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The pathophysiology of inflammatory bowel disease (IBD), a chronic intestinal

inflammatory disease, is tightly associated with immunological dysregulation,

intestinal flora abnormalities, and intestinal epithelial cell destruction. Ferroptosis

—a non-apoptotic cell death form that differs from the standard apoptotic mode

—plays a significant regulatory role in the development of IBD through iron-

dependent lipid peroxide accumulation. Iron serves as a critical component for

maintaining the normal function of macrophages. Macrophages have been

demonstrated to play multifaceted roles in the pathogenesis and progression

of inflammatory bowel disease. The iron metabolism within macrophages may

potentially influence the development of IBD and colitis-associated cancer. This

paper summarizes the present research on ferroptosis and macrophages and

their related molecular mechanisms. It also discusses the interactive function of

macrophage ferroptosis in the development of IBD and inflammatory-cancer

transformation. The development of new theoretical foundations and

intervention techniques for the prevention and treatment of IBD and colitis-

associated colorectal cancer will be facilitated by the growth of this

research area.
KEYWORDS
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1 Introduction

Inflammatory bowel disease (IBD) is one of the chronic, progressive, and recurrent

intestinal diseases, including ulcerative colitis (UC) and Crohn’s disease (CD). Even though

the pathogenesis’s causes and processes are yet unknown, they are intimately linked to

immunological dysfunction, intestinal mucosal barrier impairment, and inflammatory
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1658280/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1658280/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1658280/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1658280/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1658280/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1658280&domain=pdf&date_stamp=2025-09-23
mailto:fpmvv@126.com
https://doi.org/10.3389/fimmu.2025.1658280
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1658280
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2025.1658280
damage (1). The incidence of IBD is still increasing every year, and

some studies have shown that some patients with IBD have the

possibility of further transformation to colon cancer (2). Therefore,

it is essential to study the pathogenesis behind it to prevent and treat

this disease. Intestinal epithelial cells (IECs), which have a very fast

rate of cell renewal and are typically characterized by significant

epithelial erosions, have been shown to play a key role in IBD in

recent studies. This phenomenon is common in a variety of

intestinal disorders, such as IBD. Natural apoptosis of IECs is

essential to maintaining their functionality, which helps to

maintain their ability to renew continuously and the balance of

tissue homeostasis. However, when the IECs undergo excessive

apoptosis, it exacerbates the elevated intestinal permeability and the

dysfunction of the intestinal mucosal barrier, a process that is

considered to be a central factor in the development of IBD (3).

Macrophages, which are abundant in the digestive tract, are

crucial for preserving immunological and inflammatory

homeostasis in IBD (4). Macrophages can affect IBD through

various metabolic pathways such as glucose metabolism, fatty

acid metabolism, amino acid metabolism, etc. (5–8). Macrophages

in IBD also display metabolic traits that set them apart from other

forms of inflammatory diseases. Intestinal macrophages promote

IECs by functioning as metabolic symbionts in addition to immune

protection. This occurs by stimulating cells to promote intestinal

epithelial differentiation and homeostasis, thereby synergizing

immunomodulatory and tissue homeostatic maintenance

functions (9), and their persistent absence leads to intestinal

vascular-neurological abnormalities, impaired barrier function,

and intestinal motility dysfunction (10). Scott and his team

showed that (11) antibiotic-induced microbiota disruption

promotes the activation of glycolysis and the oxidative

phosphorylation (OXPHOS) pathway in colonic macrophages. At

the same time, the gastrointestinal tract differs in various types of

microenvironments, and these differences play a key role in

delineating the metabolic specificity of intestinal macrophages.

Macrophages in the gut are usually polarized into two

phenotypes, M1 and M2, and under certain conditions, the two

phenotypes can also transform into each other. M1 macrophages

promote inflammation by recruiting leukocytes, activating the

vascular endothelium and the immune system, whereas M2

macrophages inhibit inflammation by scavenging dead cells,

producing anti-inflammatory factors, and inhibiting leukocyte

recruitment (12–14). Thus, macrophages control the progression

of IBD by promoting and inhibiting the inflammatory response.

Targeting the intestinal system, IECs death weakens the

structural integrity of the gut, leading to damage of the physical

barrier by oxidative stress. As interactions between cells and their

environment continue, other barriers in the gut are successively

compromised, ultimately triggering a series of abnormalities in gut

function (15). In addition, programmed cell death patterns in the

gut have a significant impact on tissue repair processes, an effect

that predisposes to an increased long-term risk of inflammation

transitioning to intestinal fibrosis and cancer (3). Therefore, it is

particularly important to illustrate the mechanism of ferroptosis

and its role in IECs, and the imbalance of iron homeostasis in
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macrophages can also influence the progression of IBD to a certain

extent. Dysregulation of iron metabolism can affect macrophage

cytokine release and macrophage polarization, thereby influencing

the immune system and inflammation (16). In recent years, the

interaction between ferroptosis and macrophages has attracted

much attention. Ferroptosis and macrophages are jointly involved

in the pathogenesis of IBD. Therefore, starting from the regulation

of macrophages and their polarization and the inhibition of

ferroptosis has an important role in the treatment of IBD (17, 18)

and is a potential way to control inflammation, immune response,

and influence the progression of IBD. In this review, we illustrate

the pathological mechanisms of ferroptosis as well as discuss the

potential role of iron homeostasis in macrophages in the treatment

of IBD.
2 Ferroptosis

2.1 Overview of ferroptosis

Ferroptosis is a form of iron-dependent non-apoptotic cell

death first proposed by Dixon (19) et al. in 2012, which is

distinguished from traditional cell death modalities such as

apoptosis, necrosis, and autophagy and is usually characterized by

differences in biochemical, morphological, and genetic aspects.

Ferroptosis is mostly characterized biochemically by iron

accumulation and lipid peroxidation, and the accumulation of

excess iron generates large amounts of reactive oxygen species

(ROS) via the Fenton reaction, leading to redox damage and thus

promoting cellular ferroptosis (19, 20). Iron metabolism-related

genes such as transferrin (TF) and ferrous transfer protein (FPN)

affect iron uptake in erythroid cells by regulating iron

homeostasis.TF binds to the transferrin receptor (TFR) on the cell

surface to form a complex, which is mediated by receptor-mediated

internalization into the endosomes and then reduces Fe3+ to Fe2+ in

an acidic environment via the six-transmembrane epithelial antigen

of prostate 3 (Steap3). Eventually, it is transported across the

membrane by the divalent metal transporter 1 (DMT1) to the

cytoplasmic iron pool (LIP) for storage (21, 22). Compared with the

traditional death mode, ferroptosis is usually characterized by a

necrotic morphology, which often shows abnormal mitochondrial

morphology under the microscope, such as shrinkage of

mitochondria, accompanied by an increase in membrane density

and a decrease or even disappearance of cristae (19, 23, 24).

Previously, however, it has been shown that compounds such as

erastin can destroy tumor cells through non-apoptotic cell death

mechanisms, and RSL3 has also been found to contribute to such

cell death patterns (25). The function of erastin can be dependent

on voltage-dependent anion channels (VDAC). It is worth noting

that ligands for VDAC can selectively trigger non-apoptotic cell

death processes against some tumor cells carrying activating

mutations in the RAS-RAF-MEK pathway (24). Iron, as a trace

element, is involved in the normal physiological functions of the

human body. Both iron deficiency and iron overload can affect the

health of the organism (26), so maintaining the balance of iron
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homeostasis in the body is of great value in promoting the healing of

diseases. Therefore, it is particularly important to illustrate the role

of ferroptosis mechanisms in IBD. The detailed mechanisms of

ferroptosis are shown in Figure 1.
2.2 Mechanism of ferroptosis

Ferroptosis is a form of cell death regulated by multiple

pathways and mechanisms in a coordinated manner. Its

occurrence depends on complex processes such as iron

metabolism disorders, lipid peroxidation, and the interaction of

autophagy regulatory networks. Therefore, the following section

describes the mechanisms of induction, inhibition, and

bidirectional regulation of ferroptosis. The core of the ferroptosis

induction mechanism lies in the disruption of intracellular iron

homeostasis and the accumulation of lipid peroxidation. Under

normal conditions, intracellular iron metabolism is a complex

physiological process. Intracellular iron homeostasis is maintained

in balance through the regulation of the iron transport system. In

contrast, the ferroptosis process is precisely regulated by a variety of

iron metabolism-related regulatory factors, and iron uptake,

storage, exocytosis, and turnover and utilization affect the

sensitivity of cells to ferroptosis. Therefore, the homeostasis of

iron metabolism and the regulation of ferritin may become

important regulatory mechanisms of ferroptosis (27, 28).

Ferroptosis sensitivity is modulated by iron dysregulation through
Frontiers in Immunology 03
multiple pathways: Extracellular Fe3+ bound to TF enters cells via

TFR1-mediated endocytosis. It is then reduced to Fe2+ by prostate

six-transmembrane epithelial antigen 3 (STEAP3) and transported

to the LIP by DMT1. In addition to TF-mediated iron uptake, non-

transferrin-bound iron (NTBI) is transported by solute carrier

family 39 member 14 (SLC39A14), which aids in the activation of

ferroptosis (29–31). Significantly, ferritinophagy plays a key role in

regulating intracellular iron levels. Nuclear receptor coactivator 4

(NCOA4) acts as a specific receptor that delivers ferritin to

autophagosomes. Through multiple pathways, autophagy-related

proteins including RAB7A, SQSTM1, and HSP90 further promote

lipid peroxidation during ferroptosis (32–34). In addition,

ferroptosis execution also depends on lipid metabolism and

peroxidation. Lipid peroxidation is brought on by excess iron

through ROS produced by the Fenton reaction. Polyunsaturated

fatty acids (PUFAs), critical components of cell membranes, are

particularly vulnerable to ROS attack due to their structural

characteristics (35). The production of PUFA-containing

phospholipids (PUFA-PLs) and the metabolism of PUFAs have a

major impact on ferroptosis sensitivity. Key enzymes acyl-CoA

synthetase long-chain family member 4 (ACSL4) and

lysophosphatidylcholine acyltransferase 3 (LPCAT3) drive PUFA

incorporation into phospholipids: ACSL4 converts PUFAs to

PUFA-CoAs, whereas LPCAT3 catalyzes PUFA-PL formation,

u l t imate ly inducing ferroptos i s (36 , 37) . Therefore ,

downregulating ACSL4 or knocking down LPCAT3 represents a

potential therapeutic strategy. Additionally, mitochondrial
FIGURE 1

Mechanisms of ferroptosis.
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dysfunction exacerbates ferroptosis by generating excessive ROS

and lipid peroxides. Endoplasmic reticulum (ER) stress and

mitochondrial regulators also participate in this process (38). In

immune regulation, activated CD8+ T cells trigger tumor cell

ferroptosis by secreting g-Interferon (IFN-g) to downregulate

SLC3A2/SLC7A11 expression, thereby enhancing antitumor

immunity (39).

The core of the ferroptosis defense mechanism lies in the

multilevel regulation of the antioxidant defense system: The

system xc−/GSH/GPX4 axis is the most prominent pathway to

inhibit the ferroptosis system. System xc− is a heterodimer

composed of SLC7A11 and SLC3A2 that imports cystine. This

cystine is reduced to cysteine for glutathione (GSH) synthesis.

GPX4 utilizes GSH to reduce lipid peroxides; loss of GPX4

activity directly triggers ferroptosis (40). Notably, GTP

cyclohydrolase 1 (GCH1) is a recently identified ferroptosis

suppressor independent of GPX4. GCH1 and its metabolite

tetrahydrobiopterin (BH4) form the GCH1-BH4-DHFR pathway.

This pathway exerts antioxidant effects by generating BH4 and its

derivative BH2. Overexpressing GCH1 significantly reduces

damage in GPX4-deficient cells (41). Apoptosis-inducing factor

mitochondria-associated 2 (FSP1/AIFM2) protects against GPX4

deficiency-induced ferroptosis. FSP1 catalyzes NAD(P)H-

dependent coenzyme Q10 (CoQ10) regeneration, establishing the

FSP1-CoQ10-NAD(P)H pathway. This system cooperates with

GPX4 and GSH to inhibit phospholipid peroxidation and

ferroptosis (42, 43). Nuclear factor erythroid 2-related factor 2

(Nrf2) is a master transcription factor regulating antioxidant

responses in iron and lipid metabolism. As the specific receptor

for Kelch-like ECH-associated protein 1 (KEAP1), Nrf2 balances

oxidative stress through the KEAP1-Nrf2-GPX4 axis (44). Adipose-

derived stem cell (ADSC) exosomes also suppress inflammation,

oxidative stress, and ferroptosis by upregulating Nrf2 and GPX4

(45). In addition, Chen et al. (46) pointed out that the activation of

multiple pathways in the inflammatory signaling pathway, such as

JAK-STAT, and NF-kB, influences iron metabolism and lipid

peroxidation, closely linking to ferroptosis. It has been shown that

some novel targeted drugs can effectively intervene in ferroptosis

through the above inflammatory pathways.

In the process of investigating the mechanisms related to

ferroptosis, in addition to the unidirectional induction and

inhibition mechanisms, studies have illustrated the dynamic

balancing roles of two key molecules in ferroptosis, P53 and HO-

1. P53 is a tumor suppressor gene that mediates cell cycle inhibition,

apoptosis, and senescence and participates in metabolic activities

(47). On the one hand, P53 can affect GPX4 activity by

downregulating cystine expression, leading to reduced cellular

antioxidant capacity, ROS accumulation, and ferroptosis (48). On

the other hand, P53 exhibits an inhibitory effect on ferroptosis in

some cells by decreasing system xc− activity or regulating GSH

metabolism via the P53–P21 axis. Taken together, the regulation of

ferroptosis by P53 may be bidirectional (40). Significantly, HO-1 is

closely associated with ferroptosis and oxidative stress and can act

as a key mediator to induce ferroptosis by catalyzing iron

accumulation and cellular redox mechanisms (49, 50).
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Furthermore, treatment with the ferroptosis inhibitor ferrostatin-

1 reduces HO-1 levels, thereby alleviating iron overload. This occurs

because decreased HO-1 lowers ferritin and TF levels regulated by

it (51).

In summary, the regulatory network of ferroptosis is

characterized by a high degree of complexity and dynamic

equilibrium. The fine regulation between induction and inhibition

mechanisms determines the fate of cells, and the bidirectional

regulation of molecules such as P53 and HO-1 further increases

the dimension of regulation. In-depth analysis will not only help to

illustrate the biological nature of ferroptosis but also provide a

theoretical basis and potential targets for the development of

therapeut ic s t ra teg ies aga ins t inflammat ion , cancer ,

neurodegenerative diseases, and ischemia–reperfusion injury.
2.3 IBD and ferroptosis

There is increasing evidence that programmed cell death plays

an important role in the development of intestinal diseases, causing

damage to tissues such as the intestinal mucosa and thus

exacerbating the inflammatory response, there may even be a

long-term risk of transformation of inflammation to cancer. It

has been shown that ferroptosis is involved in the death of IECs

in IBD and that ferroptosis is involved in the inflammatory

response in IBD through lipid peroxidation, iron deposition, and

excessive ROS, ultimately leading to IECs death. Inflammatory

response, which ultimately leads to IECs death and extensive

epithelial erosion (3, 52, 53). There is a link between ROS

production and IBD and its cancerous progression. In addition,

iron may have a direct effect on IECs function or create a

pathological environment in the gut that can induce stress-related

apoptosis in IECs by altering microbial homeostasis in the gut.

Essential features of ferroptosis, including elevated levels of lipid

peroxidation, GSH depletion, GPX4 inactivation, and disturbances

in iron homeostasis, are observed in intestinal tissues from IBD

patients as well as in animal models of IBD (54–56).

Ferroptosis-related molecules, genes, and proteins are closely

associated with the development of IBD. Recently, Nrf2/HO-1 has

been recognized as one of the potential targets for the treatment of

IBD, which slows down IECs ferroptosis by reducing intestinal

inflammation and injury by maintaining redox homeostasis (57). In

addition, Nrf2, P53, and ATF3 can all affect GSH synthesis by

mediating SLC7A11 expression (48, 58). BACH1 modulates

inflammation and oxidative stress via the Nrf2/HO-1 pathway.

Silencing this gene enhances HO-1 expression, thereby

suppressing ROS generation (59). Reduced BACH1 protein levels

are also associated with the upregulation of genes involved in the

GSH synthesis pathway. Furthermore, this protein suppresses the

transcription of ferritin and FPN genes, inducing cellular ferroptosis

(59, 60). Targeted inhibition of ACSL4 treatment restores GPX4

expression, reduces COX2 expression, and decreases lipid

peroxidation can effectively alleviate lipopolysaccharide (LPS)-

induced ferroptosis and inflammation, thereby improving LPS-

induced IECs dysfunction (61). It has been shown that NEDD4L
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deficiency promotes IECs ferroptosis by inhibiting GPX4

expression through decreasing SLC3A2 expression. The

ferroptosis inhibitor reduces colitis susceptibility in NEDD4L-

deficient mice, and thus it can be a therapeutic target for IBD by

maintaining intestinal homeostasis (62). Furthermore, the

phosphorylation level of STAT3 was downregulated in IEC-6 cells

treated with H2O2, and Fer-1, a ferroptosis inhibitor, was able to

restore and reactivate the phosphorylation status of STAT3.

Moreover, H2O2 showed a cumulative effect on the degree of

ferroptosis when combined with STAT3 phosphorylation

inhibitors (54).

Interestingly, iron metabolism in IBD exhibits a paradoxical

pathology: Approximately 60%-80% of patients develop iron

deficiency due to chronic blood loss, reduced iron intake, and

impaired intestinal absorption. Hepcidin inhibits intestinal iron

absorption by degrading the iron exporter FPN on enterocytes.

Meanwhile, intestinal macrophages accumulate intracellular iron

from increased erythrophagocytosis of red blood cells, generating

ROS through the Fenton reaction, activating inflammasomes and

releasing pro-inflammatory factors, thus forming a vicious cycle of

inflammation and iron overload (63, 64). Conventional iron

supplementation corrects anemia but can also worsen intestinal

inflammation. Oral iron supplements lead to the accumulation of

free iron in the gut, promoting the proliferation of pathogenic

microorganisms and intestinal flora imbalance, and simultaneously

inducing mucosal lipid peroxidation damage. In contrast, iron

chelators reduce local free iron concentrations within

macrophages, and this shift promotes macrophage polarization

from the pro-inflammatory M1 phenotype toward the anti-

inflammatory M2 phenotype, thereby alleviating oxidative stress.

However, it may exacerbate the state of systemic iron deficiency (64,

65). Diets rich in dietary lipids or high in dietary iron contribute to a

decrease in GPX4 activity and thus increase the risk of IBD (66),

whereas iron chelators and iron replacement therapies ameliorate

IBD by decreasing lipid peroxidation and modulating gut flora (67,

68). In addition, the AHR repressor (AHRR) is a transcription

factor that promotes intestinal immune response, and inhibition of

AHRR expression can improve redox imbalance and lipid

peroxidation in intestinal intraepithelial lymphocytes (IELs) to

slow the progression of IBD (69). Exosomes secreted by human

umbilical cord MSCs (hucMSC-Ex) possess the ability to inhibit

ferroptosis by reducing the accumulation of lipid peroxidation

products and enhancing the levels of GPX4 and GSH in vivo, a

process that contributes to the reduction of intestinal inflammation

and facilitates tissue damage repair (70). Most importantly, when

iron homeostasis is imbalanced, excess iron is absorbed through the

digestive tract and accumulates in the colon, leading to intestinal

dysbiosis and probiotic attenuation, triggering ferroptosis

mechanisms and inducing inflammatory responses (68). Animal

studies have demonstrated that dysbiosis is a key pathology in iron

overload-promoted IBD: Colony clearance exacerbates ferroptosis-

associated inflammation, whereas colony remodeling reverses this

pathology (71, 72). Moreover, there is evidence that bile acid

metabolites produced by intestinal flora can also downregulate

ferroptosis proteins, reverse iron homeostatic imbalances, and
Frontiers in Immunology 05
repair the intestinal barrier to alleviate UC via the Nrf2/GPX4

pathway (73, 74). NOX1, which is highly expressed in colon tissues,

can mediate IBD and carcinogenesis through a dual mechanism of

action (75, 76), so by regulating NOX1, this substance promotes

ferroptosis and cancer cell death. In conclusion, the impact of iron

metabolism on the intestinal tract is contradictory. Therefore, it is

crucial to regulate iron homeostasis in clinical practice to maintain

iron metabolism. Maintaining iron homeostasis provides an

important theoretical basis and direction for the development of

new therapies targeting ferroptosis in IBD in future clinical practice.
3 Macrophages and ferroptosis

3.1 Mutual regulation of macrophage and
ferroptosis

During the phase of inflammation resolution, macrophages

phagocytose programmed apoptotic cells, a process called

efferocytosis. Efferocytosis is one of the main roles in alleviating

inflammation and restoring tissue homeostasis, and altered

metabolic functions in macrophages can modulate efferocytosis to

some extent (77). Macrophages are tasked with the removal of

ferroptosis cells. The presence of ferroptosis cells can activate

macrophage-related functions or contribute to inflammatory

response generation and macrophage recruitment by activating

inflammatory pathways (78). In addition, gut flora metabolites

inhibit ferroptosis via receptor modulation of macrophages and

affect the differentiation and function of cells associated with

immune regulation and inflammatory response, respectively (79).

FPN1 is one of the many iron-homeostatic proteins that influence

the function of the immune system. FPN1-deficient macrophages

cause a significant elevation of TNF-a and IL-6, and their

inflammatory factor aberrations are closely associated with

imbalances in cellular iron homeostasis (80). IFN-g significantly

enhanced the iron export effect in Salmonella-infected phagocytes

by downregulating TFR1-mediated iron uptake and upregulating

the expression of the iron-exporting protein FPN1. This cytokine

synchronously reduces intracellular iron reserves, which both limits

intracellular iron acquisition by pathogenic bacteria and promotes

NO and TNF-a synthesis through the regulation of iron

homeostasis, forming a multilayered immune response

mechanism (81). Macrophage migration inhibitory factor (MIF)

acts as an inflammatory cytokine. It regulates macrophage

migration and mediates pathological processes in the tumor

microenvironment. Exosomal MIF enhances macrophages’

resistance to ferroptosis by decreasing ROS levels in the cells.

Simultaneously, it balances cell survival and intracellular oxidative

damage (82). Nitric oxide synthase 2 (NOS2) also plays a critical

role in host defense against Salmonella infection, maintaining

macrophage antimicrobial efficacy through the regulation of iron

metabolism, whereas defects in NOS2 affect iron metabolism and

FPN1 expression, thereby reducing host resistance to infection (83).

In addition, overexpression of FPN can inhibit the proliferation of

Mycobacterium tuberculosis in macrophages and simultaneously
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reduce the upregulation of inducible nitric oxide synthase (iNOS)

protein expression and its bactericidal activity, and IFN-g can also

reverse a series of reactions triggered by overexpression of FPN (84).

It has also been demonstrated that a lack of the hemochromatosis

gene (HFE) deficiency leads to low iron in macrophages to inhibit

inflammatory factor production, whereas high iron accumulation

triggered by FPN downregulation acts as a pro-inflammatory signal

to activate cytokine expression (85). Macrophages rely on NOX2-

containing NADPH oxidase to generate large amounts of ROS to

constitute an antimicrobial infection mechanism and achieve a

balance between pathogen clearance and inflammatory damage

regulation, precisely regulating the immune system (86). ROS

produced by macrophages can effectively restore lysosomal

function, improve autophagy, activate M1-type macrophages, and

promote the production of inflammatory factors, which creates an

opportunity and environment for ferroptosis (87).

Macrophages can be categorized into M1-type macrophages,

which have pro-inflammatory properties and are involved in the

clearance of pathogens but may cause tissue damage. M2-type

macrophages have functions such as anti-inflammation and repair

and ar e invo l v ed in fibro s i s , wound hea l i ng , and

immunosuppression (88, 89). Macrophage phenotypic

polarization is regulated by specific cytokines. M1-type

macrophages are driven by pro-inflammatory factors such as

IFN-g and TNF, activate STAT1, IRF5, and NF-kB pathways, and

inhibit ferroptosis-induced lipid peroxidation through expression of

inducible iNOS and production of NO, which in turn inhibits

ferroptosis-induced lipid peroxidation, and their iron retention

mechanism reduces the tissue iron concentration for

bacteriostatic and antitumor activity (90, 91); M2 macrophages

depend on anti-inflammatory factors such as IL-4, IL-13, IL-10, and

other anti-inflammatory factors to activate and mediate STAT6,

IRF4, and PPARg signaling, whereas M2 macrophages release iron

to promote microenvironmental cell growth and tissue repair while

favoring tumor proliferation (92). M1 macrophages present a low

expression of FPN, CD163, and HO-1, accompanied by high ferritin

expression to maintain iron retention; the M2 type, in contrast,

shows a high expression of all three with reduced ferritin,

promoting iron metabolic export (93). Different studies have

shown that differences in macrophage activation status

significantly affect their iron metabolism status and ferroptosis

sensitivity. RECALCATI et al. (94) showed that M2 macrophages

exhibit more active iron metabolism and are more pro-proliferative

compared with M1 macrophages. Agoro et al. (95) demonstrated

that, in addition to promoting M2 polarization and inhibiting M1

pro-inflammatory responses, iron overload also promotes iron

metabolism and inhibits the M1 pro-inflammatory response by

reducing NF-kB nuclear translocation, pro-inflammatory factors,

and iron-modulating hormone expression and restores FPN. M1-

type macrophages are less sensitive to ferroptosis induced by the

GPX4 inhibitor RSL3, whereas M2-type macrophages are more

susceptible to such inducers due to low iNOS expression (91). Jiahui

et al. (96) demonstrated that exosomal CagA induces macrophage

ferroptosis through dysregulation of iron homeostasis and

modulation of ferroptosis-associated genes, consequently
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disrupting GSH metabolism and ROS equilibrium. Furthermore,

it activates the JAK-STAT pathway, driving M1 polarization with

upregulation of iNOS and IL-1b. In iron-loaded M2 macrophages,

LXRa induces the expression of hepcidin and FPN through an iron-

loading mechanism. It also plays a key role in modulating

macrophage inflammatory activity and iron-mediated

proinflammatory responses (97, 98). Interestingly, ferroptosis

tumor cells can contribute to the polarization of M2-type

macrophages to M1-type macrophages and modulate the

antitumor effects of TAMs with tumor cells during radiotherapy

and immunotherapy (99). Ferroptosis inhibitors were shown to

alleviate macrophage senescence and inflammatory factor levels by

inhibiting the expression of substances such as related proteins and

genes and promoting GPX4 expression, revealing a potential

mechanism of ferroptosis signaling antagonism (100).
3.2 The mechanism of ferroptosis in
macrophages

Iron can influence the development, function, and polarization

of macrophages, which are critical for systemic iron homeostasis.

There are two usual sources of iron in macrophages. First,

macrophages produce iron by phagocytosis of damaged and

decaying red blood cells (RBCs) and subsequent metabolic

breakdown of intracellular heme by HO-1 (101). Secondly,

extracellular iron binds to TF and enters macrophages via TFR1.

Macrophages regulate iron distribution through the expression of

FPN and ferritin, which are able to excrete excess iron out of the cell

in a timely manner or store it in the Fe3+ form. Hepcidin regulates

the flow of iron into the bloodstream by accelerating the

degradation process of the iron export factor, FPN, in target cells.

At the overall level, the maintenance of iron homeostasis relies on

the regulatory axis formed by hepcidin and FPN (102). Specifically,

hepcidin expression rises during iron overload, whereas iron export

processes mediated by FPN are inhibited, so FPN expression is

critical for regulating iron release from macrophages (103, 104). In

addition, hepcidin autocrine secretion creates a vicious cycle of iron

retention through the TLR4/NF-kB pathway, which is reinforced by

ox-LDL and time-dose-dependent upregulation of hepcidin

expression, ultimately leading to intracellular lipid deposition in

macrophages (105). In addition to the hepcidin-protein regulatory

axis, several molecular substances can influence iron content and

iron homeostasis. NEDD4L exerts ferroptosis resistance by blocking

iron-dependent oxidative damage by mediating the degradation of

proteins with pro-iron deposition effects (106). HO-1 and BACH1

increase the amount of free iron in two different ways (33, 60).

Under normal physiological conditions, iron levels in macrophages

are regulated by a variety of regulatory factors to maintain a

homeostatic state. However, under pathological conditions, if the

iron load of macrophages exceeds their processing capacity, free

radicals generated in the Fenton reaction may trigger iron

deposition and lipid peroxidation phenomena, which may

ultimately lead to cell death triggered by iron overload. Guo et al.

(107) demonstrated that hepcidin was able to inhibit the iron export
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process of macrophages mediated by FPN, which then contributed

to the intracellular iron level rise and drove osteoclast precursors to

undergo proliferation and differentiation. In addition, iron overload

regulates macrophage 5-lipoxygenase (5-LOX) bioactivity by

enhancing macrophage adhesion to the nuclear membrane and

generates inflammation by overexpression of inflammatory factors

such as IL-6 in macrophages (108). Dmitry et al. (109)

demonstrated that Nrf2, BACH1, and FPN are key regulators

enhancing macrophage resistance to ferroptosis. Inhibition of

BACH1 reduces unstable LIP levels and lipid peroxidation.

Conversely, suppression of FPN or Nrf2 increases LIP and lipid

peroxidation, sensitizing cells to ferroptosis upon RSL3 treatment.

Iron also affects macrophage function and regulates macrophage

polarization. Macrophages show a dramatic increase in ferrous iron

and lipid peroxidation in the early stages of infection, which returns

to normal in the late stages, and the addition of ferroptosis inducers

is effective in inhibiting bacteria (110). The antioxidant function of

GPX4 is essential for suppressing ferroptosis in macrophages.

Paradoxical ly , macrophages confer tolerance to l ipid

peroxidation-driven ferroptosis in the absence of GPX4 (111). Xia

et al. (112) demonstrated that iron is conducted through cellular

signaling pathways such as MAPK, NF-kB, and ATF4, affects

cellular metabolic processes such as glucose and lipids, and

influences macrophage polarization through epigenetic regulatory

methods such as miRNA regulation, DNA, and histone

modification. GCH1 suppresses LPS-induced macrophage

ferroptosis by activating the AMPK pathway, while concurrently

reducing polarization and pro-inflammatory cytokine levels (113).

Propionate, a therapeutic short-chain fatty acid for IBD, modulates

iron homeostasis and inhibits ferroptosis through regulating TFR1/

FTH1 expression. This promotes M2 macrophage polarization,

thereby decreasing pro-inflammatory factor secretion and

enhancing epithelial regeneration (114). RECALCATI indicated

that (94) ferritin (FT) was highly expressed in M1-type

macrophages, whereas the expression levels of FPN, HO-1, and

TFR1 were relatively low. In contrast, FT expression was low in M2-

type macrophages, whereas FPN, HO-1, and TFR1 showed a high

expression. Studies indicate that exosomes from adipose tissue

macrophages (ATMs) induce ferroptosis by targeting SLC7A11 to

inhibit GSH synthesis (115). The ER and mitochondria serve as

primary sites for ROS generation and metabolism. Silica triggers

ferroptosis in murine macrophages and amplifies inflammatory

responses, whereas Wnt/Ca2+ signaling activation exacerbates ER

stress and mitochondrial redox imbalance by downregulating GPX4

and SLC7A11 expression (116). Notably, LPS or inflammatory

cytokines upregulate SLC7A11 expression by activating the TLR4/

NF-kB pathway. This promotes GSH synthesis and enhances GPX4

activity, enabling the clearance of lipid peroxides and supporting

the survival of M1 macrophages. In contrast, M2 macrophages lack

sustained NF-kB activation, resulting in lower SLC7A11 expression.

Consequently, M2 cells primarily rely on GPX4 to directly reduce

lipid peroxides. When GPX4 activity is inhibited, M2 macrophages

become significantly more susceptible to ferroptosis than M1

macrophages (117, 118). Pannexin 1, a channel protein mediating

transmembrane transport, is a key therapeutic target involved in
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apoptosis and the regulation of IBD. Pannexin 1 deficiency

promotes M2-like polarization while inhibiting M1-like

polarization. It also increases GPX4 expression in M2-like

macrophages, establishing an anti-inflammatory and antioxidant

positive feedback loop (119). Inhibiting P53 reduces ROS and lipid

peroxidation. It also restores the levels of SLC7A11, GPX4, and

GSH. Brucella infection triggers ferroptosis in macrophages. This

process is regulated through the P53-SLC7A11-GPX4/GSH

pathway and suppresses intracellular bacterial survival (120). In

conclusion, ferroptosis and polarization in macrophages are caused

by multiple mechanisms such as iron metabolism, GSH depletion,

and GPX4 inactivation. Moreover, in different stages of macrophage

polarization, the expression pattern of iron-related genes will be

adjusted accordingly. The detailed mechanisms of ferroptosis in

macrophages are shown in Figure 2.

4 Effect of macrophage ferroptosis in
IBD and inflammation-cancer
transformation

4.1 Macrophage ferroptosis promotes IBD
progression

Macrophages participate in intrinsic immune defense through

phagocytosis and secretion of inflammatory mediators, and iron

homeostasis is of dual significance in maintaining macrophage

physiological function and IBD progression. Iron overload in the

gastrointestinal tract triggers the Fenton reaction and Haber–Weiss

reaction, leading to excessive accumulation of ROS, which destroys

membrane structure by oxidizing unsaturated fatty acids in the cell

membrane and triggers mitochondria-endoplasmic reticulum

dysfunction, which induces the expression of apoptotic proteins,

such as caspases, and necrotic proteins, resulting in death and

inflammatory deterioration of IECs damage. At the same time, an

imbalance of iron metabolism enhances the ability of pathogenic

microorganisms to adhere and invade, destroys the balance of

intestinal flora, and triggers clinical symptoms such as abdominal

pain and diarrhea (121). Exogenous iron can regulate 5-LOX

activity and induce IL-6 expression by enhancing macrophage

nuclear membrane binding capacity, thus confirming the

functional regulation of iron overload on macrophages. Thus, it

has been shown that iron specifically accumulates within

inflammation-activated colonic macrophages in a UC mouse

model (122). In addition, the mechanism of upregulation of

colonic FPN expression in UC may involve hepcidin-mediated

regulation of iron metabolism. As a major regulatory hormone

produced by the liver in response to high iron load and

inflammatory stimulation, hepcidin induces FPN1 to inhibit

intestinal iron uptake and reduces iron release from macrophages

during iron overload states (123, 124). In humoral immunity, IECs

secrete ferritin by extracellular vesicles (EV). Excessive ferritin

uptake increases cellular metabolic load, leading to iron

accumulation in macrophages. The resulting iron overload

condition promotes oxidative stress and inflammatory responses
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in these cells, thereby exacerbating intestinal inflammation (125). In

addition to iron overload, iron can lead to ROS accumulation via

the Fenton reaction, which causes lipid peroxidation and redox

imbalance to induce macrophage ferroptosis, leading to intestinal

epithelial injury. KAPRALOV et al. (91) revealed a novel redox

mechanism for the regulation of ferroptosis under pathological

conditions, whereby M1-type macrophages are highly susceptible

to ferroptosis and thus produce inflammatory mediators, leading to

the development of IBD. It was also found that given that

inflammation-activated macrophages all showed a specific

elevation of ferrous iron and that changes in intracellular ferrous

iron levels may affect multiple metabolic processes, which in turn

alter macrophage polarization status. Iron overload induces ROS

generation, and ROS further mediates a significant upregulation of

p53 protein expression and an enhancement of its acetylation

modification level. This molecular regulation directly triggers the

polarization of M1-type macrophages toward pro-inflammatory

directions and accelerates the progression of IBD (126). It was

shown that the STAT1 signaling pathway also regulates M1

macrophage polarization, whereas iron is mediated by blocking

IFNg-induced STAT1 phosphorylation, which in turn reduces

iNOS expression and M1-associated cytokine levels (127).

Another study demonstrated that a new substance, mineralized

liposome CLF, could reduce iron accumulation in intestinal cells

and effectively inhibit the ferroptosis process by re-establishing the

GSH/GPX antioxidant system and decreasing macrophage ROS

production and lipid peroxidation levels. At the same time, it
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reduces the susceptibility of M2-type macrophages to ferroptosis

and protects polarized macrophages from ferroptosis depletion

(17). g-Glutamylcysteine (gGC) plays a central role in antioxidant

and anti-inflammatory processes by regulating intracellular GSH

levels. During IBD progression, gGC deficiency induces GSH

depletion, consequently triggering macrophage ferroptosis and

M1-type polarization, which collectively exacerbate intestinal

inflammation. The engineered gGC-loaded microparticle (gGC-
MP) delivery system suppresses ferroptosis through dual

modulation: downregulating TNF-a and upregulating

cytoprotective proteins. This coordinated action modulates the

PI3K/AKT signaling pathway, ultimately promoting intestinal

barrier restoration and ameliorating inflammation (128).

Magnolin has a significant efficacy in alleviating DSS-induced

IBD. It regulates macrophage polarization by inhibiting ALOX5,

thereby reducing inflammatory cytokines and suppressing

ferroptosis in IECs (129). To sum up, these results suggest a

potential regulatory mechanism for macrophage ferroptosis in IBD.
4.2 Macrophage ferroptosis promotes the
progression of inflammation-cancer
transformation

Epidemiological and related studies have shown that colorectal

cancer risk is significantly elevated in IBD patients with long-term

colonic involvement due to the recurrent nature of IBD and the
FIGURE 2

Mechanisms of ferroptosis in macrophages.
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repeated damage and repair of the intestinal mucosa. Patients with

IBD-associated colorectal cancers are diagnosed at an advanced

stage and have a poor prognosis (2, 130). Animal experiments have

confirmed that inflammatory cell infiltration exacerbates the

malignant progression of colitis-associated colorectal cancer.

Therefore, balancing the bidirectional role of ferroptosis between

tumor cells and immune cells is crucial, and there is an urgent need

to develop more effective early risk assessment and therapeutic

targets to improve the status quo. Chronic recurrent inflammation,

through a pathological process triggered by sustained induction of

IEC DNA damage, induces cellular alterations and immune

responses and promotes tissue repair and cell proliferation,

leading to colitis-associated colon cancer (CAC). The

development of CAC is associated with a variety of in vivo

microenvironments, including cellular metabolism, immune cells,

and microbes (131). Macrophage infiltration and its polarization

create a microenvironment in the transition from inflammation to

tumor by exacerbating inflammation-associated mucosal injury and

can regulate tumorigenesis through aberrant activation of multiple

inflammatory pathways and dysregulated secretion of

proinflammatory factors (132–134). M1-type macrophage

polarization exacerbates inflammatory responses and induces

gene mutations, whereas M2-type macrophage polarization

partially antagonizes the pro-inflammatory effects of M1-type, but

the overall polarization imbalance still promotes malignant

transformation of epithelial cells. This pleiotropic mechanism of

action makes macrophages an important regulatory node linking

chronic inflammation to tumorigenesis (134–136). Tumor-

associated macrophages (TAMs), as a type of highly plastic

immune cell, have the dual functions of promoting and
Frontiers in Immunology 09
suppressing cancer. Studies have shown that its recruitment

process is closely related to the antitumor immune response in

the context of chronic inflammation, and TAM plays an important

role in promoting tumor cell invasion of parenchymal tissues,

enhancing tumor cell endocytosis, and other key aspects of tumor

progression by modulating the immune response cascade (137,

138). The structurally intact intestinal epithelium is a key

foundation for resistance to tissue damage and inflammation.

Iron-dependent lipid peroxidation-driven cell death can disrupt

intestinal barrier function, and the ROS it generates accelerates

intestinal mucosal injury and promotes IBD development.

Activation of intestinal cell proliferation pathways and

downregulation of ferroptosis-related gene expression effectively

inhibit the ferroptosis cascade, thereby significantly alleviating the

transition from colitis to CAC (139–142). As nanotechnology for

tumor therapy advances, researchers have developed a novel

combination strategy. By depleting GSH and accumulating ROS,

this method causes ferroptosis. At the same time, it promotes

macrophage polarization toward an antitumor phenotype,

effect ively remodel ing the immunosuppressive tumor

mic roenv i ronment (143) . S tud i e s have shown tha t

dihydroartemisinin (DHA) promotes iron accumulation and

suppresses GPX4, leading to ROS accumulation and NF-kB
activation. This induces ferroptosis in macrophages. Additionally,

DHA-treated TAMs exert antitumor effects by polarizing into a

pro-inflammatory phenotype through NF-kB activation (144). In

addition, many pieces of evidence suggest that ferroptosis-related

biomarkers have potential applications in the clinical management

of colon cancer (145). Gut flora-mediated cancer therapies may act

through ferroptosis inhibition of effector immune cells or
FIGURE 3

The mechanisms of macrophages’ ferroptosis are shown in IBD and inflammation-cancer transformation.
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enhancement of ferroptosis processes in immunosuppressed cells.

Inhibition of ferroptosis in regulatory macrophages may also impair

their immunosuppressive function and thus inhibit tumor

progression (142). Therefore, inhibition of macrophage

ferroptosis is important not only for alleviating IBD but also for

preventing the development of CAC. The mechanisms of

macrophages’ ferroptosis are shown in IBD and inflammation-

cancer transformation Figure 3.
5 Summary and outlook

In this paper, firstly, the concept of ferroptosis and its regulatory

mechanism were elaborated in detail, and then the relationship

between ferroptosis and macrophages with their polarization was

discussed through the perspective of iron metabolism and finally led

to the relationship between macrophage ferroptosis and IBD.

Ferroptosis is a novel type of programmed cell death caused by

lipid peroxidation, the pathogenesis of which is generally due to

iron overload, GSH depletion, GPX4 inactivation, and lipid

peroxidation, and it is regulated by a variety of cellular metabolic

activities and signaling pathways. Macrophages, as a key

component of innate immunity, have multiple important

biological functions. Iron affects macrophage development,

function, and polarization, and macrophages are critical for the

regulation of systemic iron homeostasis. Macrophage ferroptosis

has now been shown to be involved in pathogenesis during the

progression of various diseases such as atherosclerosis, tumors, and

sepsis in arteries. The intestinal flora modulates ferroptosis in

immune cells by many mechanisms, but the specific pathways of

action by which they inhibit or promote ferroptosis have not been

clarified. There is a growing body of research suggesting that

ferroptosis and macrophages play important roles in IBD, such as

maintaining immune and inflammatory homeostasis. Therefore,

macrophage ferroptosis is expected to be a new target for the

treatment of IBD.

Currently, studies on ferroptosis in IBD are mainly focused on

IECs, and the role of ferroptosis in other relevant immune cells in

IBD deserves to be further explored, and the relationship between

iron homeostasis, immune homeostasis, and the various symptoms

of IBD needs to be deeply explored. Although many advances have

been made in the study of macrophage ferroptosis, few studies have

focused on the impact of macrophage ferroptosis and IBD. The

exact mechanism of how macrophage ferroptosis affects IBD

through IECs, gut flora, and other directions remains imperfect,

and how macrophage and ferroptosis crosstalk with each other has

not yet been articulated. In addition, macrophage ferroptosis has

been studied more at the gene and molecular levels, but less at the

cellular and animal levels, and how to treat IBD in the clinic

through its specific mechanism, and translate it into practical

results. Therefore, in future studies, we can further confirm the

specific regulatory mechanism of macrophage ferroptosis in IBD

and explore the signaling pathways and cellular metabolic activities

in more detail, which will be important for revealing the evolution

of the disease and developing the target macrophage ferroptosis.
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This is of great clinical significance for revealing the mechanism of

disease evolution and developing novel drugs and therapeutics

targeting macrophage ferroptosis.
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