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Background: Lung adenocarcinoma (LUAD) is one of the common malignant

tumors worldwide, and the 5-year survival rate remains unsatisfactory. To

investigate the association between disulfidptosis-related ferroptosis genes

(DFRGs) and the prognosis of patients with LUAD, establish a risk prognostic

model, validate key biomarkers in vitro, and provide references for the prognosis

of LUAD patients.

Methods: R software was employed to identify DFRGs. Univariate Cox regression

and Lasso-Cox regression analyses were combined to construct a risk score

prognostic model. The predictive power of the model was evaluated using

Kaplan-Meier survival curves, receiver operating characteristic (ROC) curves,

and calibration curves. Immune-related functions, tumor mutation burden, and

single-cell analyses were performed on the model genes. Finally, in vitro

validation of key prognostic markers was conducted via qRT-PCR, wound

healing assay, Transwell assay, CCK8 assay, and flow cytometry apoptosis assay.

Results: Six DFRGs were screened through univariate Cox regression and Lasso-

Cox regression analyses to construct the prognostic model. The areas under the

ROC curve (AUC) for 1, 2, and 3 years in the training set were 0.836, 0.771, and

0.786, respectively. Decision curve analysis (DCA) indicated that the risk score

model effectively predicted lung adenocarcinoma prognosis. In vitro validation

demonstrated that knockdown of DECR1 significantly suppressed lung

adenocarcinoma cell proliferation and migration, and promoted cell

apoptosis (P < 0.05).

Conclusion: This study established a risk score model based on six DFRGs, which

demonstrated favorable prognostic value. DECR1 promotes the progression of

LUAD and holds promise as an effective biomarker.
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1 Introduction

Lung cancer is one of the most common malignant tumors and

is highly lethal, being the leading cause of cancer-related deaths

worldwide. Due to the extremely limited treatment options, the

survival rate for patients with advanced disease is very low (1). It is

expected that by 2035, the incidence of lung cancer will further

increase in most countries, making it the main challenge for global

public health issues. According to data from the National Cancer

Center, lung cancer is the leading cause of cancer in China, with

710,000 deaths, accounting for 23.8% of all cancer deaths, of which

lung adenocarcinoma (LUAD) has the highest proportion (2), and

has become a key focus in clinical and translational research.

The human battle against lung cancer is a journey marked by

the continuous evolution of treatment strategies. In the early days,

treatment centered on traditional chemotherapy; these drugs inhibit

tumor cell proliferation by damaging DNA, but they lack specificity,

often causing severe side effects and leading to rapid tumor drug

resistance (3). Later, the emergence of targeted therapies, such as

EGFR inhibitors, enabled precise targeting of tumors. However,

these therapies are prone to drug resistance, and studies have found

that approximately 15.84% of patients with EGFR-TKI resistance

develop MET amplification (4). In recent years, immune checkpoint

inhibitors, such as PD-1 antibodies, have revolutionized the

treatment landscape. Nevertheless, they still have limitations,

including a relatively low overall response rate, immune-related

adverse reactions, and the risk of drug resistance (5). Additionally,

unresolved issues persist, such as the inability of traditional staging

methods to accurately predict prognosis and the high rate of

metastasis or recurrence after treatment. Against this backdrop,

exploring new mechanisms of tumor cell death has become a key

breakthrough. The traditional apoptotic pathway is less effective due

to tumor drug resistance, while non-apoptotic regulated cell death

pathways, such as ferroptosis and disulfidptosis, which can bypass

drug resistance and exhibit high selectivity for tumor cells, thus

offering a new direction for lung cancer treatment.

Disulfidptosis is a recently discovered type of cell death within

the biological realm. It occurs when the levels of the solute carrier

family 7 member 11 (SLC7A11) gene rise in cells facing a shortage

of glucose (6). The regulation of disulfidptosis involves the

formation and breaking of disulfide bonds, as well as the

involvement of proteins such as NCKAP1 and signaling pathways

related to redox and cellular metabolism. Disulfidptosis has the

potential to serve as a target for cancer treatment. Ferroptosis is

another mode of cell death that is iron-dependent and plays a

critical role in tumorigenesis and tumor progression. During the

development of tumors, ferroptosis has a dual role, both promoting

and inhibiting tumor growth (7). Additionally, it can markedly

influence the effectiveness of chemotherapy, radiotherapy, and

immunotherapy in cancer patients (8). Ferroptosis plays a crucial

role in cancer treatment. Compared to normal cells, tumor cells

usually contain higher levels of iron and are more dependent on it

(9). Therefore, by inducing ferroptosis, cancer cells can be

selectively killed while causing minimal damage to non-

malignant cells.
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Although disulfidptosis and ferroptosis are two distinct forms of

regulated cell death, they share common regulatory factors. The

expression of SLC7A11, a key regulatory gene in disulfidptosis, can

influence intracellular iron levels (10). While studies on

disulfidptosis-related genes and ferroptosis-related genes in

LUAD exist separately, research combining both in the context of

LUAD has not been reported. Therefore, this study innovatively

links disulfidptosis and ferroptosis, aiming to fill the research gap on

DFRGs in LUAD. Using public databases, we identified DFRGs,

which can serve as molecular biomarkers for both disulfidptosis and

ferroptosis. Subsequently, we constructed a DFRG-based prognostic

model to predict the prognosis and immune scores of LUAD

patients. This study is expected to provide decision-making

guidance for personalized patient treatment.
2 Methods

2.1 LUAD data acquisition and
preprocessing

The RNA sequencing data, along with clinical information and

somatic mutation data of LUAD, were obtained from the TCGA

database (https://portal.gdc.cancer.gov/repository) through the

“TCGAbiolinks” R package, including data of 59 normal samples

and 541 tumor samples. To convert the RNA sequencing data into

transcripts per million (TPM) format, the “limma” package was

employed, ensuring that the data from both sources were

standardized. The copy number variation (CNV) of LUAD was

also downloaded, and the CNV landscape was plotted. In addition,

the datasets GSE30210 (n=226), GSE72094 (n=398), and GSE13213

(n=117) from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/) were used as external

validation datasets, and the GSE189357 dataset (n=9) was used

for single-cell analysis.
2.2 Identification of DFRGs and
differentially expressed genes

597 ferroptosis genes and 36 disulfidptosis genes were retrieved

from the FerrDb database (www.zhounan.org/ferrdb/current) (11).

The “limma” package in R software was utilized to perform Pearson

correlation analysis on 597 ferroptosis genes and 36 disulfidptosis

genes obtained from the FerrDb database, setting the correlation

coefficient threshold at 0.3 to identify DFRGs. Subsequently, screen

for differentially expressed genes between normal and tumor

tissues in the TCGA-LUAD database, using an absolute log fold

change (|logFC|) exceeding 2 and a false discovery rate (FDR) lower

than 0.05 as the filtering criteria. Use the “ggplot2” and “ggrepel”

packages in R software to create a volcano plot to display the results.

Finally, take the intersection of the identified DFRGs and the

differentially expressed genes in TCGA-LUAD to obtain the

DFRGs in TCGA-LUAD, and use the “vnne” package in R

software to create a Venn diagram for visualization (12).
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2.3 Establishment and evaluation of the
LUAD prognostic model

Divide the LUAD patients in the TCGA dataset into training

and validation sets in a 6:4 ratio by using the “caret” R package.

Establish a model related to DFRGs using the training set data and

perform internal validation of the model’s accuracy and reliability

using the validation set data. In the training set, identify DFRGs

related to prognosis through univariate Cox regression analysis

(13). To avoid overfitting, use the “glmnet” R package to perform

LASSO regression analysis, selecting DFRGs with prognostic

predictive value for multivariate Cox regression analysis.

Ultimately, determine 6 DFRGs with independent prognostic

value to construct a prognostic prediction model for LUAD,

calculating the Risk score for each patient in the training sample.

The calculation formula is: Risk score=∑Expi×coefi, where Expi and

coefi represent the expression levels and coefficients of the

prognostic DRGs, respectively. Subsequently, divide the LUAD

patients into high-risk and low-risk groups based on the median

value of the risk scores. Integrate the clinical data of the patients

with the risk score data and perform survival analysis using the

“survival” and “survminer” R packages, displaying the difference

in overall survival (OS) between the high-risk and low-risk

groups of patients using Kaplan-Meier (K-M) survival curves

(14). Group patients based on different clinical characteristics to

reveal differences in OS among different clinical subgroups and

further validate the predictive efficacy of the model. Generate

ROC curves using the “survminer” R package and the “timeROC”

R package. Use the data set from the GEO database to

conduct independent external validation analysis of the

prognostic features.
2.4 Construction and assessment of the
prognostic nomogram

Using univariate Cox regression analysis, we assessed the

impact of risk scores and clinical characteristics on prognosis in

TCGA-LUAD patients, and further incorporated statistically

significant independent prognostic features into the multivariate

Cox regression model to screen for factors that can independently

predict prognosis. The results of the univariate and multivariate

Cox regression analyses were visualized using forest plots generated

with the “forestmodel” package. Additionally, the “rms” package

was used to create C-index curves to evaluate the accuracy of the

model’s predictive performance. A Nomogram is a visual

representation that correlates various parameters on a single

plane, reflecting the integration of multiple characteristics, and

can predict individual patient survival rates. It has significant

practical advantages in clinical settings. Based on age, gender,

stage, and risk score, we constructed a Nomogram prediction

model using univariate and multivariate Cox regression analyses

with the “rms” package, predicting survival rates at 1, 2, and 3 years

for LUAD patients. We also used calibration curves to assess the

accuracy and reliability of the prediction model (15).
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2.5 Immune landscape analysis of the
prognostic model of DFRGs in LUAD

According to the analysis of immune-related functions, the

differences in various immune functions between the high-risk and

low-risk groups were demonstrated. The “estimate” package was used to

evaluate the stromal cells, immune cells and comprehensive scores of

LUAD patients, and the “ggpubr” package was employed to draw violin

plots to assess the differences in Tumor Immune Microenvironment

(TIME) scores among patients in the high-risk and low-risk groups. The

TIDE scores of each LUAD patient were calculated through the TIDE

website (http://tide.dfci.harvard.edu/), and the differences between the

two groups were compared. Through the TIDE scores and TME

scores, whether there were differences in the sensitivity to

immunotherapy and the infiltration of the tumor microenvironment

between the samples of the two groups was explored (12).
2.6 Tumor mutation burden analysis

Somatic mutation data for LUAD patients were downloaded

from the TCGA database. Based on the total number of somatic

mutations per megabase (Mb) of the exonic region in the human

genome, we calculated the Tumor Mutation Burden (TMB) for each

sample as the total number of somatic mutations divided by the

effectively covered region. Visualization of somatic mutations in

high-risk and low-risk groups was performed using the “maftools”

R package, and the correlation between risk scores and TMB was

computed. The “limma” and “survival” packages were employed to

analyze differences in TMB between high- and low-risk groups and

to assess the impact of TMB on the survival of LUAD patients (16).
2.7 Single-cell sequencing analysis

The study collected single-cell sequencing data for nine LUAD

samples from the GEO database. The ScRNA-Seq data were processed

by employing the “Seurat” R package, normalized and scaled using the

“NormalizeData” and “ScaleData” functions, and batch effects

mitigated by canonical correlation analysis. Cluster analysis was

performed by using the t-distributed stochastic neighbor embedding

(t-SNE) of “Seurat” along with the “FindClusters” function. Marker

genes were delineated using the “FindAllMarkers” function in “Seurat”

to select the cluster-specific marker (17).
2.8 Screening of potential therapeutic
drugs for LUAD

Half inhibitory concentration (IC50) refers to the drug

concentration when the antagonist can achieve 50% inhibition,

which is generally used to indicate the ability of a drug or molecule

to inhibit biological activities, such as cell activity rate. Therefore,

the IC50 value can be used to measure the sensitivity of cells to

different drugs, that is, the drug with higher IC50 value, the weaker
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the sensitivity of cells. Using the “oncoPredict” package, the

Genomics of Drug Sensitivity in Cancer (GDSC) database was

employed to forecast the treatment response to common

anticancer drugs in the high and low risk groups, measure drug

sensitivity according to the IC50 value, and evaluate the difference

of the sensitivity of LUAD high and low risk groups to commonly

used cancer treatments (18).
2.9 Cell culture and treatment

All the cell lines used in this study were purchased by the

Shanghai Institute of Cell Biology, Chinese Academy of Sciences.

We cultivated human normal lung epithelial cells BEAS-2B, along

with lung adenocarcinoma cell line A549 and H1975, in 1640

medium supplemented with 10% fetal bovine serum, under

conditions of 5% CO2 at a temperature of 37 °C. Cells in the

logarithmic growth phase were utilized for the experiments (19).

Transfection reagent Liposomal lipofectin 2000 (Invitrogen, USA)

was purchased from Invitrogene, and small interference RNA (siRNA)

synthesis and negative control NC were purchased from Shanghai

Jimma Pharmaceutical Technology Co., Ltd., and the procedures and

systems were performed according to the manufacturer’s instructions.

The sequences are as follows: for si-DECR1-1, the sense strand is

GUGGAGAGGAAGUACUUAUTT, and the antisense strand is

AUAAGUACUUCCUCUCCACTT; for si-DECR1-2, the sense

strand is GCGAUUCAAUGUGAUUCAATT, and the antisense

strand is UUGAAUCACAUUGAAUCGCTT. The siRNA negative

control was purchased from Shanghai GenePharma Co., Ltd.
2.10 Quantitative real-time polymerase
chain reaction

The PCR ARRAY was purchased from Shanghai Audubon

Biotechnology Co., Ltd. (Shanghai, China). Total RNA was

extracted by using Trizol reagent (Invitrogen, USA).

Complementary DNA (cDNA) was synthesized using the

PrimeScript RT kit (Takara) (20).
2.11 Wound healing assay

For wound-healing assays, cells were seeded using a 6-well plate.

The cells were scratched using sterile tips perpendicular to

previously labeled lines. After imaging the scratches with a light

microscope, cell migration was measured at the time points of 0, 24,

and 48h (21).
2.12 Transwell assay

The Transwell assays were performed using a 24-well transwell

chamber to assess the mobility of the A549 and H1975 cell lines.

Cells were seeded in serum-free medium, and the lower chamber
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was filled with 600µl of medium containing 30% serum. After 24h,

the cells were fixed and stained (6).
2.13 CCK-8 assay

Cell proliferation was measured using the CCK 8 assay. A549

and H1975, cells were seeded in 96-well plates, and cultured for 0,

24, 48 and 72h, and CCK 8 solution was added and incubated for 1h

in the dark. Absorbance values were measured at 450nm, using a

microplate reader (22).
2.14 Flow cytometry

Cells were transfected for 24h and were cultured in serum-free

medium for another 24h. Subsequently, the cells were harvested and

stained using the Annexin and V-FITC Cell Apoptosis Detection

Kit (Beyotime, Shanghai, China). Apoptosis was then determined

by flow cytometry within 1h (23).
2.15 Statistical analysis

The Wilcoxon test was used to compare the two groups, and the

Spearman correlation was employed to assess the correlation. All

bioinformatics analyses were performed using R software (v.4.2.3)

along with relevant packages and Perl 5.30.0 for statistical analysis.

P < 0.05 was deemed statistically significant. *indicates P < 0.05,

**indicates P < 0.01, ***indicates P < 0.001.
3 Results

3.1 Screening results of DFRGs in LUAD

To explore DFRGs, 597 ferroptosis genes and 36 disulfidptosis

genes downloaded from the FerrDb database were subjected for Pearson

correlation analysis to yielded 344 DFRGs. TCGA-LUAD-RNA-seq

data identified 19895 mRNAs that were differentially expressed between

normal and tumor in total 8,768 using | logFC |> 2, FDR <0.05 as

filtering criteria, and the results were visualized as volcano plots, with

red and green dots indicating up-and downregulated mRNAs,

respectively (Figure 1A). Finally, the filtered DFRGs were crossed

with the differentially expressed mRNAs in TCGA-LUAD-RNA-seq

data to obtain DFRGs in TCGA-LUAD-RNA-seq, and the results were

visualized inWayn diagram (Figure 1B). The 199 DFRGs were used for

subsequent model-building studies.
3.2 Construction of DFRGs prognostic
model

A total of 472 patients were included except for samples with

survival time < 30 days and missing clinical data. All the 199 DFRGs
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screened for genes associated with LUAD prognosis were P < 0.05,

showing that 59 DFRGs were significantly associated with patient

outcome. Subsequently, the above 59 DFRGs were further included

in the Lasso regression analysis (Figures 2A, B) to obtain 13

meaningful DFRGs. Finally, the above 13 DFRGs were subjected

to multivariate Cox regression analysis, resulting in 6 DFRGs for

constructing the prognostic model. Among them, AKT1S1, DDIT

4, DECR1, KIF20A, and PCDH 7 (HR > 1) were risk factors, and

CX3CL1 (HR < 1) were protective factors (Figure 2C). The hazard

factor for each DFRGs was determined using Lasso-Cox regression,

Patient risk scores were calculated based on the six DFRGs of the

constructed model described above, The calculation formula is as

follows: Riskscore = (0.4169×AKT1S1) + (-0.164×CX3CL1) +

(0.2039×DDIT4) + (0.5426×DECR1) + (0.2968×KIF20A) +

(0.1848×PCDH7). Patients in the training set, validation set, and

total set were split into high risk and low risk categories based on

their median patient risk score for later clinical value analysis.
3.3 Evaluation and validation of prognostic
risk models

By evaluating the expression levels of the six DFRGs in LUAD

patients, we calculated each patient’s risk score using the risk score

formula, divided the 472 LUAD patients into a training cohort with

a 6:4 ratio, and divided all LUAD patients into high and low risk

groups based on median patient risk score. The K-M survival curve

analysis showed significant differences in OS between both high and

low risk groups in the training set, internal validation set and total

set (all P < 0.001, Figures 3A–C). The OS in the low risk group was

significantly higher than that in the high risk group, suggesting the

prognostic value of risk score for LUAD patients. ROC curves were

plotted using the “timeROC package”. The results showed that the

AUC values of the model for 1-year, 2-year, and 3-year survival

rates in the training set were 0.836, 0.771, and 0.786, respectively,

while those in the validation set were 0.693, 0.684, and 0.647,
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respectively. These findings indicate that the constructed model has

good predictive performance (Figures 3D–F).

To further confirm the accuracy of the model, we performed the

validation in three independent GEO external validation cohorts.

The K-M survival curve analysis showed that the OS of the high and

low risk groups was significantly different in both validation sets (all

P < 0.001, Figures 3G–I), and the OS in the low risk patients was

significantly higher than that in the high risk group, and the results

were consistent with the TCGA database, suggesting the prognostic

value of the risk score for LUAD patients. The ROC curve shows

that the AUC of the 1, 2, and 3 years survival rates of GSE30210

were 0.780, 0.806, and 0.673, respectively. The AUC of the 1, 2, and

3 years survival rates of GSE72094 were 0.695, 0.654, and 0.608,

respectively. The AUC of the 1, 2, and 3 years survival rates of

GSE13213 were 0.841, 0.722, and 0.733, respectively. The

expression results of prognosis-related DFRGs in the validation

sets were consistent with those in the TCGA training cohort,

indicating that the model we constructed had good predictive

performance and could more accurately predict the prognosis of

patients (Figures 3J–L). Nine previous models were compared

through literature search (24–32), and the results revealed the

highest AUC in 1, 2, and 3 years, which further demonstrated the

predictive power of the model (Figure 3M). Therefore,

comprehensive internal verification, external verification and

literature review further verified the predictive ability of the

disulfate-related ferroptosis lung adenocarcinoma prognosis

model constructed in this study, and also revealed its important

significance in the prognosis of lung adenocarcinoma.
3.4 Construction and evaluation of the
prognostic nomogram

To quantify the individual risk assessment of LUAD patients,

this study integrated clinical characteristics (age, gender, stage) with

the risk score to construct a nomogram model, and the prognosis
frontiersin.or
FIGURE 1

Screening of DFRGs. (A) Volcano plot of differential expression between normal and tumor in TCGA-LUAD. (B) Wayn diagram.
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was presented based on the scores of each prognostic factor. A

patient was randomly selected for prediction. The model showed

that the total score of this patient was 201 points, and the 1, 2, and 3

years survival rates after the diagnosis of LUAD were 76.2%, 51.8%

and 31.4%, respectively, as shown in Figure 4A. The calibration

curve indicated that the 1, 2, and 3 years survival rates predicted by

the nomogram for LUAD patients were in good agreement with the

actual values, as shown in Figure 4B. The index of concordance (C-

index) evaluates the degree of conformity between the model’s

predicted results and the actual observed results, thereby assessing

the predictive accuracy of the model. The curve of the combined

model with clinical pathological characteristics was higher than that

of a single clinical characteristic, indicating that the combined

model can enhance the accuracy of predicting the prognosis of

LUAD patients (Figure 4C). Based on the above results, it can be

concluded that the prediction model in this study has a robust and

accurate ability to predict the prognosis and can provide a reference

for clinical management and decision-making.
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3.5 Immune-related analysis of the
prognostic model of DFRGs in LUAD

The ssGSEA was used to investigate the differences in immune

functions between the two groups. The results showed that among

the two groups with statistically significant differences, immune

functions were more enriched in the low-risk group, such as B cells

(P < 0.001), aDCs (P < 0.001), DCs (P < 0.001), iDCs (P < 0.001),

Type II IFN Response (P < 0.001), etc., indicating that the immune

function in the low-risk group was more active (Figure 5A). The

TIDE score represents the probability of immune escape and

further indicates the likelihood of resistance to immunotherapy.

The results showed that the probability of immune escape was

higher in the high-risk group (P < 0.01, Figure 5B), suggesting that

patients in the high-risk group were less likely to benefit from

immunotherapy and that the effect of immunotherapy might be

better in patients in the low-risk group. To explore the infiltration of

immune cells between the two groups, a TME difference analysis
FIGURE 2

Construction of the prognostic model for DFRGs. (A) LASSO regression analysis. (B) l selection diagram. (C) Forest plot of multivariate Cox
regression.
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was performed, which showed that the differences in stromal cells,

immune cells, and comprehensive scores between the high-risk and

low-risk groups were all statistically significant and that the scores

in the low-risk group were higher in all three groups (P < 0.005,

Figure 5C). Therefore, comprehensive internal validation, external
Frontiers in Immunology 07
validation, and comparative literature research further confirm the

predictive capability of the disulfidptosis-ferroptosis-related

prognostic model for lung adenocarcinoma constructed in this

study, and also reveal its significant implications in the prognosis

of lung adenocarcinoma.
FIGURE 3

Evaluation and validation of prognostic risk models. (A-C) Kaplan-Meier survival curves in patients in the high-risk and low-risk groups were assessed
in the Training set, internal validation set, and total set. (D-F) ROC curve analysis of training set, internal validation set, and total set. (G-I) Kaplan-
Meier survival curves in patients in the high-risk and low-risk groups were assessed in GSE30210,GSE72094 and GSE13213 data sets. (J-L) ROC
curve analysis of GSE30210, GSE72094 and GSE13213 data sets. (M) Bar chart comparing AUC with other authors.
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3.6 TMB analysis

Tumor Mutation Burden (TMB), which calculates the number

of somatic mutations per megabase in a genomic sequence, is a

potential predictive biomarker in many solid tumors critical for

tumor prognosis and can be used to predict the effectiveness of

immune checkpoint inhibitors on tumors. To investigate the

differences in cancer-associated gene mutations between the high-

risk and low-risk groups, we obtained somatic mutation data from

TCGA-LUAD. Examination identified the 15 most frequently

mutated genes, including TP 53, TTN, PIK3CA, MUC 16, RYR 2,

CSMD 3, ZFHX 4, USH 2 A, LRP 1 B, FLG, SPTA 1, XIRP 2, KRAS,

FAT 3, and HMCN 1 (Figures 6A, B). TMB difference analysis

violin plots showed differences in TMB between the high and low

risk groups (P < 0.001), and TMB was significantly higher in the

high risk than the low risk group (Figure 6C). According to the
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mutation status, we divided the patients into high TMB and low

TMB groups. High TMB can a survival benefit for LUAD patients,

as shown in Figure 6D in the high TMB group than in the low TMB

group (P = 0.006). Next, a group analysis combining TMB and risk

score showed that HTMB + low-risk patients had the best prognosis

(P < 0.001), and their seven-year survival rate was about 50%. In

contrast, patients with a high risk of LTMB + had the worst

prognosis, with a 7-year survival rate of less than 20% (Figure 6E).
3.7 Single-cell sequencing analysis

In this study, nine samples from GSE189357 were used for

single-cell sequencing analysis, annotated by t-SNE and UMAP

clustering: 10 cell types including T cells, B cells, natural killer cells,

monocytes, epithelial cells, macrophages, endothelial cells
FIGURE 4

Construction and evaluation of the prognostic model in the nomogram. (A) Nomogram model of breast cancer patients. (B) The calibration curve of
the nomogram predicts 1, 2, and 3 years survival of breast cancer patients. (C) Clinical efficacy of the DCA evaluation model.
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(Figures 7A, B). Cell expression levels were separately for the six

DFRGs in the model using UMAP clustering, The results showed

that DDIT 4 expression was higher in all of the 10 cell types. The

expression levels of AKT1S1, KIF20A and PCDH 7 were relatively

low in 10 cell types. DECR1 is relatively highly expressed in

monocytes, macrophages, and smooth muscle cells. CX3CL1 Is

relatively high expression in epithelial cells (Figures 7C–N). These

results indicate that the six model genes are clustered in single cells

of lung adenocarcinoma, which provides a basis for subsequent

biological molecular research.
3.8 Drug sensitivity analysis

To search for drugs potentially effective for the treatment of

LUAD, predicting differences in chemotherapeutic drug sensitivity

in patients with different risk groups, We performed a Wilcoxon-test

to compare the differences between the two risk groups, LUAD

patients, Where the abscissa represents patients in the LUAD high
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and low risk group, The ordinate represents the IC50-value, We found

lower IC50 values in the high-risk group of patients with voritinib,

foritinib, cytarabine, PLK inhibitors, selective ATR kinase inhibitors,

5-fluorouracil, afatinib, tyrosine kinase receptor inhibitors, It indicates

that the patients in the high risk group had higher sensitivity to 8

drugs, foritinib, cytarabine, PLK inhibitor, selective ATR kinase

inhibitor, 5-fluorouracil, afatinib, tyrosine kinase receptor inhibitor,

More favorable to receiving this drug (P < 0.01, Figures 8A–H).

Therefore, the high and low risk groups distinguished by the risk score

of this prognostic model were different in drug sensitivity, indicating

that this prognostic model has some significance in drug use.
3.9 Detection of DECR1 function in lung
adenocarcinoma cells

In order to find the key regulatory genes of disulfide death-related

iron death in LUAD, this study first analyzed the six DFRGs that

constructed the model based on the TCGA database and ranked the
FIGURE 5

Immune-related analysis of the prognostic model of DFRGs in LUAD. (A) Immune-related functional differences analysis. (B) TIDE scores in patients
in the high-risk and low-risk groups. (C) Analysis of the differences in stromal cells, immune cells and comprehensive scores between patients in the
high-risk and low-risk groups. (***P < 0.001, **P < 0.01, *P < 0.05).
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importance, and showed that the DECR1 importance coefficient was

0.542 (Figure 9A). Subsequently, the differential analysis of DECR1

expression in normal and tumors in the TCGA-LUAD database

showed that the expression of DECR1 was higher in tumor samples

than in normal samples (Figure 9B). Thereafter, the K-M survival

analysis of DECR1 in the TCGA-LUAD risk outcome model and

progression-free survival (PFS) in LUAD-DFRGs was statistically

significant in the high and low risk groups (Figures 9C, D).

Meanwhile, the protein expression level of DECR 1 in lung

adenocarcinoma tissues was also significantly higher than that in

normal tissues (Figures 9E, F). Therefore, based on the above results,

DECR1 was selected as the key DFRGs in lung adenocarcinoma for

further subsequent expression and biological function studies.

qRT-PCR was used to evaluate the relative expression levels of

DECR1 in human normal lung epithelial cells BEAS-2B and lung

adenocarcinoma cell lines A549 and H1975 (Figure 10A). Compared

with lung adenocarcinoma cell lines A549 and H1975, the expression of

DECR1 in human normal lung epithelial cells BEAS-2B was

significantly lower. Two kinds of siRNAs were transfected into two

different cell lines to investigate the in vitro regulatory role of DECR1 on

LUAD. qRT-PCR experiments showed that the expression levels of Si-

DECR1–1 and Si-DECR1-2 (subsequently referred to as Si1 and Si2)

were significantly lower than that of the negative control (NC),

indicating that the knockdown was successful (Figures 10B, C). The
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results of the wound healing experiment showed that the migration

speeds of Si1 and Si2 in A549 and H1975 cell lines were significantly

slower than that of NC (Figures 10D, E). In the transwell experiment,

the number of migrating cells of Si1 and Si2 in A549 and H1975 cell

lines was less than that of Si-NC (Figures 10F–H). These results suggest

that knocking down DECR1 can inhibit the migratory ability of lung

adenocarcinoma cells. The CCK-8 experiment demonstrated that

knocking down DECR1 inhibited the proliferation of A549 and

H1975 (Figures 10I, J). In addition, the apoptosis experiment

indicated that knocking down DECR1 increased the apoptosis of lung

adenocarcinoma cell A549 and inhibited cell survival (Figures 10K, L).

Therefore, according to the results of migration, apoptosis and

proliferation of DECR1 in lung adenocarcinoma cells, it is suggested

that DECR1 may promote the development of lung adenocarcinoma

and may be an effective prognostic molecular marker for lung

adenocarcinoma, which can provide a basis for further

mechanism research.
4 Discussion

Cell death is emerging as a new focus in tumor therapy.

Previous studies have demonstrated that ferroptosis-related genes

can provide certain insights for improving the prognosis of patients
FIGURE 6

High-risk and low-risk groups of TMB. (A) TMB waterfall plot of the top 15 genes in the high risk group. (B) TMB waterfall plot of the top 15 genes in
the low risk group. (C) Analysis of TMB differences in the high and low risk groups. (D) Kaplan-Meier survival analysis of LUAD patients in the high
TMB and low TMB groups. (E) Kaplan-Meier survival analysis of TMB combined with risk score in LUAD patients.
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with lung adenocarcinoma. And disulfidptosis, as a newly

discovered form of cell death, has been proven to play a crucial

role in tumor progression and cancer treatment (33). Therefore, in

this study, we combined ferroptosis genes with disulfidptosis genes
Frontiers in Immunology 11
to construct a prognostic model for LUAD patients based on

DFRGs, aiming to identify novel prognostic biomarkers.

Furthermore, we analyzed the clinical values of TIME, TMB, and

drug sensitivity in LUAD patients. Additionally, molecular biology
FIGURE 7

Single-cell sequencing and analysis. (A) t-SNE cluster annotation diagram. (B) UMAP cluster annotation map. (C) Cellular expression level of CX3CL1 in
GSE189357. (D) Cellular expression level of DDIT4 in GSE189357. (E) Cell expression level of KIF20A in GSE189357. (F) Cellular expression level of PCDH7
in GSE189357. (G) Cellular expression level of DECR1 in GSE189357. (H) Cellular expression level of AKT1S1 in GSE189357. (I) Cellular expression level of
CX3CL1 in GSE189357. (J) Cellular expression level of DDIT4 in GSE189357. (K) Cellular expression level of AKT1S1 in GSE189357. (L) Cellular expression
level of DECR1 in GSE189357. (M) Cell expression level of KIF20A in GSE189357. (N) Cellular expression level of PCDH7 in GSE189357.
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experiments were conducted to investigate the functions of

potential biomarkers in cell migration, proliferation, and

apoptosis in LUAD. This study is expected to provide new

insights for the personalized clinical treatment of LUAD patients.

Based on the TCGA public database, this study established a

prognostic model for LUAD that includes 6 DFRGs, namely

AKT1S1, DDIT4, DECR1, KIF20A, PCDH7, and CX3CL1. Based

on the above 6 DFRGs, patients are categorized into high-risk and

low-risk groups. The high-risk group promotes the proliferation

and migration of lung adenocarcinoma cells while inducing the

apoptosis of these cells, and the combined effects of these factors

result in a poor prognosis for patients. The low-risk group exhibits

stronger immune function, marked by the presence and activity of

key immune cells such as B cells, DCs, leading to better patient

outcomes (Figure 10M). For the DFRGs risk model constructed in

this study, the AUC values for predicting 1-year, 2-year, and 3-year

survival rates were 0.836, 0.771, and 0.786 in the training set; 0.693,

0.684, and 0.647 in the validation set; and 0.778, 0.733, and 0.731 in

the combined dataset. All these values are superior to those of the

previously published ferroptosis-gene-based models, which proves

that the DFRG prognostic model established in this study has better

accuracy and reliability. In the external validation, the ROC results

of datasets GSE30210 (1-year, 2-year, 3-year AUC = 0.780, 0.806,

0.673), GSE72094 (0.695, 0.654, 0.608), and GSE13213 (0.841,

0.722, 0.733) further confirmed the good extrapolability of

the model.

Previous studies have found that AKT1S1 is a direct target of

miR-30c-2-3p in gastric cancer cells. Moreover, AKT1S1 is

upregulated in hepatocellular carcinoma and is associated with

the poor prognosis of patients with hepatocellular carcinoma and

promotes the growth of hepatocellular carcinoma (34, 35). DDIT4

participates in the regulation of autophagy in triple-negative breast
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cancer. Knocking down DDIT4 significantly inhibits the tumor

progression of triple-negative breast cancer both in vitro and in

vivo, and inhibiting DDIT4 can enhance the efficacy of paclitaxel in

patients with triple-negative breast cancer (36). KIF20A is a

member of the kinesin family. It transports chromosomes during

mitosis and plays a key role in cell division. It is highly expressed in

multiple cancers, participates in cancer progression by regulating

cell division, and is related to drug or chemotherapy resistance in

tumor treatment (37). PCDH7, known as protocadherin 7, is a

subfamily of the cadherin superfamily and plays biological roles in

multiple cancer types. It significantly promotes the development of

lung cancer and is related to cisplatin resistance, and it is expected

to become a potential therapeutic target (38). An increase in the

expression of CX3CL1 will lead to an increase in the anti-tumor

immune response, thereby reducing the rate of tumor growth and

improving the survival rate of experimental animals and cancer

patients. Increasing the expression of CX3CL1 in tumors has a

therapeutic effect and can be used as one of the elements of

immunotherapy and as an auxiliary means to improve the efficacy

of anti-cancer treatment (39).

In this study, the nomogram integrating LUAD prognosis

model risk scores and clinical features demonstrated robust

stability and accuracy in survival prediction, providing a novel

clinical tool for prognostic assessment (40). Based on the DFRGs

model risk stratification, LUAD patients were categorized into high-

and low-risk groups. Immunological correlation analysis revealed

that the low-risk group exhibited elevated levels of B cells, CD4+ T

cells, and CD8+ T cells compared to the high-risk cohort (41).

Furthermore, application of the TIDE algorithm to evaluate

immunotherapy potential demonstrated that high-risk patients

had significantly higher TIDE scores and lower effective

immunotherapy response rates, suggesting that this subgroup
FIGURE 8

Drug susceptibility analysis. (A) Savolitinib. (B) Foretinib. (C) Cytarabine. (D) BI-2536. (E) AZD6738. (F) 5-Fluorouracil. (G) Afatinib. (H) Crizotinib.
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may derive greater benefit from immunotherapy, thereby offering

new perspectives for LUAD clinical management (42). Our findings

on the distinct immune characteristics between different risk groups

resonate with comprehensive pan-cancer analyses of metabolic cell

death pathways (43), further validating the biological plausibility of

our model. Additionally, we investigated the correlation between

risk scores and sensitivity to eight common therapeutic agents,

including chemotherapy and targeted drugs to assess the model’s

translational value (44). The analysis demonstrated that high-risk

patients exhibited significantly higher sensitivity to eight specific

drugs, including 5-fluorouracil and afatinib. This enhanced drug

responsiveness implies that targeted administration of these agents

to high-risk patients could achieve more pronounced tumor

suppression and improved therapeutic outcomes (45), establishing
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a solid theoretical foundation for personalized drug selection in

LUAD treatment.

DECR1 is a mitochondrial enzyme that participates in the

metabolism and beta-oxidation of unsaturated fatty acid alpha-

keto A esters and is located on chromosome 8q21.3. It plays a role in

redox balance by regulating the ratio of saturated phospholipids to

unsaturated phospholipids. Polyunsaturated fatty acids (PUFA)

accumulate within cells, eventually leading to lipid peroxidation

and iron deficiency. When DECR1 is deleted, castration-resistant

prostate cancer cell lines are more likely to undergo ferroptosis due

to endoplasmic reticulum stress induction (46, 47). Moreover,

DECR1 is closely related to lipid metabolism, ferroptosis,

mitochondria and tumorigenesis. This is the first time DECR1

has been associated with LUAD. The research results indicated that
FIGURE 9

Expression of DECR1 in LUAD. (A) Ranking of the importance of six FFRGs in the prognostic model of TCGA-LUAD-DFRGs. (B) Differential expression
of DECR1 in normal and tumor samples. (C) K-M curve of OS. (D) K-M curves of PFS. (E) Protein expression of DECR1 in normal tissues in HPA
database. (F) Protein expression of DECR1 in lung adenocarcinoma tissue in HPA database.
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knocking down DECR1 can restrain the migration and proliferation

abilities of lung adenocarcinoma cells and simultaneously accelerate

their apoptosis, which is consistent with the results of the model. It

is highly likely that DECR1 promotes the occurrence and
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development of lung adenocarcinoma and can be further studied

as an effective biomarker.

In conclusion, we screened the DFRGs and established and

validated a prognostic model on this basis. This model can well
FIGURE 10

Detection of DECR1 function in lung adenocarcinoma cells. (A) The expression level of DECR1 in BEAS-2B, A549, and H1975 was determined by
qRT-PCR. (B, C) The expression level of knockdown DECR1 in A549 and H1975 was measured by qRT-PCR. (D, E) The migration of knockdown
DECR1 in A549 and H1975. (F-H) Transwell experimental test for the migration of knockdown DECR1 in A549 and H1975. (I, J) CCK 8 test for the
proliferation of knockdown DECR1 in A549 and H1975. (K, L) Apoptosis of knockdown DECR1 in A549. (M) Mechanism diagram of the prognostic
role of DFRGs in LUAD.
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predict the OS of LUAD patients and conduct biological verification

on the key genes. However, there are still certain deficiencies in this

study. First, the core analysis of this study is based on the TCGA

dataset, and relevant studies have confirmed its value in mining

molecular mechanisms and screening biomarkers (48). But bulk

transcriptome data inherently suffer from cohort selection bias,

heterogeneous clinical annotations, and platform artifacts (49, 50),

which may affect the reliability of DFRGs screening and model

construction. Additionally, this study only carried out in vitro

functional validation on DECR1. The biological functions of the

other five genes have not been confirmed through experiments, and

most of the work relied on the secondary analysis of public

databases, lacking more in-depth exploration of molecular

mechanisms and experimental validation, both of which are

crucial for confirming the translational application value of the

biomarkers (51). Therefore, further work is needed in the follow-up

to verify the accuracy of the model.
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