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Hepatocellular carcinoma (HCC) ranks among the most lethal malignancies
worldwide, characterized by its high metastatic potential and poor prognosis.
Early and precise detection and diagnosis of HCC remain a major clinical
challenge. Magnetic resonance imaging (MRI), as the most widely used
noninvasive technique for diagnosing liver diseases, currently suffers from
limitations in traditional contrast agents, including low specificity and limited
sensitivity, particularly when detecting small lesions. The emergence of
nanotechnology offers novel approaches to enhance the diagnostic accuracy
and therapeutic efficacy for HCC. Under the framework of big data driven
precision medicine, this study explores the application of nanomaterials in
HCC MRI enhancement and multimodal therapy. This review comprehensively
summarizes two types of responsive nanomaterials: (1) Chiral Ni(OH),
nanoparticles, which suggeste enhanced contrast in T1 weighted MRI and
selective imaging capabilities for primary HCC and lung metastases; (2) B
Lapachone loaded mesoporous MnO, nanoparticles (HLMn), which effectively
enhance the generation of reactive oxygen species (ROS) within tumor cells,
disrupt redox homeostasis, and significantly improve the efficacy of chemo
dynamic therapy (CDT). These nanoplatforms also exhibit potential to activate
the c-GAS STING innate immune pathway, thereby augmenting antitumor
immune responses. Nanomaterials hold great promise not only as enhanced
contrast agents but also as precise therapeutic carriers. By integrating radiomics
based imaging features with biological markers, we summarize current
personalized HCC diagnosis and treatment planning models based on
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multimodal data. Simultaneously, we provide a critical summary of the synergistic
application of advanced imaging and therapeutic nanotechnologies. In the
future, leveraging big data for precise HCC diagnosis and treatment is
anticipated to significantly improve patient survival.

hepatocellular carcinoma, nanomaterials, MRl enhancement, multimodal therapy, Al

driven radiomics

1 Introduction and literature search
strategy

1.1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common and
deadly malignant tumors globally, accounting for the majority of
primary liver cancers (1). Due to its asymptomatic nature in early
stages, rapid progression, and high metastatic potential, early and
accurate diagnosis of HCC remains challenging (2). Consequently,
patients often present at advanced stages, resulting in poor prognosis
and limited treatment options (3, 4). Current diagnostic modalities,
including ultrasound, computed tomography (CT), and magnetic
resonance imaging (MRI), along with serum biomarkers such as
alpha fetoprotein (AFP) and des y carboxy prothrombin (DCP), face
challenges such as limited sensitivity for small or early stage tumors,
inability to fully capture tumor heterogeneity, and variability in
detecting microvascular invasion. Similarly, conventional therapeutic
approaches, including surgical resection, local ablation, transarterial
chemoembolization (TACE), and systemic chemotherapy, often result
in suboptimal treatment responses due to tumor heterogeneity and
complex tumor microenvironment, contributing to the overall poor
prognosis (5). While significant progress has been made in treatment
modalities such as surgical resection, transarterial chemoembolization
(TACE), and systemic chemotherapy, the five year survival rate
remains suboptimal, with rates in many regions barely exceeding
30% (6). These factors underscore the urgent need to improve early
detection and precision treatment to enhance patient outcomes and
reduce mortality.

Magnetic resonance imaging (MRI) has become the gold
standard for non-invasive liver cancer diagnosis due to its
excellent spatial resolution, high soft tissue contrast, and multi
parameter detection capabilities, enabling simultaneous detection of
anatomical and functional abnormalities in liver tissue (7).
However, traditional gadolinium based contrast agents have
limitations such as low sensitivity, lack of tumor specificity, and
potential nephrotoxicity. These limitations further highlight the
need for advanced imaging strategies that can provide higher
sensitivity, tumor specific contrast, and reliable quantitative
biomarkers. Nanotechnology, as a highly promising research
direction, suggests significant potential in biomedical applications
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due to its customizable size, shape, surface charge, and chemical
composition (8). When applied to MR], it can significantly enhance
T1 or T2 contrast, improve tumor targeting, and serve as a delivery
system for targeted therapeutic drugs (9, 10). Functionalized
nanomaterials can detect overexpressed biomarkers on HCC cell
membranes, such as glycoprotein 3 and CD44, achieving selective
distribution to tumor sites while minimizing off target effects (11).

The emergence of radiomics (the efficient extraction of
quantitative features from medical images) has opened up new
dimensions for precision oncology. Research has shown that
radiomics can analyze tumor heterogeneity, morphological changes,
and the composition of the tumor microenvironment, while also
revealing features that are not detectable by the naked eye. When
combined with Machine Learning (ML) and Deep Learning (DL)
approaches, radiomics enables integration of multi-dimensional
imaging data with clinical, pathological, and molecular information,
providing the theoretical and computational basis for Al driven
predictive modeling of individualized treatment responses. This
framework supports the rationale for leveraging nanomaterials to
enhance imaging contrast and guide precise, personalized therapies.
Additionally, the integration of image guided, data driven
nanotechnology with MRI marks a paradigm shift in cancer
treatment planning and optimization (12). This review aims to
explore the application of nanomaterials in enhancing MRI
contrast and promoting multimodal treatment for hepatocellular
carcinoma (HCC) (13). In the future, by overcoming the
limitations of current diagnostic and therapeutic methods and fully
exploiting the capabilities of nanotechnology and radiomics, more
accurate and personalized tools for HCC diagnosis and treatment can
be established, ultimately improving patient outcomes.

1.2 Literature search strategy

To ensure a comprehensive and systematic review of
nanomaterials in hepatocellular carcinoma (HCC) imaging and
therapy, we conducted a thorough literature search across major
scientific databases, including PubMed, Web of Science, and
Scopus, covering publications up to May 2025. The search
strategy combined terms related to the disease, imaging
modalities, nanomaterials, and therapeutic approaches, including:
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“hepatocellular carcinoma”, “HCC”, “magnetic resonance imaging”,
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“MRI”, “nanomaterials”, “nanoparticles”, “radiomics”, “multimodal
therapy”, “photothermal therapy”, and “chemodynamic therapy”.
Boolean operators (“AND”, “OR”) and truncation were applied
to refine search results and ensure maximum coverage of
relevant literature.

Inclusion criteria were: (1) Studies involving HCC patients or
preclinical models relevant to human HCC. (2) Research focusing
on nanomaterial-based MRI contrast enhancement, targeted drug
delivery, or multimodal therapy. (3) Studies providing quantitative,
mechanistic, or translational insights. (4) Peer-reviewed original
research articles published in English.

Exclusion criteria included: (1) Articles not directly related to
HCC or nanomaterials. (2) Conference abstracts, editorials,
commentaries, or reviews without primary data. (3) Duplicate
studies or studies with insufficient methodological details.

The initial search yielded over 1,200 publications. After
screening titles and abstracts for relevance and removing
duplicates, 320 articles were selected for full-text review. Each
full-text article was evaluated for methodological rigor,
experimental design, and clinical or preclinical relevance.
Ultimately, 101 studies were included in this review, providing a
comprehensive and balanced representation of current research on
nanomaterial applications in HCC imaging and therapy.

To further enhance comprehensiveness, the reference lists of
included studies were manually screened to capture additional
relevant publications not indexed in the databases. Priority was
given to recent studies (2020-2025) and highly cited works that
provide mechanistic insights or novel applications.

For synthesis and analysis, the included studies were
categorized based on key criteria: (1) type of nanomaterial (e.g.,
manganese-based, iron oxide, gold nanoparticles), (2) imaging
modality and contrast enhancement mechanism, (3) therapeutic
strategies (e.g., photothermal therapy, chemodynamic therapy,
immunomodulation), and (4) preclinical versus clinical studies.
Comparative tables and critical discussions were constructed to
highlight the strengths, limitations, and translational potential of
each approach. This structured methodology ensures that the
review provides not only a comprehensive overview but also
critical insights and guidance for future research directions in
HCC nanomedicine.

2 Radiomics basis of MRI
enhancement by nanomaterials in
HCC imaging

MRI plays a significant role in assisting HCC diagnosis. Recent
studies have integrated nanomaterials into hepatocellular
carcinoma imaging technology, primarily to extract key features
from medical imaging data and efficiently transmit this data to
achieve a visual format suitable for further analysis. Additionally,
the functionalized nanoparticles introduced during imaging provide
critical features such as enhanced contrast, tumor specific
distribution, and time and space specific interactions, which are
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essential for subsequent applications in radiomics (14). Advances in
multimodal imaging technology have broken through the
limitations of traditional imaging, meeting the current demands
of precision medicine, and significantly promoting the detection of
phenotypic patterns in the tumor microenvironment. In the future,
the integration of nanomaterials with radiomics will further
enhance diagnostic and prognostic capabilities, thereby solidifying
MRTI’s position as an indispensable clinical driver in HCC
management (15, 16).

2.1 Synthesis of nanomaterials

The synthesis of nanomaterials plays a crucial role in
biomedicine, particularly in the field of HCC imaging and
treatment. This review explores three primary synthesis methods:
vapor phase synthesis, solution phase synthesis, and solid phase
synthesis. Vapor phase synthesis includes techniques such as
physical vapor deposition (PVD) and chemical vapor deposition
(CVD), which have been found to effectively prepare nanomaterials
with high structural purity and morphological control (17). This
method has been successfully applied to the preparation of magnetic
nanomaterials for imaging applications. Liquid phase synthesis has
become the most flexible method for biomedical applications due to
its ease of operation, scalability, and high functionalization rate (18,
19). Studies have shown that precise control of particle morphology
can be achieved by adjusting variables such as pH, temperature, and
reaction time. Importantly, surface functionalization the grafting of
targeted ligands or therapeutic molecules has been successfully
achieved during synthesis, which is crucial for the tumor specific
application of HCC (20). For example, MRI contrast agents and drug
loaded nanocarriers. Solid phase synthesis, including techniques such
as ball milling and spark plasma sintering, can produce crystalline
nanoparticles with high structural integrity. Although this method is
not suitable for surface modification, it offers significant advantages
in preparing robust and scalable materials with high thermal and
chemical stability (21).

This figure illustrates the synthesis methods of nanomaterials
and their applications in biomedical research, particularly in
imaging and treatment of HCC. The figure is divided into two
main sections: Section (A) shows different synthesis methods and
their corresponding material size ranges, while Section (B) provides
detailed descriptions of the specific techniques and control
parameters involved in each synthesis method.

In Section A of Figure, two methods for synthesizing
nanomaterials are presented: bottom up and top-down approaches.
The bottom-up method starts with small molecules or atoms (size < 1
nm) and gradually constructs nanostructured materials (1 nm-100
nm) through controlled growth and nucleation processes. This
method is closely related to techniques such as hydrothermal
synthesis, sol gel synthesis, electroplating, and chemical vapor
deposition (CVD). The top-down method, on the other hand,
starts with micron sized or bulk materials (size > 1 pwm) and
reduces them to nanoscale materials through processes such as ball
milling and laser processing.
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In Section B of Figure, the three main synthesis methods are
detailed. For gas phase synthesis, we list techniques such as physical
vapor deposition (PVD) and chemical vapor deposition (CVD), as
well as sub methods like sputtering and ultra-high vacuum CVD.
Solution phase synthesis includes hydrothermal/solvothermal
methods, precipitation/coprecipitation methods, and sol gel or
electrodeposition methods. Here, particular emphasis is placed on
parameters such as pH, temperature, and concentration control.
Solid phase synthesis encompasses both ambient and high
temperature processes, including key techniques such as
mechanical exfoliation and solid state grinding.

Additionally, the figure highlights the importance of controlling
various parameters during synthesis to achieve the desired
properties of nanomaterials. In solution phase synthesis, factors
such as pH, temperature, concentration, and component ratios are
critical for regulating the structure and functionality of
nanomaterials. This level of control is crucial for the application
of nanomaterials in biomedical applications.

This figure aims to comprehensively summarize the complexity
and diversity of nanomaterial synthesis methods, emphasizing the
importance of selecting appropriate synthesis techniques based on
the specific requirements of biomedical applications. It also
highlights the potential of these nanomaterials in advancing HCC
diagnostic and therapeutic strategies (Figure 1).

2.2 Mechanisms and advantages of
nanomaterials in MRI imaging

Integrating magnetic resonance imaging (MRI) into
nanomaterials by adjusting their magnetic and physicochemical
properties can significantly improve the diagnostic accuracy of
HCC. Although gadolinium-based contrast agents have seen some
clinical use, their limited tumor specificity, low sensitivity, and
potential nephrotoxicity continue to pose significant barriers to
widespread adoption. In contrast, nanomaterials offer significant
advantages in terms of magnetic responsiveness, biocompatibility,
and surface functionalization, making them promising candidates
for next generation MRI contrast agents (22).

Current research focuses on chiral nickel hydroxide nanoparticles
[D/L Ni(OH),], which exhibit a high longitudinal relaxation rate (r,),
directly influencing T1 relaxation time. The enhancement in T1
weighted imaging stems from these nanoparticles increasing proton
relaxation by modulating the local magnetic field, thereby amplifying
the MRI signal (23). The chiral configuration also introduces
stereoselective interactions with cellular components. DNi(OH),
exhibits stronger affinity for specific tumor receptors, resulting in
higher cellular uptake and more pronounced signal amplification in
tumor regions compared to LNi(OH), or achiral analogues. This
chiral selectivity enhances spatial resolution and tumor specificity,
representing a significant advancement over traditional drugs.

Manganese dioxide nanoparticles (MnO,) are another class of
effective T1 contrast agents (24). In the acidic and reducing tumor
microenvironment (TME), MnO, undergoes redox reactions,
releasing Mn>" ions. These Mn>" ions exhibit paramagnetic
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properties, significantly shortening T1 relaxation times through
interactions with water protons, thereby enhancing signal intensity
in T1 weighted MRI sequences. Furthermore, MnO, particles have an
inherent ability to react with endogenous hydrogen peroxide (H,O,),
which is commonly overexpressed in tumor tissues. This catalyzed
reaction generates oxygen (O,), alleviating tumor hypoxia and
subsequently enhancing the efficacy of oxygen dependent
treatments such as photodynamic therapy (PDT) (25). Manganese
dioxide (MnO,) exhibits dual functionality in enhancing imaging
contrast and modulating the tumor microenvironment (TME), which
aligns closely with the principles of theranostics. Both D Ni(OH), and
MnO, nanoparticles can be further modified with tumor targeting
ligands to enhance selectivity and systemic circulation time (26, 27).
Ligands such as hyaluronic acid (HA) targeting the CD44 receptor or
tumor specific peptides can be grafted onto the nanoparticle surface
to achieve active targeting (28). This engineering strategy significantly
enhances drug accumulation at the tumor site by enhancing the
permeability retention effect and active targeting mechanism.
Additionally, the structural parameters of these nanomaterials
(including particle size, zeta potential, and hydrophilicity) can be
finely tuned to further optimize biodistribution, cellular uptake, and
MRI signal intensity. Furthermore, smaller nanoparticles (<50 nm)
typically exhibit better tumor tissue penetration, while surface
polyethylene glycolation (PEGylation) significantly improves
systemic stability and reduces immune clearance (29, 30).

To visually illustrate these advantages, we have added
representative MRI scans in Figure 2, comparing conventional
gadolinium-based contrast MRI with nanomaterial enhanced MRI
(D Ni(OH), and MnO,). Figure 2 shows preclinical T1 weighted
imaging of HCC xenografts with MnO, nanoparticles, highlighting
enhanced tumor contrast and spatial resolution. These figures
support the discussion of the unique imaging benefits provided
by functionalized nanomaterials.

MRI contrast agents based on nanomaterials (such as D Ni(OH)
» and MnO,) provide a multifunctional platform with high
relaxation rates, environmental responsiveness, and surface
tunability. In the future, they could enable high resolution, high
contrast, and tumor specific imaging of HCC, thereby further
advancing precise diagnosis of HCC.

2.3 Feature extraction and diagnostic value
of radiomics in HCC MRI

Radiomics, as an emerging discipline, is currently situated at the
intersection of medical imaging and data science. In the context of
HCC, radiomics offers a non-invasive method for analyzing tumor
characteristics such as shape, texture, intensity distribution, and
spatial heterogeneity. These features are primarily extracted from
MRI sequences such as T1 weighted, T2 weighted, diffusion
weighted imaging (DWI), and contrast enhanced imaging, and
can help identify key biomarkers associated with tumor biology
and clinical outcomes (31).

Radiomic analysis commonly involves the calculation of first
order statistics (e.g., mean intensity, entropy), second order texture
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features (e.g., gray level cooccurrence matrix [GLCM] metrics), and
higher order transformations (e.g., wavelet decomposition) from
defined regions of interest (ROIs) (32). These data can reflect
underlying tumor phenotypes such as vascularity, necrosis, or
fibrotic changes, which are relevant in the clinical stratification
and staging of HCC. To enhance clinical relevance, we have
integrated a detailed workflow outlining the steps of image
preprocessing, ROI segmentation, feature extraction, and feature
selection, emphasizing how each step can impact downstream
predictive modeling and reproducibility (33).

While some studies have suggested associations between
radiomic features and prognostic indicators, such as microvascular
invasion (MVI), tumor grade, or recurrence risk (34), the
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reproducibility of these findings remains an active area of
investigation. ML methods, including LASSO regression, random
forests, support vector machines, and DL approaches, are increasingly
employed to identify robust feature subsets and construct predictive
models for tumor diagnosis, prognosis, and therapy response
prediction. Comparative analyses showing performance differences
between conventional MRI features and nanomaterial enhanced MRI
features are included to highlight the added diagnostic value of
nanomaterial enhanced imaging (35).

Radiomics can also be integrated with conventional biomarkers,
such as alpha fetoprotein (AFP), or molecular data (e.g., TP53
mutation status) to enhance diagnostic accuracy and biological
interpretation (36). Multi parametric models combining radiomic
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features with clinical, genomic, and treatment data are now
emphasized as a big data driven approach to improve
individualized risk stratification and treatment planning (37). For
instance, multi parametric models combining radiomic features
with clinical data have shown improved performance in
distinguishing HCC from benign hepatic lesions like focal
nodular hyperplasia (FNH) or hemangiomas (38). However, such
approaches are still largely experimental and not yet adopted in
routine clinical practice.

A major challenge limiting clinical translation lies in the lack of
standardization in image acquisition, segmentation protocols, and
feature computation (39). Inter scanner variability and institution
dependent imaging parameters can significantly affect feature
stability and model generalizability. Consequently, we stress the
importance of harmonized radiomics pipelines, large annotated
datasets, and integration with AI driven predictive modeling for
robust, reproducible clinical applications (37).

In summary, radiomics holds considerable potential to
complement MRI in the diagnosis and risk stratification of HCC.
Although many of its current applications remain investigational,
the integration of radiomics with big data analytics, ML, and
nanomaterial enhanced imaging represents a promising strategy to
improve non-invasive tumor assessment and guide individualized
clinical decisions in precision medicine (40).
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2.4 Integration strategies for multimodal
imaging and clinical data

In the era of precision medicine, the integration of radiomics
derived imaging features with clinical, pathological, molecular, and
therapeutic response data is essential to build robust, data driven
diagnostic and therapeutic decision-making frameworks (41). For
hepatocellular carcinoma (HCC), which presents with heterogeneous
biological behavior, combining MRI based radiomics with genomics,
transcriptomics, proteomics, and biochemical markers provides a
multidimensional perspective that enhances individualized disease
assessment and patient stratification (42).

Tumor heterogeneity and microstructural changes can be
quantitatively captured by extracting radiomic features from MRI
sequences (e.g., T1 weighted, T2 weighted, and diffusion weighted
imaging), which are then correlated with gene expression profiles,
mutation status (e.g., TP53, CINNBI1), histological grading, and
serum biomarkers such as alpha fetoprotein (AFP) and des 7y
carboxy prothrombin (DCP) (43, 44). This multidimensional
integration facilitates more accurate prognostic stratification and
individualized therapy planning.

By incorporating advanced computational techniques,
including ML algorithms, deep neural networks, and multi modal
data fusion frameworks, these heterogeneous datasets can be
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analyzed to identify predictive patterns and optimize treatment
strategies. Different methods such as feature level fusion, decision
level fusion, and model ensemble approaches can bring multiple
data types together without redundant information while
maintaining model interpretability (45).

Clinical Decision Support Systems (CDSS) are increasingly
leveraging these fused data to provide oncologists with real time,
evidence-based recommendations for diagnosis, risk assessment,
and treatment selection (46). These systems enable dynamic, patient
specific decision making based on tumor characteristics, molecular
profiles, and risk factors, thereby supporting precision oncology in
clinical practice.

Overall, the combination of imaging, molecular, and clinical
data transforms traditional diagnostics into a systemic, data driven
framework, enhancing HCC diagnosis, patient stratification, and
personalized follow up strategies.

3 Mechanistic analysis and strategic
design of nanomaterial mediated
multimodal synergistic therapy

3.1 ROS amplification and mechanism of
chemodynamic therapy

A study delved into the mechanistic analysis of nanomaterial
mediated multimodal synergistic therapy for hepatocellular
carcinoma (HCC), with a focus on ROS amplification and the
integration of chemo dynamic therapy (CDT) with other
therapeutic modalities (47). The B Lapachone (f Lap)/MnO,
nanoplatform was found to significantly enhance CDT through
cascade ROS augmentation. When activated in the tumor
microenvironment, it produces highly toxic hydroxyl radicals
(sOH) via Fenton like reactions, inducing oxidative stress and
mitochondrial dysfunction, and ultimately causing cancer cell
apoptosis (48, 49). In addition, another research also developed a
tandem nanoplatform integrating photothermal therapy (PTT),
photodynamic therapy (PDT), and CDT. The NanoMn-Gox-PTX
system, encapsulated in a DSPE-PEG lipid layer and containing
Mn*", glucose oxidase (GOx), and paclitaxel (PTX), suggested
remarkable therapeutic and imaging capabilities (50). Upon
reaching the tumor tissue, GOx catalyzes the oxidation of glucose
to H,O,, which then reacts with Mn** to form «OH, triggering CDT
(51). Meanwhile, the nanoplatform is activated by near infrared II
(NIRII) laser irradiation, elevating local temperature to induce tumor
cell apoptosis through PTT (52). The in situ production of oxygen
improves PDT efficacy by reducing hypoxia induced resistance.

Furthermore, the release of Mn>" enhances T1 weighted MRI
contrast and facilitates real time imaging of nanoparticle
distribution and therapeutic response through DiR molecules for
NIR fluorescence imaging (53). Increased ROS levels upregulate
tumor antigen release, activate the cGAS-STING immune axis, and
promote dendritic cell maturation and cytotoxic T lymphocyte
induction (54). The NanoMn-Gox-PTX nanoplatform, with its
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rational design and multifunctional capabilities, stands out as an
ideal candidate for effective and precise image guided cancer
treatment. The B Lap/MnO, nano system offers a promising
approach to achieving selective and efficient HCC treatment
based on enhanced CDT and MRI detectability, aligning with the
study’s objective of developing advanced nanomaterials to
overcome traditional HCC treatment limitations (55).

3.2 Design and optimization of
photothermal/photodynamic synergistic
therapy system

Synergistic photothermal/photodynamic therapy (PTT/PDT)
systems represent a novel strategic approach for HCC treatment
that leverages the complementary advantages of multiple
therapeutic modalities (56). The NanoMn-Gox-PTX platform
integrates photothermal therapy (PTT), photodynamic therapy
(PDT), and chemotherapy driven therapy (CDT) into a single
nanostructure, thereby enabling precise drug delivery, real time
imaging, and enhanced therapeutic efficacy.

Another nanoplatform employs a DSPE-PEG lipid bilayer to
encapsulate components such as manganese ions (Mn*>"), glucose
oxidase (GOx), paclitaxel (PTX), and the fluorescent dye DiR (57).
While ensuring near perfect biocompatibility and circulatory
stability, it can achieve controlled, precise release under tumor
specific stimulation. Following systemic administration, the
nanoparticle platform passively accumulates in tumor tissues via
the enhanced permeability and retention (EPR) effect (58). Once
localized in the tumor microenvironment (TME), the platform
automatically responds to its unique biochemical conditions and
external irradiation. Mechanistically, GOx catalyzes the oxidation of
intratumoral-glucose to gluconic acid and hydrogen peroxide
(H,0,), leading to two critical outcomes (59): (1) depletion of
glucose disrupts tumor cell metabolism and promotes starvation
induced apoptosis; (2) the generated H,O, reacts with Mn®" via a
Fenton like reaction to yield highly cytotoxic hydroxyl radicals
(¢OH), which induce oxidative stress and cellular damage—
constituting the CDT component (60).

Simultaneously, under near infrared II (NIR II) laser irradiation,
the nanostructure absorbs light and converts it into heat, elevating
local temperatures to trigger apoptosis in cancer cells through PTT
(61). This localized hyperthermia not only disrupts cellular integrity
but also increases membrane permeability, facilitating drug
penetration and potentiating chemotherapy. Furthermore, the
elevated temperature accelerates ROS production, synergistically
enhancing PDT. In the PDT mechanism, the DiR dyeactivated by
NIR irradiation—transfers energy to surrounding oxygen molecules
to produce singlet oxygen (710,), a potent ROS that damages
intracellular organelles and DNA (62). However, the hypoxic
nature of solid tumors often impairs PDT efficacy. To counter this,
MnO, reacts with H,O, to generate oxygen in situ, thereby alleviating
hypoxia and supporting continuous ROS generation (63). In terms of
imaging, Mn®" released from the platform improves T1 weighted
MRI contrast due to its strong paramagnetic properties, enabling real
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time localization of the nanoplatform and monitoring of treatment
progression (64). Concurrently, DiR fluorescence imaging supports
near infrared visualization of nanoparticle biodistribution and
tumor response.

The schematic diagram illustrates the modular design and
mechanistic interactions of the NanoMn-Gox-PTX nanoplatform
for hepatocellular carcinoma (HCC) therapy. The figure outlines
each stage of the nanoparticle’s fabrication process, beginning with
the integration of therapeutic and diagnostic components—
including manganese ions (Mn**), DSPE PEG for enhanced
stability and biocompatibility, hydrogenated poly(glycerol)
(HPG), paclitaxel (PTX), cholesterol PEG, cationic lipid DOTAP,
magnetically active material MAG, and the near infrared
fluorescent dye DiR. These components are co assembled via
molecular lipid core formation, followed by chloroform
evaporation and aqueous phase hydration to yield a stable,
uniform nanostructure. This formulation strategy ensures precise
control over particle size, zeta potential, and encapsulation
efficiency, all critical parameters influencing tumor penetration
and systemic circulation time.

Following intravenous administration, the nanomaterials
passively accumulate in tumor tissues via the enhanced
permeability and retention (EPR) effect. Once successfully
localized, the platform is functionally activated through
endogenous tumor microenvironment stimulation and external
near infrared II (NIR II) laser irradiation. At this point, in the
tumor site, glucose oxidase (GOx) catalyzes glucose oxidation,
producing hydrogen peroxide (H,0,) and inducing glucose
starvation (65). This metabolic effect makes tumor cells more
sensitive to further treatment. The generated H,O, acts as a
substrate for a Fenton like reaction with Mn®>", producing highly
reactive hydroxyl radicals («OH), which trigger chemotherapy
driven therapy (CDT) through DNA damage and oxidative stress
(66). Simultaneously, the release of Mn** enhances T1 weighted
MRI signal intensity, enabling real time anatomical localization and
monitoring of therapeutic progression. DiR encapsulated in the
lipid bilayer supports NIR fluorescence imaging, offering dynamic
tracking of nanoparticle distribution and therapeutic response.

Laser triggered photothermal conversion elevates the local
temperature of the tumor microenvironment, inducing direct
thermal ablation of malignant cells and improving tumor
perfusion. This not only amplifies the effectiveness of photothermal
therapy (PTT) but also facilitates greater intratumoral drug delivery
and immune infiltration. The temperature increase also enhances
reactive oxygen species (ROS) generation, thereby synergizing with
photodynamic therapy (PDT) mechanisms mediated by the DiR
molecule. A particularly significant outcome of the ROS cascade is its
immunological impact. The increased oxidative stress promotes
immunogenic cell death (ICD), leading to the release of damage
associated molecular patterns (DAMPs) such as calreticulin and
HMGBI. These DAMPs activate the cyclic GMP AMP synthase
(cGAS)-stimulator of interferon genes (STING) pathway in antigen
presenting cells. As a result, dendritic cells (DCs) mature and prime
cytotoxic T lymphocytes (CTLs), mounting a systemic anti-tumor
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immune response that may suppress both primary tumors and
distant metastases.

In summary, the diagram not only visualizes the structural
complexity and synthetic methodology of the NanoMn GOx PTX
system but also encapsulates its multi-dimensional therapeutic
strategy. Through the integration of CDT, PTT, PDT,
chemotherapy, imaging, and immune activation within a single
platform, this nanoplatform embodies the future of precision
oncology offering highly localized, image guided, and
immunologically engaged treatment for advanced HCC.

3.3 Application of manganese based
nanomaterials in medical imaging

Manganese-based nanomaterials have gained significant
attention in HCC imaging due to their intrinsic paramagnetic
properties, particularly the presence of Mn>" ions, which enhance
T1-weighted MRI contrast. This makes them highly eftective for T1
weighted MRI contrast enhancement (67). Unlike gadolinium-
based agents, Mn based materials offer better biocompatibility
and lower risk of nephrogenic systemic fibrosis. Importantly,
many manganese containing compounds, such as MnO, or
manganese carbonate (MnCO3), are designed to be “activatable”
undergoing redox reactions or pH triggered dissolution within the
tumor microenvironment to release Mn** ions precisely where
imaging contrast is needed (68). This site-specific release
improves imaging sensitivity while minimizing systemic exposure.

Comparative analyses of different manganese-based formulations
indicate that MnO, nanoparticles are particularly effective in the
acidic and reductive tumor microenvironment, where they release
Mn*" ions in situ, shortening T1 relaxation times and enhancing MRI
sensitivity. From a mechanistic standpoint, MnO, nanoparticles play
a dual role in both imaging and therapy. In the reductive and acidic
conditions of the tumor microenvironment—characterized by
elevated glutathione (GSH) and H,O, levels MnO, is reduced to
free Mn**, which shortens the T1 relaxation time and enhances
imaging contrast (69). Concurrently, MnO, acts as a catalyst for the
decomposition of H,0O, into oxygen, alleviating hypoxia—a major
barrier to photodynamic therapy (PDT) efficacy. This oxygen
generating capability restores ROS production during PDT and
boosts treatment response (70). Moreover, the acidic tumor
environment triggers degradation of the nanoparticle structure,
improving payload release (e.g., drugs or immunostimulants), thus
linking the imaging signal with therapeutic action—a concept known
as “image guided therapy.

In addition to common diagnostic functions, manganese-based
nanomaterials are increasingly being used as an important
component of multimodal treatment systems. When combined
with photothermal therapy (PTT), chemotherapy, and
immunomodulators, the insiturelease of Mn”" ions can not only
promote MRI tracking but also directly activate the cGAS STING
innate immune pathway, enhancing type I interferon production
and dendritic cell maturation. Recent studies have suggested that
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manganese nanoparticles, such as TPA Mn and ROS sensitive
NPMn, trigger cGAS STING signaling, increase secretion of pro
inflammatory cytokines (TNF o, IL 6, IL 2), promote cytotoxic T
lymphocyte infiltration, and reduce immunosuppressive regulatory
T cells. Furthermore, when combined with DNA damaging agents
or anti PD 1 therapy, these manganese-based systems synergistically
remodel the tumor immune microenvironment and improve
immunotherapy efficacy (71) (72). Moreover, manganese
nanoparticles functionalized with tumor targeting ligands (e.g.,
folate, RGD peptides) or surface modifiers (e.g., PEG, lipids)
exhibit improved tumor selectivity, circulation halflife, and
biosafety. Overall, manganese-based nanomaterials offer a highly
integrated solution for the diagnosis and treatment of hepatocellular
carcinoma. They can serve not only as contrast agents but also as
active drugs to trigger or guide therapeutic responses.

4 Construction of big data driven
precision medical pathways and
clinical prospects

4.1 Synergistic role of big data and
radiomics in optimizing individualized
treatment pathways

The integration of multimodal data analysis and radiomics
provides key insights for precision treatment of HCC. Radiomics
can systematically extract high dimensional quantitative features
from MRI and other medical imaging data, capturing tumor
heterogeneity, microstructural patterns, and spatial complexity
that are not apparent to clinicians. When combined with clinical
biomarkers, genomics, transcriptomics, and patient history, these
features provide a robust, data driven framework for individualized
clinical decision making (41).

10.3389/fimmu.2025.1659180

ML and DL algorithms play a central role in this framework by
processing multi parametric MRI data, including T1, T2, diffusion
weighted imaging (DWI), and apparent diffusion coefficient (ADC)
maps, and converting them into predictive models for treatment
response, recurrence risk, and survival outcomes (73, 74). Feature
selection, model training, and validation strategies are highlighted
to ensure reproducibility and generalizability across heterogeneous
datasets. Although promising, many models remain in the research
stage, constrained by limited prospective validation and inter
institutional variability (37) (Table 1).

This integrated framework underscores the pivotal role of
radiomics and big data in enhancing the granularity and
precision of HCC management across diagnostic, prognostic, and
therapeutic dimensions. By leveraging quantitative imaging features
—many of which are imperceptible to human observers—radiomics
offers a non-invasive, reproducible, and high throughput
methodology to characterize tumor phenotypes. When aligned
with ML algorithms, these features can be transformed into
robust predictive tools for assessing microvascular invasion,
tumor differentiation, or therapeutic response potential, all of
which are critical in informing individualized treatment strategies.
Importantly, recent studies have suggested that combining
radiomics with conventional clinical biomarkers such as AFP or
DCP significantly improves the accuracy of early HCC detection
and recurrence prediction. For example, multi parametric models
integrating arterial phase texture features with AFP levels have
shown superior predictive performance (AUC > 0.85) compared to
either modality alone (75). Similarly, radiomics signatures
extracted from contrast enhanced MRI and DWI sequences have
been correlated with immunotherapy outcomes and TACE
responsiveness, suggesting their utility in patient stratification and
treatment personalization (76).

Beyond predictive modeling, big data driven approaches
facilitate the integration of diverse data layers, including
genomics, proteomics, histopathology, and therapeutic history,

TABLE 1 Radiomics and big data integration in precision therapy for hepatocellular carcinoma (HCC).

Component Function

Application in HCC
precision therapy

Representative Metrics/Results

Extract quantitative image traits (e.g.,
Radiomic Features 4 . 8 E (cg
texture, shape, intensity)

Provide anatomical and functional
imaging (T1, T2, DWI, ADC)

Multi parametric
MRI Data

Identify tumor heterogeneity, microvascular
invasion (MVI), or early recurrence

Enable lesion localization, necrosis evaluation,
vascular pattern differentiation 0.74)

GLCM based entropy, sphericity, wavelet features
correlated with MVI (AUC: 0.81)

ADC histogram features predict recurrence (AUC:

Machine learning Feature selection, classification, risk

(ML) Algorithms scoring
Deep learning (DL) Automated feature extraction, data
Models fusion

AFP, DCP, li , TNM
Clinical Biomarkers CP, liver enzymes, TN

Develop predictive models for treatment
response, survival, and staging

Integrate imaging with genomics or pathology

Enhance model stratification and clinical
interpretability

LASSO for MVI, Random Forest for TACE
response (AUCs 0.78-0.85)

CNN based models predict immunotherapy
response with >85% accuracy

AFP + radiomics improves early HCC detection
sensitivity from 0.72 to 0.87

staging
Nanoparticle Size, charge, coating, ligand targeting,
Characteristics drug loading/release

Combine radiomics, lab tests,
genomics, and clinical history

Integrated Prognostic
Models

Frontiers in Immunology

Guide drug carrier design for tumor subtype
specificity

Predict recurrence, survival, or response to

Smaller (~50nm) PEGylated MnO, shows higher
EPR accumulation in HCC xenografts

Combined models yield C index >0.80 for 1 year

therapy recurrence prediction
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into unified analytical pipelines. This multidimensional perspective
enables the construction of comprehensive patient profiles that
account for tumor biology, host response, and environmental
variables (77). The insights gained can inform not only the
selection of optimal therapeutic regimens (e.g., systemic therapy
vs. local ablation) but also the design of drug delivery systems, such
as nanoparticle size and surface modification, tailored to specific
tumor characteristics. Despite this progress, the clinical translation
of radiomics and AI based models remains limited by several
challenges. These issues include inconsistent imaging protocols
between different hospital institutions, a lack of standardized
feature definitions, and insufficient relevant datasets (78).
Additionally, many ML models have limited interpretability,
which are key barriers to clinical adoption of AI models. To
overcome these limitations, future research should prioritize multi
center collaboration, standardization of radiomics workflows, and
the construction of large annotated datasets incorporating
longitudinal follow up results (79). Initiatives such as the Imaging
Biomarker Standardization Initiative (IBSI) and the establishment
of FAIR (Findable, Accessible, Interoperable, Reproducible) data
principles in the field of radiomics are critical steps toward
enhancing model reproducibility and clinical trustworthiness (80).

The synergistic integration of radiomics, big data analysis, and
clinical information has brought significant progress to personalized
HCC treatment. As this field continues to evolve, it is expected to
transition from retrospective risk assessment to real time clinical
decision support. Additionally, it will find comprehensive
applications from treatment selection to nanomedicine design and
long-term monitoring. Under appropriate validation and regulatory
frameworks, precision oncology based on radiomics has the potential
to become a key solution for the next generation of clinical diagnosis
and treatment in HCC therapy.

4.2 Tumor microenvironment modulation
and response prediction modeling

The tumor microenvironment (TME) promotes cell invasion,
metastasis, immune evasion, and treatment resistance. The TME is
a dynamic, highly heterogeneous system characterized by hypoxia,
acidic pH, abnormal vascular structures, and abundant immune
suppressive cells, which collectively influence therapeutic outcomes.
These unique features significantly impair the efficacy of systemic
therapies, particularly immunotherapy and photodynamic therapy
(81). Therefore, precise characterization and dynamic monitoring
of the TME are critical for precision oncology strategies.

Multi parametric MRI techniques, including diffusion weighted
imaging (DWI), dynamic contrast enhanced (DCE) imaging, and
apparent diffusion coefficient (ADC) mapping, provide non-
invasive, quantitative measures of TME related parameters (82).
Studies have shown that decreased ADC values may indicate
increased cell density due to active tumor proliferation, while
higher KAtrans values in DCE MRI correlate with vascular
permeability and leakage (83).
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Radiomics adds an additional analytical dimension by extracting
spatial, textural, and heterogeneity features from imaging data that
reflect underlying biological processes. When integrated with
circulating biomarkers such as VEGF, HIF 1o, and IL 6, radiomics
enables stratification of tumors into immunologically “hot” or “cold”
categories, guiding immunotherapy selection, including immune
checkpoint inhibitors (84) (85).

ML and DL algorithms, including support vector machines
(SVM), random forests, and convolutional neural networks
(CNNs), have been applied to develop predictive models of
treatment response (86). CNN based radiomics models have
achieved >85% accuracy in predicting recurrence following TACE
(87), while radiogenomics linking MRI texture to TP53 or CTNNB1
mutation status can predict recurrence with precision up to 0.83.
These approaches allow dynamic modeling of tumor evolution and
real time adjustment of treatment strategies based on TME
heterogeneity (88).

Engineered nanomaterials serve as active modulators of the
TME. MnO,-based nanoparticles not only function as T1 MRI
contrast agents but also react with elevated H,O, in the TME to
generate oxygen, alleviating tumor hypoxia and enhancing
photodynamic therapy efficacy (89). Similarly, glucose oxidase
(GOx)-loaded nanoparticles induce tumor starvation via glucose
oxidation while generating H,0,, which synergizes with Mn>" ions
to trigger chemodynamic therapy (90). These therapeutic effects can
be dynamically monitored via MRI or near-infrared fluorescence
imaging, creating a theranostic feedback loop between diagnosis
and treatment.

Importantly, modulation of TME conditions—such as
oxygenation, ROS levels, and acidity—can sensitize tumors to
immune activation. For example, these changes can trigger the
cGAS-STING pathway, promoting dendritic cell maturation and
enhancing cytotoxic T cell infiltration (91). This provides a rational
basis for combination therapies involving nanoparticles, immune
checkpoint blockade, and targeted therapies. Together, the
convergence of radiomics, Al-driven predictive modeling, and
TME-responsive nanotechnology paves the way for adaptive,
image-guided, and immuno-integrated strategies for HCC
treatment, offering a framework for personalized, precision oncology.

4.3 Translational prospects and challenges
of nano-imaging therapy integration

The integration of nanotechnology with imaging and
therapeutic platforms holds immense translational potential in
clinical oncology, particularly in the treatment of HCC.
Theranostics, which combines diagnostic imaging with therapy,
enables simultaneous, image guided diagnosis and treatment
through a single nanotechnology platform, providing a promising
avenue for personalized and precision HCC therapy (40).

For example, manganes based nanoparticles not only function
as T1 MRI contrast agents but also act as reactive oxygen species
(ROS) amplifiers in chemodynamic therapy (CDT). Their ability to
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respond to the tumor microenvironment (e.g., elevated H,O, or
acidic pH) enables selective drug release, minimizes off target
toxicity, and provides a theoretical basis for MRI guided, data
driven treatment planning (84).

However, before nanomaterials can be widely applied in clinical
settings, several challenges must be addressed:

1. Toxicity control: Accumulation of inorganic nanomaterials
in organs such as the liver or spleen can cause long term
adverse effects. Optimizing biodegradability, enhancing
renal clearance, and employing bioresponsive or
biodegradable nanocarriers are crucial for clinical safety.

2. Targeting accuracy: Although ligand modification (e.g.,
hyaluronic acid or antibodies) improves tumor selectivity,
heterogeneity of receptor expression often leads to low
delivery efficiency (41). Emerging strategies include
adaptive, dual targeting, or stimuli responsive
nanoparticles that leverage imaging and radiomics data to
enhance site specific delivery.

3. Standardization of imaging and analysis: Significant
differences exist among institutions in MRI acquisition
protocols, radiomics feature extraction, and image quality
(92). This variability limits reproducibility and the
reliability of imaging guided therapeutic decisions.
Establishing standardized imaging protocols, open source
radiomics pipelines, and data sharing frameworks is
essential for clinical validation and broader adoption of
nanomedicine platforms.

Currently, integrated nano imaging and therapeutic systems
suggeste substantial potential for advancing HCC management.
By combining radiomics, Al driven predictive modeling, and TME
responsive nanomaterials, clinicians can implement adaptive,
image guided treatment regimens that account for tumor
heterogeneity, predict therapeutic response, and optimize
combination strategies.

Translating these approaches from research to clinical practice
requires addressing toxicology, targeting efficiency, and
standardization challenges. Successful integration of big data
analytics, standardized imaging, and nanomedicine will enable
safe, precise, and personalized HCC therapy, ultimately
expanding treatment options and improving patient outcomes.

5 Conclusion and the future directions
5.1 Conclusion

The comprehensive application of nanomaterials, radiomics,
and big data technology in the precise diagnosis and treatment of
hepatocellular carcinoma (HCC) has emerged as a prominent
research frontier in recent years. By critically evaluating the latest
advancements in manganese-based nanoparticles for MRI
enhancement and multimodal synergistic therapy—including
chemotherapy, chemodynamic therapy (CDT), photothermal
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therapy (PTT), and photodynamic therapy (PDT)—this review
highlights the dual diagnostic and therapeutic roles of
nanomedicine. The application of these multifunctional
nanoplatforms enables real-time tumor localization, dynamic
treatment response monitoring, and image-guided intervention,
collectively driving enhanced precision in therapeutic
decision-making.

Furthermore, the integration of radiomics provides critical
quantitative insights into tumor heterogeneity, microenvironmental
changes, and functional dynamics that are otherwise undetectable by
conventional imaging. When combined with machine learning
algorithms, these radiomic features can be harnessed for predictive
modeling of treatment response and individualized therapy planning.
The fusion of imaging biomarkers with clinical and molecular data
facilitates the development of adaptive, closed-loop treatment
workflows, supporting personalized and evidence-based clinical
decision-making.

The tumor microenvironment (TME) remains a critical
determinant of treatment efficacy, influencing both imaging
outcomes and therapeutic responses. Predictive modeling
incorporating molecular markers, imaging data, and nanomaterial-
induced microenvironmental modulation can enhance treatment
adaptability and precision. However, significant challenges remain
for clinical translation, including systemic toxicity, off-target effects,
limited targeting accuracy, and the lack of standardized protocols for
imaging and radiomic analysis. These limitations underscore the need
for interdisciplinary research, rigorous preclinical validation, and
carefully designed clinical trials.

In summary, this review provides a comprehensive synthesis of
the immense potential of nanomaterial-enabled radiomics and big
data-driven models in HCC diagnosis and therapy. Looking
forward, the convergence of advanced imaging technologies,
intelligent data modeling, and multifunctional nanotherapeutics
promises to establish a new era of personalized, image-guided,
and data-driven medicine for HCC, ultimately improving patient
outcomes and enabling precision oncology at scale.

5.2 Future directions

Despite significant advances in the application of nanomaterials
for HCC imaging and therapy, several research gaps and challenges
remain that warrant further investigation. First, although
manganese-based and other functionalized nanoparticles have
suggested promising preclinical imaging performance and
therapeutic potential, their clinical translation is limited by issues
such as systemic toxicity, long-term metabolism, and heterogeneous
tumor uptake. Future studies should focus on optimizing
nanoparticle design, including size, surface chemistry, and
targeting ligands, to maximize tumor specificity and biosafety.

Second, integration of nanomaterials with radiomics and big
data-driven predictive modeling remains in its early stages. While
preliminary studies suggest that combining quantitative imaging
features with machine learning can enhance individualized
treatment planning, standardized protocols for data acquisition,
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feature extraction, and validation across multiple centers are
urgently needed to ensure reproducibility and clinical applicability.

Third, the tumor microenvironment and immune response play
critical roles in both imaging performance and therapeutic efficacy.
Future research should explore multimodal nanomaterials capable
of modulating hypoxia, ROS levels, or immune pathways (e.g.,
c¢GAS-STING activation) to enhance both diagnostic accuracy and
treatment response. Mechanistic studies linking nanoparticle
behavior with microenvironmental factors will be crucial for
rational design of next-generation theranostic platforms.

Finally, translational studies bridging preclinical models and
human patients are essential. Large-scale, well-controlled clinical
trials, along with regulatory standardization and long-term safety
assessments, will be necessary to realize the full potential of
nanotechnology-enabled precision medicine in HCC.

In summary, future directions should emphasize rational
nanoparticle design, integration with radiomics and Al, tumor
microenvironment modulation, and rigorous translational
evaluation, thereby paving the way for more precise, safe, and
effective HCC diagnosis and therapy.
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