI), dynamic contrast enhanced (DCE) imaging, and

apparent diffusion coefficient (ADC) mapping, provide non-

invasive, quantitative measures of TME related parameters (82).

Studies have shown that decreased ADC values may indicate

increased cell density due to active tumor proliferation, while

higher K^trans values in DCE MRI correlate with vascular

permeability and leakage (83).
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Radiomics adds an additional analytical dimension by extracting

spatial, textural, and heterogeneity features from imaging data that

reflect underlying biological processes. When integrated with

circulating biomarkers such as VEGF, HIF 1a, and IL 6, radiomics

enables stratification of tumors into immunologically “hot” or “cold”

categories, guiding immunotherapy selection, including immune

checkpoint inhibitors (84) (85).

ML and DL algorithms, including support vector machines

(SVM), random forests, and convolutional neural networks

(CNNs), have been applied to develop predictive models of

treatment response (86). CNN based radiomics models have

achieved >85% accuracy in predicting recurrence following TACE

(87), while radiogenomics linking MRI texture to TP53 or CTNNB1

mutation status can predict recurrence with precision up to 0.83.

These approaches allow dynamic modeling of tumor evolution and

real time adjustment of treatment strategies based on TME

heterogeneity (88).

Engineered nanomaterials serve as active modulators of the

TME. MnO2-based nanoparticles not only function as T1 MRI

contrast agents but also react with elevated H2O2 in the TME to

generate oxygen, alleviating tumor hypoxia and enhancing

photodynamic therapy efficacy (89). Similarly, glucose oxidase

(GOx)-loaded nanoparticles induce tumor starvation via glucose

oxidation while generating H2O2, which synergizes with Mn²+ ions

to trigger chemodynamic therapy (90). These therapeutic effects can

be dynamically monitored via MRI or near-infrared fluorescence

imaging, creating a theranostic feedback loop between diagnosis

and treatment.

Importantly, modulation of TME conditions—such as

oxygenation, ROS levels, and acidity—can sensitize tumors to

immune activation. For example, these changes can trigger the

cGAS–STING pathway, promoting dendritic cell maturation and

enhancing cytotoxic T cell infiltration (91). This provides a rational

basis for combination therapies involving nanoparticles, immune

checkpoint blockade, and targeted therapies. Together, the

convergence of radiomics, AI-driven predictive modeling, and

TME-responsive nanotechnology paves the way for adaptive,

image-guided, and immuno-integrated strategies for HCC

treatment, offering a framework for personalized, precision oncology.
4.3 Translational prospects and challenges
of nano-imaging therapy integration

The integration of nanotechnology with imaging and

therapeutic platforms holds immense translational potential in

clinical oncology, particularly in the treatment of HCC.

Theranostics, which combines diagnostic imaging with therapy,

enables simultaneous, image guided diagnosis and treatment

through a single nanotechnology platform, providing a promising

avenue for personalized and precision HCC therapy (40).

For example, manganes based nanoparticles not only function

as T1 MRI contrast agents but also act as reactive oxygen species

(ROS) amplifiers in chemodynamic therapy (CDT). Their ability to
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respond to the tumor microenvironment (e.g., elevated H2O2 or

acidic pH) enables selective drug release, minimizes off target

toxicity, and provides a theoretical basis for MRI guided, data

driven treatment planning (84).

However, before nanomaterials can be widely applied in clinical

settings, several challenges must be addressed:
Fron
1. Toxicity control: Accumulation of inorganic nanomaterials

in organs such as the liver or spleen can cause long term

adverse effects. Optimizing biodegradability, enhancing

renal clearance, and employing bioresponsive or

biodegradable nanocarriers are crucial for clinical safety.

2. Targeting accuracy: Although ligand modification (e.g.,

hyaluronic acid or antibodies) improves tumor selectivity,

heterogeneity of receptor expression often leads to low

delivery efficiency (41). Emerging strategies include

adaptive, dual targeting, or st imuli responsive

nanoparticles that leverage imaging and radiomics data to

enhance site specific delivery.

3. Standardization of imaging and analysis: Significant

differences exist among institutions in MRI acquisition

protocols, radiomics feature extraction, and image quality

(92). This variability limits reproducibility and the

reliability of imaging guided therapeutic decisions.

Establishing standardized imaging protocols, open source

radiomics pipelines, and data sharing frameworks is

essential for clinical validation and broader adoption of

nanomedicine platforms.
Currently, integrated nano imaging and therapeutic systems

suggeste substantial potential for advancing HCC management.

By combining radiomics, AI driven predictive modeling, and TME

responsive nanomaterials, clinicians can implement adaptive,

image guided treatment regimens that account for tumor

heterogeneity, predict therapeutic response, and optimize

combination strategies.

Translating these approaches from research to clinical practice

requires addressing toxicology, targeting efficiency, and

standardization challenges. Successful integration of big data

analytics, standardized imaging, and nanomedicine will enable

safe, precise, and personalized HCC therapy, ultimately

expanding treatment options and improving patient outcomes.
5 Conclusion and the future directions

5.1 Conclusion

The comprehensive application of nanomaterials, radiomics,

and big data technology in the precise diagnosis and treatment of

hepatocellular carcinoma (HCC) has emerged as a prominent

research frontier in recent years. By critically evaluating the latest

advancements in manganese-based nanoparticles for MRI

enhancement and multimodal synergistic therapy—including

chemotherapy, chemodynamic therapy (CDT), photothermal
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therapy (PTT), and photodynamic therapy (PDT)—this review

highlights the dual diagnostic and therapeutic roles of

nanomedicine. The application of these multifunctional

nanoplatforms enables real-time tumor localization, dynamic

treatment response monitoring, and image-guided intervention,

collectively driving enhanced precision in therapeutic

decision-making.

Furthermore, the integration of radiomics provides critical

quantitative insights into tumor heterogeneity, microenvironmental

changes, and functional dynamics that are otherwise undetectable by

conventional imaging. When combined with machine learning

algorithms, these radiomic features can be harnessed for predictive

modeling of treatment response and individualized therapy planning.

The fusion of imaging biomarkers with clinical and molecular data

facilitates the development of adaptive, closed-loop treatment

workflows, supporting personalized and evidence-based clinical

decision-making.

The tumor microenvironment (TME) remains a critical

determinant of treatment efficacy, influencing both imaging

outcomes and therapeutic responses. Predictive modeling

incorporating molecular markers, imaging data, and nanomaterial-

induced microenvironmental modulation can enhance treatment

adaptability and precision. However, significant challenges remain

for clinical translation, including systemic toxicity, off-target effects,

limited targeting accuracy, and the lack of standardized protocols for

imaging and radiomic analysis. These limitations underscore the need

for interdisciplinary research, rigorous preclinical validation, and

carefully designed clinical trials.

In summary, this review provides a comprehensive synthesis of

the immense potential of nanomaterial-enabled radiomics and big

data-driven models in HCC diagnosis and therapy. Looking

forward, the convergence of advanced imaging technologies,

intelligent data modeling, and multifunctional nanotherapeutics

promises to establish a new era of personalized, image-guided,

and data-driven medicine for HCC, ultimately improving patient

outcomes and enabling precision oncology at scale.
5.2 Future directions

Despite significant advances in the application of nanomaterials

for HCC imaging and therapy, several research gaps and challenges

remain that warrant further investigation. First, although

manganese-based and other functionalized nanoparticles have

suggested promising preclinical imaging performance and

therapeutic potential, their clinical translation is limited by issues

such as systemic toxicity, long-termmetabolism, and heterogeneous

tumor uptake. Future studies should focus on optimizing

nanoparticle design, including size, surface chemistry, and

targeting ligands, to maximize tumor specificity and biosafety.

Second, integration of nanomaterials with radiomics and big

data-driven predictive modeling remains in its early stages. While

preliminary studies suggest that combining quantitative imaging

features with machine learning can enhance individualized

treatment planning, standardized protocols for data acquisition,
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feature extraction, and validation across multiple centers are

urgently needed to ensure reproducibility and clinical applicability.

Third, the tumor microenvironment and immune response play

critical roles in both imaging performance and therapeutic efficacy.

Future research should explore multimodal nanomaterials capable

of modulating hypoxia, ROS levels, or immune pathways (e.g.,

cGAS-STING activation) to enhance both diagnostic accuracy and

treatment response. Mechanistic studies linking nanoparticle

behavior with microenvironmental factors will be crucial for

rational design of next-generation theranostic platforms.

Finally, translational studies bridging preclinical models and

human patients are essential. Large-scale, well-controlled clinical

trials, along with regulatory standardization and long-term safety

assessments, will be necessary to realize the full potential of

nanotechnology-enabled precision medicine in HCC.

In summary, future directions should emphasize rational

nanoparticle design, integration with radiomics and AI, tumor

microenvironment modulation, and rigorous translational

evaluation, thereby paving the way for more precise, safe, and

effective HCC diagnosis and therapy.
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