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Cell membrane-camouflaged nanoparticles (CNPs) have emerged as promising

multifunctional platforms for colorectal cancer therapy, integrating drug delivery,

immunomodulation, photothermal ablation, and anti-inflammatory effects. This

review highlights recent advances in CNP-based strategies, emphasizing their

unique capacity to enhance tumor-targeting specificity, potentiate

immunotherapeutic efficacy, and overcome the limitations of conventional

treatments. We summarize diverse approaches employing immune cell or

tumor cell membrane coatings, as well as hybrid systems that combine CNPs

with chemotherapy, metabolic modulation, or photothermal therapy.

Accumulating evidence demonstrates that CNPs can effectively remodel the

tumor immune microenvironment, increase the bioavailability of hydrophobic

drugs, and promote synergistic therapeutic outcomes. Despite these

encouraging results, clinical translation remains constrained by challenges in

biodegradability, biosafety, large-scale manufacturing, and cost. Ongoing clinical

trials are evaluating the safety and therapeutic potential of CNP-based

nanomedicines. Overall, this review underscores the transformative role of

CNPs as a next-generation platform for precision and personalized therapy in

colorectal cancer.
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Introduction

Colorectal cancer (CRC) is among the most prevalent and lethal malignancies globally

(1). Its pathogenesis is closely linked to various genomic alterations, such as chromosomal

instability, microsatellite instability, and defects in CpG island methylation (2). Patients

with early-stage CRC can be treated well with surgery, chemotherapy, or combination

therapy, but there is a lack of effective treatment for patients with advanced CRC, especially
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for recurrent and metastatic CRC (3). Therapeutic challenges

include tumor heterogeneity, immune cell dysfunction,

immunosuppressive tumor microenvironment, and systemic

immunotoxicity (4).

The application of nanomaterials in medicine is developing

rapidly, and cell membrane-encapsulated nanoparticles (CNPs) in

particular have attracted much attention due to their unique

biointerfacial properties. These nanoparticles can mimic the

functions of natural cells, such as “self”-labeling, interaction with

the immune system, biotargeting, and localization to specific

regions, leading to improved biocompatibility, reduced

immunogenicity, immune escape, prolonged circulation time, and

enhanced tumor targeting (5, 6). Treatments for colorectal cancer

include surgery, chemotherapy, and immunotherapy. Surgery is the

main treatment for early-stage CRC; chemotherapy and targeted

therapy are commonly used for patients with advanced CRC,

including oxaliplatin, fluorouracil, and irinotecan, as well as

angiogenesis inhibitors and epidermal growth factor receptor

inhibitors etc. (7). Immunotherapy, particularly immune

checkpoint blockade (ICB) therapy and CAR T-cell therapy,

offers new promise for the treatment of CRC, although response

rates are currently low (8).

CNPs provide distinct advantages in the therapeutic

management of colorectal cancer. For instance, erythrocyte

membrane-camouflaged nanoparticles can prolong systemic

circulation and enhance tumor accumulation by reducing

immune clearance and improving vascular retention. In contrast,

platelet membrane-coated nanoparticles possess intrinsic affinity

for subendothelial matrices, thrombotic sites, and activated
Frontiers in Immunology 02
endothelial cells, thereby enabling precise targeting across

multiple stages of tumor progression (9). CNPs enhance

therapeutic efficacy by mimicking the function of natural cells,

improving the efficiency and targeting of drug delivery while

reducing clearance by the immune system (10).

The treatment of colorectal cancer is gradually shifting from

traditional surgery and chemotherapy to more precise

immunotherapy and nanomedicine. This review explores the

development of CNPs for the treatment of colorectal cancer,

providing a comprehensive analysis of their applications in

anticancer drug del ivery , photothermal therapy, and

immunotherapy. Future considerations for translating promising

CNP platforms into the clinic are also discussed (Figure 1).
Status and classification of CNPs

CNPs, as an innovative nanocarrier, form a core–shell structure

with cell-mimicking properties by covering natural cell membranes

on a synthetic core (11). Due to their unique membrane structure

and surface antigens, CNPs have significant advantages in drug

delivery, photothermal therapy, and immunotherapy (12). The

manufacturing process of CNPs involves the use of a variety of

cell membrane materials, such as red blood cells, immune cells, and

cancer cell membranes, each of which gives CNPs unique properties

that enable them to play a key role in cancer therapy (9, 10, 13).

Red blood cell membrane-coated nanoparticles (RBCM) show

significant advantages in tumor therapy due to their long-lasting

properties, which prolong the circulation time in the body and thus
FIGURE 1

Preparation of cell membrane-encapsulated nanoparticles and their applications. Cell membrane-encapsulated nanoparticles are a cutting-edge
biotechnology platform that forms a “bionic” structure by enveloping cell membranes around nanoparticles. This approach demonstrates broad
application potential across multiple advanced therapeutic fields, including drug delivery, vaccine development, immunotherapy, and physical
therapies (light, sound).
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increase the exposure to tumors (9). These nanoparticles play an

important role in phototherapy, especially photothermal therapy

(PTT) and photodynamic therapy (PDT), e.g., red blood cell

membrane nanovesicles (RMNVs) conjugated with biomimetic

black phosphorus quantum dots (BPQDs) effectively induce

apoptosis of cancer cells and activate tumor-specific immune

responses under near-infrared laser irradiation (14). In addition,

RBCM has been used for efficient delivery of anticancer drugs (15).

In immunotherapy, a novel immunotherapeutic system (Lmo@

RBC) was constructed by wrapping erythrocyte membranes

around bacteria, selectively deleting virulence factors. Lmo@RBC

synergistically triggers tumor cell pyroptosis by upregulating the

expression of the pore-forming protein GSDMC and activating

ROS-induced activation of cysteine-containing aspartic acid protein

hydrolase 8 (caspase-8), which is effective in inducing an antitumor

immune response (16). The above demonstrates the potential of

erythrocyte membrane-encapsulated nanoparticles to enhance the

efficacy of tumor therapy and immune response.

Immune cell membrane-encapsulated nanomaterials play

multiple roles in tumor therapy. They are able to present tumor

antigens directly to the immune system to activate antitumor

immune responses and to construct tumor vaccines to enhance the

maturation and activation of dendritic cells to stimulate specific

immune responses (17, 18). In addition, these nanomaterials can

improve the tumor microenvironment, e.g., by enhancing antitumor

immunity through reprogramming tumor-associated macrophages

and alleviating tumor hypoxia (18). T lymphocyte membrane-

encapsulated nanomaterials have also been used to activate T

lymphocytes, further enhancing the efficacy of cancer

immunotherapy (19). Macrophage membrane-coated nanoparticles,

such as silica nanoparticles and near-infrared imaging probe-loaded

gold nanoparticles, not only enhance drug delivery efficiency and
Frontiers in Immunology 03
anticancer effects but also increase tumor tissue accumulation under

near-infrared laser irradiation, generate local heat to effectively inhibit

tumor growth, and achieve selective ablation of cancer cells in the

region of thermal irradiation (20). These applications demonstrate

the potential and versatility of immune-cell membrane-encapsulated

nanomaterials in tumor therapy.

Cancer cell membrane-encapsulated nanoparticles show

potential for multifaceted applications in the field of tumor

therapy. By co-loading photosensitizers and Toll-like receptor 7

agonists, they are able to enhance the efficacy of combined tumor

immunotherapy by generating reactive oxygen species (ROS) to kill

tumor cells in combination with photodynamic therapy and

activating the host’s antitumor immune response to remove

residual tumor cells (21). In addition, these nanoparticles enhance

the bioavailability of poorly water-soluble drugs, increase selective

drug accumulation in tumors, and improve therapeutic efficacy

while reducing systemic toxicity (22). They also incorporate

inducers of immunogenic cell death (ICD), enhance ICD in

tumor cells, facilitate the release of tumor-associated antigens and

damage-associated molecular patterns, thereby stimulating

antitumor immune responses (23). In the construction of tumor

vaccines, these nanoparticles enhance the maturation and activation

of dendritic cells to stimulate specific antitumor immune responses

and efficiently target and stimulate the maturation of DCs by

modifying the TLR9 agonist, CpG oligonucleotides, and aptamers

on tumor cell membrane vesicles to generate long-lasting antitumor

immune responses (24).

The abovementioned powerful potential of these cell

membrane-encapsulated nanoparticles to improve therapeutic

efficacy and to activate and enhance the body’s antitumor

immune response provides a new strategy for achieving

personalized and precise tumor immunotherapy (Figure 2).
FIGURE 2

Sources of common cell membranes used for preparing cell membrane-encapsulated nanoparticles. Cell membrane-coated nanoparticles can be
produced using cell membrane materials from red blood cells, immune cells, cancer cells, and leukocytes. Each type of membrane coating confers
specific properties that can be used in anticancer applications.
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CNPs in colorectal cancer treatment

Drug delivery

Inflammatory bowel disease (IBD) is a chronic inflammatory

disorder of the gastrointestinal tract and is closely linked to an

elevated risk of colorectal cancer. Research has demonstrated that

individuals with IBD have a significantly higher risk of developing

CRC (25). A team has developed a bionic vesicle (SLKs) that

specifically targets leukocytes and used it to treat a mouse model

of IBD. Experimental results showed that this treatment

significantly reduced the inflammatory response and promoted

the repair of intestinal epithelial tissue (26). Duan et al. developed

an oral formulation of macrophage membrane-encapsulated

nanoparticles (cp-MF-NPs) that bind and neutralize pro-

inflammatory cytokines, significantly reducing the severity of IBD

(27). Studies have shown that liposome-coated nanoparticles for the

delivery of the inflammatory factor interleukin (IL)-12 (PLE-IL-12-

NPs) and PLE-IL-12-NPs are able to release active IL-12 in vivo and

trigger an immune response to inhibit the growth of colorectal

cancer (28). In addition to interleukin inflammatory factor, tumor

necrosis factor-a-related apoptosis-inducing ligand (TRAIL) is also

highly expressed in colorectal tumor cells, and studies have shown

that the combination of the chemotherapeutic agent oxaliplatin

with immunohybrid nanoparticles (OIHNPs) enables synergistic

delivery of oxaliplatin and anti-TRAIL, leading to therapeutic

inhibition of colorectal cancer tumor models (29). Studies have

shown that the transient delivery of miR-200 via oral

administration of miR-200-loaded lipid nanoparticles (LNPs)

restores intestinal stem cells (ISCs) and enhances intestinal

regeneration in mice following acute injury (30).

In recent times, metabolic reprogramming has emerged as a

significant hallmark of cancerous cells, characterized by elevated

glycolysis and augmented lactic acid fermentation. As a result, the

inhibition of glycolysis is considered a promising therapeutic

strategy for colorectal cancer. Glycolysis can be classified into two

distinct categories: aerobic glycolysis and anaerobic glycolysis,

which may or may not involve the use of oxygen. 2-Deoxy-D-

glucose (2DG) is capable of eliminating the energy source of glucose

glycolysis by inhibiting it, which ultimately leads to the death of

cancer cells due to starvation. Wu et al. constructed a

multifunctional nanoplatform containing a core of rare-earth

doped nanoparticles (LnNPs) by combining mesoporous silica

shells containing 2DG and the photosensitizer chlorinated e6

(Ce6) in mesoporous channels . In combination with

photodynamic therapy, which disrupted mitochondrial function

and enhanced the efficacy of 2DG by inhibiting the expression of

hexokinase 2 (HK2) and lactate dehydrogenase, thereby inhibiting

glucose metabolic reprogramming and increasing the efficiency of

starvation therapy to inhibit colorectal cancer tumor growth (31).

The inhibition of glucose supply using glucose oxidase (GOx) offers

an alternative therapeutic strategy for tumor starvation (32).

However, the in vivo application of GOx-based starvation therapy

is significantly hindered by poor GOx delivery efficiency and self-

limiting therapeutic effects. To address these challenges, Zhang et al.
Frontiers in Immunology 04
developed a nanoplatform that encapsulates GOx and tirazamine

(TPZ) within erythrocyte-membrane-masked metal-organic

framework (MOF) nanoparticles (TGZ@eM). This platform

facilitates efficient GOx delivery to tumor cells, effectively

depleting endogenous glucose and oxygen to induce tumor cell

starvation. Notably, the hypoxia induced by this approach further

activates the TPZ released from the nanoplatforms in the acidic

lysosomal/endosomal environment, thereby enhancing the

therapeutic efficacy against colon cancer (33). A study has

developed a photosynthetic leaf-inspired abiotic/biotic nanolike

vesicle (PLANT) system that employs its photosensitivity and

capacity to catalyze the decomposition of hydrogen peroxide to

enhance the oxygen levels of tumor cells and induce apoptosis,

which in turn inhibits colorectal cancer cell growth (34).

Hexokinase (HK) is the rate-limiting enzyme in the initial step of

glycolysis. Benserazide, a selective inhibitor of HK2, has been shown

to specifically bind to HK2 and markedly inhibit its enzymatic

activity in vitro (35). In a study conducted by Li et al., benserazide

nanoparticles were prepared and shown to demonstrate inhibition

in a mouse model of colorectal cancer. Furthermore, the

nanoparticles were demonstrated to be more efficacious than

conventional treatment (36). The role of hydrogen peroxide

(H2O2) in colorectal cancer has been the subject of numerous

studies, which have revealed that it exerts a multifaceted influence

on tumor cells. In addition to promoting the proliferation and

metastasis of tumor cells, H2O2 has also been identified as a

signaling molecule that induces apoptosis (37). In a single

colorectal cancer Caco-2 cell, Wang et al. accurately measured the

H2O2 gradient from extracellular to intracellular using highly

sensitive platinum-functionalized nanomaterials in combination

with noncontact hopping probe mode scanning ion conductivity

microscopy (hPICM), a technique that allows for the measurement

of ionic currents with high sensitivity and spatial resolution (38).

It has been demonstrated that resveratrol is an effective

inhibitor of the mechanism of colon cancer cell growth through a

ROS-dependent iron-concentration pathway (39). Zhang et al.

developed an innovative biomimetic nanocarrier system,

resveratrol (RSV)-NPs@RBCm, which achieves efficient

encapsulation of RSV through the encapsulation of poly

(e-caprolactone)-poly(ethylene glycol) nanoparticles within

erythrocyte membranes. The nanoparticles were prepared using

poly(e-caprolactone)-poly(ethylene glycol) (PCL-PEG) and

erythrocyte membranes. When combined with the tumor-

penetrating peptide, iRGD, RSV-NPs@RBCm demonstrated a

significant enhancement in tumor penetration ability, thereby

facilitating the treatment of colorectal cancer (40). Zeng et al.

employed activated neutrophil membrane-encapsulated

nanoparticles (aNEM NPs) as nanodecoys, which demonstrated a

notable neutralizing impact and were capable of effectively

inhibiting chemokine-mediated recruitment of neutrophils to the

primary tumor, thereby mediating tumor growth (41). The

hydrophobicity of certain pharmaceutical agents may present a

challenge to their potential clinical utilization (42). The

nanoprecipitation method, as employed by Zhang et al., was used

to prepare ursolic acid-containing nanoparticles (UA-NPs). This
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resulted in enhanced apoptosis through the stronger inhibition of

COX-2 and activation of cysteine-aspartic enzyme 3 when

compared to free UA-NPs. Additionally, the nanoparticles

demonstrated superior penetration of cell membranes (43). It has

been demonstrated that the co-coating of apigenin and the

chemotherapeutic drug 5-FU in multifunctional nanomaterials

can result in a synergistic effect, thereby significantly enhancing

the efficacy of chemotherapy in vivo in patients with CRC (44).

In conclusion, CNPs demonstrate considerable potential and

significance in multiple pivotal domains. They can effectively

modulate the inflammatory response, intervene against the

glycolytic process in colorectal cancer, and achieve precise

delivery of chemotherapeutic drugs. Additionally, they can reduce

the hydrophobicity of drugs, enhance their bioavailability, and

prolong the half-life of drugs in vivo. These advantages render the

nanocarrier system a highly efficacious instrument for enhancing

therapeutic outcomes and patients’ quality of life.
Nanomaterials combined with
immunotherapy and PTT

Despite the extensive development of nanoparticle-based tumor

therapeutic strategies, the therapeutic efficacy remains constrained

by the inadequate accumulation of nanoparticles in tumor tissues

and the suboptimal antitumor effect of single treatment modalities

(45). The distinctive characteristics of nanomaterials and their

collaborative effects with alternative therapeutic modalities have

prompted the majority of researchers to develop treatments that are

more efficacious than traditional therapies, thereby offering patients

a more comprehensive and precise range of treatment options.

CD47 is markedly expressed in colorectal cancer tissues, and its

elevated expression is correlated with a poor prognosis. It triggers

immunosuppressive signaling pathways by binding to signal

regulatory protein a (SIRPa) on macrophages, thereby enabling

cancer cells to evade immune surveillance and clearance (46). Wang

et al. constructed a dual-membrane-camouflaged miRNA21

antagonist delivery nanoplatform (M@NPs/miR21), which was

self-assembled from ZnO/miRNA21 antagonist nanoparticles

(NPs/miR21) and the membranes of MC38 tumor cells (M38)

and macrophage cells (Ma) by ultrasonication. The delivery of

miR21 antagonists to tumor tissues is effectively facilitated,

resulting in the inhibition of miR21 expression, induction of

tumor cell apoptosis, regulation of Bcl2 and Ki67 expression, and

subsequent inhibition of colorectal tumor growth and metastasis

(47). The nanoplatform retains the antitumor effect of ZnO

nanoparticles while also exhibiting CD47 protein-mediated

immune escape signaling and galectin-3 protein-mediated tumor

cell aggregation. Professor Zhiyong Qian’s team developed the

MPB-3BP@CM NPs cell membrane biomimetic nanomedicine

plat form, which employs microporous Prussian blue

nanoparticles (MPB NPs) as a carrier for photothermal sensitizers

and 3-bromopyruvic acid (3BP) encapsulated in cell membranes

that express a high-affinity signal for protein variant SIRPa. The
MPB-3BP@CM NPs could prolong the blood circulation time,
Frontiers in Immunology 05
effectively target colorectal cancer cells CD47, and inhibit

colorectal cancer growth by blocking the CD47-SIRPa interaction

and promoting the polarization of tumor-associated macrophages

(TAMs) towards the M1 phenotype. Furthermore, the combination

of MPB NPs-mediated photothermal therapy enhances the

therapeutic efficacy against tumors (48). It has been demonstrated

that red blood cells possess intrinsic characteristics that result in a

prolonged cycle time (9). In order to obtain Cyp-MNC@RBC with

significantly improved physiological stability in comparison to bare

MNC, Wang et al. encapsulated superparamagnetic nanoclusters

(MNC) with erythrocyte membranes. Furthermore, the researchers

loaded the Cyp-MNC@RBC on near-infrared (NIR) carriers, which

resulted in a significant increase in both NIR absorbance and

photothermal conversion efficiency (49).

In the tumor microenvironment, the conventional mode of

tumor cell death frequently lacks immunogenicity, which enables

tumors to evade detection by the immune system. However, by

inducing immunogenic cell death, tumor cells can release tumor-

associated antigens and cytokines, which are molecular signals that

recruit antigen-presenting cells and effector CD4+ and CD8+ T cells.

This, in turn, activates both natural and adaptive immune

responses, which enhances the effectiveness of antitumor

immunotherapy (8). A team of researchers has developed a

multifunctional biomimetic nanoplatform (Fe3O4@PDA@CaCO3-

ICG@CM) based on magnetic dopamine (PDA) modified with

CaCO3 containing indocyanine green (ICG). This nanomaterial

has been shown to effectively scavenge programmed death ligand 1

(PD-L1) and transforming growth factor-beta (TGF-b), in addition

to other functions. Furthermore, it induces apoptosis of CT26 cells

by combining with photothermal therapy. This process can induce

ICD, which activates the maturation of dendritic cells and

subsequently promotes the activation of CD4+ and CD8+ T cells,

thereby inhibiting the growth of colorectal cancer cells (50). In a

novel approach, Li et al. developed a nanoplatform that employs

leukocyte membranes encapsulated with glycyrrhizinic acids

(GCMNPs) as an efficacious inducer of cellular immunogenic

death. This design not only elicited a systemic immune response

in CRC mice but also markedly reduced toxicity to the CRC (51).

Immune checkpoint blockade therapies targeting programmed

death 1 (PD-1) or its primary ligand, PD-L1, have achieved

remarkable success in the treatment of a wide range of tumors,

including colorectal cancer. Nevertheless, the efficacy of PD-1/PD-L1

inhibitors is constrained in certain colorectal cancers characterized by

an immunosuppressive tumor microenvironment, such as a low

degree of immune cell infiltration (8). Xiao et al. developed anti-

PD-L1 functionalized biomimetic dopamine-modified gold nanostar

nanoparticles (PDA/Gold nanostar (GNS)@aPD-L1 NPs), which

demonstrated considerable efficacy in inhibiting tumor growth and

reducing the number of immunosuppressive cells. The maturation of

dendritic cells is enhanced, and the infiltration of CD8+ T cells is

increased, leading to prolonged overall survival. Additionally, PDA-

GNS-mediated local photothermal ablation of tumors promotes the

release of tumor-associated antigens, thereby activating the antitumor

immune response. Simultaneously, photothermal therapy suppresses

colorectal cancer growth by increasing tumor permeability and
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facilitating immune cell infiltration (52). Liu et al. designed a

multifunctional nanomaterial by incorporating oxaliplatin (OXA)

and ICG into hyaluronic acid (HA)-modified metal-organic

framework MIL-100 nanoparticles, resulting in the development of

multifunctional nanoparticles (OIMH NPs). These nanomaterials

were shown to induce immunogenic cell death and enhance

immune cell infiltration within the tumor microenvironment,

thereby improving the efficacy of immune checkpoint blockade

therapy (53). Wang et al. successfully constructed a novel

nanocomposite, a hollow gold nanocage nanocomposite (GNC-

Gal@CMaP), which demonstrated selective targeting of colon

cancer cells and effective accumulation in the tumor

microenvironment. The material effectively integrates PTT, a PD-

L1 antibody, and a TGF-b inhibitor (galunisertib), subsequently

enhancing the antitumor efficacy of an anti-PD-L1 antibody and

galunisertib through the activation of antigen-presenting cells, which

in turn trigger tumor-specific effector T cells (54).

The aforementioned findings indicate that multifunctional

nanomaterials can effectively enhance the targeting and efficacy of

photothermal therapy PTT, thereby potentiating the anticolorectal

cancer tumor effec t when employed in conjunct ion

with immunotherapy.
Imaging technology

The suppressor of cytokine signaling 1 (SOCS-1) has been

demonstrated to influence the development of colorectal cancer

and the process of immune escape by regulating cytokine signaling

(55). Guthula et al. have developed an innovative fiber optic

nanoplasma biosensor that is sensitive to detecting human

genomic DNA methylation levels of SOCS-1 in gastrointestinal

tumors (56). By employing nanoimage printing technology, Gopal

et al. successfully created netrin-1 nanodots with a specific

distribution. The nanodots are capable of recruiting and

aggregating the missing (dCC) receptor as well as F-actin in

colorectal cancer, thereby providing new insights into the

diagnosis and treatment of colorectal cancer (57). The use of

carbon nanotubes in the diagnosis and treatment of colorectal

cancer is a significant advancement due to their versatility.

Abdolahad et al. successfully developed a novel electroendoscopic

spectroscopic analysis tool utilizing vertically aligned carbon

nanotubes (VACNTs) as the core component. This tool is capable

of accurately distinguishing between the different cancerous stages

of colorectal cancer by taking advantage of the electrical and optical

properties of VACNTs (58). It has been established that membrane-

bound TRAIL induces a more pronounced receptor aggregation

and apoptosis than soluble TRAIL (59). In a recent study, Zakaria

et al. demonstrated that nanovectorization of the tumor necrosis

factor-associated apoptosis-inducing ligand TRAIL using single-

walled carbon nanotubes significantly improves the efficacy of

colorectal cancer tumor cell eradication (60). In addition to

developing a novel tool for electroendoscopic spectroscopic

analysis, Abdolahad has also fabricated a bioelectronic device

based on silicon nanograss. This device is capable of detecting
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several human colon invasive cancer cells (SW48) in mixed cell

cultures without any biochemical labeling of primary colon cancer

cells (HT29). Furthermore, it is suitable for more accurate cancer

staging (61). In a previous study, Wen et al. prepared a camouflaged

ultrasound sensitizer by encapsulating hematoporphyrin molecules

in a polylactic acid (PLA) matrix and subsequently coating them

with cancer cell membranes (CCM) derived from colon tumor 26

(CT26) cells. This produced the H@PLA@CCM nanosystem. The

biocompatible ultrasound nanosensitizer H@PLA@CCM,

camouflaged with cancer cell membranes, has been shown to

induce significant apoptosis and necrosis of tumor cells through

effective sonodynamic therapy (SDT), as well as highly efficient

acoustic kinetic ablation of colon tumors, thereby achieving tumor

suppression (62). Wang et al. employed a combination of highly

sensitive platinum-functionalized nanomaterials and noncontact

hPICM to achieve precise measurement of H2O2 gradients from

extracellular to intracellular compartments within individual

colorectal cancer Caco-2 cells. This technique facilitates ion

current measurements with high sensitivity and spatial resolution

(38) (Figure 3).

In summary, the significance of nanomaterials in imaging

technology is demonstrated by several factors, including the

enhancement of imaging quality, the advancement of innovative

imaging techniques, the expansion of imaging applications, and a

deeper understanding of nanomaterial behavior in biological systems.
Nanovaccines

Nanovaccines have the potential to be used not only for the

prevention of colorectal cancer but also for its treatment and

diagnosis . The insertion of cholesterol-modified CpG

oligodeoxynucleotides (Chol-CPG), a Toll-like receptor 9 agonist,

into the nuclear membrane of autologously derived Fusobacterium

nucleatum by Chen et al. represents a promising avenue of research

in this field. Similarly, the development of a safe and efficient

bacterial vaccine (LipoFM-CPG) by Chen L, Kang Z, Shen J et al.

is a significant step forward. The bacterial vaccine was capable of

selectively preventing F. nucleatum infection over the long term by

enhancing antigen presentation and inducing an immune response.

This resulted in an improvement in the therapeutic efficacy of

chemotherapy and a reduction in cancer metastasis in F.

nucleatum-infected CRCs (63). Huang et al. employed a two-step

emulsification method to synthesize poly(lactic-co-glycolic acid)/

GA nanoparticles (PLGA/GA NPs). They then utilized CT26 colon

CCM to develop nanovaccines, designated as CCM-PLGA/GA NPs.

These nanoparticles were shown to possess a dual capacity: directly

targeting and killing tumors by enhancing the tumor-targeting

ability of GA, and indirectly promoting tumor cell death by

activating dendritic cell maturation, thereby modulating the

tumor immune microenvironment (64). It was demonstrated that

cellular nanodiscs manufactured from cancer cell membranes and

combined with lipid-based adjuvants for antitumor vaccination

were effective in inhibiting the growth of colorectal cancer in

mice (65).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1657722
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qiu et al. 10.3389/fimmu.2025.1657722
To sum up, nanovaccines can be used not only to specifically

target and kill cancer cells but also to label and monitor

pathogens (Figure 4).
Clinical research and challenges

In recent years, cell membrane-coated nanomaterials have been

extensively investigated and have demonstrated remarkable
Frontiers in Immunology 07
targeting efficiency. However, their translation from laboratory

research to clinical application remains challenging, primarily due

to concerns regarding biodegradability, potential toxicity, and large-

scale manufacturing costs. First, the biodegradability of CNPs is

critical for clinical applications, and further research is needed to

ensure that their degradation products are safe and do not pose

long-term accumulation risks. Secondly, although CNPs exhibit low

toxicity, their safety must be confirmed through long-term, large-

scale clinical trials. One clinical trial (NCT06048367) is evaluating
FIGURE 3

Role of nanomaterials in imaging technology. In colorectal cancer imaging, nanoparticle-based targeted contrast agents integrate seamlessly with
endoscopy, CT, and MRI to boost sensitivity down to submillimetric early lesions, sharpen resolution for accurate staging, and maintain exemplary
biocompatibility to ensure patient safety.
FIGURE 4

Anticancer applications of cell membrane-encapsulated nanoparticles. In cancer drug delivery, coatings derived from erythrocyte and cancer cell
membranes enhance therapeutic efficacy by prolonging circulation and enabling targeted localization to tumors. Similarly, in phototherapy
applications, cell membrane-encapsulated nanoparticles serve as excellent carriers for targeted delivery of photothermophiles and photosensitizers
to tumors, thereby enhancing their effects under irradiation. In immunotherapy, cell membrane-encapsulated nanoparticles can deliver
immunostimulants, either as a source of antigen or in direct contact with immune cells, to promote antitumor immunity. Taking advantage of their
nanoscale size, nanovaccines have shown remarkable results against tumor cells. They play a unique role through efficient antigen delivery, precise
targeting of tumor cells, and activation of a broad immune response.
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TABLE 1 Tumor targeting using cell membrane-encapsulated nanoparticles.

Mode of action Name Membrane composition Mechanism of action Effect

Bind and neutralize proinflammatory cytokines Reduce (27)

Aids in the delivery of GOx to tumor cells by starving the tumor of
glucose and O2.

Inhibit (33)

Enhances resveratrol’s ability to penetrate tumors by binding to the
tumor-penetrating peptide iRGD

Inhibit (40)

Inhibits miR21 expression and induces apoptosis in tumor cells.
Regulates Bcl-2 and Ki67 expression

Inhibit (47)

Polarization of TAMs toward the M1 phenotype by blocking CD47-
SIRPa interaction

Inhibit (48)

Eliminate PD-L1 and TGF-b and enhance antitumor immune
response

Inhibit (50)

Enhances antigen presentation and induces immunogenicity by
blocking PD-1/PD-L1-activated T cells

Inhibit (51)

Promote DC maturation and increase CD8+ T-cell infiltration.
Enhance antitumor immune response

Inhibit (52)

Activation of APCs enhances the efficacy of anti-PDL1 and
galunisertib. It also increases antitumor immunity.

Inhibit (54)

Induces tumor cell apoptosis and necrosis Inhibit (62)

Enhance antigen presentation and induce an immune response Inhibit (63)

Activating DCs to mature and modulating the tumor immune
microenvironment indirectly kills cells

Inhibit (64)
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Drug delivery cp-MF-NPs Macrophage

TGZ@eM Erythrocyte

RSV-NPs@RBCm Erythrocyte

M@NPs/miR21 Tumor cell and macrophage

Combined photothermal
therapy (CT)

MPB-3BP@CM NPs Tumor cell

Fe3O4@PDA@CaCO3-
ICG@CM

Tumor cell

GCMNPs Leucocyte

PDA/GNS@aPD-L1
NPs

GNC-Gal@CMaP

Combined acoustic dynamics
(physics)

H@PLA@CCM Tumor cell

Nanovaccines LipoFM-CPG Bacterial

CCM-PLGA/GA NPs Tumor cell
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the safety and tolerability of intratumoral injections of carbon

nanoparticle-loaded iron (CNSI-Fe[II]) in patients with advanced

solid tumors.

The selection of appropriate nanomaterials is crucial, and U.S.

Food and Drug Administration (FDA)-approved biodegradable

nanoparticles, such as PLGA, should be prioritized to ensure the

production of safe, biocompatible, and low-toxicity nanoparticles

(66). Several FDA-approved nanomaterials are available for drug

delivery platforms, and utilizing these materials can expedite the

transition to clinical applications compared with unapproved

alternatives (67).

The same consideration applies to the selection of animal

models, which vary significantly in their ability to replicate

human tumor physiology and immune responses. These

differences can affect the clinical relevance of the findings and the

feasibility of their translational application (68, 69). The human

immune system is extremely complex, and no animal model can

fully replicate all aspects of it. Therefore, the development and

selection of appropriate models are crucial to ensure the successful

clinical translation of research findings.

Although the transition from the laboratory to the clinic is

challenging, several clinical trials are currently underway. As

chemotherapeutic agents are highly toxic to both healthy and

cancerous areas, effective targeting could provide substantial

benefits for patients with advanced or metastatic tumors. For

example, polymeric nanoparticles containing cetuximab, modified

with growth inhibitor analogs, are being investigated for targeting

colorectal cancer (NCT03774680). Clinical trials are evaluating the

efficacy of oral nanoformulations of curcumin as an adjuvant

therapy in the treatment of metastatic colorectal cancer with

XELOX or FOLFOX regimens (IRCT20200408046990N7) (70).

Clinicians are also investigating carbon nanoparticles as a lymph

node tracer in laparoscopic colorectal surgery to improve lymph

node sampling and detect micrometastases (NCT03350945) (71).
Conclusion

In this review, we provide a comprehensive overview of the

development and application of CNPs in colorectal cancer,

highlighting how the type of membrane encapsulation influences

their functionality (Table 1). The multifunctionality of CNPs offers

significant potential for a range of therapeutic applications,

including drug delivery, anti-inflammatory effects, photothermal

therapy, and immunotherapy. Despite the challenges that remain

for clinical translation, it is clear that cell membrane-encapsulated

nanomaterials hold considerable promise as a tool for cancer
Frontiers in Immunology 09
immunotherapy. This approach is expected to enhance the

efficacy of oncology treatments and contribute to the

advancement of precision, personalized medicine.
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