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Background: Lung adenocarcinoma (LUAD) is one of the common malignant
tumors worldwide, and the 5-year survival rate remains unsatisfactory. To
investigate the association between disulfidptosis-related ferroptosis genes
(DFRGs) and the prognosis of patients with LUAD, establish a risk prognostic
model, validate key biomarkers in vitro, and provide references for the prognosis
of LUAD patients.

Methods: R software was employed to identify DFRGs. Univariate Cox regression
and Lasso-Cox regression analyses were combined to construct a risk score
prognostic model. The predictive power of the model was evaluated using
Kaplan-Meier survival curves, receiver operating characteristic (ROC) curves,
and calibration curves. Immune-related functions, tumor mutation burden, and
single-cell analyses were performed on the model genes. Finally, in vitro
validation of key prognostic markers was conducted via gRT-PCR, wound
healing assay, Transwell assay, CCK8 assay, and flow cytometry apoptosis assay.
Results: Six DFRGs were screened through univariate Cox regression and Lasso-
Cox regression analyses to construct the prognostic model. The areas under the
ROC curve (AUC) for 1, 2, and 3 years in the training set were 0.836, 0.771, and
0.786, respectively. Decision curve analysis (DCA) indicated that the risk score
model effectively predicted lung adenocarcinoma prognosis. In vitro validation
demonstrated that knockdown of DECR1 significantly suppressed lung
adenocarcinoma cell proliferation and migration, and promoted cell
apoptosis (P < 0.05).

Conclusion: This study established a risk score model based on six DFRGs, which
demonstrated favorable prognostic value. DECR1 promotes the progression of
LUAD and holds promise as an effective biomarker.
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1 Introduction

Lung cancer is one of the most common malignant tumors and
is highly lethal, being the leading cause of cancer-related deaths
worldwide. Due to the extremely limited treatment options, the
survival rate for patients with advanced disease is very low (1). It is
expected that by 2035, the incidence of lung cancer will further
increase in most countries, making it the main challenge for global
public health issues. According to data from the National Cancer
Center, lung cancer is the leading cause of cancer in China, with
710,000 deaths, accounting for 23.8% of all cancer deaths, of which
lung adenocarcinoma (LUAD) has the highest proportion (2), and
has become a key focus in clinical and translational research.

The human battle against lung cancer is a journey marked by
the continuous evolution of treatment strategies. In the early days,
treatment centered on traditional chemotherapy; these drugs inhibit
tumor cell proliferation by damaging DNA, but they lack specificity,
often causing severe side effects and leading to rapid tumor drug
resistance (3). Later, the emergence of targeted therapies, such as
EGEFR inhibitors, enabled precise targeting of tumors. However,
these therapies are prone to drug resistance, and studies have found
that approximately 15.84% of patients with EGFR-TKI resistance
develop MET amplification (4). In recent years, immune checkpoint
inhibitors, such as PD-1 antibodies, have revolutionized the
treatment landscape. Nevertheless, they still have limitations,
including a relatively low overall response rate, immune-related
adverse reactions, and the risk of drug resistance (5). Additionally,
unresolved issues persist, such as the inability of traditional staging
methods to accurately predict prognosis and the high rate of
metastasis or recurrence after treatment. Against this backdrop,
exploring new mechanisms of tumor cell death has become a key
breakthrough. The traditional apoptotic pathway is less effective due
to tumor drug resistance, while non-apoptotic regulated cell death
pathways, such as ferroptosis and disulfidptosis, which can bypass
drug resistance and exhibit high selectivity for tumor cells, thus
offering a new direction for lung cancer treatment.

Disulfidptosis is a recently discovered type of cell death within
the biological realm. It occurs when the levels of the solute carrier
family 7 member 11 (SLC7A11) gene rise in cells facing a shortage
of glucose (6). The regulation of disulfidptosis involves the
formation and breaking of disulfide bonds, as well as the
involvement of proteins such as NCKAPI and signaling pathways
related to redox and cellular metabolism. Disulfidptosis has the
potential to serve as a target for cancer treatment. Ferroptosis is
another mode of cell death that is iron-dependent and plays a
critical role in tumorigenesis and tumor progression. During the
development of tumors, ferroptosis has a dual role, both promoting
and inhibiting tumor growth (7). Additionally, it can markedly
influence the effectiveness of chemotherapy, radiotherapy, and
immunotherapy in cancer patients (8). Ferroptosis plays a crucial
role in cancer treatment. Compared to normal cells, tumor cells
usually contain higher levels of iron and are more dependent on it
(9). Therefore, by inducing ferroptosis, cancer cells can be
selectively killed while causing minimal damage to non-
malignant cells.
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Although disulfidptosis and ferroptosis are two distinct forms of
regulated cell death, they share common regulatory factors. The
expression of SLC7A11, a key regulatory gene in disulfidptosis, can
influence intracellular iron levels (10). While studies on
disulfidptosis-related genes and ferroptosis-related genes in
LUAD exist separately, research combining both in the context of
LUAD has not been reported. Therefore, this study innovatively
links disulfidptosis and ferroptosis, aiming to fill the research gap on
DFRGs in LUAD. Using public databases, we identified DFRGs,
which can serve as molecular biomarkers for both disulfidptosis and
ferroptosis. Subsequently, we constructed a DFRG-based prognostic
model to predict the prognosis and immune scores of LUAD
patients. This study is expected to provide decision-making
guidance for personalized patient treatment.

2 Methods

2.1 LUAD data acquisition and
preprocessing

The RNA sequencing data, along with clinical information and
somatic mutation data of LUAD, were obtained from the TCGA
database (https://portal.gdc.cancer.gov/repository) through the
“TCGAbiolinks” R package, including data of 59 normal samples
and 541 tumor samples. To convert the RNA sequencing data into
transcripts per million (TPM) format, the “limma” package was
employed, ensuring that the data from both sources were
standardized. The copy number variation (CNV) of LUAD was
also downloaded, and the CNV landscape was plotted. In addition,
the datasets GSE30210 (n=226), GSE72094 (n=398), and GSE13213
(n=117) from the Gene Expression Omnibus (GEO) database
(https://www.ncbi.nlm.nih.gov/geo/) were used as external
validation datasets, and the GSE189357 dataset (n=9) was used
for single-cell analysis.

2.2 ldentification of DFRGs and
differentially expressed genes

597 ferroptosis genes and 36 disulfidptosis genes were retrieved
from the FerrDb database (www.zhounan.org/ferrdb/current) (11).
The “limma” package in R software was utilized to perform Pearson
correlation analysis on 597 ferroptosis genes and 36 disulfidptosis
genes obtained from the FerrDb database, setting the correlation
coefficient threshold at 0.3 to identify DFRGs. Subsequently, screen
for differentially expressed genes between normal and tumor
tissues in the TCGA-LUAD database, using an absolute log fold
change (|logFC|) exceeding 2 and a false discovery rate (FDR) lower
than 0.05 as the filtering criteria. Use the “ggplot2” and “ggrepel”
packages in R software to create a volcano plot to display the results.
Finally, take the intersection of the identified DFRGs and the
differentially expressed genes in TCGA-LUAD to obtain the
DFRGs in TCGA-LUAD, and use the “vnne” package in R
software to create a Venn diagram for visualization (12).
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2.3 Establishment and evaluation of the
LUAD prognostic model

Divide the LUAD patients in the TCGA dataset into training
and validation sets in a 6:4 ratio by using the “caret” R package.
Establish a model related to DFRGs using the training set data and
perform internal validation of the model’s accuracy and reliability
using the validation set data. In the training set, identify DFRGs
related to prognosis through univariate Cox regression analysis
(13). To avoid overfitting, use the “glmnet” R package to perform
LASSO regression analysis, selecting DFRGs with prognostic
predictive value for multivariate Cox regression analysis.
Ultimately, determine 6 DFRGs with independent prognostic
value to construct a prognostic prediction model for LUAD,
calculating the Risk score for each patient in the training sample.
The calculation formula is: Risk score=YExpixcoefi, where Expi and
coefi represent the expression levels and coefficients of the
prognostic DRGs, respectively. Subsequently, divide the LUAD
patients into high-risk and low-risk groups based on the median
value of the risk scores. Integrate the clinical data of the patients
with the risk score data and perform survival analysis using the
“survival” and “survminer” R packages, displaying the difference
in overall survival (OS) between the high-risk and low-risk
groups of patients using Kaplan-Meier (K-M) survival curves
(14). Group patients based on different clinical characteristics to
reveal differences in OS among different clinical subgroups and
further validate the predictive efficacy of the model. Generate
ROC curves using the “survminer” R package and the “timeROC”
R package. Use the data set from the GEO database to
conduct independent external validation analysis of the
prognostic features.

2.4 Construction and assessment of the
prognostic nomogram

Using univariate Cox regression analysis, we assessed the
impact of risk scores and clinical characteristics on prognosis in
TCGA-LUAD patients, and further incorporated statistically
significant independent prognostic features into the multivariate
Cox regression model to screen for factors that can independently
predict prognosis. The results of the univariate and multivariate
Cox regression analyses were visualized using forest plots generated
with the “forestmodel” package. Additionally, the “rms” package
was used to create C-index curves to evaluate the accuracy of the
model’s predictive performance. A Nomogram is a visual
representation that correlates various parameters on a single
plane, reflecting the integration of multiple characteristics, and
can predict individual patient survival rates. It has significant
practical advantages in clinical settings. Based on age, gender,
stage, and risk score, we constructed a Nomogram prediction
model using univariate and multivariate Cox regression analyses
with the “rms” package, predicting survival rates at 1, 2, and 3 years
for LUAD patients. We also used calibration curves to assess the
accuracy and reliability of the prediction model (15).
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2.5 Immune landscape analysis of the
prognostic model of DFRGs in LUAD

According to the analysis of immune-related functions, the
differences in various immune functions between the high-risk and
low-risk groups were demonstrated. The “estimate” package was used to
evaluate the stromal cells, immune cells and comprehensive scores of
LUAD patients, and the “ggpubr” package was employed to draw violin
plots to assess the differences in Tumor Immune Microenvironment
(TIME) scores among patients in the high-risk and low-risk groups. The
TIDE scores of each LUAD patient were calculated through the TIDE
website (http://tide.dfciharvard.edu/), and the differences between the
two groups were compared. Through the TIDE scores and TME
scores, whether there were differences in the sensitivity to
immunotherapy and the infiltration of the tumor microenvironment
between the samples of the two groups was explored (12).

2.6 Tumor mutation burden analysis

Somatic mutation data for LUAD patients were downloaded
from the TCGA database. Based on the total number of somatic
mutations per megabase (Mb) of the exonic region in the human
genome, we calculated the Tumor Mutation Burden (TMB) for each
sample as the total number of somatic mutations divided by the
effectively covered region. Visualization of somatic mutations in
high-risk and low-risk groups was performed using the “maftools”
R package, and the correlation between risk scores and TMB was
computed. The “limma” and “survival” packages were employed to
analyze differences in TMB between high- and low-risk groups and
to assess the impact of TMB on the survival of LUAD patients (16).

2.7 Single-cell sequencing analysis

The study collected single-cell sequencing data for nine LUAD
samples from the GEO database. The SCRNA-Seq data were processed
by employing the “Seurat” R package, normalized and scaled using the
“NormalizeData” and “ScaleData” functions, and batch effects
mitigated by canonical correlation analysis. Cluster analysis was
performed by using the t-distributed stochastic neighbor embedding
(t-SNE) of “Seurat” along with the “FindClusters” function. Marker
genes were delineated using the “FindAllMarkers” function in “Seurat”
to select the cluster-specific marker (17).

2.8 Screening of potential therapeutic
drugs for LUAD

Half inhibitory concentration (IC50) refers to the drug
concentration when the antagonist can achieve 50% inhibition,
which is generally used to indicate the ability of a drug or molecule
to inhibit biological activities, such as cell activity rate. Therefore,
the IC50 value can be used to measure the sensitivity of cells to
different drugs, that is, the drug with higher IC50 value, the weaker
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the sensitivity of cells. Using the “oncoPredict” package, the
Genomics of Drug Sensitivity in Cancer (GDSC) database was
employed to forecast the treatment response to common
anticancer drugs in the high and low risk groups, measure drug
sensitivity according to the IC50 value, and evaluate the difference
of the sensitivity of LUAD high and low risk groups to commonly
used cancer treatments (18).

2.9 Cell culture and treatment

All the cell lines used in this study were purchased by the
Shanghai Institute of Cell Biology, Chinese Academy of Sciences.
We cultivated human normal lung epithelial cells BEAS-2B, along
with lung adenocarcinoma cell line A549 and H1975, in 1640
medium supplemented with 10% fetal bovine serum, under
conditions of 5% CO2 at a temperature of 37 °C. Cells in the
logarithmic growth phase were utilized for the experiments (19).

Transfection reagent Liposomal lipofectin 2000 (Invitrogen, USA)
was purchased from Invitrogene, and small interference RNA (siRNA)
synthesis and negative control NC were purchased from Shanghai
Jimma Pharmaceutical Technology Co., Ltd., and the procedures and
systems were performed according to the manufacturer’s instructions.
The sequences are as follows: for si-DECRI-1, the sense strand is
GUGGAGAGGAAGUACUUAUTT, and the antisense strand is
AUAAGUACUUCCUCUCCACTT; for si-DECRI1-2, the sense
strand is GCGAUUCAAUGUGAUUCAATT, and the antisense
strand is UUGAAUCACAUUGAAUCGCTT. The siRNA negative
control was purchased from Shanghai GenePharma Co., Ltd.

2.10 Quantitative real-time polymerase
chain reaction

The PCR ARRAY was purchased from Shanghai Audubon
Biotechnology Co., Ltd. (Shanghai, China). Total RNA was
extracted by using Trizol reagent (Invitrogen, USA).
Complementary DNA (cDNA) was synthesized using the
PrimeScript RT kit (Takara) (20).

2.11 Wound healing assay

For wound-healing assays, cells were seeded using a 6-well plate.
The cells were scratched using sterile tips perpendicular to
previously labeled lines. After imaging the scratches with a light
microscope, cell migration was measured at the time points of 0, 24,
and 48h (21).

2.12 Transwell assay
The Transwell assays were performed using a 24-well transwell

chamber to assess the mobility of the A549 and H1975 cell lines.
Cells were seeded in serum-free medium, and the lower chamber
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was filled with 600ul of medium containing 30% serum. After 24h,
the cells were fixed and stained (6).

2.13 CCK-8 assay

Cell proliferation was measured using the CCK 8 assay. A549
and H1975, cells were seeded in 96-well plates, and cultured for 0,
24,48 and 72h, and CCK 8 solution was added and incubated for 1h
in the dark. Absorbance values were measured at 450nm, using a
microplate reader (22).

2.14 Flow cytometry

Cells were transfected for 24h and were cultured in serum-free
medium for another 24h. Subsequently, the cells were harvested and
stained using the Annexin and V-FITC Cell Apoptosis Detection
Kit (Beyotime, Shanghai, China). Apoptosis was then determined
by flow cytometry within 1h (23).

2.15 Statistical analysis

The Wilcoxon test was used to compare the two groups, and the
Spearman correlation was employed to assess the correlation. All
bioinformatics analyses were performed using R software (v.4.2.3)
along with relevant packages and Perl 5.30.0 for statistical analysis.
P < 0.05 was deemed statistically significant. *indicates P < 0.05,
**indicates P < 0.01, ***indicates P < 0.001.

3 Results
3.1 Screening results of DFRGs in LUAD

To explore DFRGs, 597 ferroptosis genes and 36 disulfidptosis
genes downloaded from the FerrDb database were subjected for Pearson
correlation analysis to yielded 344 DFRGs. TCGA-LUAD-RNA-seq
data identified 19895 mRNAs that were differentially expressed between
normal and tumor in total 8,768 using | logFC |> 2, FDR <0.05 as
filtering criteria, and the results were visualized as volcano plots, with
red and green dots indicating up-and downregulated mRNAs,
respectively (Figure 1A). Finally, the filtered DFRGs were crossed
with the differentially expressed mRNAs in TCGA-LUAD-RNA-seq
data to obtain DFRGs in TCGA-LUAD-RNA-seq, and the results were
visualized in Wayn diagram (Figure 1B). The 199 DFRGs were used for
subsequent model-building studies.

3.2 Construction of DFRGs prognostic
model

A total of 472 patients were included except for samples with
survival time < 30 days and missing clinical data. All the 199 DFRGs
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FIGURE 1

Screening of DFRGs. (A) Volcano plot of differential expression between normal and tumor in TCGA-LUAD. (B) Wayn diagram.

screened for genes associated with LUAD prognosis were P < 0.05,
showing that 59 DFRGs were significantly associated with patient
outcome. Subsequently, the above 59 DFRGs were further included
in the Lasso regression analysis (Figures 2A, B) to obtain 13
meaningful DFRGs. Finally, the above 13 DFRGs were subjected
to multivariate Cox regression analysis, resulting in 6 DFRGs for
constructing the prognostic model. Among them, AKT1S1, DDIT
4, DECR1, KIF20A, and PCDH 7 (HR > 1) were risk factors, and
CX3CLI1 (HR < 1) were protective factors (Figure 2C). The hazard
factor for each DFRGs was determined using Lasso-Cox regression,
Patient risk scores were calculated based on the six DFRGs of the
constructed model described above, The calculation formula is as
follows: Riskscore = (0.4169xAKT1S1) + (-0.164xCX3CL1) +
(0.2039xDDIT4) + (0.5426xDECRI1) + (0.2968xKIF20A) +
(0.1848xPCDHY7). Patients in the training set, validation set, and
total set were split into high risk and low risk categories based on
their median patient risk score for later clinical value analysis.

3.3 Evaluation and validation of prognostic
risk models

By evaluating the expression levels of the six DFRGs in LUAD
patients, we calculated each patient’s risk score using the risk score
formula, divided the 472 LUAD patients into a training cohort with
a 6:4 ratio, and divided all LUAD patients into high and low risk
groups based on median patient risk score. The K-M survival curve
analysis showed significant differences in OS between both high and
low risk groups in the training set, internal validation set and total
set (all P < 0.001, Figures 3A-C). The OS in the low risk group was
significantly higher than that in the high risk group, suggesting the
prognostic value of risk score for LUAD patients. ROC curves were
plotted using the “timeROC package”. The results showed that the
AUC values of the model for 1-year, 2-year, and 3-year survival
rates in the training set were 0.836, 0.771, and 0.786, respectively,
while those in the validation set were 0.693, 0.684, and 0.647,
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respectively. These findings indicate that the constructed model has
good predictive performance (Figures 3D-F).

To further confirm the accuracy of the model, we performed the
validation in three independent GEO external validation cohorts.
The K-M survival curve analysis showed that the OS of the high and
low risk groups was significantly different in both validation sets (all
P < 0.001, Figures 3G-I), and the OS in the low risk patients was
significantly higher than that in the high risk group, and the results
were consistent with the TCGA database, suggesting the prognostic
value of the risk score for LUAD patients. The ROC curve shows
that the AUC of the 1, 2, and 3 years survival rates of GSE30210
were 0.780, 0.806, and 0.673, respectively. The AUC of the 1, 2, and
3 years survival rates of GSE72094 were 0.695, 0.654, and 0.608,
respectively. The AUC of the 1, 2, and 3 years survival rates of
GSE13213 were 0.841, 0.722, and 0.733, respectively. The
expression results of prognosis-related DFRGs in the validation
sets were consistent with those in the TCGA training cohort,
indicating that the model we constructed had good predictive
performance and could more accurately predict the prognosis of
patients (Figures 3J-L). Nine previous models were compared
through literature search (24-32), and the results revealed the
highest AUC in 1, 2, and 3 years, which further demonstrated the
predictive power of the model (Figure 3M). Therefore,
comprehensive internal verification, external verification and
literature review further verified the predictive ability of the
disulfate-related ferroptosis lung adenocarcinoma prognosis
model constructed in this study, and also revealed its important
significance in the prognosis of lung adenocarcinoma.

3.4 Construction and evaluation of the
prognostic nomogram

To quantify the individual risk assessment of LUAD patients,

this study integrated clinical characteristics (age, gender, stage) with
the risk score to construct a nomogram model, and the prognosis
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FIGURE 2

Construction of the prognostic model for DFRGs. (A) LASSO regression analysis. (B) A selection diagram. (C) Forest plot of multivariate Cox

regression.

was presented based on the scores of each prognostic factor. A
patient was randomly selected for prediction. The model showed
that the total score of this patient was 201 points, and the 1, 2, and 3
years survival rates after the diagnosis of LUAD were 76.2%, 51.8%
and 31.4%, respectively, as shown in Figure 4A. The calibration
curve indicated that the 1, 2, and 3 years survival rates predicted by
the nomogram for LUAD patients were in good agreement with the
actual values, as shown in Figure 4B. The index of concordance (C-
index) evaluates the degree of conformity between the model’s
predicted results and the actual observed results, thereby assessing
the predictive accuracy of the model. The curve of the combined
model with clinical pathological characteristics was higher than that
of a single clinical characteristic, indicating that the combined
model can enhance the accuracy of predicting the prognosis of
LUAD patients (Figure 4C). Based on the above results, it can be
concluded that the prediction model in this study has a robust and
accurate ability to predict the prognosis and can provide a reference
for clinical management and decision-making.
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3.5 Immune-related analysis of the
prognostic model of DFRGs in LUAD

The ssGSEA was used to investigate the differences in immune
functions between the two groups. The results showed that among
the two groups with statistically significant differences, immune
functions were more enriched in the low-risk group, such as B cells
(P < 0.001), aDCs (P < 0.001), DCs (P < 0.001), iDCs (P < 0.001),
Type II IFN Response (P < 0.001), etc., indicating that the immune
function in the low-risk group was more active (Figure 5A). The
TIDE score represents the probability of immune escape and
further indicates the likelihood of resistance to immunotherapy.
The results showed that the probability of immune escape was
higher in the high-risk group (P < 0.01, Figure 5B), suggesting that
patients in the high-risk group were less likely to benefit from
immunotherapy and that the effect of immunotherapy might be
better in patients in the low-risk group. To explore the infiltration of
immune cells between the two groups, a TME difference analysis
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Evaluation and validation of prognostic risk models. (A-C) Kaplan-Meier survival curves in patients in the high-risk and low-risk groups were assessed
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was performed, which showed that the differences in stromal cells,
immune cells, and comprehensive scores between the high-risk and
low-risk groups were all statistically significant and that the scores
in the low-risk group were higher in all three groups (P < 0.005,
Figure 5C). Therefore, comprehensive internal validation, external
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validation, and comparative literature research further confirm the
predictive capability of the disulfidptosis-ferroptosis-related
prognostic model for lung adenocarcinoma constructed in this
study, and also reveal its significant implications in the prognosis
of lung adenocarcinoma.
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3.6 TMB analysis

Tumor Mutation Burden (TMB), which calculates the number
of somatic mutations per megabase in a genomic sequence, is a
potential predictive biomarker in many solid tumors critical for
tumor prognosis and can be used to predict the effectiveness of
immune checkpoint inhibitors on tumors. To investigate the
differences in cancer-associated gene mutations between the high-
risk and low-risk groups, we obtained somatic mutation data from
TCGA-LUAD. Examination identified the 15 most frequently
mutated genes, including TP 53, TTN, PIK3CA, MUC 16, RYR 2,
CSMD 3, ZFHX 4, USH 2 A, LRP 1 B, FLG, SPTA 1, XIRP 2, KRAS,
FAT 3, and HMCN 1 (Figures 6A, B). TMB difference analysis
violin plots showed differences in TMB between the high and low
risk groups (P < 0.001), and TMB was significantly higher in the
high risk than the low risk group (Figure 6C). According to the

Frontiers in Immunology

08

mutation status, we divided the patients into high TMB and low
TMB groups. High TMB can a survival benefit for LUAD patients,
as shown in Figure 6D in the high TMB group than in the low TMB
group (P = 0.006). Next, a group analysis combining TMB and risk
score showed that HTMB + low-risk patients had the best prognosis
(P < 0.001), and their seven-year survival rate was about 50%. In
contrast, patients with a high risk of LTMB + had the worst
prognosis, with a 7-year survival rate of less than 20% (Figure 6E).

3.7 Single-cell sequencing analysis
In this study, nine samples from GSE189357 were used for
single-cell sequencing analysis, annotated by t-SNE and UMAP

clustering: 10 cell types including T cells, B cells, natural killer cells,
monocytes, epithelial cells, macrophages, endothelial cells
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(Figures 7A, B). Cell expression levels were separately for the six
DFRGs in the model using UMAP clustering, The results showed
that DDIT 4 expression was higher in all of the 10 cell types. The
expression levels of AKT1S1, KIF20A and PCDH 7 were relatively
low in 10 cell types. DECRI is relatively highly expressed in
monocytes, macrophages, and smooth muscle cells. CX3CL1 Is
relatively high expression in epithelial cells (Figures 7C-N). These
results indicate that the six model genes are clustered in single cells
of lung adenocarcinoma, which provides a basis for subsequent
biological molecular research.

3.8 Drug sensitivity analysis

To search for drugs potentially effective for the treatment of
LUAD, predicting differences in chemotherapeutic drug sensitivity
in patients with different risk groups, We performed a Wilcoxon-test
to compare the differences between the two risk groups, LUAD
patients, Where the abscissa represents patients in the LUAD high
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and low risk group, The ordinate represents the IC50-value, We found
lower IC50 values in the high-risk group of patients with voritinib,
foritinib, cytarabine, PLK inhibitors, selective ATR kinase inhibitors,
5-fluorouracil, afatinib, tyrosine kinase receptor inhibitors, It indicates
that the patients in the high risk group had higher sensitivity to 8
drugs, foritinib, cytarabine, PLK inhibitor, selective ATR kinase
inhibitor, 5-fluorouracil, afatinib, tyrosine kinase receptor inhibitor,
More favorable to receiving this drug (P < 0.01, Figures 8A-H).
Therefore, the high and low risk groups distinguished by the risk score
of this prognostic model were different in drug sensitivity, indicating
that this prognostic model has some significance in drug use.

3.9 Detection of DECR1 function in lung
adenocarcinoma cells
In order to find the key regulatory genes of disulfide death-related

iron death in LUAD, this study first analyzed the six DFRGs that
constructed the model based on the TCGA database and ranked the
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importance, and showed that the DECR1 importance coefficient was
0.542 (Figure 9A). Subsequently, the differential analysis of DECRI
expression in normal and tumors in the TCGA-LUAD database
showed that the expression of DECR1 was higher in tumor samples
than in normal samples (Figure 9B). Thereafter, the K-M survival
analysis of DECRI in the TCGA-LUAD risk outcome model and
progression-free survival (PFS) in LUAD-DFRGs was statistically
significant in the high and low risk groups (Figures 9C, D).
Meanwhile, the protein expression level of DECR 1 in lung
adenocarcinoma tissues was also significantly higher than that in
normal tissues (Figures 9E, F). Therefore, based on the above results,
DECRI was selected as the key DFRGs in lung adenocarcinoma for
further subsequent expression and biological function studies.
qRT-PCR was used to evaluate the relative expression levels of
DECRI in human normal lung epithelial cells BEAS-2B and lung
adenocarcinoma cell lines A549 and H1975 (Figure 10A). Compared
with lung adenocarcinoma cell lines A549 and H1975, the expression of
DECRI in human normal lung epithelial cells BEAS-2B was
significantly lower. Two kinds of siRNAs were transfected into two
different cell lines to investigate the in vitro regulatory role of DECR1 on
LUAD. qRT-PCR experiments showed that the expression levels of Si-
DECRI-1 and Si-DECRI1-2 (subsequently referred to as Sil and Si2)
were significantly lower than that of the negative control (NC),
indicating that the knockdown was successful (Figures 10B, C). The
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results of the wound healing experiment showed that the migration
speeds of Sil and Si2 in A549 and H1975 cell lines were significantly
slower than that of NC (Figures 10D, E). In the transwell experiment,
the number of migrating cells of Sil and Si2 in A549 and H1975 cell
lines was less than that of Si-NC (Figures 10F-H). These results suggest
that knocking down DECRI can inhibit the migratory ability of lung
adenocarcinoma cells. The CCK-8 experiment demonstrated that
knocking down DECRI inhibited the proliferation of A549 and
H1975 (Figures 101, J). In addition, the apoptosis experiment
indicated that knocking down DECRI increased the apoptosis of lung
adenocarcinoma cell A549 and inhibited cell survival (Figures 10K, L).
Therefore, according to the results of migration, apoptosis and
proliferation of DECRI in lung adenocarcinoma cells, it is suggested
that DECR1 may promote the development of lung adenocarcinoma
and may be an effective prognostic molecular marker for lung
adenocarcinoma, which can provide a basis for further
mechanism research.

4 Discussion

Cell death is emerging as a new focus in tumor therapy.
Previous studies have demonstrated that ferroptosis-related genes
can provide certain insights for improving the prognosis of patients
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with lung adenocarcinoma. And disulfidptosis, as a newly
discovered form of cell death, has been proven to play a crucial
role in tumor progression and cancer treatment (33). Therefore, in
this study, we combined ferroptosis genes with disulfidptosis genes
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to construct a prognostic model for LUAD patients based on
DFRGs, aiming to identify novel prognostic biomarkers.
Furthermore, we analyzed the clinical values of TIME, TMB, and
drug sensitivity in LUAD patients. Additionally, molecular biology
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experiments were conducted to investigate the functions of
potential biomarkers in cell migration, proliferation, and
apoptosis in LUAD. This study is expected to provide new
insights for the personalized clinical treatment of LUAD patients.

Based on the TCGA public database, this study established a
prognostic model for LUAD that includes 6 DFRGs, namely
AKT1S1, DDIT4, DECRI1, KIF20A, PCDH7, and CX3CL1. Based
on the above 6 DFRGs, patients are categorized into high-risk and
low-risk groups. The high-risk group promotes the proliferation
and migration of lung adenocarcinoma cells while inducing the
apoptosis of these cells, and the combined effects of these factors
result in a poor prognosis for patients. The low-risk group exhibits
stronger immune function, marked by the presence and activity of
key immune cells such as B cells, DCs, leading to better patient
outcomes (Figure 10M). For the DFRGs risk model constructed in
this study, the AUC values for predicting 1-year, 2-year, and 3-year
survival rates were 0.836, 0.771, and 0.786 in the training set; 0.693,
0.684, and 0.647 in the validation set; and 0.778, 0.733, and 0.731 in
the combined dataset. All these values are superior to those of the
previously published ferroptosis-gene-based models, which proves
that the DFRG prognostic model established in this study has better
accuracy and reliability. In the external validation, the ROC results
of datasets GSE30210 (1-year, 2-year, 3-year AUC = 0.780, 0.806,
0.673), GSE72094 (0.695, 0.654, 0.608), and GSE13213 (0.841,
0.722, 0.733) further confirmed the good extrapolability of
the model.

Previous studies have found that AKTIS1 is a direct target of
miR-30c-2-3p in gastric cancer cells. Moreover, AKTIS1 is
upregulated in hepatocellular carcinoma and is associated with
the poor prognosis of patients with hepatocellular carcinoma and
promotes the growth of hepatocellular carcinoma (34, 35). DDIT4
participates in the regulation of autophagy in triple-negative breast
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cancer. Knocking down DDIT4 significantly inhibits the tumor
progression of triple-negative breast cancer both in vitro and in
vivo, and inhibiting DDIT4 can enhance the efficacy of paclitaxel in
patients with triple-negative breast cancer (36). KIF20A is a
member of the kinesin family. It transports chromosomes during
mitosis and plays a key role in cell division. It is highly expressed in
multiple cancers, participates in cancer progression by regulating
cell division, and is related to drug or chemotherapy resistance in
tumor treatment (37). PCDH7, known as protocadherin 7, is a
subfamily of the cadherin superfamily and plays biological roles in
multiple cancer types. It significantly promotes the development of
lung cancer and is related to cisplatin resistance, and it is expected
to become a potential therapeutic target (38). An increase in the
expression of CX3CL1 will lead to an increase in the anti-tumor
immune response, thereby reducing the rate of tumor growth and
improving the survival rate of experimental animals and cancer
patients. Increasing the expression of CX3CL1 in tumors has a
therapeutic effect and can be used as one of the elements of
immunotherapy and as an auxiliary means to improve the efficacy
of anti-cancer treatment (39).

In this study, the nomogram integrating LUAD prognosis
model risk scores and clinical features demonstrated robust
stability and accuracy in survival prediction, providing a novel
clinical tool for prognostic assessment (40). Based on the DFRGs
model risk stratification, LUAD patients were categorized into high-
and low-risk groups. Immunological correlation analysis revealed
that the low-risk group exhibited elevated levels of B cells, CD4+ T
cells, and CD8+ T cells compared to the high-risk cohort (41).
Furthermore, application of the TIDE algorithm to evaluate
immunotherapy potential demonstrated that high-risk patients
had significantly higher TIDE scores and lower effective
immunotherapy response rates, suggesting that this subgroup
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may derive greater benefit from immunotherapy, thereby offering
new perspectives for LUAD clinical management (42). Our findings
on the distinct immune characteristics between different risk groups
resonate with comprehensive pan-cancer analyses of metabolic cell
death pathways (43), further validating the biological plausibility of
our model. Additionally, we investigated the correlation between
risk scores and sensitivity to eight common therapeutic agents,
including chemotherapy and targeted drugs to assess the model’s
translational value (44). The analysis demonstrated that high-risk
patients exhibited significantly higher sensitivity to eight specific
drugs, including 5-fluorouracil and afatinib. This enhanced drug
responsiveness implies that targeted administration of these agents
to high-risk patients could achieve more pronounced tumor
suppression and improved therapeutic outcomes (45), establishing
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a solid theoretical foundation for personalized drug selection in
LUAD treatment.

DECRI is a mitochondrial enzyme that participates in the
metabolism and beta-oxidation of unsaturated fatty acid alpha-
keto A esters and is located on chromosome 8q21.3. It plays a role in
redox balance by regulating the ratio of saturated phospholipids to
unsaturated phospholipids. Polyunsaturated fatty acids (PUFA)
accumulate within cells, eventually leading to lipid peroxidation
and iron deficiency. When DECRI is deleted, castration-resistant
prostate cancer cell lines are more likely to undergo ferroptosis due
to endoplasmic reticulum stress induction (46, 47). Moreover,
DECRI is closely related to lipid metabolism, ferroptosis,
mitochondria and tumorigenesis. This is the first time DECRI
has been associated with LUAD. The research results indicated that
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Detection of DECR1 function in lung adenocarcinoma cells. (A) The expression level of DECR1 in BEAS-2B, A549, and H1975 was determined by
gRT-PCR. (B, C) The expression level of knockdown DECR1 in A549 and H1975 was measured by qRT-PCR. (D, E) The migration of knockdown
DECR1 in A549 and H1975. (F-H) Transwell experimental test for the migration of knockdown DECR1 in A549 and H1975. (I, J) CCK 8 test for the
proliferation of knockdown DECR1 in A549 and H1975. (K, L) Apoptosis of knockdown DECR1 in A549. (M) Mechanism diagram of the prognostic

role of DFRGs in LUAD.

knocking down DECRI can restrain the migration and proliferation
abilities of lung adenocarcinoma cells and simultaneously accelerate
their apoptosis, which is consistent with the results of the model. It
is highly likely that DECR1 promotes the occurrence and
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as an effective biomarker.
In conclusion, we screened the DFRGs and established and
validated a prognostic model on this basis. This model can well

development of lung adenocarcinoma and can be further studied
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predict the OS of LUAD patients and conduct biological verification
on the key genes. However, there are still certain deficiencies in this
study. First, the core analysis of this study is based on the TCGA
dataset, and relevant studies have confirmed its value in mining
molecular mechanisms and screening biomarkers (48). But bulk
transcriptome data inherently suffer from cohort selection bias,
heterogeneous clinical annotations, and platform artifacts (49, 50),
which may affect the reliability of DFRGs screening and model
construction. Additionally, this study only carried out in vitro
functional validation on DECRI1. The biological functions of the
other five genes have not been confirmed through experiments, and
most of the work relied on the secondary analysis of public
databases, lacking more in-depth exploration of molecular
mechanisms and experimental validation, both of which are
crucial for confirming the translational application value of the
biomarkers (51). Therefore, further work is needed in the follow-up
to verify the accuracy of the model.
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