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Hannah Brown Amoakoh1,4, Benjamin Abuaku1, Edem Badji1,
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Background: Lassa fever (LF) is an acute viral hemorrhagic illness endemic to West

Africa, with no licensed vaccines or targeted treatments available, highlighting a

critical gap in global health preparedness. T cell-mediated immunity plays a central

role in viral control and survival. Synthetic DNA vaccines offer a promising strategy to

induce both humoral and cellular immunity against LF.

Methods: A Phase 1b, randomized, double-blind, placebo-controlled trial was

conducted to assess the safety, tolerability, and immunogenicity of INO-4500, a

DNA vaccine encoding the Lassa virus (Josiah strain) glycoprotein precursor

(GPC). A total of 220 healthy adults were randomized to receive either 1 mg or 2

mg of INO-4500 (intervention), or placebo, administered intradermally (ID)

followed by electroporation (EP) at Day 0 and Week 4. Safety was evaluated

through Week 48. Primary immunogenicity endpoints included humoral and

cellular immune responses at multiple timepoints post-vaccination.

Results: INO-4500 was well tolerated, with no Grade 3 or higher treatment-

emergent adverse events (TEAEs) deemed to be related to the intervention;

88.6% of all TEAEs were Grade 1. No cases of attributable hearing loss were

reported. INO-4500 groups demonstrated statistically significant increases in

Lassa virus GPC-specific binding antibodies at Weeks 6 and 12 compared to

placebo, with the 2 mg group eliciting the strongest responses. T cell responses

remained elevated above baseline through Week 48 in both INO-4500 groups,

indicating durable cellular immunity.
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Conclusions: DNA vaccine INO-4500 was well tolerated and elicited durable

humoral and cellular immune responses in healthy adults. These findings support

further clinical development of INO-4500 as a potential preventive vaccine to

reduce LF-associated morbidity and mortality in endemic regions.

Clinical Trial Registration: https://clinicaltrials.gov, identifier NCT04093076
KEYWORDS

DNA medicine, Lassa fever, Lassa virus (LASV), safety, immunogenicity, electroporation
(EP), vaccine
Introduction

Lassa fever (LF), a devastating acute viral hemorrhagic zoonotic

illness caused by the Lassa virus (LASV), poses a significant public

health threat in West Africa (1, 2). An estimated 100,000 to 200,000

infections occur annually due to LASV infection in the region, resulting

in approximately 5,000 deaths per year (3, 4). Symptoms range in

severity, frommild disease to severe hemorrhagic fever leading to death

(5). The disease’s severity is reflected in its case-fatality rate of 1-2% (6,

7), which rises to an estimated 15% among those hospitalized with

severe symptoms (4, 7). Pregnant women are particularly impacted by

LF, with case-fatality rates up to 30%, along with high rates of neonatal

and fetal losses (8). One in five infections result in severe disease,

impacting the liver, spleen and kidneys (7), and can include debilitating

sequelae such as sensorineural hearing loss, polyserositis, vision

distortion, vertigo, and back pain (5).

The absence of approved vaccines or therapeutics targeting LF

underscores a critical gap in global health security (4, 5). This void,

coupled with LF’s high incidence and severity, poses a significant threat

to people living in endemic populations and travelers who visit LASV-

endemic areas. The World Health Organization’s (WHO) designation

of LASV as a priority pathogen requiring urgent research and

development action highlights the need for effective interventions (9).

Significant strides have been made in LF vaccine development, with

multiple vaccine candidates progressing through clinical trials (4, 10–

13). The Coalition for Epidemic Preparedness Innovations (CEPI) is

further advancing these efforts by supporting the development of

vaccines for priority pathogens such as LASV (9, 14).

Most studies to date, both in human and animal disease models

like ours (15), provide evidence that T cell-mediated immunity is

key to virus control and survival (15–19), although there is some

evidence of non-neutralizing antibodies playing a protective role (5,

6, 20, 21). Potent memory CD4+ T cell responses targeting viral

nucleoproteins and surface glycoproteins have been detected in

healthy seropositive individuals living in LF endemic areas (19, 22),

suggesting the activation of CD4+ T cells in mild and/or

asymptomatic infections. Furthermore, in LASV infection, both

CD4+ and CD8+ T cell-mediated immune responses are detectable
02
in individuals who ultimately clear the virus, underscoring the

essential role of these responses in effective viral clearance and

recovery (18, 22, 23). While neutralizing antibodies alone are likely

insufficient for protection (24, 25), non-neutralizing binding

antibodies such as IgG may contribute to the overall immune

defense, as evidenced by their production post-infection (5, 21).

More research is needed to confirm these findings and further

identify other factors that may contribute to protection against LF.

While the correlates of protection for LF are still being studied,

it is currently believed that early virus-specific cellular responses

constitute the predominant mode of protection, and are associated

with survival, whereas delayed cellular responses are associated with

fatal outcomes (5, 16, 18, 26, 27). This insight influences vaccine

design strategy, as vaccines that predominantly induce cellular

responses are more likely to provide protection against LASV (28).

Preclinical studies for one such vaccine candidate, INO-4500,

has yielded encouraging results, demonstrating the presence of

LASV-specific memory T cells in vaccinated non-human primates

(NHPs) up to one year post-vaccination and conferring both short-

and long-term protection against lethal LASV challenge (15). INO-

4500 is a synthetic DNA vaccine encoding for the Lassa virus

(Josiah strain) glycoprotein precursor (LASV GPC) and is injected

intradermally (ID) and followed by electroporation (EP) to enhance

cellular uptake. The vaccine targets the GPC protein of LASV,

which plays a critical role in host entry, and represents the most

conserved region in this genetically diverse virus (29, 30).

We present here the outcomes of a Phase 1b trial (LSV-002)

conducted in Ghana, where we evaluated the safety, tolerability and

immunogenicity of INO-4500 in healthy volunteers with no known

prior exposure to LASV.
Materials and methods

Study design and population

LSV-002 was a Phase 1b, randomized, double-blinded within study

group, placebo-controlled clinical trial to evaluate the safety,
frontiersin.org

https://clinicaltrials.gov
https://doi.org/10.3389/fimmu.2025.1658549
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Koram et al. 10.3389/fimmu.2025.1658549
tolerability, and immunological profile of INO-4500 administered by

ID injection followed by EP using the CELLECTRA® 2000 ID device

(NCT04093076). INO-4500, the active investigational product used in

this clinical trial, contains a DNA plasmid designed to express Lassa

virus (Josiah strain) glycoprotein precursor. The study was performed

in accordance with the principles of the Declaration of Helsinki, Good

Clinical Practice (GCP), and applicable regulatory requirements. The

study was approved and conducted at the Clinical Trials Unit of the

Noguchi Memorial Institute for Medical Research (NMIMR),

University of Ghana, Legon.

Healthy adult volunteers, 18–50 years of age, were enrolled at a

single location from within and around the University of Ghana

community in Accra, Ghana. Written informed consent was

obtained from all participants before any protocol procedures

were performed. Inclusion criteria included the capability of

following study procedures and practicing adequate contraception

during the trial period. Exclusion criteria included: participants

with a hearing level threshold greater than 30 dB for any frequency

tested between 500 Hz – 8000 Hz; pregnant or lactating

female participants.
Study procedures

Potential participants were consented and screened.

Participants meeting eligibility criteria were randomized in a
Frontiers in Immunology 03
blinded fashion to one of four groups across the two dose

regimens, either receiving active investigational product (INO-

4500; 176 participants) or placebo (saline sodium citrate [SSC]

buffer solution; 44 participants) (Figure 1). Blinding of INO-4500

and placebo was in place for the participants, sponsor, and all

clinical site staff, except for the site pharmacy staff who were not

involved in any post-vaccination assessments. Group A received a

single 1 mg INO-4500 (0.1 ml of a 10 mg/ml solution) ID injection

at Day 0 and Week 4 (± five days), totaling 2 mg, while Group B

received two 1 mg INO-4500 (0.1 ml of a 10 mg/ml solution) ID

injections on different limbs at the same timepoints, totaling 4 mg.

Group C received a single ID injection of 0.1 ml SSC (placebo) at

Day 0 and Week 4 (± five days), while Group D received two ID

injections of 0.1 ml SSC (placebo) on different limbs at the same

time points. All ID injections were followed by EP using the

CELLECTRA™ 2000 ID device (Inovio Pharmaceuticals)

delivering four pulses of 52 milliseconds and 0.2 amps. For all

groups, the first dose of INO-4500 or placebo dose occurred at Day

0, within 60 days of screening.
Objectives and endpoints

The primary objectives of this clinical trial were to evaluate the

tolerability and safety, as well as humoral and cellular

immunogenicity of INO-4500 administered by ID injection
FIGURE 1

CONSORT diagram. LSV-002 was a Phase 1b, randomized, blinded, placebo-controlled trial enrolling participants at a ratio of 4:1 to receive a two-
dose series of either INO-4500 or placebo. Eligibility was assessed for 311 subjects, and 220 participants were enrolled across four groups.
Intervention arms were Group A with a single intradermal (ID) injection of 0.1 mL (1 mg) of INO-4500 on Day 0 and on Week 4; and Group B, with
two ID injections (on separate limbs) of 0.1 mL (total dose of 2 mg) of INO-4500 on Day 0 and on Week 4. Placebo arms were Group C, with a
single ID injection of 0.1 mL of saline sodium citrate (SSC) on Day 0 and on Week 4; and Group D, with two ID injections (on separate limbs) of 0.1
mL (total dose of 0.2 mL) of SSC on Day 0 and on Week 4. ID administration of INO-4500 or placebo was followed by electroporation (EP).
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followed by EP in healthy adult participants. For the safety

evaluation, the incidence, severity, and relationship of adverse

events (AEs) to the study intervention were collected.

Safety evaluations
Participants were observed for immediate reactions to the study

treatment for 30 minutes after each vaccination (Day 0 andWeek 4)

and asked to attend the study clinic on Days 2, 14 (Week 2), 28

(Week 4), 42 (Week 6), 84 (Week 12), 168 (Week 24) and 336

(Week 48) (end of study assessment). Physical examinations were

performed at all visits except Week 12 and Week 24. Medical/

clinical assessment, collection of whole blood and serum for

immunology assessment, and safety laboratory analyses were

performed at each visit except Day 2. Solicited local (injection

site) and systemic AEs were collected via participant diary cards on

the evening of the day of vaccinations (Day 0 and Week 4) and

seven subsequent days following each vaccination. The injection site

reactions were graded as mild, moderate or severe – Grades 1, 2 and

3 respectively – in accordance with the “Toxicity Grading Scale for

Healthy Adult and Adolescent Volunteers Enrolled in Preventive

Vaccine Clinical Trials” (31).

Since hearing loss (HL) has been documented in LF survivors

(32, 33), hearing assessments were conducted at screening, prior to

second doses at Week 4 and at the final study visit at Week 48. Pure-

tone audiometry was used to evaluate whether hearing was within

normal-to-mild limits by evaluating hearing capabilities at certain

frequencies: 500, 1000, 2000, 4000, 6000, and 8000 Hz. The hearing

assessment included the hearing level (dB HL) at the measured

frequencies. Degree of HL was defined as 0–15 dB: within normal

limits; 16–25 dB: slight HL, 26–40 dB: mild HL; 41–55 dB: moderate

HL; 56–70 dB: moderately severe HL; 71–90 dB: severe HL; 91+ dB:

profound HL. Treatment-related attributable hearing loss measured

as a change from baseline was reported as follows: AE, hearing loss

of >30 dB in at least a single frequency and a change from one

“Degree of Hearing Loss” category to another level, adverse event of

special interest (AESI) as a hearing loss of >30 dB in three

consecutive frequencies, and serious adverse event (SAE) as a

hearing loss of ≥71 dB in at least one frequency (34).

AEs, including SAEs, treatment-emergent AEs (TEAEs), AESIs,

as well as vital signs were evaluated throughout the study. The

principal investigator (PI) assessed and graded clinical AEs or SAEs

(based on discussions with participants) in accordance with the

“Toxicity Grading Scale for Healthy Adult and Adolescent

Volunteers Enrolled in Preventive Vaccine Clinical Trials” (31).

AESIs relevant to development of a LF vaccine that were monitored

for during the study included, but were not limited to, sensorineural

hearing loss, encephalitis, and thrombocytopenia. No significant

safety findings were noted to cause a safety pause to be requested by

the Data Safety Monitoring Board.

Immunogenicity assessments
Whole blood and serum were collected for immunogenicity

assessments prior to the first dose (at screening and/or Day 0), and

during the study. Determination of analysis of collected samples for
Frontiers in Immunology 04
immunological endpoints was determined on an ongoing basis

throughout the study.

Humoral immune responses were evaluated using a standard

binding enzyme-linked immunosorbent assay (ELISA) developed at

Inovio tomeasure levels of total IgG antibodies specific for glycoprotein

(GP) antigen in serum isolated from whole blood samples drawn on

Day 0, Week 6, and Week 12. This GP antigen was from lineage IV

(Recombinant LASV L-IV Prefusion Glycoprotein, Zalgen Labs), one

of the three most prevalent lineages of LASV in Sierra Leone, Guinea,

and Liberia (35). Post-vaccination end point IgG titers were reported as

the dilution of sera at which the average optical density (OD) of

triplicate wells was greater than the assay cutoff and average OD of the

negative control, then converted to concentration (IU/mL) using the

First WHO International Standard for anti-Lassa fever virus antibodies

(NIBSC code: 20/202). The assay limit of detection (LOD) was 9.065

IU/mL. Seroconversion rate was defined as a two-fold rise over baseline

(Day 0) values.

Cellular immune responses were assessed using an interferon-

gamma (IFN-g) Enzyme-Linked ImmunoSpot (ELISpot) assay

performed on peripheral blood mononuclear cells (PBMCs)

isolated from whole blood collected at Day 0, and Weeks 2, 4, 6,

12, 24 and 48. The number of antigen-specific IFN-g secreting cells
was determined in response to stimulation with two pools (GP1,

GP2) of 15-mer peptides overlapping by 9 amino acids spanning the

LASV GP precursor. Phorbol 12-myristate 13-acetate (PMA) and

ionomycin (a calcium ionophore) were used in combination to

stimulate cells as a positive control, while cells with no stimulant

were used as negative controls for all assays. The assay LOD was 11

spot forming units (SFU)/106 PBMCs. ELISpot data were collected

across two runs to support informal interim (Dataset 1) and long-

term follow-up (Dataset 2) analyses. For the first analytical run

(Dataset 1), samples collected at baseline (Day 0) and Weeks 6, 12,

and 24 were analyzed. For the second analytical run (Dataset 2),

samples collected at baseline and Weeks 2, 4, 24, and 48 were

analyzed. Data were analyzed for Datasets 1 and 2 either

individually or in combination, the latter using baseline

subtraction. For each participant, a response threshold was

calculated based on the mean SFU/106 PBMCs plus two standard

deviations of triplicate at baseline (Day 0) plus assay limit of

quantitation (20 SFU/106 PBMCs). Responder criterion was

defined as any post-treatment value that exceeded the calculated

response threshold.
Statistics

The safety analysis included all participants in the Safety

population, who received at least one dose of INO-4500 or

placebo administered by ID injection. TEAEs were defined for

this trial as any AEs/SAEs that occurred on or after Day 0. All

TEAEs and serious TEAEs were summarized by frequency and

percentage. Laboratory response variables were descriptively

summarized by time point and as changes from baseline. As an

early clinical phase study, the safety evaluation focused on
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identifying safety signals or concerns of clinical relevance rather

than potential statistical differences. Thus, no formal statistical

testing was performed.

All primary immunogenicity analyses were conducted on

participants in the modified intent-to-treat (mITT) population.

Similar to the Safety population, the mITT population included all

participants who received at least one dose of INO-4500 or placebo.

Binding antibody levels were analyzed by dose regimen up to Week 12

using geometric mean titers with interquartile range or fold rise with

associated 95% confidence intervals. Antigen-specific cellular immune

responses above baseline were analyzed by dose regimen up to Week

48 as SFUs per 106 PBMCs with interquartile range or medians with

95% confidence intervals. Peak cellular response taken from any

timepoint for each participant was used to calculate the mean peak

SFU within each group. Percentage of participants with seroconversion

(i.e., positive titer) or cellular response were analyzed within each study

group. Statistical comparisons were performed within each study group

between study weeks using theWilcoxon signed-rank test and between

groups at each study week using the Kruskal-Wallis test. The false

discovery rate for multiple comparisons was controlled using the

Benjamini-Hochberg adjustment and padj-values are reported.

Statistical tests were performed using GraphPad Prism version 10.5.0.
Frontiers in Immunology 05
Results

Participant demographics and baseline
characteristics

A total of 311 participants were screened for eligibility, with 220

participants subsequently enrolled and randomized at a single

clinical trial site in Accra, Ghana, between December 2020 and

September 2021 (Figure 1). The 220 study participants were on

average 22 years old (range, 18-43), 86% were males, and the mean

Body Mass Index was 21.8 kg/m2 (range, 16.6-35.4), very similar

across study groups (Table 1).
Study procedure

Of the 220 randomized participants, 88 received 1 mg INO-4500

(Group A), 88 received 2 mg INO-4500 (Group B), 22 received placebo

in each of two groups (Groups C and D) (Figure 1). All participants

received at least one dose of INO-4500 or placebo followed by EP.

Overall, most participants received all planned study doses (215 of 220,

97.7%) and 97.9% (646/660) of planned injections were administered.
TABLE 1 Demographic characterization of the LSV-002 study population.

Parameter
INO-4500 arms (N = 176) Placebo arms (N = 44)

Total (N = 220)
Group A (N = 88) Group B (N = 88) Group C (N = 22) Group D (N = 22)

Age in Years

Mean (SD) 22.3 (4.5) 22.9 (4.22) 22.4 (2.5) 24.4 (5.8) 22.8 (4.4)

Median 21.5 22.0 22 23 22.0

Range 18-43 18-40 18-29 19-42 18-43

Sex, n (%)

Females 16 (18.2) 7 (8.0) 4 (18.2) 3 (13.6) 30 (13.6)

Males 72 (81.8) 81 (92.0) 18 (81.8) 19 (86.4) 190 (86.4)

Race, n (%)

African 88 (100.0) 88 (100.0) 22 (100.0) 22 (100.0) 220 (100.0)

Height in Centimeters

Mean (SD) 172.4 (7.3) 172.8 (7.1) 173.9 (8.4) 171.8 (5.0) 172.7 (7.1)

Range 155.0-190.6 150.2-188.2 157.2-187.5 160.0-181.2 150.2-190.6

Weight in Kilograms

Mean (SD) 66.4 (11.1) 67.8 (11.9) 68.6 (13.3) 66.7 (8.5) 67.2 (11.4)

Range 48.0-100.0 49.0-105.0 46.0-98.0 49.0-87.0 46.0-105.0

Body Mass Index in Kilograms/meter2

Mean (SD) 22.4 (3.7) 22.7 (3.6) 22.6 (3.7) 22.6 (3.0) 22.6 (3.5)

Range 16.6-35.4 16.8-32.1 16.7-32.0 17.6-29.2 16.6-35.4
N/n, number of participants; SD, standard deviation.
LSV-002 Study had four groups. Intervention arms were Group A with a single intradermal (ID) injection of 0.1 mL (1 mg) of INO-4500 on Day 0 and on Week 4; and Group B, with two ID
injections (on separate limbs) of 0.1 mL (total dose of 2 mg) of INO-4500 on Day 0 and on Week 4. Placebo arms were Group C, with a single ID injection of 0.1 mL saline sodium citrate (SSC)
buffer solution on Day 0 and onWeek 4; and Group D, with two ID injections (on separate limbs) of 0.1 mL (total dose of 0.2 mL) of SSC on Day 0 and onWeek 4. ID administration of INO-4500
or placebo was followed by electroporation (EP). In table, values are rounded up to the first decimal point.
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TABLE 2 Summary of adverse events in the LSV-002 study safety population.
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Parameter
Group A (N = 88) Group B (N = 88) Gro

Participants
(%)

Number
events

Participants
(%)

Number
events

Partici
(%

Participants with ≥1 adverse events
(AE)

80 (90.9) 375 82 (93.2) 382 16 (7

Participants with ≥1 treatment-
emergent AE (TEAE)

80 (90.9) 375 82 (93.2) 379 16 (7

Participants with at Least One Pre-
treatment AE

0 (0.0) 0 2 (2.3) 3 1 (4

Participants with ≥1 treatment-
emergent SAE (TESAE)

3 (3.4) 3 4 (4.5) 4 0 (0

Participants with ≥1 Grade 1 TEAE 79 (89.8) 352 81 (92.0) 357 16 (7

Participants with ≥1 Grade 2 TEAE 12 (13.6) 20 14 (15.9) 19 1 (4

Participants with ≥1 Grade 3 TEAE 2 (2.3) 2 3 (3.4) 3 0

Participants with ≥1 Grade 4 TEAE 1 (1.1) 1 0 (0.0) 0 0 (0

Participants with ≥1 TEAE leading to
death

0 (0.0) 0 0 (0.0) 0 0 (0

Participants with ≥1 TEAE leading to
treatment discontinuation

0 (0.0) 0 0 (0.0) 0 0 (0

Participants with ≥1 treatment-related
TEAE (TR-TEAE)

70 (79.5) 277 73 (83.0) 295 15 (6

Participants with ≥1 serious TR-TEAE 0 (0.0) 0 0 (0.0) 0 0 (0

N, number of participants; AE, adverse event; TEAE, treatment-emergent adverse event; SAE, serious adverse event; TESAE, treatment-emergent se
event.
LSV-002 Study had four groups. Intervention arms were Group A with a single intradermal (ID) injection of 0.1 mL (1 mg) of INO-4500 on Day 0 a
Day 0 and on Week 4. Placebo arms were Group C, with a single ID injection of 0.1 mL of saline sodium citrate (SSC) buffer solution on Day 0 and
and on Week 4. ID administration of INO-4500 or placebo was followed by electroporation (EP). Adverse events (AE) were coded using the Medic
Criteria for Adverse Events (CTCAE) v5.0. AEs includes all treatment-emergent AEs for subjects. At each level of subject summarization, a participa
point.
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TABLE 3 Treatment-emergent adverse events by preferred term including high grade, seriousness, and relation to treatment in LSV-002 study safety
population.

Adverse events

INO-4500 arms Placebo arms

Total (N = 220)Group A
(N = 88)

Group B
(N = 88)

Group C
(N = 22)

Group D
(N = 22)

Participants (%) Participants (%) Participants (%) Participants (%) Participants (%)

Grade ≥3 Treatment-Emergent Adverse Events (TEAE)

Number of Grade ≥3 TEAE* 3 3 0 1 7

Participants with ≥1 Grade ≥3
TEAE

3 (3.4) 3 (3.4) 0 (0.0) 1 (4.5) 7 (3.2)

Preferred Term

Peptic ulcer 0 (0.0) 1 (1.1) 0 (0.0) 0 (0.0) 1 (0.5)

Gastroenteritis 1 (1.1) 1 (1.1) 0 (0.0) 0 (0.0) 2 (0.9)

Malaria 0 (0.0) 0 (0.0) 0 (0.0) 1 (4.5) 1 (0.5)

Aspartate aminotransferase
increased

1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.5)

Headache 1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.5)

Seizure 0 (0.0) 1 (1.1) 0 (0.0) 0 (0.0) 1 (0.5)

Treatment-Emergent Serious Adverse Events (TESAE)

Number of TESAE 3 4 0 1 8

Participants with ≥1 TESAEs 3 (3.4) 4 (4.5) 0 (0.0) 1 (4.5) 8 (3.6)

Preferred Term

Peptic ulcer 0 (0.0) 1 (1.1) 0 (0.0) 0 (0.0) 1 (0.5)

Gastroenteritis 1 (1.1) 1 (1.1) 0 (0.0) 0 (0.0) 2 (0.9)

Malaria 1 (1.1) 1 (1.1) 0 (0.0) 1 (4.5) 3 (1.4)

Fibroma 1 (1.1) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.5)

Seizure 0 (0.0) 1 (1.1) 0 (0.0) 0 (0.0) 1 (0.5)

Treatment-Related Treatment-Emergent Adverse Events (TR-TEAE)

Number of TR-TEAE 277 295 50 63 685

Participants with ≥1 TR-TEAE 70 (79.5) 73 (80) 15 (68.2) 17 (77.3) 175 (79.5)

Preferred Term with incidence rate ≥5%

Injection site pain 57 (64.8) 62 (70.5) 13 (59.1) 15 (68.2) 147 (66.8)

Injection site swelling 51 (58.0) 52 (59.1) 7 (31.8) 10 (45.5) 120 (54.5)

Injection site bruising 50 (56.8) 48 (54.5) 7 (31.8) 11 (50.0) 116 (52.7)

Injection site erythema 10 (11.4) 13 (14.8) 0 (0.0) 0 (0.0) 23 (10.5)

Injection site pruritus 8 (9.1) 11 (12.5) 3 (13.6) 1 (4.5) 23 (10.5)

Malaise 0 (0.0) 1 (1.1) 0 (0.0) 2 (9.1) 3 (1.4)

Pyrexia 2 (2.3) 3 (3.4) 1 (4.5) 2 (9.1) 8 (3.6)

Headache 8 (9.1) 2 (2.3) 1 (4.5) 4 (18.2) 15 (6.8)
F
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N, number of participants; TEAE, treatment-emergent adverse event; TESAE, treatment-emergent serious adverse event; TR-TEAE, treatment-related treatment-emergent adverse event.
LSV-002 Study had four groups. Intervention arms were Group A with a single intradermal (ID) injection of 0.1 mL (1 mg) of INO-4500 on Day 0 and on Week 4; and Group B, with two ID
injections (on separate limbs) of 0.1 mL (total dose of 2 mg) of INO-4500 on Day 0 and onWeek 4. Placebo arms were Group C, with a single ID injection of 0.1 mL of saline sodium citrate (SSC)
buffer solution on Day 0 and onWeek 4; and Group D, with two ID injections (on separate limbs) of 0.1 mL (total dose of 0.2 mL) of SSC on Day 0 and onWeek 4. ID administration of INO-4500
or placebo was followed by electroporation (EP). Adverse events (AE) were coded using the Medical Dictionary for Regulatory Activities (MedDRA) version 25.0. Grading scale is based on the
Common Terminology Criteria for Adverse Events (CTCAE) v5.0. In table, values were rounded up to the first decimal point.
*Of the 7 TEAE Grade ≥3, one was a Grade 4, (headache) occurring in Group A.
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Of the eighteen participants who did not complete all study visits, ten

were lost to follow-up, one participant withdrew, and seven did not

complete the study for other reasons.
Safety assessments

A summary of AEs is provided in Table 2. Of the 220 participants

in the study, 197 (89.5%) reported 906 AEs. All but seven AEs (899

AEs) were TEAEs. Among participants, 195 (88.6%), and 29 (13.2%)
Frontiers in Immunology 08
experienced at least one Grade 1 and Grade 2 TEAE. A single Grade 3

and a single Grade 4 TEAE was experienced by 6 (2.7%) and 1 (0.5%)

participants, respectively. Eight participants (3.6%) experienced one

SAE each. There were no SAEs preceding initiation of treatment. None

of the AEs led to discontinuation or death.

Three participants experienced a single AESI each:

thrombocytopenia in a subject in INO-4500 Group A and placebo

Group C, and gingival bleeding in a subject in INO-4500 Group B. All

three AESIs were assessed as non-serious and not related to clinical trial

treatment. No other AESIs including cases of attributable hearing loss,
FIGURE 2

LASV GP-specific binding antibodies as measured by ELISA. LASV GP-specific binding antibodies are shown for each group. Group A (up to n = 85)
participants received a total of 1 mg INO-4500 (low-dose) at each dosing visit, whereas Group B (up to n = 88) participants received 2 mg INO-
4500 (high-dose). Placebo groups (Groups C and D; up to n = 42) are combined. (A) Box and whiskers extend from 25th to 75th and 5th to 95th
percentiles, respectively, with outliers represented by open symbols. Line at the median; + at mean. padj-values were calculated at each study week
compared to Day 0 within each group using the Wilcoxon signed-rank test and between groups at each timepoint using the Kruskal-Wallis test;
each test was followed by Benjamini-Hochberg adjustment. Only significant padj-values displayed. (B) Geometric Mean Fold Rise (GMFR) of LASV
GP-specific binding antibodies in each group represented by open symbols. Error bars show 95% CI. padj-values calculated between groups at each
post-vaccination timepoint using the Kruskal-Wallis test followed by Benjamini-Hochberg adjustment are displayed in Table 5. LASV, Lassa virus; GP,
glycoprotein; ELISA, enzyme-linked immunosorbent assay; Ig, immunoglobulin; IU, International Unit; mL, milliliters; CI, confidence interval.
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either self-reported or detected by audiometry, were observed during

the trial (Supplementary Table S1).

Of the seven Grade ≥3 TEAE, six occurred in participants

receiving INO-4500 and consisted of peptic ulcer, gastroenteritis

(two), elevated aspartate aminotransferase, headache, and seizure.

The only Grade 4 event was a headache. A case of malaria was the

one TEAE Grade 3 occurring in a participant receiving

placebo (Table 3).

Of the eight serious TEAEs, seven occurred in participants

receiving INO-4500, three in Group A and four in Group B, and

included peptic ulcer, gastroenteritis (two), malaria (two), fibroma,

and seizure. The self-reported single episode compatible with a

seizure occurred 48 days post administration of the second dose of

INO-4500 in the context of self-medication with an over-the-

counter medicine available in Ghana that can cause seizures.

Clinical and paraclinical repeated evaluations found no

abnormalities, and the subject evolved favorably. A case of

malaria was categorized as a serious TEAE in a participant

receiving placebo. None of these TEAEs were considered related

to the treatment and none led to study withdrawal (Table 3).

A total of 175 participants (79.5%) experienced a total of 685

TEAEs that were assessed as treatment-related by the investigators.

The most frequently reported (≥5%) treatment-related TEAEs

overall were localized to the injection site, including pain (66.8%),

swelling (54.5%), bruising (52.7%), erythema (10.5%) and pruritus

(10.5%). Three systemic treatment-related TEAE had an incidence

≥5% in at least one treatment group: malaise (9.1% in placebo

Group D), pyrexia (9.1% in placebo Group D) and headache (9.1%

and 18.2% in INO-4500 Group A and placebo Group D,

respectively). Table 3 details the incidence of treatment-related

TEAE by treatment groups.

No clinically meaningful trends or abnormalities were observed

in clinical laboratory measurements or physical examination

findings throughout the study.
Humoral immune responses

To assess the humoral immune responses induced by INO-

4500, LASV GP binding ELISA was performed using sera collected

from participants both before and after immunization. Participants

treated with either low-dose (Group A, 1 mg) or high-dose (Group

B, 2 mg) INO-4500 exhibited statistically significant increases in

LASV GP-specific binding antibodies at Week 6 and Week 12

compared to Day 0 levels, while those who received placebo did not

(Figure 2A, Table 4). Geometric mean fold rise (GMFR) analysis

demonstrated a statistically significant increase in LASV GP-

specific binding antibodies in both INO-4500 groups compared to

placebo at Week 6 (low-dose, padj = 0.019; high-dose, padj <0.001)

and Week 12 (low-dose, padj = 0.050; high-dose, padj <0.001), and

the high-dose group also showed significantly greater responses

than the low-dose group at both Week 6 (padj = 0.019) and Week 12

(padj = 0.024) (Figure 2B, Table 5). LASV GP-specific binding

antibodies peaked at Week 12 in participants receiving either

low- or high-dose INO-4500, with 3.6% and 9.3% responders,
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respectively, defined as two-fold rise over baseline (Table 6).

While INO-4500 induced humoral immune responses that were

not only detectable but also significantly increased, the magnitude

of the antibody response was modest, resulting in few participants

that met the threshold for seroreactivity.
TABLE 5 Statistical comparison between groups for geometric mean
fold rise (GMFR) of LASV GP-specific binding antibodies as measured by
ELISA in LSV-002 study.

Group
padj-value

a

Week 6 Week 12

INO-4500: Low- vs. High-Dose 0.019 0.024

INO-4500, Low-Dose vs. Placebob 0.019 0.050

INO-4500, High-Dose vs. Placebob <0.001 <0.001
LASV, Lassa virus; GP, glycoprotein; ELISA, enzyme-linked immunosorbent assay.
1 mg INO-4500 was injected ID followed by EP on one (Low-Dose, Group A) or two (High-
Dose, Group B) different limbs at each dosing visit.
a. padj-values calculated between groups at each study week using the Kruskal-Wallis test
followed by Benjamini-Hochberg adjustment.
b. Placebo groups (Groups C and D) are combined.
TABLE 4 Geometric mean concentration (GMC) of LASV GP-specific
binding antibodies as measured by ELISA in LSV-002 study.

Group
GMC, IU/mL (Min-Max)a

Day 0 Week 6 Week 12

INO-4500, Low-Doseb 8 (5–49) 8 (5–52) 8 (5-52)

INO-4500, High-
Doseb

9 (5-90) 10 (5-83) 11 (5-76)

Placeboc 8 (5-36) 8 (5-39) 9 (5-38)
LASV, Lassa virus; GP, glycoprotein; GMC, Geometric Mean Concentration; IU, International
Units; mL, milliliters; Min, minimum; Max, maximum.
a. Rounded to the nearest whole number.
b. 1 mg INO-4500 was injected ID followed by EP on one (Low-Dose, Group A) or two (High-
Dose, Group B) different limbs at each dosing visit.
c. Placebo groups (Groups C and D) are combined.
TABLE 6 Humoral immune responses to LASV GP as measured by ELISA
in LSV-002 study.

Group
Response, %a (n/N)

Week 6 Week 12 Any timepointb

INO-4500, Low-Dosec 1.2 (1/85) 3.6 (3/84) 3.5 (3/85)

INO-4500, High-
Dosec

5.7 (5/88) 9.3 (8/86) 9.1 (8/88)

Placebod 0.0 (0/42) 2.4 (1/41) 2.4 (1/42)
LASV, Lassa virus; GP, glycoprotein; ELISA, enzyme-linked immunosorbent assay; %,
percent; n/N, number of participants.
a. % rounded to the nearest tenth.
b. Best responses taken from any post-Day 0 timepoint.
c. 1 mg INO-4500 was injected ID followed by EP on one (Low-Dose, Group A) or two (High-
Dose, Group B) different limbs at each dosing visit.
d. Placebo groups (Groups C and D) are combined.
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Cellular immune responses

To evaluate INO-4500-induced cellular immune responses, an

IFN-g ELISpot assay was performed on PBMCs collected pre-

vaccination and at multiple timepoints during the study. This

assay detected and quantified IFN-g secreting cells following

stimulation with antigens (LASV GP-derived peptide pools GP1

and GP2). Participants who received either low- (Group A) or high-

dose (Group B) INO-4500 exhibited increases in LASV GP-specific
Frontiers in Immunology 10
IFN-g secreting T cells after vaccination (Figure 3, combined

dataset; Supplementary Figure S1 datasets 1 and 2). Additionally,

both groups showed a statistically significant increase in LASV GP-

specific T cell response at Weeks 4, 6, 12, 24, and 48 as compared to

those who received placebo (Figure 3A). The high-dose INO-4500

group exhibited greater responses than the low-dose group from

Week 6 through Week 48. T cell response magnitude peaked at

Week 6 in the low-dose group and at 12 weeks in the high-dose

group, with elevated responses sustained above the Day 0 responses
FIGURE 3

Cellular immune responses to LASV as measured by IFN-g ELISpot. Baseline subtracted LASV-specific SFU per million PBMCs in response to total
LASV (the sum of glycoprotein peptide pools GP1 and GP2) are shown for each group with Datasets 1 (interim analysis) and 2 (long-term follow-up
analysis) combined. Placebo groups (Groups C and D) are combined. The larger of two magnitudes above baseline were excluded for six participants
with duplicate Week 24 data. Group A, up to n = 59; Group B, up to n = 66; Placebo, up to n = 31. (A) Box and whiskers extend from 25th to 75th
and 5th to 95th percentiles, respectively, with outliers represented by open symbols. Line at the median; + at mean. padj-values were calculated at
each study week between groups using the Kruskal-Wallis test followed by Benjamini-Hochberg adjustment. Only significant padj-values displayed.
(B) Medians with 95% CI are represented by open symbols for each group. LASV, Lassa virus; GP, glycoprotein; IFN-g, interferon-gamma; ELISpot,
Enzyme-linked immunosorbent spot; SFU, spot forming units; PBMCs, peripheral blood mononuclear cells; CI, confidence interval.
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through the end of the study at Week 48 (Figure 3B). Responder

rates, defined by positive IFN-g responses to GP1 and GP2, peaked

with 63% at Week 6 for low-dose and 80% at Week 12 for high-dose

recipients (Figure 4, combined dataset; Supplementary Figure S2,
Frontiers in Immunology 11
datasets 1 and 2). The 2 mg dose also resulted in a better response

rate for participants than the 1 mg dose at Week 6 (71% versus 63%,

respectively). Rates of T cell response at any timepoint were 75%

and 86% for participants who received low- and high-dose INO-
FIGURE 4

Responder status to total LASV GP as measured by IFN-g ELISpot by group. Percent participants who displayed a cellular immune response to
stimulation with total LASV GP (the sum of glycoprotein peptide pools GP1 and GP2) for each group at each timepoint with Datasets 1 (interim
analysis) and 2 (long-term follow-up analysis) combined. Placebo groups (Groups C and D) are combined. Group A, up to n = 59; Group B, up to n
= 66; Placebo, up to n = 31. Responder status was assigned to any of the six participants with duplicate Week 24 data only if each were considered
responders for both Datasets 1 and 2. LASV, Lassa virus; GP, glycoprotein; IFN-g, interferon-gamma; ELISpot, Enzyme-linked immunosorbent spot.
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4500, respectively, compared to 26% for those who received placebo

(Table 7, combined dataset; Supplementary Table S2, dataset 1;

Supplementary Table S3, dataset 2). Participants from the high-dose

INO-4500 group generated the highest mean peak responses to

stimulation with total LASV GP (324 SFU/106 PBMCs) followed by

low-dose INO-4500 (198 SFU/106 PBMCs) then placebo (103 SFU/

106 PBMCs) groups.
Discussion

Lassa fever remains a persistent public health threat in West

Africa, yet no licensed vaccine is currently available. Although

research began in the 1970s, progress has been limited by the

extensive genetic diversity of LASV strains and insufficient

surveillance data (12, 36). In more recent years, the disease has

gained global attention and was added to the WHO Research and

Development Roadmap (9). Since 2015, 34 vaccine candidates have

been developed, and four are currently in clinical trials: INO-4500,

rVSVDG-LASV-GPC, MV-LASV, and EBS-LASV (12, 36, 37). This

includes a CEPI-supported Phase II clinical trial ongoing in West

Africa to evaluate a recombinant vesicular stomatitis virus (rVSV)

vector vaccine, rVSVDG-LASV-GPC (10, 14). INO-4500 is notably

the only DNA-based vaccine investigated in clinical trials (37).

One of the scenarios of the WHO’s target product profile (TPP)

for development of a LASV vaccine focuses on non-emergency,

preventive vaccine campaigns for those living in endemic areas and

individuals such as healthcare workers at high risk of exposure (38).

This approach is further supported by a recent epidemiological

modeling study supported by CEPI and conducted by the

University of Liverpool and the University of Oxford. The

authors analyzed the projected impact of six LASV vaccination

scenarios over a 10-year period. The analysis found that

preventative vaccination strategies targeting endemic areas were

significantly more effective than reactive vaccination based on

estimated rates of infections, hospitalizations, deaths, disability-

adjusted life years (DALYs), and societal expenditures. Of the

estimated 2.7 million LASV infections occurring annually in West

Africa, causing a burden of approximately 200,000 DALYs,

population-wide preventative vaccination in a non-emergency
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setting could potentially save $20.1 million in DALY losses and

$128.8 million in societal costs – ten times more than a reactive

outbreak response (4). Further, a 2023 survey of eightWest African-

based LF experts also recommend prioritizing preventative

vaccination of endemic areas due to the unclear cost-benefit ratio

of reactive campaigns (39).

The Phase 1b study reported here provides important evidence

supporting the safety, tolerability and immunogenicity of INO-

4500, a synthetic DNA vaccine encoding for LASV GPC, which was

administered by ID injection followed by EP. Building on the

encourag ing resu l t s o f an US-based Phase 1a t r ia l

(NCT03805984), in which we observed no SAEs or AESIs, the

current LSV-002 study provides further evidence that INO-4500

administered ID and followed by EP exhibited a well-tolerated

safety profile in a target population of healthy Ghanaian adults. The

vaccine produced no Grade 3 or higher treatment-related TEAEs,

and 88.6% of all TEAEs were Grade 1. Notably, no cases of hearing

loss or sensorineural impairment, key concerns for LASV infection,

were observed following INO-4500 vaccination in this study.

Although sensorineural hearing loss occurs in approximately 30%

of LF survivors (32, 33), evidence to date from both clinical trials

and preclinical studies evaluating LF vaccines, including one

evaluating INO-4500 in an LASV challenge study involving

NHPs, has revealed no reports of hearing loss post-LASV

vaccination (15, 33, 40).

Our results further support the clinical trial evidence regarding

the favorable safety profile of the DNA vaccine platform. Across

multiple studies utilizing this technology, the reported AEs were

mild to moderate, with no evidence to date that they cause severe or

persistent systemic AEs (41–46). Furthermore, the DNA vaccine

platform has been shown to have a lower risk of local and systemic

AEs following immunization as compared to alternative vaccine

modalities (inactivated vaccine, mRNA, viral-based vector, and

protein subunit vaccines), as reported in a meta-analysis by

Kouhpayeh, et al. (47).

INO-4500 elicited humoral and cellular immune responses that

were statistically significant over placebo. While both INO-4500

groups exhibited significant increases in LASV GP-specific binding

antibodies at Weeks 6 and 12 compared to placebo, with the high-

dose group eliciting the strongest responses, humoral response
TABLE 7 Cellular immune responses to LASV GP at any timepoint as measured by IFN-g ELISpot, combined datasets in LSV-002 study.

LASV pool

INO-4500, low-dosea INO-4500, high-dosea Placebob

Response, %
(n/N)

Mean peak
SFU

Response, %
(n/N)

Mean peak
SFU

Response, %
(n/N)

Mean peak
SFU

GP1
52.5

(31/59)
79.1

59.1
(39/66)

106.1
25.8
(8/31)

50.8

GP2
69.5

(41/59)
123.5

84.8
(56/66)

221.3
19.4
(6/31)

52.9

Total
74.6

(44/59)
198.1

86.4
(57/66)

324.4
25.8
(8/31)

102.6
LASV, Lassa virus; GP, glycoprotein; IFN-g, interferon-gamma; ELISpot, enzyme-linked immunosorbent spot assay; %, percent; n/N, number of participants; SFU, spot forming units.
All data for % response and mean peak were rounded to the nearest tenth.
a. 1 mg INO-4500 was injected ID followed by EP on one (Low-Dose, Group A) or two (High-Dose, Group B) different limbs at each dosing visit.
b. Placebo groups (Groups C and D) are combined.
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levels and seroconversion rate remained low (<10%) through Week

12. Negligible IgG and IgM antibody responses have been observed

in viremic patients during acute LASV infection (48, 49), which may

explain, in part, why low rates of seroconversion were observed after

INO-4500 administration during the present study. Moreover,

structural properties, such as the glycan shield, obscure the

glycoprotein subunits of the LASV GPC (49) and the presence of

irrelevant LASV GPC conformations (50) have been reported to

mask key regions of the GPC, making it harder for antibodies,

including neutralizing, to recognize and bind to their target. In fact,

both LASV infection and vaccination have resulted in delayed and/

or weak neutralizing antibody responses (49). For these reasons,

neutralizing antibody responses were not assessed at the early

t imepoints indicated in the current study. However ,

characterization at both early and later timepoints may have

offered additional insights into the humoral immune responses to

vaccination with INO-4500.

Cellular immune responses were collected across two analytical

runs to support informal interim and long-term follow-up analyses.

When analyzed individually, responses from these two datasets

differed in range and magnitude across time points, perhaps due in

part to the range in number of participants tested at different

timepoints across both datasets; however, overall trends were

similar when analyzed in combination. INO-4500 induced T cell

responses in both groups, with the high-dose group eliciting the

strongest mean peak response followed by the low-dose group,

which was two-fold greater than placebo. 71% and 80% of

participants from the high-dose group responded at Week 6 and

Week 12, respectively. Notably, T cell responses were durable and

remained elevated above baseline through Week 48 in both INO-

4500 groups, underscoring the vaccine’s lasting immunogenicity.

Robust CD4+ and CD8+ T cell responses have been observed

during and following LASV infection in LF survivors and are

likely important for control and clearance (19, 51, 52). While

cellular immune responses were assessed by ELISpot in the

current study, deeper characterization of LASV-specific CD4+

and CD8+ T cell responses may have offered additional insights

into the cellular immune responses to vaccination with INO-4500.

Although the 2-dose vaccine regimen examined in this study

demonstrated an adequate and durable cellular immune response, the

low humoral response reported may be seen as a limit for the use of

INO-4500 as a preventative measure. It is worth noticing that INO-

4500 vaccinated NHPs exposed to a lethal dose of LASV Josiah strain

a year later survived while presenting low to no humoral response at

the initiation of the challenge (15). Nevertheless, based on preclinical

studies in NHPs with INO-4500 in which 2- and 3-dose regimens

were evaluated, seroconversion rates and magnitude in binding, and

more importantly, in neutralizing antibody levels, increased to a

greater degree with a 3-dose vaccination schedule (Andrade V et al.

[manuscript in preparation]). Echoing the clinical developments of

other DNA vaccines (43, 45, 50), future clinical studies with INO-

4500 could benefit from exploring a 3-dose regimen. Finally, while

this study demonstrated durability of immune responses for 12

months, further research is needed to assess longer-term durability

and achieve the minimum WHO TPP benchmark of three years.
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The DNA medicine platform used as the basis for INO-4500 is

uniquely positioned to prevent infectious diseases in non-emergency

settings, and has shown promising results as an effective, versatile

platform (43, 45, 46, 53, 54). Using this innovative technology, DNA

vaccines can be rapidly designed using a common platform to express

relevant antigens and readily integrated into large-scale

manufacturing (55, 56). They are not constrained by ultra cold-

chain requirements due to their thermostability at refrigerated

temperatures, making them particularly well suited for deployment

in endemic regions with limited infrastructure (57). Unlike viral

vector platforms, DNA vaccines are conducive to repeated dosing

without eliciting anti-vector immunity, a critical advantage for long-

term immunization strategies (58, 59) which could require the use of

booster doses, as is now being discussed for the prevention of Ebola

Virus Disease (EVD) (60). These features align well with the logistical

and public health demands of preparing for LASV outbreaks in

endemic regions.

In conclusion, this study demonstrates the safety, tolerability,

and immunogenicity of INO-4500 administered by ID injection and

followed by EP. Continued development of INO-4500 would

potentially provide access to a safe, well tolerated and effective

vaccine for the prevention of Lassa fever in healthcare workers and

those living in endemic areas ahead of outbreaks. Such a vaccine

could substantially reduce the burden of LF in West Africa and

mitigate the risk of broader regional or global spread, fulfilling an

urgent global health priority.
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