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Glioblastoma (GBM) is the most aggressive primary brain tumor in adults,
characterized by rapid proliferation, diffuse infiltration, and resistance to
conventional therapies. Despite advances in surgery, radiotherapy, and
chemotherapy, the prognosis remains dismal, with median survival rarely
exceeding 15 months. The immunosuppressive and heterogeneous tumor
microenvironment (TME), along with profound tumor-intrinsic resistance
mechanisms, contributes significantly to treatment failure. Cardiotonic steroids
(CTS), such as ouabain, have recently gained attention for their pleiotropic effects
beyond Na*/K*-ATPase inhibition, including modulation of intracellular
signaling, induction of cell death, and immune regulation. In GBM, ouabain has
been shown to reduce tumor cell viability, impair migration, disrupt angiogenesis,
and alter different signaling pathways. Although direct evidence of ouabain’s
effects on the GBM immune microenvironment is limited, findings from other
models suggest that it can modulate both innate and adaptive immune
responses, affecting T cells, regulatory T cells, dendritic cells, monocytes, and
NK cells. While previous reviews have explored the anticancer and
pharmacological aspects of cardiotonic steroids, the immunological dimension
of ouabain’s activity remains underrepresented. This review integrates current
evidence on ouabain’s dual actions in tumor biology and immune regulation,
emphasizing its emerging therapeutic potential and the need for deeper
investigation within high-grade glioma models.
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1 Introduction

Glioblastoma (GBM) is the most aggressive primary brain
tumor, characterized by rapid proliferation, diffuse invasion into
surrounding brain tissue, and resistance to conventional therapies
(1, 2). Standard treatment typically involves maximal surgical
resection followed by radiotherapy and chemotherapy [i.e.,
temozolomide (TMZ)] (3). However, despite their widespread
use, the success rate of treatment remains low due to intrinsic
and acquired resistance mechanisms. Tumor cells often develop
resistance through O6-methylguanine-DNA methyltransferase
(MGMT) expression, DNA repair pathways, and metabolic
adaptations that allow survival even with cytotoxic drugs (4-6).
As a result, median survival for GBM patients remains
approximately 12-15 months (7, 8), underscoring the urgent need
for novel therapeutic approaches.

The highly heterogeneous and immunosuppressive tumor
microenvironment (TME) in GBM contributes to tumor
progression and therapeutic resistance by impairing anti-tumor
immune responses and promoting tumor-supportive interactions
(9, 10). Non-immunological components such as the vasculature,
cancer stem cells (CSCs), astrocytes and neurons actively contribute
to sustaining the tumor microenvironment, providing structural
support, modulating metabolic exchanges, and influencing tumor
plasticity (11-14). Among the main immune components in the
GBM TME are tumor-associated macrophages (TAMs), regulatory
T cells (Tregs), and myeloid-derived suppressor cells (MDSCs), all
of which actively suppress tumor-infiltrating lymphocytes (TILs)
and natural killer (NK) cells (15, 16), thereby facilitating immune
evasion and challenging the use of immunotherapies (17, 18).

One potential approach for therapeutic intervention involves
targeting ion homeostasis in both cancer and immune cells (19-21).
Ouabain, a cardiotonic steroid known for its ability to inhibit the
ubiquitous ion pump Na'/K"-ATPase at higher concentrations, has
emerged as a potential modulator of cellular signaling beyond its
classical role in cardiac function (22, 23). At lower concentrations,
ouabain induces calcium oscillations leading to the activation of
important signaling pathways involved in cellular homeostasis and
function (23-26). Different studies in tumor models suggest that
ouabain can influence tumor cell proliferation, apoptosis, and
migration, including in GBM cell lines (26-32). Additionally,
ouabain can potentially modulate immune cell activity in the
TME, shifting the balance from an immunosuppressive to an
anti-tumor immune response (33, 34).

Given ouabain’s dual role in cancer and immune cell
modulation, understanding its effects in the GBM TME could
offer new insights into its therapeutic potential. Although few
comprehensive reviews have examined CTS as anticancer agents,
most have centered on their cytotoxicity, structure-activity
relationships, or general pharmacology across multiple
malignancies (35-37). In contrast, the present review provides a
focused analysis of ouabain, emphasizing not only its established
effects on GBM cell survival and signaling but also its
underexplored immunomodulatory properties. Given the absence
of studies directly assessing ouabain in the GBM TME, we draw on
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findings from other tumor and immune models to infer how
ouabain might reshape immune-tumor dynamics in GBM. This
integrative perspective bridges tumor-intrinsic and immune-related
mechanisms, offering a framework to understand ouabain’s
multifaceted therapeutic potential in high-grade gliomas.

2 GBM architecture: from the core to
the neighborhood

Glioblastoma is characterized by profound cellular heterogeneity
and a complex genomic landscape, with frequent alterations in
pathways regulating proliferation, apoptosis, metabolism, and DNA
repair, all of which contribute to therapeutic resistance and
complicate effective disease management (38). Beyond its intrinsic
resistance to treatment, GBM’s malignant behavior is also shaped by
a complex TME that includes both tumor-intrinsic and tumor-
extrinsic components (39). A comprehensive understanding of this
integrated tumor microenvironmental network is essential for
identifying mechanisms of GBM progression and uncovering novel
therapeutic targets.

At the tumor core, GBM cells exhibit substantial genetic and
phenotypic heterogeneity, often driven by mutations in critical
regulators such as IDH1/2, EGFR, TP53, and PTEN (40). The
presence of glioma stem-like cells (GSCs), typically marked by
CD133 expression, contributes significantly to tumor persistence
and therapeutic failure, as these cells exhibit enhanced capacities
for self-renewal, resistance to apoptosis, and evasion of immune
surveillance (41). GSCs also actively remodel the microenvironment
by secreting factors such as CSF-1 and CCL2, which recruit
monocytes and promote their polarization into tumor-supportive
macrophages (42, 43).

The TME of GBM exhibits distinct features compared to other
solid tumors, owing primarily to its localization within the CNS and
its unique immune and stromal composition. It is broadly
categorized into immunological and non-immunological
compartments, both of which interact extensively with tumor
cells to support disease progression (11). Non-immunological
components include a highly disorganized and permeable
vasculature, a rigid and biochemically active extracellular matrix
(ECM), reactive astrocytes, and neurons that undergo functional
reprogramming in response to tumor-derived signals (12, 44-47).
The abnormal vasculature contributes to elevated interstitial fluid
pressure and regional hypoxia, which in turn stabilizes HIF-10., an
important transcriptional regulator that promotes angiogenesis,
metabolic reprogramming, and cellular adaptation to oxygen
deprivation, including a shift toward aerobic glycolysis consistent
with the Warburg effect (48, 49).

Neurons and astrocytes, once considered passive bystanders, are
now recognized as active contributors to tumor progression (13).
Neuronal activity has been shown to directly influence tumor growth
through the activity-dependent release of neuroligin-3 (NLGN3),
which promotes GBM cell proliferation via activation of the PI3K-
mTOR signaling pathway (50, 51). Astrocytes similarly contribute to
tumor maintenance by secreting a variety of mitogenic and trophic
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factors, including cytokines and growth factors that enhance glioma
cell survival, invasion, and therapy resistance (14, 52).

The immunological compartment of the GBM TME is
dominated by immunosuppressive mechanisms that hinder
effective antitumor responses (9). TAMs, which may arise from
resident microglia or peripheral monocytes, are the most abundant
immune cells in GBM (53). These cells are often polarized to an
M2-like phenotype, characterized by high expression of IL-10,
TGF-B, and MMPs, contributing to tissue remodeling,
angiogenesis, and immunosuppression. Notably, bone marrow-
derived TAMs constitute approximately 85% of the macrophage
population in GBM and exhibit particularly tumor-promoting
features (54).

T cell infiltration in GBM is often sparse and functionally
compromised (55). The T cell compartment is enriched in Tregs,
which suppress effector responses, while cytotoxic CD8" T cells
frequently exhibit an exhausted phenotype, marked by the
upregulation of multiple immune checkpoint receptors, including
PD-1, TIM-3, LAG-3, and CTLA-4 (56-58). This dysfunctional
state is associated with reduced proliferative capacity, diminished
cytokine production, and impaired cytotoxic function (59). The
extent and composition of T cell infiltration appear to be influenced
by IDH mutation status. IDH-wild-type tumors tend to display
greater immune cell infiltration and elevated immune checkpoint
expression, whereas IDH-mutant GBMs are typically characterized
by a more immunologically quiescent microenvironment with
limited lymphocyte presence and reduced immunogenicity (60).

Beyond the limited and dysfunctional T cell compartment, innate
immune cells constitute a substantial portion of the GBM TME and
play diverse, often immunosuppressive roles. NK cells can recognize
and eliminate GSCs, and their presence has been associated with
favorable outcomes in specific glioma subtypes (61-63). However, in
this scenario, NK cell function is frequently impaired due to chronic
activation, exposure to immunosuppressive cytokines, and the
expression of inhibitory ligands such as B7-H6 on tumor cells,
which contribute to NK cell exhaustion (64, 65). Moreover, NK cells
interact with DCs through chemokines such as XCL1 and FLT3L,
promoting the recruitment of conventional type 1 dendritic cells
(cDCl) that are critical for cross-presentation of tumor antigens
(66, 67). Despite this crosstalk, DCs in high-grade gliomas often
exhibit functional deficiencies, particularly in the context of IDH-
mutant tumors, where impaired antigen presentation further
compromises antitumor immunity (68).

Additional myeloid populations, including neutrophils and
MDSCs, further contribute to immune evasion and tumor
progression. Neutrophils can exert protumor effects through the
secretion of pro-inflammatory and pro-angiogenic mediators such
as S100A4 and IL-8, and by forming neutrophil extracellular traps
(NETs) that activate NF-kB signaling in glioma cells (69-71). Their
role in GBM is highly context-dependent, as they exhibit considerable
phenotypic plasticity, shifting between tumor-promoting (N2-like)
and potentially tumor-inhibiting (N1-like) states depending on
microenvironmental cues (72). Neutrophils actively migrate into the
GBM TME primarily from the skull and vertebral bone marrow,
utilizing specialized cranial bone channels and intracranial lymphatic
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vessels. Once within the TME, tumor-associated neutrophils (TANs)
preferentially localize in necrotic tumor cores and undergo functional
reprogramming, sustaining tumor progression through the release of
NETSs and immunosuppressive mediators (72, 73). MDSCs, which are
commonly expanded in GBM, suppress T cell proliferation and
cytokine production through arginase-1 activity, nitric oxide
production, and the release of immunosuppressive cytokines,
thereby reinforcing the profoundly suppressive immune landscape
characteristic of this malignancy (74-76).

Altogether, the TME of GBM is a tightly regulated network in
which tumor cells, immune components, and neural elements
interact to create a profoundly immunosuppressive and tumor-
supportive niche. This complexity not only contributes to
therapeutic resistance but also poses a significant challenge for
the development of effective immunotherapies. Targeting this
microenvironment, whether by reprogramming TAMs, enhancing
NK and T cell function, or disrupting tumor-neuron crosstalk,
represents a promising frontier in GBM research.

3 GBM modulation by ouabain

Over the past decade, there has been increasing attention on
CTS for their emerging antitumor properties (35). Originally
recognized for their role in cardiovascular therapy by inhibiting
the Na*/K"-ATPase pump, CTS have demonstrated pleiotropic
effects in cancer models, including the modulation of cell
proliferation, apoptosis, angiogenesis, and immune responses
(36). Among these compounds, ouabain stands out because of its
well-characterized molecular targets and its capacity to influence
intracellular signaling pathways in a concentration-dependent
manner (23, 77). Although the antitumor potential of CTS has
been investigated in several malignancies (37, 78), evidence
specifically linking ouabain to GBM is beginning to emerge.

Different studies have explored the multifaceted effects of
ouabain in GBM cells. By interacting with the Na*/K*-ATPase,
ouabain influences intracellular ion balance; however, its biological
impact extends well beyond this canonical function, affecting key
signaling pathways and cellular processes that are central to
GBM pathophysiology.

One of the most consistent findings across in vitro studies is the
capacity of ouabain to impair GBM cell viability. In both TMZ-
sensitive and TMZ-resistant glioma cell lines, ouabain reduces
proliferation and promotes cell death through mechanisms that
involve apoptosis, necrosis, or a hybrid mechanism (30, 79), as well
as suppressing tumor growth in vivo (80). This cytotoxic effect
appears to be mediated, at least in part, by mitochondrial pathways,
with activation of pro-apoptotic proteins such as Bak and an
increase in reactive oxygen species (ROS) (30). Notably, the study
by Yan et al. (2015) revealed that ouabain-induced ROS production
is regulated via the ERK-p66Shc pathway, suggesting a specific
molecular cascade through which oxidative stress is triggered (32).
This ROS generation contributes to mitochondrial dysfunction and
ultimately to apoptotic cell death (81), providing a mechanistic
explanation for the antitumor activity observed.
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In addition to its pro-apoptotic properties, ouabain has been
shown to impair GBM cell migration and invasion, likely through the
disruption of the Akt/mTOR signaling axis, as observed in U-87MG
cells (31). This pathway is crucial not only for cell movement but also
for metabolic adaptation and resistance to stress (82, 83), implying
that ouabain may impair GBM cells’ ability to survive in its hostile
microenvironment (84). Interestingly, while most studies report a
downregulation of Akt signaling following ouabain exposure,
Weidemann et al. (2023) demonstrated a concentration-dependent
modulation in TMZ-resistant T98G cells, with a marked upregulation
of phosphorylated Akt at 0.1 pM and a significant downregulation of
pan-Akt at 1 uM (30). These divergent responses suggest a context-
and dose-dependent effect of ouabain, potentially reflecting adaptive
signaling mechanisms in resistant GBM phenotypes.

Supporting this, Hsu et al. (2015) demonstrated that ouabain
induces cytosolic acidification and downregulates phosphorylated
Akt in GBM cells, further promoting mitochondrial apoptosis
through Bak activation. Although less potent than Epi-
reevesioside F, a cardiac glycoside evaluated in the study, ouabain
exhibited similar mechanisms of action, reinforcing the role of Na*/
K'-ATPase inhibition in disrupting metabolic homeostasis and
triggering cell death in GBM (85).

The interaction of ouabain with angiogenesis also adds another
dimension to its therapeutic potential. GBM relies heavily on the
formation of abnormal vasculature to sustain its rapid growth, largely
driven by hypoxia-inducible factors such as HIF-1o. Ouabain has
been shown to inhibit VEGF-A-induced angiogenesis in vitro, with
submicromolar potency in HUVEC spheroids, and to suppress HIF-
Lo expression, which could limit the tumor’s capacity to establish and
maintain blood supply (30). This anti-angiogenic effect aligns with
ouabain’s ability to interfere with pro-survival and pro-growth
pathways and reinforces its potential role in targeting the
GBM microenvironment.

On a broader scale, ouabain treatment in GBM culture has also
been associated with changes in Na*/K'-ATPase subunit
expression, as shown in early studies demonstrating marked
upregulation of ol and 03 isoforms following exposure (86).
These alterations may represent compensatory responses but also
underscore the role of Na™/K*-ATPase as more than a passive ion
transporter, serving instead as a signaling platform that interacts
with oncogenic networks.

This understanding of ouabain’s molecular targets has
prompted interest in identifying tumor-specific markers of
sensitivity. Recent pan-cancer data also explore the potential
selectivity of ouabain in glioma. Zhang et al. (2024) identified a
negative correlation between PLAT expression, a venous
thromboembolism-associated gene upregulated in gliomas, and
ouabain sensitivity, suggesting that tumors with high PLAT levels
may be more susceptible to ouabain’s cytotoxic effects (87).
Although not experimentally validated in GBM models, these
findings offer a rationale for further exploring ouabain
responsiveness in molecularly stratified glioma subtypes.

In addition to its direct cytotoxic and signaling-modulatory
effects on GBM cells, ouabain has also been implicated in regulating
immune cell activity across multiple biological systems. Although
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tumor-intrinsic effects of ouabain are increasingly documented, its
impact on the tumor immune microenvironment (TIME) in GBM
remains poorly defined. Despite direct evidence of ouabain’s
immunomodulatory effects within the GBM microenvironment is
limited, drawing on findings from other tumor models and immune
studies provides a preliminary framework to hypothesize how
ouabain might influence glioma-associated immune cells.

CTS can modulate antitumor immunity beyond their canonical
cytotoxic roles. These compounds can induce immunogenic cell
death (ICD) characterized by calreticulin exposure, ATP and
HMGBI release, and secretion of HSP70/90, thereby promoting
dendritic cell activation and antigen presentation. Mechanistically,
ICD triggered by CTS has been linked to activation of the PERK/
elF20./ATF4/CHOP pathway, connecting endoplasmic reticulum
stress to adaptive immune priming (88).

In addition, these molecules can reshape the TIME by
modulating checkpoint and cytokine signaling pathways. Ouabain
and related compounds can influence the expression of PD-L1 and
other immunoregulatory molecules, as well as enhance antigen-
presentation machinery, suggesting a context-dependent dual role
in immune evasion and sensitization to checkpoint blockade (34). It
has also been demonstrated that digoxin alters myeloid cell
composition and promotes early inflammatory remodeling, while
Na'/K"-ATPase inhibition by CTS can activate the NLRP3
inflammasome and IL-1P release, fostering local immune
activation (89, 90). NLRP3 inflammasome activation is well
known to play a dual role in cancer immunity, promoting both
inflammatory anti-tumor responses and, in some cases, tumor
progression depending on the microenvironment (91, 92). These
findings indicate that cardiac glycosides may not only act as direct
cytotoxins but also as immunomodulatory adjuvants capable of
converting immunologically “cold” tumors into more inflamed,
immune-responsive phenotypes.

Although specific data on ouabain in TIME is limited, its effects on
different contexts provide insights into its broader immunomodulatory
capacity. One of the first described immunomodulatory effects of
ouabain was its ability to inhibit lymphocyte proliferation induced by
the mitogens phytohemagglutinin and concanavalin A (93).
Subsequent studies demonstrated that ouabain reduces the
proliferation of CD4" and CD8" T lymphocytes at concentrations
that do not diminish NKA activity, indicating that this
immunomodulatory mechanism occurs independently of pump
inhibition (94). Complementing these effects, it was demonstrated
that pre-treatment of mice with ouabain, both injected and non-
injected with melanoma, reduced the number of Tregs in their
spleens, an effect associated with increased survival in these animals
(95). Given the well-established role of Tregs in suppressing cytotoxic
responses in the GBM microenvironment (58), this effect raises the
possibility that ouabain could alleviate immune suppression in gliomas
by modulating Treg homeostasis, as observed with other approaches
(96, 97).

Ouabain also influences B lymphocyte behavior, decreasing the
quantity of mature B lymphocytes in peripheral blood while
increasing their presence in lymph nodes (95, 98). Although B
cells are less prominent in the GBM immune landscape, tertiary
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lymphoid structures and activated B cell subsets have been
implicated in both contexts of promoting tumor progression (99,
100) and shaping antitumor immunity (101-103), warranting
further exploration of ouabain’s influence on humoral responses
in glioma.

Regarding innate immunity, ouabain appears to exert dose-
dependent effects on NK cells. While early in vitro studies suggested
that NK cell cytotoxicity is largely resistant to ouabain at low
concentrations (104), more recent in vivo data indicate enhanced
NK cell activity following ouabain treatment, evidenced by increased
cytotoxic potential in NK cells isolated from mice administered 0.75
mg/kg of ouabain (105). This is particularly relevant given the capacity

10.3389/fimmu.2025.1657671

of NK cells in targeting glioma stem-like cells (106, 107) and their
association with improved outcomes in certain GBM subtypes (61,
62). In addition, neutrophil infiltration promotes glioma cell
proliferation, alters cellular organization, enhances NF-kB-
dependent signaling, and correlates with poor prognosis (72, 78).
Thus, given the prominent role of neutrophil migration in promoting
glioblastoma progression, the ability of ouabain to inhibit neutrophil
infiltration (108-110) may represent a beneficial immunomodulatory
effect within the GBM tumor microenvironment.

Beyond its effects previously mentioned, ouabain has also been
shown to reduce IL-2 production and CD83 expression in DCs

stimulated with TNF-ov (111). It also promotes an increase in
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FIGURE 1
Summary of the main effects of ouabain on immune cells.
Frontiers in Immunology 05 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1657671
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Andrade et al.

intracellular calcium in monocytes, along with higher expression of
activation surface markers like CD69, HLA-DR, CD86, and CD80,
and an increased production of cytokines such as IL-1f and TNF-o
(112). Corroborating this, a recent study demonstrated that ouabain
induces HLA-DR expression in monocytes, mediated by the
phosphorylation of CIITA4, IRF1, c-Src, and STAT1 (113).
Considering that monocyte-derived cells are the predominant
myeloid population in the GBM microenvironment and that
defective antigen presentation is a major barrier to effective
antitumor immunity (114-116), these findings suggest that
ouabain may have the potential to modulate myeloid cells toward
a more immunostimulatory phenotype in gliomas. Figure 1
summarizes and integrates the main effects of ouabain on
immune cells.

Despite the reported preclinical data, several challenges still
limit the translational potential of ouabain in GBM therapy. A
major obstacle is its poor permeability through the blood-brain
barrier (BBB), which may restrict its therapeutic concentrations
within the tumor parenchyma (117, 118). Strategies such as
nanoencapsulation or chemical modification to improve BBB
penetration could help overcome this limitation (119). Another
critical aspect is ouabain’s narrow therapeutic index. As a
cardiotonic steroid, its systemic use carries the risk of cardiac and
metabolic toxicity, emphasizing the need for precise dose control
and the development of targeted delivery systems capable of

T Cytotoxicity
?

Ouabain

FIGURE 2
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minimizing off-target effects (35, 120). Furthermore, the biological
responses elicited by ouabain are highly dose-dependent, ranging
from cytotoxic to immunomodulatory (30, 121), underscoring the
importance of determining concentration-specific effects in
glioma models.

From a therapeutic standpoint, the pleiotropic mechanisms of
ouabain suggest that it could act synergistically with current GBM
treatments. Its ability to inhibit proliferative and prosurvival
signaling pathways may potentiate temozolomide or radiotherapy
efficacy, while its immunomodulatory properties could complement
immune checkpoint inhibitors by alleviating local immune
suppression (30, 122, 123). Future studies should focus on
integrating these mechanistic insights into combinatorial
approaches, while addressing pharmacological limitations such as
BBB permeability and toxicity.

Collectively, these findings explore how ouabain exhibits
extensive immunomodulatory action directly or indirectly affects
GBM biology. The integration of these mechanisms reinforces
ouabain’s relevance as a candidate for therapeutic repurposing.
To date, there are no clinical or clinical-stage studies evaluating
ouabain or other cardiotonic steroids as therapeutic agents for
GBM. All available evidence remains preclinical. This highlights
the current insufficiency of translational data and reinforces the
need for future studies to address key issues such as efficacy in
immunocompetent models, blood-brain barrier permeability, and
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Schematic representation of the potential immunomodulatory effects of ouabain on the tumor microenvironment of glioblastoma (GBM). The
enlarged panel on the right details the tumor microenvironment, composed of tumor cells (Tumor), glioma stem cells (GSC), immunosuppressive
cells such as TAMs (tumor-associated macrophages), MDSCs (myeloid suppressor cells), Tregs (regulatory T lymphocytes) and neutrophils (e.g.: N2
phenotype), as well as effector cells such as tumor infiltrating lymphocytes (TILs), NK cells and dendritic cells (DCs). Ouabain influences intracellular
pathways associated with oxidative stress (ROS), Akt/mTOR pathway, HIF-1a, and tumor cell death. In addition, it appears to modulate different
cellular components: NK cell cytotoxicity, Treg frequency, antigen presentation by DCs, and monocyte activation. The suggested effects still lack

confirmation (indicated by “?") and reflect hypotheses based on evidence in other models. 1 -

BioRender.com.

Frontiers in Immunology

06

increase, | - decrease. Created in https://

frontiersin.org


https://BioRender.com
https://BioRender.com
https://doi.org/10.3389/fimmu.2025.1657671
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Andrade et al.

potential systemic toxicity before any clinical application can
be considered.

4 Final considerations

Glioblastoma remains one of the most difficult challenges in
oncology due to its intrinsic resistance mechanisms and profoundly
immunosuppressive microenvironment. Ouabain, a classical
cardiotonic steroid, has demonstrated promising antitumor
activity in GBM models (Figure 2), primarily through the
modulation of intracellular signaling pathways, induction of cell
death, and inhibition of tumor-promoting processes such as
migration and angiogenesis. While direct evidence of its effects on
the GBM tumor immune microenvironment remains limited,
findings from other biological systems suggest that ouabain may
exert broad immunomodulatory effects on both innate and adaptive
immunity. These preliminary insights position ouabain as a
candidate for therapeutic repurposing in GBM; however, further
studies, particularly in vivo and within immunocompetent models,
are essential to validate its efficacy, define optimal dosing, and
understand its impact on immune-tumor dynamics. Future
research should also address pharmacological challenges, such as
brain barrier permeability and potential systemic toxicity, to enable
safe and effective clinical translation.
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