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Introduction: Syndrome of Undifferentiated Recurrent Fever (SURF) is an
autoinflammatory disorder with onset in childhood, marked by recurrent
episodes of fever without an established molecular diagnosis. Although NOD2
gene variants that are generally considered non-pathogenic are often identified
in these patients, their contribution to disease development is still not
well understood.

Methods: This study aimed to assess the clinical characteristics, long-term
progression, and functional implications of NOD?2 variants in a group of twelve
children diagnosed with SURF, along with two Blau syndrome cases and two
healthy controls. Clinical information was gathered at presentation and during
follow-up. Peripheral blood mononuclear cells were examined for cytokine
secretion and NF-kB pathway activation, both at baseline and following
muramy!l dipeptide stimulation, using multiplex cytokine analysis, Western blot,
and ELISA.

Results: The median follow-up period was 3.75 years, with most children
developing symptoms before 10 years of age. Abdominal pain and limb pain
were the most frequent complaints. All patients were treated with colchicine, and
selected cases required corticosteroids or disease-modifying antirheumatic
drugs. Elevated levels of proinflammatory cytokines, including IL-2, TNF-a, IL-
6, and IL-8, were observed in SURF patients. Our functional studies suggested
that variants like R702W, G908R, P268S/V955I, and R702W/P268S might have
triggered stronger inflammatory responses, whereas L682F, L1007fs, and R587C
might have been linked to diminished cytokine production and lower NF-kB
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activity. Certain variants, such as A1000T and P268S, appeared to show baseline
NF-kB activation with moderate inflammatory activity.

Discussion: Our findings emphasize the clinical and functional diversity of
NOD?2 variants in SURF and may point to a possible genotype—phenotype
relationship that could aid in understanding disease pathways and refining
diagnostic approaches.

NOD2, autoinflammatory disease, recurrent fever, pediatric, mutation, undifferentiated
fever, autoinflammation, cytokines

1 Introduction

Systemic autoinflammatory diseases (SAIDs) are defined by
dysregulation of the innate immune system and episodes of sterile
inflammation (1). Because of overlapping clinical manifestations,
diagnosis usually depends on recognizing specific phenotypic
patterns, often supported by genetic testing (2). Nevertheless, a
notable proportion of individuals presenting with autoinflammatory
features do not fulfill the criteria for any established SAID or for
conditions such as periodic fever, aphthous stomatitis, pharyngitis, and
adenitis (PFAPA), nor do they carry pathogenic mutations in genes
associated with hereditary SAIDs. These patients are categorized as
having syndrome of undifferentiated recurrent fever (SURF) (3).

This creates particular challenges in interpreting genetic
findings in atypical cases with prominent inflammatory features,
especially when common variants are identified in pleiotropic
genes like nucleotide-binding oligomerization domain-containing
protein 2 (NOD2). NOD2 encodes a cytosolic pattern recognition
receptor essential for innate immune defense, as it mediates
proinflammatory signaling pathways (4). Mutations in NOD2
have been associated with granulomatous autoinflammatory
conditions, including Blau syndrome (BS), inflammatory bowel
disease (IBD), and NOD2-associated autoinflammatory disease
(NAID) (4, 5). Recently, non-pathogenic NOD2 variants have
been increasingly reported in patients diagnosed with SUREF,
although the number of cases remains limited (6-9). Across these
studies, all patients exhibited recurrent fever, with abdominal pain,
rash, and musculoskeletal symptoms as the most frequently
reported manifestations (6, 8, 9). However, given the limited
evidence to date and the observation that some patients also
carried co-existing variants in other genes, the role of non-
pathogenic NOD2 variants in shaping clinical features or
influencing disease course remains uncertain.

In light of the limited knowledge regarding the inflammatory
pathways driving SURF and its diverse clinical presentation, this
study aims to characterize the clinical features, treatment outcomes,
and functional impact of NOD2 variants in patients with SURF.
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2 Materials and methods
2.1 Patients and study design

This longitudinal follow-up study, conducted between January
2022 and 2025, included 12 pediatric-onset SURF patients diagnosed
in our clinic who harbored non-pathogenic NOD2 variants. Alongside
clinical monitoring, in vitro functional studies were performed to assess
the effects of these variants on NOD2-mediated immune responses.

Patients were classified as having SURF (3) if they exhibited
recurrent or persistent fever for at least six months, with or without
systemic or organ-specific symptoms, lacked pathogenic mutations
associated with hereditary recurrent fevers (HRFs), and did not
meet criteria for PEAPA (2), after alternative infectious, neoplastic,
and autoimmune conditions were excluded (10). Inclusion criteria
also required disease onset before 18 years of age, at least 12 months
of follow-up, and detection of a non-pathogenic NOD2 variant via
next-generation sequencing (NGS). All patients underwent NGS
using a 15-gene panel targeting autoinflammatory and immune-
related genes (ADA2, CARDI4, ILIORA, LPIN2, MEFV, MVK,
NLRC4, NLRP12, NLRP3, NOD2, PLCG2, PSTPIP1, SLC29A3,
TMEM173, TNFRSFIA). Patients carrying pathogenic or likely
pathogenic NOD2 variants and coexisting any other SAID-related
non-pathogenic gene variants, or who met HRF or PFAPA criteria,
or were followed for less than one year, were excluded.

Data collection included both retrospective and prospective
components. The retrospective phase covered cases diagnosed prior
to study initiation (January 1992-April 2022) with at least six months
of follow-up, while the prospective phase enrolled new cases during the
study period. Data on demographics, genetics, clinical features,
laboratory results, imaging, histopathology, treatment, and response
were systematically recorded. Treatment responses were classified as
complete response (CR) for full symptom resolution with
normalization of inflammatory markers, or partial response (PR) for
clinical improvement requiring ongoing therapy (11).

The clinical relevance of each identified variant was assessed
using multiple sources, including the Infevers Registry, ClinVar
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(https://www.ncbi.nlm.nih.gov/clinvar/), and Varsome (https://
varsome.com/about/general/varsome-citations/), complemented
by an extensive literature review. Variants were classified
following the American College of Medical Genetics (ACMG)
criteria as benign, likely benign, variant of uncertain significance
(VUS), pathogenic, or likely pathogenic (12).

Ethical approval for this study was obtained from the Ege
University Medical School Hospital Ethics Committee (approval
number: 22-4T/35). All procedures adhered to the principles
outlined in the Declaration of Helsinki (2013 revision) and
relevant guidelines on human and animal research ethics. Written
informed consent was secured from all patients and their parents
prior to data collection.

For functional studies, a control group was established
consisting of healthy controls (HCs) and disease controls (DCs)
diagnosed with Blau syndrome (BS). The HC group included
asymptomatic individuals without chronic illnesses, among whom
one was a heterozygous carrier of the most frequent variant
identified in the patient group, and another carried wild-type
NOD2. The DC group consisted of BS patients harboring
pathogenic NOD2 mutations, all under care at our center.

As all patients were receiving immunomodulatory therapies,
blood samples for functional assays were collected during disease
flares, when markers of inflammation such as C-reactive protein
(CRP) and serum amyloid A (SAA) were elevated. This allowed for
the evaluation of cytokine responses and activation of downstream
NF-kB and MAPK signaling pathways.

2.2 Functional assays

2.2.1 Isolation of PBMCs and in vitro stimulation
of cytokine production

Peripheral blood mononuclear cells (PBMCs) were isolated from
whole blood using density gradient centrifugation with Lymphoprep
(#07801, Stemcell Technologies). Sixteen milliliters of blood were
collected into EDTA tubes and diluted at a 1:1 ratio with Dulbecco’s
Phosphate-Buffered Saline (PBS) containing 2% Fetal Bovine Serum
(FBS) at room temperature. The diluted samples were carefully layered
over an equal volume of Lymphoprep and centrifuged at 800 x g for 20
minutes at room temperature. PBMCs were harvested from the
interface, transferred to clean tubes, and washed twice with PBS by
centrifugation at 300 x g. Viability and cell counts were determined
using trypan blue exclusion.

PBMCs (5 x 10° cells) were seeded into 25 c¢m? flasks and
stimulated with 100 ng/ml L18-MDP, a synthetic muramyl
dipeptide analog and NOD2 ligand (#tlrl-lmdp, InvivoGen) (13).
Unstimulated cultures served as controls. Following 24 hours of
incubation, cells and culture supernatants were harvested separately
for subsequent molecular analyses.

2.2.2 Cytokine Profiles

Cytokine concentrations (GM-CSF, IFN-y, IL-2, IL-4, IL-6,
IL-8, IL-10, and TNF-01) were quantified in both MDP-stimulated
and control cultures using the Bio-Plex Pro Human Cytokine 8-Plex

Frontiers in Immunology

10.3389/fimmu.2025.1657782

Assay (#M50000007A, Bio-Rad). The kit components included
magnetic capture beads, detection antibodies, standards, and
internal quality controls. Culture supernatants were obtained by
centrifugation at 1,000 x g for 15 minutes at 4 °C. As the culture
medium contained 10% FBS, no additional BSA stabilization was
necessary. Samples were diluted 1:3 prior to analysis. The assay was
carried out according to the manufacturer’s instructions, and data
acquisition and cytokine quantification were performed using Bio-
Plex Manager Software.

2.2.3 Western blot analysis

Phosphorylation of IkBa (p-IxBot) serves as a marker of NF-xB
pathway activation, as its degradation allows NF-xB to translocate to
the nucleus and promote transcription of proinflammatory genes (14).
Likewise, phosphorylation of p38 MAPK (p-p38) indicates activation
of the MAP kinase signaling cascade (15). To evaluate the functional
impact of NOD2variants on these pathways, levels of p-IkBow and p-p38
were measured. Proteins were extracted from PBMCs using Complete
Lysis-M buffer (Roche), and concentrations were determined via the
Bradford assay. Lysates (20 pg) were resolved by SDS-PAGE and
transferred onto PVDF membranes. The following antibodies from
Cell Signaling Technology were employed: phospho-p38 MAPK
(Thr180/Tyr182, D3F9; #4511, 1:1000), phospho-IxBow (Ser32/36,
5A5; #9246, 1:1000), TkBo. (#9242, 1:1000), GAPDH (#5174, 1:1000),
anti-rabbit IgG (#7074, 1:2000), and anti-mouse IgG (#7076, 1:1000).
Detection was performed using Clarity Western ECL Substrate
(Bio-Rad), and signals were visualized with a C-DiGit Blot
Scanner (LicorBio).

2.3 Statistical analysis

Data were analyzed using descriptive statistics, with all
statistical evaluations carried out in GraphPad Prism (version
9.3). Experiments were performed in triplicate, and values are
expressed as mean + standard deviation. To assess the impact of
MDP stimulation on cytokine production across different disease
groups or NOD2 variants, one-way or two-way ANOVA was
employed, as appropriate. Post hoc multiple comparisons were
performed using Tukey’s or Sidak’s test. A p-value below 0.05
was considered indicative of statistical significance.

3 Results
3.1 Demographics and clinical findings

Twelve patients (53.8% female) with NOD2 variants classified as
non-pathogenic and a diagnosis of SURF were enrolled at a median
age of 14.5 years. Demographic characteristics, clinical features, and
treatment data are presented in Table 1.

Six distinct heterozygous NOD2 variants were identified:
R702W (n = 3), G908R (n = 2), and one case each of A1000T,
L682F, P268S, L1000fs, and R753Q. Additionally, two patients
carried compound heterozygous variants: P268S/R702W and
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TABLE 1 The demographic features, clinical manifestations and TABLE 1 Continued
treatments of the SURF patients.

_ Features Patients
Features FEIEE (n:12,100%)
(n:12,100%)
Treatments

Female, n (%) 7 (58.3%)

Azatiopurine, n (%) 1(8.3%)
Current age, median years (min-max) 14.5 (4-19)

Anti-TNF, n (%) 2 (16.6%)
Age at onset, median years (min-max) 9.25 (0.5-16)

SUREF, Syndrome of Undifferentiated Recurrent Fever; TNF, Tumor Necrosis Factor.
Age at onset

<5 years, n (%) 3 (25%) P268S/V9551. Based on ACMG criteria (8), six variants were
5-10 years, n (%) 5 (417%) classified as variants of uncertain significance (VUS), while P268S
and R753Q were deemed likely benign or benign. The healthy

>10 years, n (%) 4 (33.3%) control group included one individual heterozygous for R702W—
Duration follow-up, median years (min-max) 3.75 (2.5-10) the most frequent variant observed in the cohort—and one with

wild-type NOD2. The disease control group comprised two BS
patients harboring the heterozygous R587C variant. Further details

Family history positive for recurrent fever, n (%) | 3 (25%)

Consanguinity, n (%) 2 (167%) on NOD2 variants in both patients and controls are provided
Chronic disease course, n (%) 4 (33.3%) in Table 2.
Recurrent fever 12 (100%) Symptom onset ranged from 1 to 16 years, with the majority (n = 8;
66.6%) developing symptoms before age 10. All patients experienced
I{::ased acute-phase reactants during discase 12 (100%) recurrent fevers accompanied by elevated CRP and SAA levels during
attacks. Musculoskeletal involvement occurred in two-thirds of patients,
Duration fever, median days (min-max) 45 (2-9) predominantly as limb pain (41.7%). Cutaneous manifestations were
Musculoskeletal involvement 8 (66.6%) present in half of the cohort, presenting as maculopapular rash (n = 2),
Arthritis 3 (25%) recurrent panniculitis (n = 2), pyoderma gangrenosum (n = 1),
hidradenitis suppurativa (n = 1), or granulomatous dermatitis (n = 1).
Limb pain 5 (41.7%) Gastrointestinal involvement was observed in 41.7% of patients, with
Myalgia 1 (8.3%) abdominal pain consistently present in all cases and accompanied by
Osteitis 3 (25%) diarrhea and vomiting at varying frequencies. Ocular involvement was
less common, with granulomatous uveitis documented in two patients.
Cutaneous involvement 6 (50%)

Overall, granulomatous involvement of the skin and/or eyes was
Maculopapular rash 2 (33.3%) identified in 25% of the patients (n = 3) Table 1.
All patients were treated with colchicine, which remained part

Panniculitis 2 (33.3%)
of their therapy at the last follow-up. Among them, 25% achieved
Hidradenitis suppurativa 1 (16.6%) complete response (CR), while 75% demonstrated partial response
Granulomatous dermatitis 1 (16.6%) (PR) requiring additional treatments. Corticosteroids were
. . o S
Pyoderma gangrenosum 1 (16:6%) administered to 8 patients (66.6%), primarily in the presence of
osteitis, colitis, uveitis, or panniculitis. They were used either on
Gastrointestinal involvement 5 (41.7%) demand during SUREF flares with incomplete colchicine response (n
Abdominal pain 5 (100%) =5;62.5%) or for flare-ups of chronic organ-specific inflammation
Diarrhea 2 (40%) (n = 4; 50%). All patients responded favorably to corticosteroids.
Disease-modifying antirheumatic drugs (DMARDs), including
Vomiting 1(20%) methotrexate, sulfasalazine, azathioprine, and anti-TNF-o. agents,
Granulomatous inflammation 3 (25%) were prescribed to 4 patients (33.3%) due to ongoing inflammation
Eye involvement 2 (16.7%) characterized by osteitis and colitis. Additional data on clinical
features and treatment outcomes can be found in Table 2.
Treatments
Colchine, n (%) 12 (100%)
On Demand Steroids, n (%) 8 (66.6%) 3.2 Comparison of cytokine profiles among
DMARDs, n (%) 4(33.3%) HCs, DCs, and SURF patients
Methotrexate, n (%) 2 (16.6%)

Baseline and MDP-stimulated cytokine concentrations (TNF-o, IL-
Sulfasalazine, n (%) 3 (30%) 2, IL-8, IFN-y, IL-4, IL-6, IL-10, and GM-CSF) were evaluated across
(Continued) ~ SURF patients, healthy controls (HCs), and disease controls (DCs).
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TABLE 2 The detailed characteristics of SURF patients and disease controls.

SURF patients Blau syndrome
Variables
P7 BS1
Age, y/
Gender 6/F 5.5/M 11/F 18/M 12/F 17/F 18/F 19/M 18/F 14/F 14/M 15/M 19/M 25/F
Age at
disease onset, 1.5 2.5 8 11 1 9.5 15 16 9 9.5 9 12 8 1
y
Follow-up
. 35 3 25 7 10 4 3 3 8 4 5 3 9.5 12
duration,y
NOD2 R702W/
L R702W G908R L682F L1007fs A1000T R753Q P268S P268S/V9551 G908R R702W R702W R587C R587C
variation P268S
ACMG
. . Vvus vus vuUs vus vus LB B B/LB Vvus VvuUs vus VUS/B Lp Lp
classification
Recurrent Recurrent fever
fever, R« t B lling,
ever . Recurrent Recurrent ecurren 088Y swe' }ng
Abdominal Recurrent fever, Recurrent tenosynovitis,
Recurrent Recurrent R fever, Recurrent fever, . Recurrent fever
pain, ) Recurrent fever, Recurrent fever, . . Abdominal fever i camptodactyly,
o fever fever, Recurrent Abdominal ; . X fever, Limb pain, R . Boggy swelling, .
Clinical . Bloody R fever, Limb pain, Bilateral . . pain, Abdominal . polyarthritis
Abdominal Maculo- fever, . Ppain, L. . Polyarthritis Osteitis : X | tenosynovitis, )
features . . . diarrhea, . . Arthritis, Unilateral granulomatous X Limb pain, pain bilateral
pain papular Limb pain | -, intermittent o A . Myalgia, Maculo- o ) ) camptodactyly,
- hidradenitis . Panniculitis granulomatous anterior uveitis o Osteitis Limb pain . granulomatous
Vomiting, rash . diarrhea . Panniculitis papular . polyarthritis . .
suppurativa . panuveitis Pyoderma Osteitis anterior uveitis
Arthritis rash
granulomatous gangrenosum Granulomatous
dermatitis nephritis
Ocul Ost is, end
Complication = None None None None None None cular . None None None None None Osteoporosis s eoporosm. en
perforation stage renal disease
On-demand . . . . Lo L . .
steroids none none none + (colitis) none + (Panniculitis) | + (uveitis) + (uveitis) + (Panniculitis) =~ + (osteitis) + (PG, osteitis) =+ (osteitis) + +
Colchicine CR CR CR PR PR PR PR PR PR PR PR PR NR NR
MTX none none none none none none none none none PR (osteitis) CR (osteitis) none PR PR
. PR
SSZ none none none NR none none none none none PR (osteitis) none (osteitis) NR NR
AZA none none none PR (colitis) none none none none none none none none none none
Anti-TNFs none none none PR (colitis) none none none none none CR (osteitis) none none CR CR

BS, Blau syndrome; CR, Complete treatment response; PR, Partial response; NR, Non response; P, Patient; PG, Pyoderma gangrenosum; SURF, Syndrome of Undifferentiated Recurrent Fever; y, Years; VUS, Variant of uncertain significance; LB, Likely benign; LP, Likely
pathogenic; MMF, Mycophenolate mofetil; TNF, Tumor Necrosis Factor; SSZ, Sulfasalazine; MTX, Methotrexate; AZA, Azathioprine; ACMG, The American College of Medical Genetics.
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Cytokine levels in control and patient groups. HCs, Healthy controls; DCs, Disease controls, and SURF, Syndrome of Undifferentiated Recurrent

Fever.

Cytokine profiles did not differ significantly between HCs and DCs
under either unstimulated or MDP-stimulated conditions (Figure 1).

In contrast, SURF patients showed markedly elevated IL-2 and
TNF-o levels compared to both HCs and DCs at baseline and

Frontiers in Immunology

following MDP exposure. IL-6 and IL-8 concentrations were also

significantly higher in the SURF group versus HCs under both

conditions (Figure 1). No statistically significant differences were
identified for the other cytokines analyzed.
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FIGURE 2

Effects of NOD2 variants on NF-kB and MAPK activation. Western blot analysis of p-p38, IkBa, and p-IkBo. proteins at baseline and 24 hours post-
MDP stimulation, categorized by NOD2 genotypes. GAPDH was used as a loading control.

3.3 Impact of NOD2 variants on the NOD2
signaling pathway

To investigate the effect of NOD2 variants on NF-xB and
MAPK pathway activation, protein lysates were prepared from
PBMCs of patients and controls at baseline and after 24 hours
of MDP stimulation. Western blot analyses targeted IxBa,
phosphorylated IxkBo. (p-IxBa), and phosphorylated p38
(p-p38, MAPK14).

Interestingly, p-p38 was detected across all samples—including
those from healthy controls—regardless of MDP exposure
(Figure 2). Evaluation of p-IxBo levels, combined with cytokine
secretion patterns under both basal and stimulated conditions,
allowed stratification of NOD2 variants based on NF-kB pathway
activity. Variants were grouped into low, moderate, or high
inflammatory profiles according to NF-kB activation and
associated cytokine responses.

3.3.1 Impaired NF-xB activation and a low
inflammatory profile

SURF patients carrying the L682F (P3) and L1007fs (P4)
variants, along with Blau syndrome cases (BS1 and BS2)
harboring the R587C variant, showed absent p-IkBot expression
at baseline and following MDP stimulation (Figure 2). Both healthy
controls and the L682F carrier exhibited minimal cytokine
production in response to MDP, apart from a modest increase in
GM-CSF. Similarly, no statistically significant cytokine induction
was observed in carriers of the R587C and L1007fs variants
(Figure 3). Cytokine concentrations in these groups, both at rest
and after stimulation, were comparable to those of healthy controls
and significantly lower than levels seen in other NOD2 variants.
These findings suggest that L682F, L1007fs, and R587C are
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associated with a hypoinflammatory profile and impaired NF-kB
pathway activation (Figure 4).

Notably, Patient 6 (R753Q variant) demonstrated constitutive
NEF-«B activation, yet did not exhibit elevated cytokine production
(Figures 3, 4).

3.3.2 Constitutive NF-xB activation and a mild
inflammatory profile

Patients with the A1000T (P5) and P268S (P7) variants
displayed p-IkBo. expression at both baseline and following MDP
stimulation, consistent with constitutive activation of the NF-xB
pathway (Figure 2). In the P268S carrier, MDP stimulation resulted
in statistically significant elevation of all cytokines except IL-8. In
contrast, the A1000T variant was associated with increased levels of
all cytokines except IL-6 and IL-10 relative to healthy
controls (Figure 3).

Although the overall cytokine production in these patients was
lower than that observed in individuals carrying R702W, G908R,
P268S/V9551, or R702W/P268S variants, these differences did not
reach statistical significance. Collectively, these results suggest that
A1000T and P268S variants promote sustained, low-grade
activation of NF-kB, contributing to a moderate proinflammatory
profile (Figure 4).

3.3.3 Variable NF-xB activation and a high
inflammatory profile

Patients harboring R702W (P1, P10, P11), G908R (P2, P9),
P268S/V955I (P8), and R702W/P268S (P12) variants demonstrated
the strongest inflammatory profiles, with MDP-stimulated cytokine
production significantly higher than that of healthy controls (HCs)
(Figures 3, 4). Both the P268S/V9551 and R702W variants were
associated with elevated levels of all measured cytokines. Similarly,
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FIGURE 3

Cytokine levels stratified by NOD2 variants.

the P268S/R702W and G908R variants induced substantial cytokine
responses, though selectively: P268S/R702W did not increase IL-8,
and G908R failed to elevate IL-6 and IL-10. This pattern may point
to a potent but cytokine-specific inflammatory signature.

Despite pronounced cytokine secretion, NF-xB activation
patterns appeared to vary across these patients. For example, P1
(R702W) and HC1 (R702W carrier) exhibited basal p-IxBo
phosphorylation, suggesting a pre-activated NF-xB state (Figure 2).
Conversely, in P10, P11 (R702W), P12 (R702W/P268S), and HC2
(wild-type), p-IkBo. was detectable only after MDP stimulation.
Cytokine outputs were comparable between the two HCs; however,
SUREF patients with R702W variants showed significantly higher IL-6,
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IL-8, and TNF-o levels than HCs, both at baseline and after
MDP exposure.

4 Discussion

Although SUREF is classified as an autoinflammatory disorder
without consistent associations to pathogenic gene mutations,
recent studies have increasingly identified benign or VUS
alterations across several genes, including NOD?2, supporting the
concept of a multifactorial etiology (6-9). Similarly, NOD2-
associated diseases are regarded as genetically transitional diseases
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(GTDs), situated between monogenic and polygenic conditions,
where mutations are necessary but not solely sufficient for disease
onset (16). Moreover, even in monogenic Blau syndrome, reduced-
penetrance variants have been documented, underscoring the
complexity of NOD2-driven inflammation (17). Nevertheless, the
functional impact of non-pathogenic NOD2 variants in SURF
remains uncertain. Moreover, targeted NGS panels may aid
diagnosis in a subset of patients with suspected AIDs, but their
diagnostic yield remains limited (18), requiring clinical and
functional correlation. Against this background, our study is, to
the best of our knowledge, the first to investigate their functional
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consequences by specifically examining NF-xB activation and
cytokine production. Our results demonstrate aberrant NOD2-
mediated signaling, with distinct NF-kB activity and cytokine
patterns that appear to be linked to specific genotypes. Notably,
elevated levels of IL-2, TNF-o, IL-6, and IL-8 in SURF patients
compared to HCs suggest that these cytokines may contribute to the
underlying disease mechanisms.

Despite carrying the same NOD2 variant, patients exhibited
variable clinical features, with recurrent fever in all cases, most
frequently accompanied by abdominal and limb pain, while half of
the cohort also developed cutaneous involvement in the form of
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various rashes. Additional manifestations such as rash, myalgia, and
arthritis were in line with previous SURF cohorts (6-8, 19, 20).
While some reports emphasize phenotypic variability (7, 8, 19),
others suggest a more uniform presentation influenced by genetic
factors (20). A chronic inflammatory course affecting the
gastrointestinal tract or musculoskeletal system occurred in 33.3%
of our patients—higher than the 12.3% previously reported (7)—
possibly reflecting our smaller sample size or the universal presence
of NOD2 variants. When compared with the limited number of
published SURF cases carrying NOD2 variants (6, 8, 9), our findings
were consistent in showing recurrent fever frequently accompanied
by abdominal pain, musculoskeletal symptoms, and rash. Unlike
the existing literature, however, rare features such as oral ulcers,
pharyngitis, lymphadenopathy, hepatosplenomegaly, pericarditis,
conjunctivitis, and periorbital edema were not detected. Notably,
the granulomatous inflammation of the skin and eyes observed in
our cohort has not been previously reported in SURF patients with
NOD?2 variants. Given the established link between NOD2 and
granulomatous inflammation in Blau syndrome and Crohn disease
(4, 5), our findings highlight the need for further studies to
determine whether granulomatous inflammation constitutes a
distinct phenotypic subset of SURF or merely reflects a
coincidental association.

In the absence of standardized treatment protocols, SURF
management typically involves colchicine, corticosteroids, and
IL-21 inhibitors (21). Although prior studies have described
good colchicine response rates in over half of patients (6, 7, 20),
with colchicine-sensitive cases proposed to represent a more
homogeneous subgroup (20), we observed fewer complete
responders, possibly reflecting broader clinical variability. Recent
surveys indicate that 70.8% of clinicians prescribe corticosteroids
during flares based on severity rather than as routine therapy (22).
Similarly, corticosteroids in our series were used on demand for
disease flares or chronic organ inflammation, with all treated patients
improving. Moreover, Papa et al. (6) reported that SURF patients
carrying NOD2 variants demonstrated partial response to colchicine
but achieved complete remission with corticosteroids, a finding
consistent with our results and suggesting a potential association
between NOD?2 variants and limited colchicine responsiveness but
favorable corticosteroid outcomes. Additionally, one-third of patients
required long-term immunomodulatory therapy beyond intermittent
steroids, highlighting the need for personalized treatment approaches
in SUREF, particularly for those with chronic or organ-specific
inflammatory involvement. Larger multicenter studies will be
essential to confirm these observations and refine treatment
strategies in SURF.

Although cytokine patterns differ across SAIDs, with elevated
cytokines often contributing to pathogenesis (23), the underlying
mechanisms of SURF remain poorly defined. Moreover, current
functional data are largely limited to studies comparing SURF with
PFAPA or FMF (8, 11, 19). Previous studies identified a persistent
IL-1 signature in SURF tonsils and noted trends toward higher
IL-21, IL-6, IL-8, and IL-17A levels in some SURF cases compared
to PFAPA (8, 19). Pyrin inflammasome involvement has also been
proposed in SURF pathophysiology (11). In contrast to these
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findings, another study demonstrated that anti-IL-1 blockade
with anakinra was ineffective in three out of four colchicine-
resistant patients, suggesting an IL-1B-independent inflammatory
pattern in this subgroup (6). In our cohort, we observed
significantly elevated IL-2 levels, a cytokine primarily implicated
in Treg homeostasis in autoimmune conditions (24). In FMF, Treg
dysfunction has been proposed; for instance, Rimar et al. (25)
described Treg expansion following attacks, while another study
noted elevated IL-10 and TGF-, both known Treg inducers (26).
However, contrasting data indicate reduced Treg numbers in FMF,
suggesting impaired regulatory capacity may exacerbate disease
severity (27). Elevated sIL-2R levels in FMF patients, even during
remission, correlated with erythrocyte sedimentation rate and
activated CD4+CD69+ T cells, implicating IL-2 signaling in
persistent low-grade inflammation (28). These findings raise the
possibility that IL-2-driven immune activation in SURF may reflect
altered Treg function, contributing to immune dysregulation.

Variants like L1007fs, G908R, and R702W are associated with
both CD and NAID. While functional studies have classified these
variants as loss-of-function in CD due to reduced NF-«B activation
(29-31), IBD models and CD patients without NOD2 mutations
also display impaired proinflammatory cytokine production (32,
33). This diminished response appears independent of NOD2
genotype and distinct from healthy controls (34), suggesting
additional contributors to defective immunity in CD.

Conversely, G908R has been linked to enhanced IL-8 and
TNF-o production in familial sarcoidosis, despite reduced NF-kB
signaling, pointing to macrophage-driven chronic inflammation
(35). Although some NAID-associated NOD2 variants act as gain-
of-function mutations, compound heterozygous IVS8 + 158 and
R702W variants have shown loss-of-function features in NAID, yet
R702W may have different effects in NAID versus CD, consistent
with distinct clinical presentations (36, 37). Our findings suggest
that R702W, G908R, P268S/V955], and R702W/P268S may be
associated with robust proinflammatory cytokine responses
despite varied NF-xB activation, differing from their reported
loss-of-function classification in CD (29, 30). This may indicate
that NOD2 variants act differently depending on disease
context, possibly through compensatory signaling or interactions
with other innate immune pathways (38). Tissue-specific NOD2
expression and local immune environments may also shape
these responses.

Notably, while the R702W variant was present in both healthy
control and SURF patients, only the latter displayed markedly
elevated cytokine levels, indicating this variant may contribute to
inflammation under disease conditions but not in healthy states.
Furthermore, patients carrying P268S/V955I (P8) and G908R (P9)
showed high cytokine production at baseline and after MDP
stimulation, even in the absence of detectable NF-kB activation,
implying alternative inflammatory pathways may be involved.
Interestingly, G908R appeared to exhibit divergent NF-xB
activation between two patients: one (P2) had baseline and MDP-
induced p-IxBo. expression, while the other (P9) lacked p-IxBo
under both conditions, highlighting the influence of additional
regulatory mechanisms on NF-kB signaling. Despite these
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differences, both patients produced significantly elevated cytokine
levels compared to HCs.

Another important finding was that the L682F and L1007fs
variants in SURF patients, along with R587C in BS, were suggestive
of an association with a hypoinflammatory profile, characterized by
absent NF-xB activation and diminished cytokine responses
compared to HCs and other NOD2 variants. The SURF patient
carrying L1007fsinsC (P4) presented with chronic gastrointestinal
symptoms (nonspecific focal colitis) but lacked endoscopic,
radiologic, or histologic evidence of IBD, consistent with the
expected loss-of-function phenotype seen in CD (29, 30).
Although R587C is classified as pathogenic in BS, its functional
role remains debated (39-42). Matsuda et al. (40) reported weak
spontaneous NF-kB activation with R587C compared to R334W,
while our data—aligned with Parkhouse et al. (41)— seem to
support a hypoinflammatory effect, reinforcing emerging evidence
of loss-of-function features in BS-related NOD2 variants (42).

The R753Q variant showed cytokine levels comparable to HCs
both at baseline and after MDP stimulation, despite constitutive
NE-xB activation, which may suggest minimal impact on NOD2-
driven immune responses and seems to support its classification as
likely benign. In contrast, A1000T and P268S variants appeared to
be associated with NF-«B activation and mild inflammatory activity
—greater than HCs but lower than more strongly proinflammatory
variants. Although P268S has not been shown to significantly alter
NOD2 function (29, 30), its potential role in autoinflammation
remains uncertain. Given the limited functional data on A1000T
and P268S, further investigation is needed to clarify their
contributions in SURF.

Detection of p-p38 across all samples, including HCs and
regardless of MDP stimulation, suggests that p38 MAPK
activation may occur independently of NOD2-mediated signaling.
Possible explanations may include activation via alternative
pathways or basal cellular stress in PBMCs, with handling and
culture conditions potentially contributing (43). This may
underscores the complexity of p38 MAPK regulation and the
need for further study into its broader role in immune
modulation and inflammation in SURF.

Our study’s primary limitation was the small cohort,
attributable to the rarity of SURF and funding constraints that
limited control recruitment. The lack of whole exome sequencing
(WES) and segregation analyses may have led to undetected rare
pathogenic variants in other genes. Nonetheless, it should be noted
that many patients with undefined autoinflammatory syndromes
remain without a genetic diagnosis even after comprehensive
genomic testing (44). Furthermore, while samples were obtained
during disease flares, studying treatment-naive patients in larger
cohorts will be essential to better elucidate disease mechanisms.
Despite these challenges, a major strength of our work is the
integration of long-term clinical follow-up with functional
analysis of NOD2 variants, which may provide valuable insights
into potential disease pathways.
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Overall, our findings suggest that NOD2 variants may act as
disease modulators rather than primary drivers of SURF. This may
highlight the importance of further functional studies to evaluate
NOD?2 signaling within disease-relevant immune contexts, as
identical mutations might trigger inflammation through distinct
molecular routes depending on the condition. Future research
should explore additional genetic, epigenetic, or environmental
contributors that may influence inflammatory responses in
SUREF, helping to refine our understanding of NOD2-linked
autoinflammatory disorders.
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