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Introduction: Human cytomegalovirus (HCMV) induces severe morbidity and
mortality in neonates, organ transplant recipients, and immunocompromised
individuals. Currently, there is no licensed vaccine for HCMV. Given its ability to
elicit a robust and enduring CD8 T cell response, we designed a recombinant
adenovirus vaccine, referred to as the rAdMev vaccine, using bioinformatics
methods based on human cytomegalovirus multi-antigen epitopes.

Methods: Five proteins of HCMV (pp150, pp65, gB, gH, IE1) were analyzed using
bioinformatics tools, and 58 T cell epitopes, 66 Th cell epitopes, and 15 B cell
epitopes were screened out. The immunogenicity of the overlapping candidate
peptides was initially tested in vitro using molecular docking techniques and flow
cytometry. Subsequently, the selected dominant antigenic epitopes were
recombined into the adenovirus vector. To enhance the vaccine’s efficacy, we
employed a mixed priming schedule, combining an adenoviral vaccine with a
protein vaccine. Finally, the immune response induced by heterologous
vaccination was analyzed by proteomics.

Results: The developed vaccine demonstrates favorable characteristics in terms of
major histocompatibility complex affinity, immunogenicity, and population
coverage. Primary immunization of mice with the rAdMev vaccine induces a
potent innate immune response, characterized by highly activated dendritic cell
subsets and the polarization of macrophages towards the M1 phenotype.
Heterologous vaccination fosters the generation of robust polyfunctional (IFN-y,
TNF, IL-2, Granzyme B, Perforin) CD8 T cell responses, leading to the establishment
of persistent effector memory T cells. Furthermore, we observed that heterologous
vaccination activates fatty acid B-oxidation through the PPAR signaling pathway,
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enhancing mitochondrial biogenesis and promoting CD8 T cell memory formation

in vivo.

Conclusions: We have developed a novel multi-epitope recombinant adenovirus
vaccine that can elicit long-lasting antiviral cellular immunity, providing new
insights into the development of vaccines against HCMV.

human cytomegalovirus, adenovirus vaccine, immune response, memory T cell,
mitochondrial biogenesis

1 Introduction

Human cytomegalovirus (HCMV), a member of the
Betaherpesvirinae subfamily, is ranked as one of the largest human
viruses ever identified (1). It establishes a latent infection that
typically remains asymptomatic for decades in immune-competent
hosts but emerges as the most prevalent and severe disease following
conditions, such as human immunodeficiency virus (HIV) infection,
solid organ transplantation (SOT), or hematopoietic stem cell
transplantation (SCT) (2-4). Moreover, congenital HCMV
infection can cause severe and enduring neurological symptoms in
newborns (5). While currently available HCMV antiviral drugs,
including ganciclovir, cidofovir, and fomivirsen, demonstrate some
effectiveness in slowing viral progression, they face criticism for poor
bioavailability, significant toxicity and drug resistance after
prolonged use (6). Consequently, there is a pressing need for a
durable approach to suppress HCMV reactivation and its sequelae.
Several HCMV vaccine candidates that have entered clinical trials
mainly include subunit vaccines, DNA or RNA-based vaccines, and
whole-virus vaccines (including live-attenuated, attenuated, or
disabled infectious single-cycle viruses) (7). Among them,
ASPO0113, a DNA vaccine developed by Astellas, consists of two
plasmids encoding gB and ppUL83. However, in a Phase II study
involving organ transplant recipients, the vaccine failed to
demonstrate efficacy against CMV disease, and its development
has been discontinued (8). Another two-component alphavirus
replicon particle vaccine, which expresses HCMV gB or a pp65/
IE1 fusion protein, was able to elicit antibody and T-cell responses in
a Phase I trial in HCMV-seronegative individuals, yet it has not been
advanced further (9). In addition, a whole-virus chimeric vaccine
constructed by genomic recombination between the Towne strain
and the clinical isolate Toledo strain showed no evidence of
enhanced immune responses in a Phase I study involving
seropositive subjects (10). The pursuit of a vaccine against HCMV
has been ongoing for more than 50 years. Unfortunately, no licensed
vaccines are currently available (11).

There is growing evidence emphasizing the significance of
inducing polyfunctional T-cell immunity for effectively
controlling persistent viral infections (12). Notably, HCMV
triggers a massive T-cell response that persist in the human body,
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migrate to peripheral tissues, and maintains its effector function.
Key contributors to this response are CD4 T cells, capable of
modulating primary HCMV infection, restricting ongoing
replication within specific tissues, and stimulating antibody
responses (13). The generation of HCMV-specific CD4 T cells is
intimately correlated with disease protection in patients. While CD8
T cells offer superior protection to immunocompromised
individuals by effectively curbing viral reactivation, CD8 T cell
responses to specific HCMV antigens deviate from conventional
kinetics after the resolution of acute HCMV infection (14). This
deviation, termed memory inflation, involves the contraction of the
majority of antigen-specific CD8 T cells, forming a persistent
central memory pool with a multifunctional effector memory
phenotype (15).

Intriguingly, memory T cells, including those specific to HCMV
antigens, exhibit the ability to generate faster and more robust
responses upon encountering antigens. Metabolically, memory CD8
T cells exhibit a significant spare respiratory capacity (SRC) (16, 17).
It is noteworthy that CD8 memory T cells exhibit a higher
mitochondrial mass compared to their naive counterparts. Upon
activation, these memory T cells show an augmented capacity for
fatty acid oxidation (FAO) and oxidative phosphorylation
(OXPHOS), sustaining this increase to a greater extent than
immature T cells (18). This suggests that the increased
mitochondrial mass in memory T cells not only enhances their
oxidative capacity but also their glycolytic capacity, and the greater
mitochondrial mass confers a bioenergetic advantage to memory T
cells, facilitating their rapid recall response upon reinfection (19).
Hence, promoting mitochondrial biogenesis and enhancing energy
metabolism via vaccination represents a crucial strategy for
establishing enduring immune memory.

Viral vectors represent promising tools for gene therapy and
vaccines (20). Vaccines based on viral vectors can enhance
immunogenicity without adjuvants and induce potent cytotoxic T
lymphocyte (CTL) responses to eliminate virus-infected cells (21).
Human Adenovirus serotype 5 (Ad5) as a gene delivery vector has
been extensively studied due to its ability to be easily produced at
high titers (22). Recombinant adenovirus vector vaccines have been
validated in clinical trials targeting HIV-1, influenza, COVID-19
and solid tumors (23-26). Given the high immunogenicity, safety,
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and efficient amplification of adenovirus vector vaccines, we have
selected adenovirus as the vector for the development of an HCMV
vaccine. However, a well-known challenge in the development of
adenovirus vector vaccines, particularly for Ad5, is the prevalence of
pre-existing immunity in the population, which hinders their
effectiveness (27). To address the hurdle of pre-existing anti-Ad5
antibodies, heterologous prime-boost regimens and prolonged
prime-boost intervals have been frequently used to enhance the
immune response (28).

HCMYV IEI protein is silenced during the latent state and
essential for HCMV reactivation (29). Furthermore, it serves as
an immunodominant target for specific CTL, playing a crucial role
in controlling viral replication and reactivation from latency (30).
Additionally, the envelope protein pp65, a primary component of
mature viral particles, shares the ability to trigger cellular immune
responses, contributing to the regulation of HCMV replication,
similar to the IE1 protein (31). Phosphoprotein 150, the second
most abundant envelope protein after pp65, exhibits high
immunogenicity and plays a crucial role in the assembly and
release of viral particles (31). It is also one of the primary
proteins that elicit cellular immune responses.

Recent studies have revealed the essential roles of glycoprotein
B (gB) and glycoprotein H (gH) in cell fusion and viral entry,
making them prominent targets for neutralizing antibodies,
essential for preventing initial infection (32). However, deficient
CD8 T cell responses may potentially limit gB and gH in stimulating
antibody production.

In this study, bioinformatics methods were employed to identify
highly homologous peptides in both mice and humans. These
tandem peptides were then homologously recombined into
adenovirus vectors to prepare a novel HCMV vaccine.
Heterologous boosting of the rAdMev vaccine resulted in a robust
polyfunctional T-cell response. This response included cytotoxicity
to infected cells, T cell expansion and differentiation, and the
establishment of virus-specific memory T cells. Furthermore, we
discovered mitochondrial proteome remodeling inducing energy
metabolism in memory T cells. This metabolic adaption contributes
to the induction of a more potent, broader, and enduring immune
response. Our research findings establish a strong preclinical
foundation for developing HCMV vaccines.

2 Methods
2.1 Prediction of T cell and B cell Epitopes

T cell epitope prediction was performed employing the five
proteins for the reference HCMV ADI169. Protein accession
identification numbers are as follows: ppl150: ACL51112.1, gB:
ACL51135.1, gH: ACL51144.1, pp65: ACL51152.1, IEl:
ACL51183.1. HLA class I binding predictions were performed
using the NetMHCpan EL 4.1 available at the Immune Epitope
Database and Analysis Resource (IEDB-AR, http://tools.iedb.org/)
and selected the 11 HLA class I alleles with the highest global
population proportion (Supplementary Table S1), combined the
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peptide prediction of pMHC I immunogenicity and proteasomal
cleavage with TAP transport efficiency (33). We selected epitopes
with percentile rank < 1 and the alignment length ranged from 8 to
14 mers (34). The probability of peptide being naturally processed
and combined to MHC molecule was evaluated with the MHC-NP
tool (http://tools.iedb.org/mhcnp/), and finally the screened T cell
epitope peptides corresponding to multiple alleles were reduced to a
single occurrence, and the overlapping short peptides were
accommodated within longer sequences, up to 14 mers in length
(Figure 1, Supplementary Table S1).

For CD4 T cell epitopes, IEDB MHCII Binding and
NetMHClIIpan4.0 (http://www.cbs.dtu.dk/services/NetMHCIIpan-
4.0/), were used for prediction with a predicted length of 12-18
mers. We settled on a 1% rank value for peptides, a threshold related
to the top 1% score obtained from random natural peptides (35),
and used this threshold to identify 66 candidate peptides Figure 1
and Supplementary Table S2).

The B cell epitope predictions were carried out using the
Bepipred 2.0 algorithm (cut off of 20.5) (36) provided with the
IEDB (Figure 1, Supplementary Table S3). The hydrophilic epitopes
on the protein surface are preferred. DNAstar (https://
www.dnastar.com/software/) further identifies B cell epitopes,
including protein secondary structure, antigenicity, flexibility,
linear epitope prediction, hydrophilicity, and surface accessibility.

We also identified peptides derived from viral proteins
predicted to bind murine MHC coded for by H2—Db, H2—Kb, and
H2-IA® haplotypes (37). For the prediction of cell epitopes for
murine MHC I/II genotypes, we employed the NetMHCpan EL 4.0
algorithm available in the IEDB database to align sequences of
HCMV gB, pp150, pp65, gH, and IE1, with alignment length ranged
from 8 to 14mers. To minimize the chance of epitope omission, we
further utilized the SYFPEITHI database (https://syfpeithi.de/60-
PredictEpitope.htm; http://g6altair.sci.hokudai.ac.jp/g6/service/
pocasa/) for prediction, with alignment length ranged from 8 to
14 mers. We then selected longer sequence regions that were
recognized by humans and mice to be used as vaccine antigens.
The dominant epitope sequences for mice are provided in
Supplementary Table S4.

2.2 Population coverage analysis

The distribution of HLA alleles varies in different countries
around the world and consequently affects the valid response to
vaccines. We employed a population coverage analysis tool
embedded in IEDB (http://tools.iedb.org/population/) to predict
the population coverage of MHC class I, MHC class II, and class
combined for each epitope in 16 geographical areas, including 115
countries and 21 different races.

2.3 Construction of rAdMev

The screened overlapping epitopes were concatenated with the
GGSGGGSGS linker and then homologous recombination was
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FIGURE 1

Visual summary of T and B cell epitope prediction and validation of multiple epitope-based recombinant adenovirus vaccines. (A) Overview of CD4/
CD8 T cell and B cell epitope prediction workflows. We employ bioinformatics to analyze five proteins derived from human cytomegalovirus to
examine the coverage of high-frequency HLA alleles and the immunogenicity of the predicted epitopes. B-cell epitope regions were followed by
filtering for protein secondary structure, antigenicity, flexibility, linear epitope prediction, hydrophilicity and surface accessibility. (B) The screened
overlapping epitope peptides were recombined into adenovirus vectors, as well as mice were inoculated heterologously to assess the safety and
effectiveness of the vaccine. (C) Metabolic traits of memory T cells. FAO and OXPHOS maintain the survival and energy requirements of T cells

during memory T cell differentiation.

performed into the El region of the adenovirus type 5 genome,
meanwhile the E3 region of the genome was deleted to obtain a
non-replicating recombinant human adenovirus type 5 vaccine
based on multiple Epitope. The GGSGGGSGS linker mitigates the
connection to other protein regions and enhances stability through
efficient segregation (Table 1).
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2.4 Molecular docking with TLR4 receptors

The 3D structures of dominant epitope peptides and tandem
proteins were predicted utilization the ColabFold (https://
colab.research.google.com/) homologous modeling method (38).
ColabFold provides accelerated prediction of protein structure
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TABLE 1 HCMYV candidate peptides List.

HCMV
. Sequence
antigen
Pp150311.328 GSAFSSVPKKHVPTQPLD
€B2s0.320 NGTNRNASYFGENADKFFIFPNYTIVSDFGRPNAAPETHR
gH336.360 RRTVEMAFAYALALFAAARQEEAGTE
PP6502-131 VNVHNPTGRSICPSQEPMSIYVYALPLKMLNIPSINVHHY

IElgs 117 QIKVRVDMVRHRIKEHMLKKYTQTEEKFTG

GSAFSSVPKKHVPTQPLDGGSGGGSGSNGTNRNASYFG
ENADKFFIFPNYTIVSDFGRPNAAPETHRGGSGGGSGSRR
Mev TVEMAFAYALALFAAARQEEAGTEGGSGGGSGSVNVHNPT
GRSICPSQEPMSIYVYALPLKMLNIPSINVHHYGGSG
GGSGSQIKVRVDMVRHRIKEHMLKKYTQTEEKFTG

GGSGGGSGS used as a linker.

and complexes by associating the rapid homology search of
MMseqs2 with AlphaFold2 or RoseTTAFold (38). The
polypeptide structure was drawn using ChemBioDraw Ultra 14.0
and subsequently imported into ChemBio3D Ultra 14.0 for energy
minimization, with the Minimum RMS Gradient set to 0.001.
POCASA 1.1 (http://g6altair.sci.hokudai.ac.jp/g6/service/pocasa/)
was employed for the prediction of protein binding sites, while
AutoDock Vina 1.1.2 (https://vina.scripps.edu/downloads/) and
HDock (http://hdock.phys.hust.edu.cn/) were utilized for the
docking of TLR4 (PDB ID: 4G8A) with the polypeptide and Mev,
respectively. In parallel, the docked complexes predicted models
were visualized by pymol.

To further assess the potential of HCMV candidate polypeptides
to activate TLR4 receptors, the peptides were incubated with
RAW264.7 and DC24 cell lines for 48 hours. Subsequently, total
cellular proteins were extracted from the cells, and Western blotting
was performed to evaluate the activation of surface TLR4 receptors on
antigen-presenting cells. The antibody information is as follows: TLR4
(Santa Cruz, cat. sc-293072) and -Tubulin (Abclonal, cat. AC021).

2.5 Vaccine toxicity evaluation

It is imperative to develop vaccines that possess high antigenicity,
non-allergenicity, and non-toxicity. In order to evaluate the safety of
these vaccines, the body weight and food intake of heterologous and
homologous vaccinated mice were monitored for one week after the
second immunization. Simultaneously, mouse serum was collected
for biochemical analysis to assess potential toxicity on vital organs
such as the heart (serum creatine kinase and lactate dehydrogenase),
liver (ALT, AST), and kidney (UA). All samples were subjected to
three independent experiments utilizing a fully automated
biochemical analyzer.

2.6 Mice and immunization

Female C57BL/6 mice from 6 to 8 weeks were bred in the
animal facility at Qingdao University in accordance with
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Institutional Animal Care and Use Committee guidelines
(approval number: N0.20220928C5716820230223119) and
randomly assigned to different vaccine groups, which included
PBS group, heterologous vaccination group (AP) and the
homologous vaccination group (AA). The multiple epitope-based
human adenovirus serotype 5 vaccine (rAdMev) and multi-antigen
epitope vaccine (Mev) were synthesized by Sangon Biotech
(Shanghai, China) and GenScript Biotechnology Co., Ltd. (Hong
Kong, China), respectively.

For immunization, mice (n=6 in each group) were injected
intramuscularly. Immunize with one dose of rAdMev (1x10® PFU)
at day 0, followed by rAdMev (1x10® PFU) or Mev (20 pg protein
with AddaVax ™ adjuvant in a volume ratio of 1:1) at days 60,
respectively. AddaVax'" was purchased from InvivoGen
(Toulouse, France), which is a squalene-based oil-in-water nano-
emulsion with a formulation similar to that of MF59®. All mice in
this study were maintained under specific pathogen-free conditions
with 12 light/12 dark cycles, at a temperature of approximately 18-
23°C, and a humidity level maintained between 40-60%.

2.7 Cell culture

DC2.4 cell line and RAW264.7 cell line (ATCC) were cultured
in high glucose Dulbecco’s Modified Eagle’s medium (DMEM,
Gibco) containing 10% fetal bovine serum (FBS, Gibco), 1%
penicillin and streptomycin, and maintained at 37°C with 5% CO,.

2.8 In vitro dendritic cell and macrophage
activation assessment

In vitro, RAW264.7 cells and DC2.4 cells were cultured
according to the above method and were seeded in 96-well plates
at a density of 5 x 10" cells per well and stimulated with pp1503; ;.
328 8B280-3200 PP6592-131> §H336-360» [Elgs-117 and Mev proteins (5
ug/ml) for 48 hours. The expression of cell surface markers CD80,
CD86, CD40, MHCI, and MHCII was detected by flow cytometry.
The antibodies used were as follows: Brilliant Violet 650-CD80
(Biolegend, cat. 104731), Pacific Blue-CD86 (Biolegend, cat.
105021), APC-CD40 (Biolegend, cat. 124611), PerCP/Cyanine5.5-
H-2Kb (Biolegend, cat. 116515), and Brilliant Violet 605- I-A/I-E
(Biolegend, cat. 107639). Fluorescence measurements were taken on
a Beckman CytoFLEX instrument and analyzed using Flow
Jo V10.5.3.

2.9 Analysis of the innate immune
response

Mice were immunized with rAdMev, and draining inguinal
lymph node from mice was harvested on days 1, 3, and 7 after
immunization and digested with 1 mg/ml type IV collagenase
(Absin, abs47048004) for 20 minutes at 37°C, followed by
filtration through 100 pum filters to obtain a single-cell
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suspension. Single-cell samples were stained using Pacific Blue-CD3
(Biolegend, cat. 100213), FITC-CD11c (Biolegend, cat. 117305),
Brilliant Violet 605-MHCII (Biolegend, cat. 107639), APC-CD11b
(Biolegend, cat. 101211), Brilliant Violet 605-CD103 (Biolegend,
cat. 121433), APC/Cyanine7-CD8a (Biolegend, cat. 155015),
Brilliant Violet 650-CD86 (Biolegend, cat. 105035), PE/Cyanine7-
F4/80 (Biolegend, cat. 123113), PerCP/Cyanine5.5-CD206
(Biolegend, cat. 141715), and PE anti-Nos2 (iNOS, Biolegend),
cat. 696805 antibodies. Fluorescence data was acquired on a
Beckman CytoFLEX instrument and analyzed using Flow Jo
V10.5.3. On the first day following the initial immunization,
mouse serum was isolated. Elisa kit was used to detect the
expression of cytokines including CCL2 (R&D Systems, cat.
MJEOO0B), IL-12p70 (Abcam, cat. ab119531), IL-6 (Abcam, cat.
ab222503), IFN-o (Thermo Fisher Scientific, cat. BMS6027), and
TNF-o. (Abcam, cat. ab100747).

2.10 Evaluation of antigen-specific T cell
response

Fourteen days after the second immunization, mice were
euthanized by cervical dislocation. Spleens and draining lymph
nodes were isolated to prepare single-cell suspensions (n=6).
Subsequently, cell surface staining was performed using APC/
Cyanine7-CD8a (Biolegend, cat. 155015), PE/Cyanine7-CD69
(Biolegend, cat. 104511), and APC-CD107a (LAMP-1, Biolegend,
cat. 121614) antibodies to assess the activation status of CD8 T cells.
On the other hand, 5 x 10* splenocytes per well were seeded into 96-
well plates, followed by a 12-hours incubation with Mev protein (5
pg/mL), in the presence of brefeldin A (Biolegend, cat. 420601) at
37°C. The percentage of cytokine production by effector T cells was
assessed by surface and intracellular staining using a Fixation/
Permeabilization Solution Kit (Thermo, cat. GAS004). The
antibody cocktail comprises the following fluorescently labeled
antibodies: Pacific Blue-CD3 (Biolegend, cat. 100213), APC/
Cyanine7-CD8a (Biolegend, cat. 155015), Brilliant Violet 605-
CD4 (Biolegend, cat. 116027), PerCP/Cyanine5.5-1FN-y
(Biolegend, cat. 505821), PE/Cyanine7-TNF-o. (Biolegend, cat.
506323), APC-Granzyme B (Biolegend, cat. 372203), PE-Perforin
(Biolegend, cat. 154305), FITC-IL-2 (Biolegend, cat. 503805), PE-
IL-4 (Biolegend, cat. 504103) and APC-IL-6 (Biolegend,
cat. 504507).

2.11 T cell proliferation assessment

Cell growth was assessed via the Cell Counting Kit-8 (CCK8)
assay. Briefly, 14 days following the second immunization, mouse
spleen T lymphocytes were seeded in 96-well plates at 2 x 10* cells
per well, and the cells were treated with 5 ug/mL Mev protein for 48
and 72 hours. Following incubation, 10 ul of CCK8 (Abcam,
ab228554) solution was added to each well and incubated at 37°C
for 2 hours, and then absorbance was measured at 450 nm using a
SPECTROstar Nano microplate reader (BMG Labtech).
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2.12 Specific antibody assay

Detection of specific antibodies generated by homologous and
heterologous vaccination by ELISA. Biotinylated protein (Biotin-
Mev) was prepared by Sangon Biotech (Shanghai, China). Elisa
plates were precoated at 4°C with 0.5 ug of streptavidin in 50 mM
NaHCOj; (pH 9.6) for 12 hours, followed by blocking with 5%
bovine serum albumin (BSA) for 2 hours at 37°C. Subsequently,
biotin-Mev was incubated with streptavidin for 1 hour at 37°C.
Serum from immunized mice was collected every 7 days via
suborbital venous, diluted with 5% BSA, and incubated with
Biotin-Mev at 37°C for 1 hour according to different serum
dilution ratios. HRP-labeled IgG (1:2000, Abcam), IgG1 (1:2000,
ABclonal), and IgG2a (1:2000, ABclonal) antibodies were incubated
for 1 hour at 37°C. Following incubation, 100 pl of TMB substrate
solution (Sigma, catalog number T0440) was added. After 15
minutes, 1M H3PO, was introduced to terminate the reaction,
and the optical density (OD) was measured at 450 nm. The highest
sample dilution corresponding to an OD value of the experimental
group/negative control group > 2.1 was determined.

2.13 Neutralization

Serum from day 74 mice were incubated at 56 °C for 30 minutes
to inactivate the complement. Subsequently, the serum was diluted
proportionally, mixed with equal volumes of AD169 strain (MOI =
1), and incubated at 37°C for 1 hour. The virus mixture that had
undergone treatment was incubated with MRC-5 cells at 37°C, 5%
CO,. After 48 hours, cells were fixed with 4% paraformaldehyde for
10 minutes, permeabilized with 0.5% Triton X-100 for 5 minutes,
and blocked with 1% BSA for 1 hour at room temperature. The cells
were incubated with HCMV IE1/2 antibody overnight, followed by
a subsequent incubation with a secondary antibody (Thermo Fisher
Scientific, catalog A10521) for 1 hour in the dark and the nuclei
were stained with 1 ng/mL 4’,6-diamidino-2-phenylindole (DAPT)
for 5 minutes. Neutralizing titers (ID50) were determined using the
Reed and Muench method (39).

2.14 Memory T cell activation analysis

Fourteen days after the second immunization, mouse blood was
collected via the infraorbital vein to isolate peripheral blood
mononuclear cells (PBMC). Subsequently, mice were euthanized
by cervical dislocation, and spleens and draining lymph nodes were
isolated to prepare single-cell suspensions (n=6). The subtypes and
activation status of memory T cells was employed to assess by Flow
cytometry, and utilizing the following fluorescently labeled
antibodies: Pacific Blue-CD3 (Biolegend, cat. 100213), APC/
Cyanine7-CD8a (Biolegend, cat. 155015), FITC-CD44 (Biolegend,
cat. 156007), PE/Cyanine7-CD62L (Biolegend, cat. 156007), PE/
Cyanine7-CD69 (Biolegend, cat. 104511), and FITC-CD103
(Biolegend, cat. 110907).
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2.15 Proteomic analysis

The proteome analysis was conducted similarly as previously
described (39). CD8 T lymphocytes were isolated from the draining
lymph nodes of mice subjected to various immunization protocols.
Total cellular proteins were extracted, followed by enzymatic
digestion (40) and TMT labeling of peptides. Labeled peptides
were fractionated and analyzed on an Orbitrap 480 (Thermo)
mass spectrometer. The quantitative information of the target
protein set was normalized. Subsequently, the Complexheatmap R
package (R Version 3.4) was utilized to classify the two dimensions
of samples and protein expressions, generating a hierarchical
clustering heat map. The sorted heatmap of the log2 fold-changes
was generated using SPIN (41). The CELLO method (http://
cello.life.nctu.edu.tw/) was employed for predicting subcellular
localization. Additionally, Blast2GO was used for annotating the
target protein set with GO annotations, and the KAAS (KEGG
Automatic Annotation Server) software was utilized to perform GO
annotation for the target protein set, including KEGG
pathway annotation.

2.16 Western blotting

The sorted CD8 T cells were lysed with radioimmunoprecipitation
assay (RIPA) buffer, which contained a cocktail of protease inhibitors,
phenylmethylsulfonyl fluoride (PMSF), and phosphatase inhibitors.
Cell lysates were separated through SDS-PAGE gel electrophoresis
and transferred to polyvinylidene fluoride (PVDF) membranes
(Millipore, Burlington, MA). The membranes were blocked with 5%
BSA for 2 hours. Following this, they were incubated with primary
antibodies overnight at 4 °C and with secondary antibodies for 2 hours
at room temperature on the next day. Following incubation, an
electrochemiluminescence solution was applied for 1 minute, and
the signal was detected using a chemiluminescence instrument
(Imagequant LAS500, Cytiva, USA). The primary antibodies used
included S1c27al (Abclonal, cat. A12847), Acsll (Abclonal, cat.
A22737), Cpt2 (Abclonal, cat. A12426), Acoxl (Abclonal, cat.
A21217), and B-actin (Abclonal, cat. AC038). The secondary
antibody employed was goat anti-rabbit IgG-HRP (Beyotime,
cat. A0208).

2.17 Immunofluorescence

Sections of paraffin-embedded draining lymph nodes were
subjected to a series of steps including deparaffinization,
rehydration, and a 5-minute immersion in water before antigen
retrieval was performed in a microwave oven using sodium citrate
buffer (pH 6.0) for 10 min. Repaired sections were blocked with a
solution consisting of 5% bovine serum albumin and 0.05% Triton
X-100 (Thermo, cat. 85111) for 30 minutes, followed by overnight
incubation with primary antibodies at 4 °C. The secondary antibody
(1:500) was incubated at room temperature in the dark for 1 hour
and then washed with PBS containing Tween (PBST). Afterward,
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the sections were incubated with DAPI containing a fluorescence
inhibitor for 5 minutes and then sealed with a coverslip. The
primary antibodies were as follows: Tomm20 (Abclonal, cat.
A11308), Atp5h (Abcam, cat. ab110275), and Cycs (Abcam, cat.
ab110325). The secondary antibodies employed were goat anti-
mouse-Cy3 (Beyotime, cat. A0521) and goat anti-rabbit fluorescein
isothiocyanate (Abcam, ab6717). Image acquisition was performed
using an Olympus Fluoview FV1200 microscope.

2.18 Electron microscope

To investigate the morphological and quantitative changes of
mitochondria at the ultrastructural level, the sorted T cells were
fixed with 2.5% glutaraldehyde, then dehydrated and embedded.
Imaging was done using transmission electron microscopy (JEOL),
with mitochondria observed in randomly selected fields of view
within each sample. The micrographs were analyzed using Volocity
3D image analysis software (PerkinElmer).

2.19 Mitochondrial respiratory function
assay

We assessed mitochondrial respiratory function by measuring
the oxygen consumption rate (OCR). Differences in respiratory
capacity under various treatment conditions were examined using a
real-time high-resolution respirometer (Oxygraph-2k, Austria),
following the protocol previously described (42, 43). OCRs were
measured, normalized to protein concentration, and expressed as
pmol of O, per second per mg of protein. Data acquisition and
analysis were performed with DatLab software. Sort mouse spleen
CD8 T lymphocytes 14 days after second immunizations, grind the
cells with a grinding pestle and expose the mitochondria to 2.1 ml of
mitochondrial respiration medium MiR06, which contains 0.5mM
EGTA, 20 mM HEPES, 110 mM sucrose, 10 mM KH,PO,, 20 mM
taurine, 60mM K-lactobionate, 3mM MgCl,.6H,0, 1 mg/ml BSA,
catalase 280 U/ml, pH 7.1.

Substrates and inhibitors were added sequentially to tissue
homogenates to assess the function of mitochondrial complexes I
and IL. The specific steps are as follows: the tricarboxylic acid cycle
produces a large amount of NADH, and 2 M glutamic acid (G) + 0.8
M malic acid (M) is added to maintain the proton leak stage of
complex I. By adding 0.5 M ADP (D) + 1 M MgCl,, ATP synthase is
activated, leading to the conversion of ADP into ATP and the
initiation of oxidative phosphorylation in mitochondrial complex I.
The assessment of mitochondria’s capability to perform normal
oxidative phosphorylation was accomplished by the addition of 1 M
succinate (S). In addition to measuring basal respiration, ATP
production was calculated by subtracting respiratory oxygen
consumption at 4 mg/ml oligomycin from basal respiration.
Mitochondrial maximum electron transfer capacity (maximum
respiratory capacity) was determined by 1mM uncoupling agent U
(FCCP). Simultaneously, mitochondrial backup respiratory capacity
was calculated by subtracting ATP production from maximum
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respiratory capacity. The measurement of oxidative phosphorylation
in mitochondrial complex IT was measured by adding 1 mM rotenone.

2.20 Statistical analysis

All statistical analyses were conducted using GraphPad Prism
9.0, and the data were presented as mean + SEM. Flow cytometry
fluorescence data were acquired on a Beckman CytoFLEX
instrument and analyzed using Flow Jo V10.5.3. For comparisons
between two groups, an unpaired Student’s t-test was employed,
while comparisons involving three groups utilized one-way analysis
of variance (ANOVA), followed by Tukey-Kramer post hoc analysis.
Statistical significance was defined as P < 0.05.

3 Results
3.1 Global population coverage analysis

Population coverage analysis was conducted for various
geographical areas; focusing on the selected dominant epitopes.
This analysis included separate evaluations for class I, class II, and a
combination of class I and class II epitopes. The results revealed
distinct responses among populations in different regions to the
candidate peptides (Supplementary Figure S1).

Notably, the combined class I and class II epitopes showed
coverage of over 84.40%, in regions such as East Asia, Northeast
Asia, South Asia, Southeast Asia, Europe, West Indies, North
America, and Oceania (Supplementary Figures S1A, B). Among
these regions, Europe, North America, and Oceania exhibit the
highest average coverage and PC90 (Supplementary Figure S1C).

3.2 Molecular docking

Molecular docking was used to assess the interaction between
candidate peptides and the innate immune receptor TLR4, aiming
to activate innate immunity and enhance the Thl-type immune
response (Figures 2A, B). The docking results indicate that the
binding of TLR4 to Mev results in the highest energy release,
measured at —325.61 kcal/mol, compared to other peptides.

Visualization of the docking complex reveals the deep binding
of Mev in the TLR4 center, forming hydrogen bonds with residues
around the protein—protein interaction interface, thereby stabilizing
the complex (Figure 2A). Notably, residues R355, N339, R382,
H431, and R606 of TLR4 receptors form hydrogen bonds with S105,
P144, S109, Y151, and P117 of Mev, with bond lengths of 3.0 A, 29
A, 23A,32A,35A,3.14,24A,and28 A, respectively (Figure 2).

Furthermore, Western blotting was used to detect the activation
of TLR4 receptors on the surface of antigen-presenting cells. Studies
have demonstrated that all candidate peptides can activate TLR4
receptors in different degrees, with Mev exhibiting the most
significant effect, consistent with the results of computer
simulations (Figures 2C, D).
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3.3 Mev activates antigen presenting cells
in vitro

To assess the ability of multiple antigenic epitope peptides and
individual peptides to induce in vitro maturation of antigen-
presenting cells (APCs), DC2.4 and RAW264.7 cells were
stimulated with these peptides. After 48 hours, antigen-presenting
cell activation was evaluated by flow cytometry. For T cell
activation, APCs need to simultaneously present two crucial
signals: the first through a cognate antigen and the second via a
costimulatory molecule (44). Our results demonstrated that the
expressions of surface markers, including CD80, CD86, CD40,
MHCI, and MHCII, were significantly elevated in DC2.4 and
RAW264.7 cells treated with Mev compared to the PBS group
(Figures 2E, F). In contrast, the single peptide group also induced
APCs activation, albeit to a lesser extent than the Mev group.
According to our in vitro data, co-incubation with Mev enhances
the phagocytosis of APCs and promotes the upregulation of
costimulatory molecules in these cells.

3.4 rAdMev induces a robust innate
immune response in draining lymph nodes

The rapid initiation of innate immune responses forms the
foundation for the development of adaptive vaccine-mediated
immunity (45). To elucidate the innate immune responses elicited
by rAdMev, mice were immunized on day 0, followed by the
detection of the activation status of innate immune cells within
the draining lymph nodes (Figures 3A, B). After immunization,
macrophages and the DC subset, including CD8a" rDC, CD11b*
rDC, CD103" mDC, and CD11b" mDC, were highly activated, as
evidenced by increased expression of the activation marker CD86
(Figures 3C, D). The expression frequencies of DC subtypes
increased significantly on day 1 and these innate cell types
remained activated until day 3 of immunization, gradually
reverting to baseline levels by day 7 (Figure 3D). Similarly, within
the rAdMev group, there was pronounced activation of
macrophages compared to the PBS group. Notably, the
proportion of M1 phenotype cells within the rAdMev group
significantly exceeded that of the M2 phenotype (Figures 3E, F).
This observation implies that rAdMev has the capacity to induce a
phenotypic shift in macrophages, promoting their polarization
toward the M1 phenotype. Subsequently, we analyzed serum
cytokine responses on day 1 following immunization using
ELISA. Immunization with rAdMev elicited the release of
numerous cytokines, including CCL2, IL-12, IL-6, TNF-o, and
IFN-o (Figure 3G).

3.5 Vaccine safety study
As mentioned above, multiple antigenic epitope peptides (Mev)

including five overlapping peptides from HCMV pp1503;;_ 325,
gB2s1-320, §H336.3600 PP6592-131, and IElgg 17 were selected to
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FIGURE 2

Molecular docking diagrammatic sketch. (A) Molecular docking of the ca

ndidate peptides pp150311-328, 9B2go-320. JH336-360, PPO592-131, and IElgg 117

and Mev individually with TLR4 (PDB ID: 4G8A). The structure of Mev protein is displayed in blue, and the TLR4 receptor structure is displayed in
pink. The protein-protein interaction residues are highlighted on the right and the hydrogen bonds are indicated by the yellow dashed lines. (B)
Evaluation of binding energies released through the molecular docking. After incubation of HCMV candidate peptides with DC2.4 and RAW264.7

cells for 48 hours, the surface expression of TLR4 receptors was detecte

d using Western blotting. B-Tubulin served as an internal reference, while

PBS acted as the negative control (C, D). The percentages of surface markers CD80, CD86, CD40, MHCI and MHCII were detected by flow
cytometry (E, F). All experimental groups were compared with PBS to analyze statistical differences. The dotted black lines indicate the mean of the

negative control group plus 2 standard errors. Each experiment was inde
Tukey's test was applied in (D—F) *P < 0.05, **P < 0.01, ***P < 0.001.

construct rAdMev. The experimental groups included the PBS
group, the heterologous vaccination group (AP, the first dose of
recombinant adenovirus vaccine rAdMev, and the second dose of
multiantigenic epitope vaccine Mev), and the homologous
vaccination group (AA, where all two doses were recombinant
adenovirus vaccine rAdMev). After the second dose of booster
immunization, the latent toxicity of the vaccination to the cordis,
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pendently conducted at least three times. One-Way ANOVA followed by

liver and renal functions of mice was reflected by detection the
serum biochemical indicators in mice (Supplementary Figure S2A).
Among other biochemical parameters, it is similar to the PBS group.
Mice weight and percentage of food intake were measured for seven
consecutive days after immunization to assess vaccine safety
(Supplementary Figures S2B, C). As compared with the PBS
group, the different vaccination methods showed no significant
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FIGURE 3

rAdMev construction and activation of innate immune responses. (A) Construction of recombinant human adenovirus type 5 vaccine based on
multi-epitopes. (B) Procedure for the immunization of mice with rAdMev. (C) Activation of innate cells at day 1 after rAdMev immunization in dLNs
indicated by the upregulation of the activation marker CD86. (D) Dynamics profile of innate cell activation at days 1, 3, and 7 after rAdMev
immunization. (E, F) Assessment of macrophage polarization and activation were executed on the first day post-immunization. (G) ELISA was used to
profile serum cytokine expression on day 1 following rAdMev immunization. Each experimental group consisted of six mice, and all tests were
conducted independently at least three times, with results being presented as the mean + SEM. The dotted black lines indicate the mean of
preimmune response plus 2 standard errors. Statistical analyses were performed using one-way ANOVA, followed by Tukey's test, and statistical
significance was established at *P < 0.05, **P < 0.01 and ***P < 0.001.
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difference in weight and food intake of mice, revealing a high safety
profile for the rAdMev vaccine.

3.6 Adaptive immune response induced by
rAdMev vaccination

C57BL/6 mice underwent an intramuscular immunization with
a rAdMe on day 0, followed by either a homologous booster with
rAdMev (AA) or a heterologous booster with Mev (AP) at day 60
(Figure 4). To further evaluate differences in humoral immunity
provoked by heterologous and homologous vaccinations, we
continuously monitored the production of specific antibodies in
mouse sera. The peak of IgG-specific antibodies was reached 14
days after the second immunization, and induced significantly
higher levels of IgG-specific antibodies than the second
(Figure 4A). Heterologous vaccination produced better antibody
levels than homologous vaccination, including neutralizing
antibodies, IgG1, and IgG2a (Figure 4B). The IgG2a: I1gG1 ratio
indicated a more Thl-oriented immune response. Collectively,
these data suggested that heterologous boosters are more efficient
at eliciting multiple specific antibody clones, associated with
enhanced antiviral antibody responses. Subsequently, antigen-
specific T cell responses were measured in both the spleen and
draining lymph nodes 14 days after the administration of the
second dose. Our findings revealed detectable antigen-specific
CD8 T-cell responses in these tissues, that include CD69
upregulation, degranulation (CD107a) production (Figures 4C,
D), draining lymph nodes enlargement, and CTL proliferation
(Figures 41, J). Significantly, the heterologous inoculation (AP)
exhibited superior efficacy compared to its homologous
counterpart (AA), consistent with previous investigations. In vitro
stimulation of T cells with overlapping peptide pools in vitro,
demonstrated that heterologous vaccination can produce peptide-
specific CD8" T cells, secreting an array of immunomodulatory
molecules, including IFN-y, TNF-q., granzyme, perforin, and IL-2,
indicating their potent cytotoxic responses (Figures 4E, F). The
crucial role of helper T cell immunity in virus infection control was
highlighted in our study. Frequencies of TNF-o, IFN-y, IL-4, and
IL-6 secreted by CD4 T cells exhibited a significant elevation under
the influence of the heterologous booster, indicating T cell
polyfunctionality. Levels of IL-4 secreted by CD4 T cells were
comparable to those induced by homologous boosters
(Figures 4G, H), underscoring that heterologous vaccination
elicits a well-balanced Th1/Th2 vaccine response.

3.7 Phenotypical and functional
characteristics of rAdMev induced memory
T cells

To assess the phenotypical and functional characteristics of
CD8 T cells specifically elicited by rAdMev through homologous or
heterologous immunization, mice were immunized with rAdMev
and Mev on day 60, respectively (Figure 5). The evaluation of
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specific CD8 T cell responses within the draining lymph nodes was
performed via flow cytometry at days 0, 14, 60, and 120 after the
administration of the second booster immunization.

Our study revealed that 14 days after the second immunization,
a significant number of specific CD8 T cells in the lymph nodes of
heterogeneously inoculated mice prominently expressed CD69 and
CD103, potentially serving as early indicators of CD8 T lymphocyte
residency. Over time, the expression levels of tissue resident
memory T cells gradually decreased, eventually returning to
baseline levels by day 194 (Figures 5A-C). Tissue-resident
memory T cells (TRM cells) in peripheral tissue locations can
originate from either TEM or TEff cells, guided by tissue-specific
factors influencing their migration to these sites (46). It is also
plausible that TCM cells may undergo differentiation into TRM
cells within lymphoid sites. Hence, we investigated the formation of
a diverse subset of T cells within the draining lymph nodes precisely
14 days after the second immunization, based on the migration
dynamics from TEM and TCM cells toward TRM. In the memory
phase, rAdMev-induced T cell phenotypic traits diverged in
different tissues (Figures 5D, E). Homologous and heterologous
vaccination-induced CD8 T cells within the lymph nodes exhibited
fairly mixed phenotype-sharing features of both central memory T
cells (CD44", CD62L") and effector memory T cells (CD44%,
CD62L"). As anticipated, specific CD8 T cells induced by
heterologous vaccination appeared predominantly as effector
memory-like phenotypes in peripheral blood and spleen. Both
homologous and heterologous vaccinations demonstrated a
comparable ability to induce effector memory T cells (Figure 5E).

3.8 Multiplexed quantitative analysis of
whole proteome during memory T cell
activation after homologous or
heterologous immunization

To gain deeper insights into the molecular mechanisms
underlying the activation of memory T cells following
homologous or heterologous immunization with rAdMev, CD8"
T cells were isolated from mouse draining lymph nodes 14 days
after second immunizations for quantitative proteome sequencing.
We used tandem mass spectrometry coupled with isobaric peptide
labeling to quantify alterations in the cellular proteome during
memory T cell activation (Figure 6A). In the AP group, a total of
430 proteins exhibited differential expression, with 327 proteins
being up-regulated and 103 proteins down-regulated, compared to
the PBS group. In contrast, the AA group showed differential
expression in 130 proteins, comprising 67 up-regulated and 63
down-regulated proteins (Figure 6B). To emphasize the significance
of protein differences among the three groups (PBS group, AA
group, and AP group), we generated a volcano plot utilizing two key
factors: fold change in expression (FC) and the P-value (T-test) of
proteins in the comparative analysis group. The results, indicated
that the heterologous vaccination group exhibited more
pronounced significant differences (Figure 6C). The
reproducibility of these results was further confirmed by cluster
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T cell and humoral immunity response induced by rAdMev vaccination in mice. (A) Dynamic monitoring of specific IgG antibodies induced following
vaccinations. (B) On the fourteenth day subsequent to second immunizations, serum samples were collected from mice, and ELISA was employed to assay
the production of specific antibodies, including IgG1 and IgG2a, 1gG2a to IgGl ratio, as well as determine the Neutralizing antibodies. (C, D) Antigen-specific
CD8 T cell responses in draining lymph nodes and spleen at day 14 following rAdMev homologous and heterologous booster immunization. (E, F) Antigen-
specific CD8 T activation was assessed by detecting the secretion of IFN-y, TNF-0, granzyme, perforin, and IL-2 by FACS intracellular cytokine staining assay.
(G, H) The immune response of CD4 T cells was evaluated through the quantification of their secreted cytokines, including IFN-y, TNF-a, IL-4, and IL-6. (I)
Draining lymph nodes in the groin of mice were isolated and their weights were measured. (J) T-cell proliferation was assessed using CCK8 assay at both
48-hour and 72-hour time points. Each experiment was independently conducted at least three times, n=6. Statistical differences were assessed with One-

Way ANOVA followed by Tukey's test. *P < 0.05, **P < 0.01, ***P < 0.001.

analysis based on adjusted P-values less than 0.05 and log2 fold
changes greater than 1 in absolute value (Figure 6D). To delve
deeper into the functional attributes of cellular proteins, subcellular
localization analysis of all differentially expressed proteins was
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conducted employing the subcellular structure prediction software
CELLO (42, 47). Differentially expressed proteins induced by
heterologous immunization primarily exhibited localization
within the nucleus, cytoplasmic, and mitochondrial, whereas
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Phenotypic heterogeneity of rAdMev-induced CD8 T cells. (A) On days 0, 14, 74 and 134 after the second immune dose, the changing trends of
tissue-resident memory T cells in the draining lymph nodes were monitored. (B, C) On the 14 days after the booster immunization, the formation of
tissue-resident memory T cells in the draining lymph nodes was evaluated. (D, E) The lymph nodes, peripheral mononuclear cells, and spleen cells of
C57BL/6 mice were collected 14 days after the second injections of either homologous or heterologous booster immunizations. Subsequently, cell-
surface molecular staining for CD44 and CD62L on CD8" T cells was performed to evaluate the activation of central memory T cells (TCM) and
effector memory T cells (TEM). Each experiment was independently conducted at least three times, n=6. Statistical differences were assessed with

One-Way ANOVA followed by Tukey's test. ***P < 0.001.

those induced by homologous immunization were predominantly
localized in the extracellular and cytoplasmic (Figure 6E). In order
to more intuitively observe the alterations in the differentially
expressed proteins induced by heterologous vaccine
administration in memory T cells, as well as their involvement in
metabolic pathways, we compared all the differentially expressed
proteins with the entire proteome of the reference species. The
research findings elucidate that differentially expressed proteins in
memory T cells are enriched primarily in the PPAR signaling
pathway (Figure 6F).

3.9 Heterologous vaccination elicits
memory T cell activation to initiate a
synchronized process of mitochondrial
biogenesis

To comprehensively elucidate the process of mitochondrial
biogenesis during memory T cell activation, we utilized
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proteomics to analyze the energy metabolism of memory T cells
in draining lymph nodes following heterologous vaccination. Fatty
acid B-oxidation plays a pivotal role in mitochondrial activation,
that fuels the respiratory chain (RC) complexes of the tricarboxylic
acid cycle (TCA) and OXPHOS, was a focal point of our
investigation (48). As anticipated, heterologous vaccination
activated the PPAR signaling pathway upregulating the
expression of proteins involved in fatty acid degradation,
transport, and oxidation compared to the PBS group (Figure 7A).
In contrast, homologous vaccination demonstrated a weaker
activation effect (Figure 7B). The proteins associated with
mitochondrial oxidative phosphorylation, including ATP5h and
Cycs, were significantly increased, in the heterologous vaccination
group compared to the PBS group, while the effect of homologous
immunization was relatively modest (Figures 7C, D).

To quantify these remarkable variations, we examined
mitochondria by Electron Microscopy (EM) (Figure 7E). As
anticipated, both heterologous and homologous vaccination-
induced mitochondrial replication within cells, resulting in a 4-
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Activation of memory T cell initiates a synchronized program of mitochondrial biogenesis and bioenergetics. (A) Heatmap representing the
expression of proteins associated with the PPAR pathway. (B) Key proteins involved in fatty acid transport and oxidation within the PPAR pathway
were quantified by Western blotting, with B-actin utilized as a loading control. (C) Heatmap representing the expression of proteins associated with
oxidative phosphorylation in mitochondria. (D) Immunofluorescence staining was employed to assess mitochondrial activation in the lymph nodes of
mice following immunization, with Tomm20 serving as the marker for mitochondrial localization. (E) Representative EM micrographs of
mitochondria after homologous and heterologous vaccination (n=30 images per group, 6 mice in each group), with a scale bar of 2 um, and
magnification show a scale bar of 200 nm. (F-H) Quantification of mitochondrial electron micrographs (6 mice per group) showed the number of
mitochondria per cell (F), the area of single mitochondria (G), and the percentage of cell area occupied by mitochondria (H). (I) Quantification of
mitochondrial length in EM micrographs. All experiments were performed at least three times independently, and the results were expressed as
mean + SEM. Statistical analysis was performed using One-Way ANOVA followed by Tukey's test. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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fold and 2-fold increase in the number of mitochondria (Figure 7F),
along with a 3-fold and 1.5-fold expansion in the mitochondrial
area (Figure 7G). The relative area occupied by mitochondria in the
cytoplasm was significantly increased in the heterologous
vaccination group (Figure 7H).

Different immunization methods led to varying morphological
alterations in the mitochondria. Cells in the PBS group contained
fragmented and round mitochondria, with the length
predominantly concentrated at 0.4 um. In the heterologous
vaccination group, the mitochondrial ultrastructure also changed
significantly, featuring invaginated inner membranes with tight
cristae, elongated and fused structures. This elongated
intermediate was about 0.8 pm, possibly associated with higher
supramolecular organization of respiratory chain complexes in
supercomplexes (49). In the homologous vaccination group, the
mitochondrial length was mainly concentrated at 0.6 um
(Figure 7I). These studies reveal that heterologous vaccination
induces robust and synchronized mitochondrial biogenesis during
the activation of memory T cells. Importantly, heterologous
vaccination proves significantly more effective than homologous
vaccination in this context (Figure 7T).

3.10 Heterologous vaccination induces
robust energy metabolism in mitochondria

In the process of metabolic reconfiguration in T cells,
mitochondria are far from inert. T cell activation, for instance,
stimulates metabolic flux within the TCA cycle, resulting in citrate
production for lipid biosynthesis and providing electron donors for
the electron transport chain (ETC) (49). Activation of the ETC
generates energy and plays a crucial role in signaling events during
T-cell activation (50).

To assess mitochondrial electron transport induced by
heterologous vaccination, we isolated mitochondria from lymph
nodes 14 days after second immunizations and conducted
measurements using the O2K cell energy metabolism analysis
system (Figures 8A, E). The results showed that mitochondrial
activation was induced by heterologous immunization, and the
basal respiration of the cells reached its maximum capacity, which
was three times higher than that of resting cells in the PBS group
(Figure 8B). Subsequently, we measured the oxidative
phosphorylation capacity of mitochondrial Complex I (CI) and
Complex II (CII). The findings indicated that compared to the PBS
group, both heterologous and homologous immunizations
enhanced the oxidative phosphorylation capacity of CI and CIL
Notably, the activation effect of heterologous immunization was
significantly more pronounced than that of homologous
immunization (Figures 8C, D).

4 Discussion

CMYV reactivation poses a major challenge to hematopoietic cell
transplantation by causing severe complications, impairing immune
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reconstitution, and increasing morbidity in immunocompromised
recipients, diminishing the full curative potential of this successful
cancer therapy. Indeed, the pentameric complex (gH/gL/UL128/
UL130/UL131A) targeted by Moderna and MSD’s mRNA-based
HCMV vaccines is a promising candidate for eliciting potent
neutralizing antibodies, particularly against epithelial and
endothelial cell infection (51). However, HCMV-specific
antibodies often exhibit low affinity and limited neutralizing
activity, allowing herpesviruses to evade host immune defenses
(52). Immunotherapy based on infusion of limited numbers of
CMV-specific T cells restored durable, functional antiviral
immunity in HCT recipients, thus bridging the critical post-
transplant period of high susceptibility to uncontrolled viremia
(53). T-cell immunity targeting HCMYV is effective in suppressing
latent viral reinfection, the immunodominant epitopes induced by
natural infection may be suboptimal (54). Thus, an
immunoinformatics approach simplifies the development of
vaccines based on dominant T cell epitopes. In this study, the
rAdMev designed using immunoinformatics incorporates CD8",
CD4" T cell, and B cell epitopes, collectively eliciting a robust
antiviral immune response in the body. Fascinatingly, we observed
that heterologous vaccination with rAdMev could mediate the
metabolic reprogramming of memory T cells, concurrently
enhancing mitochondrial biogenesis, thereby effectively
preventing CMV infection.

Jyotirmayee Dey et al. highlighted a major hurdle in vaccine
development the risk of induced hypersensitivity (55). This
condition occurs when vaccination triggers an allergic reaction in
the body instead of the desired immune response against the virus
(56). Our study has discovered that all candidate peptides exhibit a
good safety profile (Supplementary Figure S2). For MHC class I
binding peptides, the coverage rate in the European population is as
high as 96.34%. Similarly, for class I and class II binding peptides,
the top three geographical areas for the immune responses were
Europe, North America, and Oceania, with coverage rates of
98.52%, 95.63%, and 93.21%, respectively. The population
coverage of MHCII class combined peptides stands at 59.52% in
Europe, which is lower than MHCI and Class combined. Therefore,
our findings suggest that MHCI and class-combined binding
peptides may be effective vaccine targets for diverse
populations worldwide.

Toll-like receptors belong to the pattern recognition receptor
family, and they are expressed on all innate immune cells (including
dendritic cells and macrophages), and most non-hematopoietic
cells (57). They play a crucial role in recognizing pathogens and
initiating innate immune responses (58, 59). Previous studies have
demonstrated that the stimulation of TLRs by structural proteins
from various viruses activates signal transduction pathways, leading
to the production of various inflammatory cytokines in response to
viral infection (60-62). Immunodominant epitope-peptides could
activate CD8 T cells and NK cells simultaneously via interacting
with TLR4 receptors on the surface of DCs to suppress tumors in
vivo (63). Bioactive peptide can also directly bound to TLR4 in the
extracellular region to facilitate the inflammatory factor secretion
(64). Therefore, interactions between toll-like receptors and antigen
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Mitochondrial energy metabolism in memory T cells. (A) The oxygen consumption rate of T cells after vaccination. (B) Spare respiratory capacity was
calculated by analyzing changes in the oxygen consumption rate. Oxidative phosphorylation capacity of Complex | (C) and Complex Il (D) in the
mitochondrial electron transport chain. (E) Schematic illustrating of mitochondrial energy metabolism. Each group consisted of 6 mice, and all
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molecules are pivotal in the initial activation of the immune system.
We confirmed the stable interaction between the candidate peptides
and TLR4 through molecular docking and molecular dynamics
simulations. This sheds light on the crucial roles of electrostatic and
van der Waals energies in the binding process. Research has
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unveiled that TLR4 exhibits the lowest binding energy (-325.61
kcal/mol) and the most stable contact capability with synthetic
polypeptides containing multiple antigenic epitopes. We conducted
further validation of the activation of innate immune cells (DC2.4
and RAW264.7) by the candidate peptides in vitro and observed
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that Mev has the capacity to bind firmly to immune receptors,
leading to a substantial induction of innate immune cell activation
compared to a single peptide. These findings align with the
computer simulations results.

Recombinant adenovirus vectors encoding pathogen proteins
serve as a secure and efficient immunogenic vaccine delivery
platforms, capable of eliciting robust and specific cellular and
humoral immune responses (65). Consistent with the findings by
Li et al. (66), our observations revealed the activation of migrating
DCs, resident DCs, and macrophages in the draining lymph nodes
at least 7 days after immunizing mice with the rAdMev vaccine.
This induction was accompanied by a significant release of
inflammatory factors and chemokines. Adenovirus vectors have
been recognized as potent triggers of T-cell proliferation (67).
However, repeated homologous vaccination, impedes the
augmentation of the cellular immune response due to anti-vector
immunity (68).

Spencer et al. discovered that employing a heterologous prime-
boost vaccination strategy, combining diverse antigen delivery
systems enhances the immune response (69). In line with prior
studies, we used rAdMev and Mev vaccines for homologous and
heterologous boosters on day 60, respectively. In contrast to
homologous vaccination, heterologous vaccination induces a
substantial expansion of antigen-specific T cells at 14 days after
booster immunization, marked by high expression of CD107a and
CD69 on the surface of CD8 T cells. This stimulation results in
multifunctional CD8 T cell responses characterized by the secretion
of TNF-a, IFN-v, IL-2, Granzyme B, and perforin. Additionally, it
leads to the secretion of IFN-y, TNF-q, IL-6, and IL-4 in CD4 T
cells, along with the secretion of Thl-type HCMV-specific 1gG2a
antibodies. One limitation of our immunogenicity analysis is that T-
cell responses were assessed using a pooled peptide approach.
Therefore, quantifying the frequency of antigen-specific T cells by
ELISpot and clarifying the immune dominance levels among the
selected antigens remain important goals for future research.

The above data highlight that heterologous vaccination with the
rAdMev vaccine can elicit a robust cellular immune response.
Adenovirus vaccines not only elicit multifunctional antibodies
capable of mediating viral neutralization but also drive other
antibody-dependent effector functions (70). Heterologous vaccination
with the rAdMev vaccine produced high levels of specific IgG following
the second booster dose. Furthermore, it rapidly generated high-affinity
specific IgG and neutralizing antibodies upon antigen re-stimulation
on the 60th day, with the IgG titer significantly surpassing that of the
homologous vaccination group.

The establishment of durable, long-term immune protection is
a key goal in vaccination strategies, with immune memory being a
major feature of the adaptive immune response. The success of
these strategies hinges on the quantity and quality of the memory T
cell population (71), making it imperative for vaccines to elicit a
robust population of effector memory T cells.

Fourteen days after the second immunization, the heterologous
booster of the rAdMev vaccine resulted in a substantial increase in
high-affinity effector memory T cells (CD44™, CD62L") in
peripheral blood mononuclear cells and the spleen. This increase
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led to significant memory inflation, highlighting the effectiveness of
the vaccination approach. Notably, memory T cells induced by the
rAdMev vaccine exhibited a mixed central and effector-memory T
cell phenotype (CD62L*"™, CD44") in draining lymph nodes,
consistent with findings from previous studies (12).

Tissue-resident memory cells act as sentinels within tissues,
orchestrating a cyclic memory T-cell response upon antigen
encounter and enhancing local antiviral immunity (72). Following
the rAdMev vaccine booster, a substantial number of tissue-resident
memory T cells were observed in the lymph nodes. These cells
persisted from the 14th day after boost immunization and remained
detectable for up to 120 days thereafter. Collectively, these distinct
subsets of memory T cells elicited by the rAdMev vaccine work in
concert to establish a multifaceted defense strategy, contributing to
effective immunity during HCMV reinfection.

Previous studies have shown that memory CD8 T cells mediate
long-term immune protection, attributed to their heightened
proliferation capacity, self-renewal potential, and unique metabolic
adaptations that maintain cell viability (18). Notably, these memory
CD8 T cells rely on fatty acid oxidation and oxidative
phosphorylation to fulfill their metabolic requirements. In
alignment with these findings, our proteomic analysis of memory T
cells induced by heterologous vaccination with the rAdMev vaccine
revealed significant enhancements. The vaccine effectively increased
mitochondrial mass and elicited a higher SRC, a critical feature in
natural CD8 T cell memory development. As observed in our study,
augmented mitochondrial mass provides a survival advantage (17).
Moreover, the heterologous vaccination with the rAdMev led to
increased oxygen consumption in complex I and complex II of the
respiratory chain. This enhancement indicates an elevated capacity
for mitochondrial oxidative phosphorylation, meeting the metabolic
demands required for enhanced memory T cell proliferation.
Nonetheless, vaccination relies on human HLA. Nevertheless, our
experiments encountered several limitations. The high specificity of
HCMV infection poses a significant challenge as there is no suitable
animal model to conduct challenging experiments. In our future
research endeavors, we would evaluate the immunogenicity of the
recombinant adenovirus vaccine using human cell models.

Collectively, we have developed a recombinant adenovirus
vaccine utilizing multiple epitopes of human cytomegalovirus.
This vaccine exhibits the capability to induce the maturation of
APCs in vitro and in vivo. It facilitates dendritic cell migration and
macrophage polarization, fostering a synergistic interaction
between cellular and humoral immunity. Furthermore,
heterologous vaccination with the rAdMev demonstrates a
noteworthy role in triggering mitochondrial proteome remodeling
and biogenesis during memory T cell activation. Our findings
underscore the potential of the rAdMev vaccine as an effective
and safe immunization strategy against HCMV.
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