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Cell membrane-camouflaged nanoparticles (CNPs) have emerged as promising
multifunctional platforms for colorectal cancer therapy, integrating drug delivery,
immunomodulation, photothermal ablation, and anti-inflammatory effects. This
review highlights recent advances in CNP-based strategies, emphasizing their
unique capacity to enhance tumor-targeting specificity, potentiate
immunotherapeutic efficacy, and overcome the limitations of conventional
treatments. We summarize diverse approaches employing immune cell or
tumor cell membrane coatings, as well as hybrid systems that combine CNPs
with chemotherapy, metabolic modulation, or photothermal therapy.
Accumulating evidence demonstrates that CNPs can effectively remodel the
tumor immune microenvironment, increase the bioavailability of hydrophobic
drugs, and promote synergistic therapeutic outcomes. Despite these
encouraging results, clinical translation remains constrained by challenges in
biodegradability, biosafety, large-scale manufacturing, and cost. Ongoing clinical
trials are evaluating the safety and therapeutic potential of CNP-based
nanomedicines. Overall, this review underscores the transformative role of
CNPs as a next-generation platform for precision and personalized therapy in
colorectal cancer.

CNPs, nanoparticles, immunity, colorectal cancer, immune microenvironment

Introduction

Colorectal cancer (CRC) is among the most prevalent and lethal malignancies globally
(1). Its pathogenesis is closely linked to various genomic alterations, such as chromosomal
instability, microsatellite instability, and defects in CpG island methylation (2). Patients
with early-stage CRC can be treated well with surgery, chemotherapy, or combination
therapy, but there is a lack of effective treatment for patients with advanced CRC, especially
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FIGURE 1

Preparation of cell membrane-encapsulated nanoparticles and their applications. Cell membrane-encapsulated nanoparticles are a cutting-edge
biotechnology platform that forms a “bionic” structure by enveloping cell membranes around nanoparticles. This approach demonstrates broad
application potential across multiple advanced therapeutic fields, including drug delivery, vaccine development, immunotherapy, and physical

therapies (light, sound).

for recurrent and metastatic CRC (3). Therapeutic challenges
include tumor heterogeneity, immune cell dysfunction,
immunosuppressive tumor microenvironment, and systemic
immunotoxicity (4).

The application of nanomaterials in medicine is developing
rapidly, and cell membrane-encapsulated nanoparticles (CNPs) in
particular have attracted much attention due to their unique
biointerfacial properties. These nanoparticles can mimic the
functions of natural cells, such as “self’-labeling, interaction with
the immune system, biotargeting, and localization to specific
regions, leading to improved biocompatibility, reduced
immunogenicity, immune escape, prolonged circulation time, and
enhanced tumor targeting (5, 6). Treatments for colorectal cancer
include surgery, chemotherapy, and immunotherapy. Surgery is the
main treatment for early-stage CRC; chemotherapy and targeted
therapy are commonly used for patients with advanced CRC,
including oxaliplatin, fluorouracil, and irinotecan, as well as
angiogenesis inhibitors and epidermal growth factor receptor
inhibitors etc. (7). Immunotherapy, particularly immune
checkpoint blockade (ICB) therapy and CAR T-cell therapy,
offers new promise for the treatment of CRC, although response
rates are currently low (8).

CNPs provide distinct advantages in the therapeutic
management of colorectal cancer. For instance, erythrocyte
membrane-camouflaged nanoparticles can prolong systemic
circulation and enhance tumor accumulation by reducing
immune clearance and improving vascular retention. In contrast,
platelet membrane-coated nanoparticles possess intrinsic affinity
for subendothelial matrices, thrombotic sites, and activated
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endothelial cells, thereby enabling precise targeting across
multiple stages of tumor progression (9). CNPs enhance
therapeutic efficacy by mimicking the function of natural cells,
improving the efficiency and targeting of drug delivery while
reducing clearance by the immune system (10).

The treatment of colorectal cancer is gradually shifting from
traditional surgery and chemotherapy to more precise
immunotherapy and nanomedicine. This review explores the
development of CNPs for the treatment of colorectal cancer,
providing a comprehensive analysis of their applications in
anticancer drug delivery, photothermal therapy, and
immunotherapy. Future considerations for translating promising
CNP platforms into the clinic are also discussed (Figure 1).

Status and classification of CNPs

CNPs, as an innovative nanocarrier, form a core-shell structure
with cell-mimicking properties by covering natural cell membranes
on a synthetic core (11). Due to their unique membrane structure
and surface antigens, CNPs have significant advantages in drug
delivery, photothermal therapy, and immunotherapy (12). The
manufacturing process of CNPs involves the use of a variety of
cell membrane materials, such as red blood cells, immune cells, and
cancer cell membranes, each of which gives CNPs unique properties
that enable them to play a key role in cancer therapy (9, 10, 13).

Red blood cell membrane-coated nanoparticles (RBCM) show
significant advantages in tumor therapy due to their long-lasting
properties, which prolong the circulation time in the body and thus
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FIGURE 2

Sources of common cell membranes used for preparing cell membrane-encapsulated nanoparticles. Cell membrane-coated nanoparticles can be
produced using cell membrane materials from red blood cells, immune cells, cancer cells, and leukocytes. Each type of membrane coating confers

specific properties that can be used in anticancer applications.

increase the exposure to tumors (9). These nanoparticles play an
important role in phototherapy, especially photothermal therapy
(PTT) and photodynamic therapy (PDT), e.g., red blood cell
membrane nanovesicles (RMNVs) conjugated with biomimetic
black phosphorus quantum dots (BPQDs) effectively induce
apoptosis of cancer cells and activate tumor-specific immune
responses under near-infrared laser irradiation (14). In addition,
RBCM has been used for efficient delivery of anticancer drugs (15).
In immunotherapy, a novel immunotherapeutic system (Lmo@
RBC) was constructed by wrapping erythrocyte membranes
around bacteria, selectively deleting virulence factors. Lmo@RBC
synergistically triggers tumor cell pyroptosis by upregulating the
expression of the pore-forming protein GSDMC and activating
ROS-induced activation of cysteine-containing aspartic acid protein
hydrolase 8 (caspase-8), which is effective in inducing an antitumor
immune response (16). The above demonstrates the potential of
erythrocyte membrane-encapsulated nanoparticles to enhance the
efficacy of tumor therapy and immune response.

Immune cell membrane-encapsulated nanomaterials play
multiple roles in tumor therapy. They are able to present tumor
antigens directly to the immune system to activate antitumor
immune responses and to construct tumor vaccines to enhance the
maturation and activation of dendritic cells to stimulate specific
immune responses (17, 18). In addition, these nanomaterials can
improve the tumor microenvironment, e.g., by enhancing antitumor
immunity through reprogramming tumor-associated macrophages
and alleviating tumor hypoxia (18). T lymphocyte membrane-
encapsulated nanomaterials have also been used to activate T
lymphocytes, further enhancing the efficacy of cancer
immunotherapy (19). Macrophage membrane-coated nanoparticles,
such as silica nanoparticles and near-infrared imaging probe-loaded
gold nanoparticles, not only enhance drug delivery efficiency and
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anticancer effects but also increase tumor tissue accumulation under
near-infrared laser irradiation, generate local heat to effectively inhibit
tumor growth, and achieve selective ablation of cancer cells in the
region of thermal irradiation (20). These applications demonstrate
the potential and versatility of immune-cell membrane-encapsulated
nanomaterials in tumor therapy.

Cancer cell membrane-encapsulated nanoparticles show
potential for multifaceted applications in the field of tumor
therapy. By co-loading photosensitizers and Toll-like receptor 7
agonists, they are able to enhance the efficacy of combined tumor
immunotherapy by generating reactive oxygen species (ROS) to kill
tumor cells in combination with photodynamic therapy and
activating the host’s antitumor immune response to remove
residual tumor cells (21). In addition, these nanoparticles enhance
the bioavailability of poorly water-soluble drugs, increase selective
drug accumulation in tumors, and improve therapeutic efficacy
while reducing systemic toxicity (22). They also incorporate
inducers of immunogenic cell death (ICD), enhance ICD in
tumor cells, facilitate the release of tumor-associated antigens and
damage-associated molecular patterns, thereby stimulating
antitumor immune responses (23). In the construction of tumor
vaccines, these nanoparticles enhance the maturation and activation
of dendritic cells to stimulate specific antitumor immune responses
and efficiently target and stimulate the maturation of DCs by
modifying the TLR9 agonist, CpG oligonucleotides, and aptamers
on tumor cell membrane vesicles to generate long-lasting antitumor
immune responses (24).

The abovementioned powerful potential of these cell
membrane-encapsulated nanoparticles to improve therapeutic
efficacy and to activate and enhance the body’s antitumor
immune response provides a new strategy for achieving
personalized and precise tumor immunotherapy (Figure 2).
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CNPs in colorectal cancer treatment

Drug delivery

Inflammatory bowel disease (IBD) is a chronic inflammatory
disorder of the gastrointestinal tract and is closely linked to an
elevated risk of colorectal cancer. Research has demonstrated that
individuals with IBD have a significantly higher risk of developing
CRC (25). A team has developed a bionic vesicle (SLKs) that
specifically targets leukocytes and used it to treat a mouse model
of IBD. Experimental results showed that this treatment
significantly reduced the inflammatory response and promoted
the repair of intestinal epithelial tissue (26). Duan et al. developed
an oral formulation of macrophage membrane-encapsulated
nanoparticles (cp-M®-NPs) that bind and neutralize pro-
inflammatory cytokines, significantly reducing the severity of IBD
(27). Studies have shown that liposome-coated nanoparticles for the
delivery of the inflammatory factor interleukin (IL)-12 (PLE-IL-12-
NPs) and PLE-IL-12-NPs are able to release active IL-12 in vivo and
trigger an immune response to inhibit the growth of colorectal
cancer (28). In addition to interleukin inflammatory factor, tumor
necrosis factor-o-related apoptosis-inducing ligand (TRAIL) is also
highly expressed in colorectal tumor cells, and studies have shown
that the combination of the chemotherapeutic agent oxaliplatin
with immunohybrid nanoparticles (OIHNPs) enables synergistic
delivery of oxaliplatin and anti-TRAIL, leading to therapeutic
inhibition of colorectal cancer tumor models (29). Studies have
shown that the transient delivery of miR-200 via oral
administration of miR-200-loaded lipid nanoparticles (LNPs)
restores intestinal stem cells (ISCs) and enhances intestinal
regeneration in mice following acute injury (30).

In recent times, metabolic reprogramming has emerged as a
significant hallmark of cancerous cells, characterized by elevated
glycolysis and augmented lactic acid fermentation. As a result, the
inhibition of glycolysis is considered a promising therapeutic
strategy for colorectal cancer. Glycolysis can be classified into two
distinct categories: aerobic glycolysis and anaerobic glycolysis,
which may or may not involve the use of oxygen. 2-Deoxy-p-
glucose (2DG) is capable of eliminating the energy source of glucose
glycolysis by inhibiting it, which ultimately leads to the death of
cancer cells due to starvation. Wu et al. constructed a
multifunctional nanoplatform containing a core of rare-earth
doped nanoparticles (LnNPs) by combining mesoporous silica
shells containing 2DG and the photosensitizer chlorinated e6
(Ce6) in mesoporous channels. In combination with
photodynamic therapy, which disrupted mitochondrial function
and enhanced the efficacy of 2DG by inhibiting the expression of
hexokinase 2 (HK2) and lactate dehydrogenase, thereby inhibiting
glucose metabolic reprogramming and increasing the efficiency of
starvation therapy to inhibit colorectal cancer tumor growth (31).
The inhibition of glucose supply using glucose oxidase (GO,) offers
an alternative therapeutic strategy for tumor starvation (32).
However, the in vivo application of GO,-based starvation therapy
is significantly hindered by poor GO, delivery efficiency and self-
limiting therapeutic effects. To address these challenges, Zhang et al.
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developed a nanoplatform that encapsulates GO, and tirazamine
(TPZ) within erythrocyte-membrane-masked metal-organic
framework (MOF) nanoparticles (TGZ@eM). This platform
facilitates efficient GO, delivery to tumor cells, effectively
depleting endogenous glucose and oxygen to induce tumor cell
starvation. Notably, the hypoxia induced by this approach further
activates the TPZ released from the nanoplatforms in the acidic
lysosomal/endosomal environment, thereby enhancing the
therapeutic efficacy against colon cancer (33). A study has
developed a photosynthetic leaf-inspired abiotic/biotic nanolike
vesicle (PLANT) system that employs its photosensitivity and
capacity to catalyze the decomposition of hydrogen peroxide to
enhance the oxygen levels of tumor cells and induce apoptosis,
which in turn inhibits colorectal cancer cell growth (34).
Hexokinase (HK) is the rate-limiting enzyme in the initial step of
glycolysis. Benserazide, a selective inhibitor of HK2, has been shown
to specifically bind to HK2 and markedly inhibit its enzymatic
activity in vitro (35). In a study conducted by Li et al., benserazide
nanoparticles were prepared and shown to demonstrate inhibition
in a mouse model of colorectal cancer. Furthermore, the
nanoparticles were demonstrated to be more efficacious than
conventional treatment (36). The role of hydrogen peroxide
(H,0O,) in colorectal cancer has been the subject of numerous
studies, which have revealed that it exerts a multifaceted influence
on tumor cells. In addition to promoting the proliferation and
metastasis of tumor cells, H,O, has also been identified as a
signaling molecule that induces apoptosis (37). In a single
colorectal cancer Caco-2 cell, Wang et al. accurately measured the
H,0, gradient from extracellular to intracellular using highly
sensitive platinum-functionalized nanomaterials in combination
with noncontact hopping probe mode scanning ion conductivity
microscopy (hPICM), a technique that allows for the measurement
of ionic currents with high sensitivity and spatial resolution (38).
It has been demonstrated that resveratrol is an effective
inhibitor of the mechanism of colon cancer cell growth through a
ROS-dependent iron-concentration pathway (39). Zhang et al.
developed an innovative biomimetic nanocarrier system,
resveratrol (RSV)-NPs@RBCm, which achieves efficient
encapsulation of RSV through the encapsulation of poly
(e-caprolactone)-poly(ethylene glycol) nanoparticles within
erythrocyte membranes. The nanoparticles were prepared using
poly(e-caprolactone)-poly(ethylene glycol) (PCL-PEG) and
erythrocyte membranes. When combined with the tumor-
penetrating peptide, iRGD, RSV-NPs@RBCm demonstrated a
significant enhancement in tumor penetration ability, thereby
facilitating the treatment of colorectal cancer (40). Zeng et al.
employed activated neutrophil membrane-encapsulated
nanoparticles (aNEM NPs) as nanodecoys, which demonstrated a
notable neutralizing impact and were capable of effectively
inhibiting chemokine-mediated recruitment of neutrophils to the
primary tumor, thereby mediating tumor growth (41). The
hydrophobicity of certain pharmaceutical agents may present a
challenge to their potential clinical utilization (42). The
nanoprecipitation method, as employed by Zhang et al., was used
to prepare ursolic acid-containing nanoparticles (UA-NPs). This
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resulted in enhanced apoptosis through the stronger inhibition of
COX-2 and activation of cysteine-aspartic enzyme 3 when
compared to free UA-NPs. Additionally, the nanoparticles
demonstrated superior penetration of cell membranes (43). It has
been demonstrated that the co-coating of apigenin and the
chemotherapeutic drug 5-FU in multifunctional nanomaterials
can result in a synergistic effect, thereby significantly enhancing
the efficacy of chemotherapy in vivo in patients with CRC (44).

In conclusion, CNPs demonstrate considerable potential and
significance in multiple pivotal domains. They can effectively
modulate the inflammatory response, intervene against the
glycolytic process in colorectal cancer, and achieve precise
delivery of chemotherapeutic drugs. Additionally, they can reduce
the hydrophobicity of drugs, enhance their bioavailability, and
prolong the half-life of drugs in vivo. These advantages render the
nanocarrier system a highly efficacious instrument for enhancing
therapeutic outcomes and patients’ quality of life.

Nanomaterials combined with
immunotherapy and PTT

Despite the extensive development of nanoparticle-based tumor
therapeutic strategies, the therapeutic efficacy remains constrained
by the inadequate accumulation of nanoparticles in tumor tissues
and the suboptimal antitumor effect of single treatment modalities
(45). The distinctive characteristics of nanomaterials and their
collaborative effects with alternative therapeutic modalities have
prompted the majority of researchers to develop treatments that are
more efficacious than traditional therapies, thereby offering patients
a more comprehensive and precise range of treatment options.

CD47 is markedly expressed in colorectal cancer tissues, and its
elevated expression is correlated with a poor prognosis. It triggers
immunosuppressive signaling pathways by binding to signal
regulatory protein o (SIRPot) on macrophages, thereby enabling
cancer cells to evade immune surveillance and clearance (46). Wang
et al. constructed a dual-membrane-camouflaged miRNA21
antagonist delivery nanoplatform (M@NPs/miR21), which was
self-assembled from ZnO/miRNA21 antagonist nanoparticles
(NPs/miR21) and the membranes of MC38 tumor cells (M38)
and macrophage cells (Ma) by ultrasonication. The delivery of
miR21 antagonists to tumor tissues is effectively facilitated,
resulting in the inhibition of miR21 expression, induction of
tumor cell apoptosis, regulation of Bcl2 and Ki67 expression, and
subsequent inhibition of colorectal tumor growth and metastasis
(47). The nanoplatform retains the antitumor effect of ZnO
nanoparticles while also exhibiting CD47 protein-mediated
immune escape signaling and galectin-3 protein-mediated tumor
cell aggregation. Professor Zhiyong Qian’s team developed the
MPB-3BP@CM NPs cell membrane biomimetic nanomedicine
platform, which employs microporous Prussian blue
nanoparticles (MPB NPs) as a carrier for photothermal sensitizers
and 3-bromopyruvic acid (3BP) encapsulated in cell membranes
that express a high-affinity signal for protein variant SIRPo. The
MPB-3BP@CM NPs could prolong the blood circulation time,
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effectively target colorectal cancer cells CD47, and inhibit
colorectal cancer growth by blocking the CD47-SIRPo. interaction
and promoting the polarization of tumor-associated macrophages
(TAMs) towards the M1 phenotype. Furthermore, the combination
of MPB NPs-mediated photothermal therapy enhances the
therapeutic efficacy against tumors (48). It has been demonstrated
that red blood cells possess intrinsic characteristics that result in a
prolonged cycle time (9). In order to obtain Cyp-MNC@RBC with
significantly improved physiological stability in comparison to bare
MNC, Wang et al. encapsulated superparamagnetic nanoclusters
(MNC) with erythrocyte membranes. Furthermore, the researchers
loaded the Cyp-MNC@RBC on near-infrared (NIR) carriers, which
resulted in a significant increase in both NIR absorbance and
photothermal conversion efficiency (49).

In the tumor microenvironment, the conventional mode of
tumor cell death frequently lacks immunogenicity, which enables
tumors to evade detection by the immune system. However, by
inducing immunogenic cell death, tumor cells can release tumor-
associated antigens and cytokines, which are molecular signals that
recruit antigen-presenting cells and effector CD4" and CD8" T cells.
This, in turn, activates both natural and adaptive immune
responses, which enhances the effectiveness of antitumor
immunotherapy (8). A team of researchers has developed a
multifunctional biomimetic nanoplatform (Fe;0,@PDA@CaCO;-
ICG@CM) based on magnetic dopamine (PDA) modified with
CaCOj; containing indocyanine green (ICG). This nanomaterial
has been shown to effectively scavenge programmed death ligand 1
(PD-L1) and transforming growth factor-beta (TGF-f), in addition
to other functions. Furthermore, it induces apoptosis of CT26 cells
by combining with photothermal therapy. This process can induce
ICD, which activates the maturation of dendritic cells and
subsequently promotes the activation of CD4" and CD8" T cells,
thereby inhibiting the growth of colorectal cancer cells (50). In a
novel approach, Li et al. developed a nanoplatform that employs
leukocyte membranes encapsulated with glycyrrhizinic acids
(GCMNPs) as an efficacious inducer of cellular immunogenic
death. This design not only elicited a systemic immune response
in CRC mice but also markedly reduced toxicity to the CRC (51).

Immune checkpoint blockade therapies targeting programmed
death 1 (PD-1) or its primary ligand, PD-L1, have achieved
remarkable success in the treatment of a wide range of tumors,
including colorectal cancer. Nevertheless, the efficacy of PD-1/PD-L1
inhibitors is constrained in certain colorectal cancers characterized by
an immunosuppressive tumor microenvironment, such as a low
degree of immune cell infiltration (8). Xiao et al. developed anti-
PD-L1 functionalized biomimetic dopamine-modified gold nanostar
nanoparticles (PDA/Gold nanostar (GNS)@aPD-L1 NPs), which
demonstrated considerable efficacy in inhibiting tumor growth and
reducing the number of immunosuppressive cells. The maturation of
dendritic cells is enhanced, and the infiltration of CD8* T cells is
increased, leading to prolonged overall survival. Additionally, PDA-
GNS-mediated local photothermal ablation of tumors promotes the
release of tumor-associated antigens, thereby activating the antitumor
immune response. Simultaneously, photothermal therapy suppresses
colorectal cancer growth by increasing tumor permeability and
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facilitating immune cell infiltration (52). Liu et al. designed a
multifunctional nanomaterial by incorporating oxaliplatin (OXA)
and ICG into hyaluronic acid (HA)-modified metal-organic
framework MIL-100 nanoparticles, resulting in the development of
multifunctional nanoparticles (OIMH NPs). These nanomaterials
were shown to induce immunogenic cell death and enhance
immune cell infiltration within the tumor microenvironment,
thereby improving the efficacy of immune checkpoint blockade
therapy (53). Wang et al. successfully constructed a novel
nanocomposite, a hollow gold nanocage nanocomposite (GNC-
Gal@CMaP), which demonstrated selective targeting of colon
cancer cells and effective accumulation in the tumor
microenvironment. The material effectively integrates PTT, a PD-
L1 antibody, and a TGF-f inhibitor (galunisertib), subsequently
enhancing the antitumor efficacy of an anti-PD-L1 antibody and
galunisertib through the activation of antigen-presenting cells, which
in turn trigger tumor-specific effector T cells (54).

The aforementioned findings indicate that multifunctional
nanomaterials can effectively enhance the targeting and efficacy of
photothermal therapy PTT, thereby potentiating the anticolorectal
cancer tumor effect when employed in conjunction
with immunotherapy.

Imaging technology

The suppressor of cytokine signaling 1 (SOCS-1) has been
demonstrated to influence the development of colorectal cancer
and the process of immune escape by regulating cytokine signaling
(55). Guthula et al. have developed an innovative fiber optic
nanoplasma biosensor that is sensitive to detecting human
genomic DNA methylation levels of SOCS-1 in gastrointestinal
tumors (56). By employing nanoimage printing technology, Gopal
et al. successfully created netrin-1 nanodots with a specific
distribution. The nanodots are capable of recruiting and
aggregating the missing (dCC) receptor as well as F-actin in
colorectal cancer, thereby providing new insights into the
diagnosis and treatment of colorectal cancer (57). The use of
carbon nanotubes in the diagnosis and treatment of colorectal
cancer is a significant advancement due to their versatility.
Abdolahad et al. successfully developed a novel electroendoscopic
spectroscopic analysis tool utilizing vertically aligned carbon
nanotubes (VACNTS) as the core component. This tool is capable
of accurately distinguishing between the different cancerous stages
of colorectal cancer by taking advantage of the electrical and optical
properties of VACNTSs (58). It has been established that membrane-
bound TRAIL induces a more pronounced receptor aggregation
and apoptosis than soluble TRAIL (59). In a recent study, Zakaria
et al. demonstrated that nanovectorization of the tumor necrosis
factor-associated apoptosis-inducing ligand TRAIL using single-
walled carbon nanotubes significantly improves the efficacy of
colorectal cancer tumor cell eradication (60). In addition to
developing a novel tool for electroendoscopic spectroscopic
analysis, Abdolahad has also fabricated a bioelectronic device
based on silicon nanograss. This device is capable of detecting
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several human colon invasive cancer cells (SW48) in mixed cell
cultures without any biochemical labeling of primary colon cancer
cells (HT29). Furthermore, it is suitable for more accurate cancer
staging (61). In a previous study, Wen et al. prepared a camouflaged
ultrasound sensitizer by encapsulating hematoporphyrin molecules
in a polylactic acid (PLA) matrix and subsequently coating them
with cancer cell membranes (CCM) derived from colon tumor 26
(CT26) cells. This produced the H@PLA@CCM nanosystem. The
biocompatible ultrasound nanosensitizer H@PLA@CCM,
camouflaged with cancer cell membranes, has been shown to
induce significant apoptosis and necrosis of tumor cells through
effective sonodynamic therapy (SDT), as well as highly efficient
acoustic kinetic ablation of colon tumors, thereby achieving tumor
suppression (62). Wang et al. employed a combination of highly
sensitive platinum-functionalized nanomaterials and noncontact
hPICM to achieve precise measurement of H,0O, gradients from
extracellular to intracellular compartments within individual
colorectal cancer Caco-2 cells. This technique facilitates ion
current measurements with high sensitivity and spatial resolution
(38) (Figure 3).

In summary, the significance of nanomaterials in imaging
technology is demonstrated by several factors, including the
enhancement of imaging quality, the advancement of innovative
imaging techniques, the expansion of imaging applications, and a
deeper understanding of nanomaterial behavior in biological systems.

Nanovaccines

Nanovaccines have the potential to be used not only for the
prevention of colorectal cancer but also for its treatment and
diagnosis. The insertion of cholesterol-modified CpG
oligodeoxynucleotides (Chol-CPG), a Toll-like receptor 9 agonist,
into the nuclear membrane of autologously derived Fusobacterium
nucleatum by Chen et al. represents a promising avenue of research
in this field. Similarly, the development of a safe and efficient
bacterial vaccine (LipoFM-CPG) by Chen L, Kang Z, Shen J et al.
is a significant step forward. The bacterial vaccine was capable of
selectively preventing F. nucleatum infection over the long term by
enhancing antigen presentation and inducing an immune response.
This resulted in an improvement in the therapeutic efficacy of
chemotherapy and a reduction in cancer metastasis in F.
nucleatum-infected CRCs (63). Huang et al. employed a two-step
emulsification method to synthesize poly(lactic-co-glycolic acid)/
GA nanoparticles (PLGA/GA NPs). They then utilized CT26 colon
CCM to develop nanovaccines, designated as CCM-PLGA/GA NPs.
These nanoparticles were shown to possess a dual capacity: directly
targeting and killing tumors by enhancing the tumor-targeting
ability of GA, and indirectly promoting tumor cell death by
activating dendritic cell maturation, thereby modulating the
tumor immune microenvironment (64). It was demonstrated that
cellular nanodiscs manufactured from cancer cell membranes and
combined with lipid-based adjuvants for antitumor vaccination
were effective in inhibiting the growth of colorectal cancer in
mice (65).
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FIGURE 3

Role of hanomaterials in imaging technology. In colorectal cancer imaging, nanoparticle-based targeted contrast agents integrate seamlessly with
endoscopy, CT, and MRI to boost sensitivity down to submillimetric early lesions, sharpen resolution for accurate staging, and maintain exemplary

biocompatibility to ensure patient safety.
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Anticancer applications of cell membrane-encapsulated nanoparticles. In cancer drug delivery, coatings derived from erythrocyte and cancer cell
membranes enhance therapeutic efficacy by prolonging circulation and enabling targeted localization to tumors. Similarly, in phototherapy
applications, cell membrane-encapsulated nanoparticles serve as excellent carriers for targeted delivery of photothermophiles and photosensitizers
to tumors, thereby enhancing their effects under irradiation. In immunotherapy, cell membrane-encapsulated nanoparticles can deliver
immunostimulants, either as a source of antigen or in direct contact with immune cells, to promote antitumor immunity. Taking advantage of their
nanoscale size, nanovaccines have shown remarkable results against tumor cells. They play a unique role through efficient antigen delivery, precise

targeting of tumor cells, and activation of a broad immune response.

To sum up, nanovaccines can be used not only to specifically
target and kill cancer cells but also to label and monitor
pathogens (Figure 4).

Clinical research and challenges

In recent years, cell membrane-coated nanomaterials have been
extensively investigated and have demonstrated remarkable
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targeting efficiency. However, their translation from laboratory
research to clinical application remains challenging, primarily due
to concerns regarding biodegradability, potential toxicity, and large-
scale manufacturing costs. First, the biodegradability of CNPs is
critical for clinical applications, and further research is needed to
ensure that their degradation products are safe and do not pose
long-term accumulation risks. Secondly, although CNPs exhibit low
toxicity, their safety must be confirmed through long-term, large-
scale clinical trials. One clinical trial (NCT06048367) is evaluating
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TABLE 1 Tumor targeting using cell membrane-encapsulated nanoparticles.

Mode of action Name Membrane composition Mechanism of action Effect
Drug delivery cp-M®-NPs Macrophage Bind and neutralize proinflammatory cytokines Reduce | (27)
TGZ@eM Erythrocyte Aids in the delivery of GO, to tumor cells by starving the tumor of Inhibit | (33)
glucose and O,.
RSV-NPs@RBCm Erythrocyte Enhances resveratrol’s ability to penetrate tumors by binding to the ~ Inhibit | (40)
tumor-penetrating peptide iRGD
M@NPs/miR21 Tumor cell and macrophage Inhibits miR21 expression and induces apoptosis in tumor cells. Inhibit | (47)
Regulates Bcl-2 and Ki67 expression
Combined photothermal MPB-3BP@CM NPs Tumor cell Polarization of TAMs toward the M1 phenotype by blocking CD47- | Inhibit | (48)
therapy (CT) SIRPo, interaction
Fe;0,@PDA@CaCO;3- | Tumor cell Eliminate PD-L1 and TGF-f and enhance antitumor immune Inhibit | (50)
ICG@CM response
GCMNPs Leucocyte Enhances antigen presentation and induces immunogenicity by Inhibit | (51)
blocking PD-1/PD-L1-activated T cells
PDA/GNS@aPD-L1 Promote DC maturation and increase CD8" T-cell infiltration. Inhibit | (52)
NPs Enhance antitumor immune response
GNC-Gal@CMaP Activation of APCs enhances the efficacy of anti-PDL1 and Inhibit | (54)
galunisertib. It also increases antitumor immunity.
Combined acoustic dynamics H@PLA@CCM Tumor cell Induces tumor cell apoptosis and necrosis Inhibit | (62)
(physics)
Nanovaccines LipoFM-CPG Bacterial Enhance antigen presentation and induce an immune response Inhibit | (63)
CCM-PLGA/GA NPs Tumor cell Activating DCs to mature and modulating the tumor immune Inhibit = (64)

microenvironment indirectly kills cells
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the safety and tolerability of intratumoral injections of carbon
nanoparticle-loaded iron (CNSI-Fe[II]) in patients with advanced
solid tumors.

The selection of appropriate nanomaterials is crucial, and U.S.
Food and Drug Administration (FDA)-approved biodegradable
nanoparticles, such as PLGA, should be prioritized to ensure the
production of safe, biocompatible, and low-toxicity nanoparticles
(66). Several FDA-approved nanomaterials are available for drug
delivery platforms, and utilizing these materials can expedite the
transition to clinical applications compared with unapproved
alternatives (67).

The same consideration applies to the selection of animal
models, which vary significantly in their ability to replicate
human tumor physiology and immune responses. These
differences can affect the clinical relevance of the findings and the
feasibility of their translational application (68, 69). The human
immune system is extremely complex, and no animal model can
fully replicate all aspects of it. Therefore, the development and
selection of appropriate models are crucial to ensure the successful
clinical translation of research findings.

Although the transition from the laboratory to the clinic is
challenging, several clinical trials are currently underway. As
chemotherapeutic agents are highly toxic to both healthy and
cancerous areas, effective targeting could provide substantial
benefits for patients with advanced or metastatic tumors. For
example, polymeric nanoparticles containing cetuximab, modified
with growth inhibitor analogs, are being investigated for targeting
colorectal cancer (NCT03774680). Clinical trials are evaluating the
efficacy of oral nanoformulations of curcumin as an adjuvant
therapy in the treatment of metastatic colorectal cancer with
XELOX or FOLFOX regimens (IRCT20200408046990N7) (70).
Clinicians are also investigating carbon nanoparticles as a lymph
node tracer in laparoscopic colorectal surgery to improve lymph
node sampling and detect micrometastases (NCT03350945) (71).

Conclusion

In this review, we provide a comprehensive overview of the
development and application of CNPs in colorectal cancer,
highlighting how the type of membrane encapsulation influences
their functionality (Table 1). The multifunctionality of CNPs offers
significant potential for a range of therapeutic applications,
including drug delivery, anti-inflammatory effects, photothermal
therapy, and immunotherapy. Despite the challenges that remain
for clinical translation, it is clear that cell membrane-encapsulated
nanomaterials hold considerable promise as a tool for cancer
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