
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Kaige Chen,
Wake Forest University, United States

REVIEWED BY

Zhi Li,
University of Arizona, United States

*CORRESPONDENCE

Luiz Henrique Agra Cavalcante-Silva

luiz.agra@arapiraca.ufal.br

RECEIVED 01 July 2025

ACCEPTED 23 October 2025
PUBLISHED 07 November 2025

CITATION

Andrade AGd, Carvalho DCM,
Magalhaes DWA, de Queiroz AC,
Alexandre-Moreira MS, Rodrigues-
Mascarenas S and Cavalcante-Silva LHA
(2025) From hormonal immunomodulation
to glioblastoma therapy: the emerging
role of Ouabain.
Front. Immunol. 16:1657671.
doi: 10.3389/fimmu.2025.1657671

COPYRIGHT

© 2025 Andrade, Carvalho, Magalhaes, de
Queiroz, Alexandre-Moreira, Rodrigues-
Mascarenas and Cavalcante-Silva. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 07 November 2025

DOI 10.3389/fimmu.2025.1657671
From hormonal
immunomodulation to
glioblastoma therapy: the
emerging role of Ouabain
Arthur Gomes de Andrade1, Deyse Cristina Madruga Carvalho1,
Daniel Wilson Arruda Magalhaes1, Aline Cavalcanti de Queiroz2,
Magna Suzana Alexandre-Moreira2,
Sandra Rodrigues-Mascarenas1 and
Luiz Henrique Agra Cavalcante-Silva2,3*

1Biotechnology Center, Federal University of Paraı́ba, João Pessoa, Paraı́ba, Brazil, 2Laboratory of
Pharmacology and Immunity, Institute of Biological Sciences and Health, Federal University of
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Glioblastoma (GBM) is the most aggressive primary brain tumor in adults,

characterized by rapid proliferation, diffuse infiltration, and resistance to

conventional therapies. Despite advances in surgery, radiotherapy, and

chemotherapy, the prognosis remains dismal, with median survival rarely

exceeding 15 months. The immunosuppressive and heterogeneous tumor

microenvironment (TME), along with profound tumor-intrinsic resistance

mechanisms, contributes significantly to treatment failure. Cardiotonic steroids

(CTS), such as ouabain, have recently gained attention for their pleiotropic effects

beyond Na+/K+-ATPase inhibition, including modulation of intracellular

signaling, induction of cell death, and immune regulation. In GBM, ouabain has

been shown to reduce tumor cell viability, impair migration, disrupt angiogenesis,

and alter different signaling pathways. Although direct evidence of ouabain’s

effects on the GBM immune microenvironment is limited, findings from other

models suggest that it can modulate both innate and adaptive immune

responses, affecting T cells, regulatory T cells, dendritic cells, monocytes, and

NK cells. While previous reviews have explored the anticancer and

pharmacological aspects of cardiotonic steroids, the immunological dimension

of ouabain’s activity remains underrepresented. This review integrates current

evidence on ouabain’s dual actions in tumor biology and immune regulation,

emphasizing its emerging therapeutic potential and the need for deeper

investigation within high-grade glioma models.
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1 Introduction

Glioblastoma (GBM) is the most aggressive primary brain

tumor, characterized by rapid proliferation, diffuse invasion into

surrounding brain tissue, and resistance to conventional therapies

(1, 2). Standard treatment typically involves maximal surgical

resection followed by radiotherapy and chemotherapy [i.e.,

temozolomide (TMZ)] (3). However, despite their widespread

use, the success rate of treatment remains low due to intrinsic

and acquired resistance mechanisms. Tumor cells often develop

resistance through O6-methylguanine-DNA methyltransferase

(MGMT) expression, DNA repair pathways, and metabolic

adaptations that allow survival even with cytotoxic drugs (4–6).

As a result, median survival for GBM patients remains

approximately 12–15 months (7, 8), underscoring the urgent need

for novel therapeutic approaches.

The highly heterogeneous and immunosuppressive tumor

microenvironment (TME) in GBM contributes to tumor

progression and therapeutic resistance by impairing anti-tumor

immune responses and promoting tumor-supportive interactions

(9, 10). Non-immunological components such as the vasculature,

cancer stem cells (CSCs), astrocytes and neurons actively contribute

to sustaining the tumor microenvironment, providing structural

support, modulating metabolic exchanges, and influencing tumor

plasticity (11–14). Among the main immune components in the

GBM TME are tumor-associated macrophages (TAMs), regulatory

T cells (Tregs), and myeloid-derived suppressor cells (MDSCs), all

of which actively suppress tumor-infiltrating lymphocytes (TILs)

and natural killer (NK) cells (15, 16), thereby facilitating immune

evasion and challenging the use of immunotherapies (17, 18).

One potential approach for therapeutic intervention involves

targeting ion homeostasis in both cancer and immune cells (19–21).

Ouabain, a cardiotonic steroid known for its ability to inhibit the

ubiquitous ion pump Na+/K+-ATPase at higher concentrations, has

emerged as a potential modulator of cellular signaling beyond its

classical role in cardiac function (22, 23). At lower concentrations,

ouabain induces calcium oscillations leading to the activation of

important signaling pathways involved in cellular homeostasis and

function (23–26). Different studies in tumor models suggest that

ouabain can influence tumor cell proliferation, apoptosis, and

migration, including in GBM cell lines (26–32). Additionally,

ouabain can potentially modulate immune cell activity in the

TME, shifting the balance from an immunosuppressive to an

anti-tumor immune response (33, 34).

Given ouabain’s dual role in cancer and immune cell

modulation, understanding its effects in the GBM TME could

offer new insights into its therapeutic potential. Although few

comprehensive reviews have examined CTS as anticancer agents,

most have centered on their cytotoxicity, structure–activity

relationships, or general pharmacology across multiple

malignancies (35–37). In contrast, the present review provides a

focused analysis of ouabain, emphasizing not only its established

effects on GBM cell survival and signaling but also its

underexplored immunomodulatory properties. Given the absence

of studies directly assessing ouabain in the GBM TME, we draw on
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findings from other tumor and immune models to infer how

ouabain might reshape immune–tumor dynamics in GBM. This

integrative perspective bridges tumor-intrinsic and immune-related

mechanisms, offering a framework to understand ouabain’s

multifaceted therapeutic potential in high-grade gliomas.
2 GBM architecture: from the core to
the neighborhood

Glioblastoma is characterized by profound cellular heterogeneity

and a complex genomic landscape, with frequent alterations in

pathways regulating proliferation, apoptosis, metabolism, and DNA

repair, all of which contribute to therapeutic resistance and

complicate effective disease management (38). Beyond its intrinsic

resistance to treatment, GBM’s malignant behavior is also shaped by

a complex TME that includes both tumor-intrinsic and tumor-

extrinsic components (39). A comprehensive understanding of this

integrated tumor microenvironmental network is essential for

identifying mechanisms of GBM progression and uncovering novel

therapeutic targets.

At the tumor core, GBM cells exhibit substantial genetic and

phenotypic heterogeneity, often driven by mutations in critical

regulators such as IDH1/2, EGFR, TP53, and PTEN (40). The

presence of glioma stem-like cells (GSCs), typically marked by

CD133 expression, contributes significantly to tumor persistence

and therapeutic failure, as these cells exhibit enhanced capacities

for self-renewal, resistance to apoptosis, and evasion of immune

surveillance (41). GSCs also actively remodel the microenvironment

by secreting factors such as CSF-1 and CCL2, which recruit

monocytes and promote their polarization into tumor-supportive

macrophages (42, 43).

The TME of GBM exhibits distinct features compared to other

solid tumors, owing primarily to its localization within the CNS and

its unique immune and stromal composition. It is broadly

categorized into immunological and non-immunological

compartments, both of which interact extensively with tumor

cells to support disease progression (11). Non-immunological

components include a highly disorganized and permeable

vasculature, a rigid and biochemically active extracellular matrix

(ECM), reactive astrocytes, and neurons that undergo functional

reprogramming in response to tumor-derived signals (12, 44–47).

The abnormal vasculature contributes to elevated interstitial fluid

pressure and regional hypoxia, which in turn stabilizes HIF-1a, an
important transcriptional regulator that promotes angiogenesis,

metabolic reprogramming, and cellular adaptation to oxygen

deprivation, including a shift toward aerobic glycolysis consistent

with the Warburg effect (48, 49).

Neurons and astrocytes, once considered passive bystanders, are

now recognized as active contributors to tumor progression (13).

Neuronal activity has been shown to directly influence tumor growth

through the activity-dependent release of neuroligin-3 (NLGN3),

which promotes GBM cell proliferation via activation of the PI3K-

mTOR signaling pathway (50, 51). Astrocytes similarly contribute to

tumor maintenance by secreting a variety of mitogenic and trophic
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factors, including cytokines and growth factors that enhance glioma

cell survival, invasion, and therapy resistance (14, 52).

The immunological compartment of the GBM TME is

dominated by immunosuppressive mechanisms that hinder

effective antitumor responses (9). TAMs, which may arise from

resident microglia or peripheral monocytes, are the most abundant

immune cells in GBM (53). These cells are often polarized to an

M2-like phenotype, characterized by high expression of IL-10,

TGF-b , and MMPs, contributing to tissue remodeling,

angiogenesis, and immunosuppression. Notably, bone marrow–

derived TAMs constitute approximately 85% of the macrophage

population in GBM and exhibit particularly tumor-promoting

features (54).

T cell infiltration in GBM is often sparse and functionally

compromised (55). The T cell compartment is enriched in Tregs,

which suppress effector responses, while cytotoxic CD8+ T cells

frequently exhibit an exhausted phenotype, marked by the

upregulation of multiple immune checkpoint receptors, including

PD-1, TIM-3, LAG-3, and CTLA-4 (56–58). This dysfunctional

state is associated with reduced proliferative capacity, diminished

cytokine production, and impaired cytotoxic function (59). The

extent and composition of T cell infiltration appear to be influenced

by IDH mutation status. IDH-wild-type tumors tend to display

greater immune cell infiltration and elevated immune checkpoint

expression, whereas IDH-mutant GBMs are typically characterized

by a more immunologically quiescent microenvironment with

limited lymphocyte presence and reduced immunogenicity (60).

Beyond the limited and dysfunctional T cell compartment, innate

immune cells constitute a substantial portion of the GBM TME and

play diverse, often immunosuppressive roles. NK cells can recognize

and eliminate GSCs, and their presence has been associated with

favorable outcomes in specific glioma subtypes (61–63). However, in

this scenario, NK cell function is frequently impaired due to chronic

activation, exposure to immunosuppressive cytokines, and the

expression of inhibitory ligands such as B7-H6 on tumor cells,

which contribute to NK cell exhaustion (64, 65). Moreover, NK cells

interact with DCs through chemokines such as XCL1 and FLT3L,

promoting the recruitment of conventional type 1 dendritic cells

(cDC1) that are critical for cross-presentation of tumor antigens

(66, 67). Despite this crosstalk, DCs in high-grade gliomas often

exhibit functional deficiencies, particularly in the context of IDH-

mutant tumors, where impaired antigen presentation further

compromises antitumor immunity (68).

Additional myeloid populations, including neutrophils and

MDSCs, further contribute to immune evasion and tumor

progression. Neutrophils can exert protumor effects through the

secretion of pro-inflammatory and pro-angiogenic mediators such

as S100A4 and IL-8, and by forming neutrophil extracellular traps

(NETs) that activate NF-kB signaling in glioma cells (69–71). Their

role in GBM is highly context-dependent, as they exhibit considerable

phenotypic plasticity, shifting between tumor-promoting (N2-like)

and potentially tumor-inhibiting (N1-like) states depending on

microenvironmental cues (72). Neutrophils actively migrate into the

GBM TME primarily from the skull and vertebral bone marrow,

utilizing specialized cranial bone channels and intracranial lymphatic
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vessels. Once within the TME, tumor-associated neutrophils (TANs)

preferentially localize in necrotic tumor cores and undergo functional

reprogramming, sustaining tumor progression through the release of

NETs and immunosuppressive mediators (72, 73). MDSCs, which are

commonly expanded in GBM, suppress T cell proliferation and

cytokine production through arginase-1 activity, nitric oxide

production, and the release of immunosuppressive cytokines,

thereby reinforcing the profoundly suppressive immune landscape

characteristic of this malignancy (74–76).

Altogether, the TME of GBM is a tightly regulated network in

which tumor cells, immune components, and neural elements

interact to create a profoundly immunosuppressive and tumor-

supportive niche. This complexity not only contributes to

therapeutic resistance but also poses a significant challenge for

the development of effective immunotherapies. Targeting this

microenvironment, whether by reprogramming TAMs, enhancing

NK and T cell function, or disrupting tumor-neuron crosstalk,

represents a promising frontier in GBM research.
3 GBM modulation by ouabain

Over the past decade, there has been increasing attention on

CTS for their emerging antitumor properties (35). Originally

recognized for their role in cardiovascular therapy by inhibiting

the Na+/K+-ATPase pump, CTS have demonstrated pleiotropic

effects in cancer models, including the modulation of cell

proliferation, apoptosis, angiogenesis, and immune responses

(36). Among these compounds, ouabain stands out because of its

well-characterized molecular targets and its capacity to influence

intracellular signaling pathways in a concentration-dependent

manner (23, 77). Although the antitumor potential of CTS has

been investigated in several malignancies (37, 78), evidence

specifically linking ouabain to GBM is beginning to emerge.

Different studies have explored the multifaceted effects of

ouabain in GBM cells. By interacting with the Na+/K+-ATPase,

ouabain influences intracellular ion balance; however, its biological

impact extends well beyond this canonical function, affecting key

signaling pathways and cellular processes that are central to

GBM pathophysiology.

One of the most consistent findings across in vitro studies is the

capacity of ouabain to impair GBM cell viability. In both TMZ-

sensitive and TMZ-resistant glioma cell lines, ouabain reduces

proliferation and promotes cell death through mechanisms that

involve apoptosis, necrosis, or a hybrid mechanism (30, 79), as well

as suppressing tumor growth in vivo (80). This cytotoxic effect

appears to be mediated, at least in part, by mitochondrial pathways,

with activation of pro-apoptotic proteins such as Bak and an

increase in reactive oxygen species (ROS) (30). Notably, the study

by Yan et al. (2015) revealed that ouabain-induced ROS production

is regulated via the ERK-p66Shc pathway, suggesting a specific

molecular cascade through which oxidative stress is triggered (32).

This ROS generation contributes to mitochondrial dysfunction and

ultimately to apoptotic cell death (81), providing a mechanistic

explanation for the antitumor activity observed.
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In addition to its pro-apoptotic properties, ouabain has been

shown to impair GBM cell migration and invasion, likely through the

disruption of the Akt/mTOR signaling axis, as observed in U-87MG

cells (31). This pathway is crucial not only for cell movement but also

for metabolic adaptation and resistance to stress (82, 83), implying

that ouabain may impair GBM cells’ ability to survive in its hostile

microenvironment (84). Interestingly, while most studies report a

downregulation of Akt signaling following ouabain exposure,

Weidemann et al. (2023) demonstrated a concentration-dependent

modulation in TMZ-resistant T98G cells, with a marked upregulation

of phosphorylated Akt at 0.1 µM and a significant downregulation of

pan-Akt at 1 µM (30). These divergent responses suggest a context-

and dose-dependent effect of ouabain, potentially reflecting adaptive

signaling mechanisms in resistant GBM phenotypes.

Supporting this, Hsu et al. (2015) demonstrated that ouabain

induces cytosolic acidification and downregulates phosphorylated

Akt in GBM cells, further promoting mitochondrial apoptosis

through Bak activation. Although less potent than Epi-

reevesioside F, a cardiac glycoside evaluated in the study, ouabain

exhibited similar mechanisms of action, reinforcing the role of Na+/

K+-ATPase inhibition in disrupting metabolic homeostasis and

triggering cell death in GBM (85).

The interaction of ouabain with angiogenesis also adds another

dimension to its therapeutic potential. GBM relies heavily on the

formation of abnormal vasculature to sustain its rapid growth, largely

driven by hypoxia-inducible factors such as HIF-1a. Ouabain has

been shown to inhibit VEGF-A–induced angiogenesis in vitro, with

submicromolar potency in HUVEC spheroids, and to suppress HIF-

1a expression, which could limit the tumor’s capacity to establish and

maintain blood supply (30). This anti-angiogenic effect aligns with

ouabain’s ability to interfere with pro-survival and pro-growth

pathways and reinforces its potential role in targeting the

GBM microenvironment.

On a broader scale, ouabain treatment in GBM culture has also

been associated with changes in Na+/K+-ATPase subunit

expression, as shown in early studies demonstrating marked

upregulation of a1 and a3 isoforms following exposure (86).

These alterations may represent compensatory responses but also

underscore the role of Na+/K+-ATPase as more than a passive ion

transporter, serving instead as a signaling platform that interacts

with oncogenic networks.

This understanding of ouabain’s molecular targets has

prompted interest in identifying tumor-specific markers of

sensitivity. Recent pan-cancer data also explore the potential

selectivity of ouabain in glioma. Zhang et al. (2024) identified a

negative correlation between PLAT expression, a venous

thromboembolism-associated gene upregulated in gliomas, and

ouabain sensitivity, suggesting that tumors with high PLAT levels

may be more susceptible to ouabain’s cytotoxic effects (87).

Although not experimentally validated in GBM models, these

findings offer a rationale for further exploring ouabain

responsiveness in molecularly stratified glioma subtypes.

In addition to its direct cytotoxic and signaling-modulatory

effects on GBM cells, ouabain has also been implicated in regulating

immune cell activity across multiple biological systems. Although
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tumor-intrinsic effects of ouabain are increasingly documented, its

impact on the tumor immune microenvironment (TIME) in GBM

remains poorly defined. Despite direct evidence of ouabain’s

immunomodulatory effects within the GBM microenvironment is

limited, drawing on findings from other tumor models and immune

studies provides a preliminary framework to hypothesize how

ouabain might influence glioma-associated immune cells.

CTS can modulate antitumor immunity beyond their canonical

cytotoxic roles. These compounds can induce immunogenic cell

death (ICD) characterized by calreticulin exposure, ATP and

HMGB1 release, and secretion of HSP70/90, thereby promoting

dendritic cell activation and antigen presentation. Mechanistically,

ICD triggered by CTS has been linked to activation of the PERK/

eIF2a/ATF4/CHOP pathway, connecting endoplasmic reticulum

stress to adaptive immune priming (88).

In addition, these molecules can reshape the TIME by

modulating checkpoint and cytokine signaling pathways. Ouabain

and related compounds can influence the expression of PD-L1 and

other immunoregulatory molecules, as well as enhance antigen-

presentation machinery, suggesting a context-dependent dual role

in immune evasion and sensitization to checkpoint blockade (34). It

has also been demonstrated that digoxin alters myeloid cell

composition and promotes early inflammatory remodeling, while

Na+/K+-ATPase inhibition by CTS can activate the NLRP3

inflammasome and IL-1b release, fostering local immune

activation (89, 90). NLRP3 inflammasome activation is well

known to play a dual role in cancer immunity, promoting both

inflammatory anti-tumor responses and, in some cases, tumor

progression depending on the microenvironment (91, 92). These

findings indicate that cardiac glycosides may not only act as direct

cytotoxins but also as immunomodulatory adjuvants capable of

converting immunologically “cold” tumors into more inflamed,

immune-responsive phenotypes.

Although specific data on ouabain in TIME is limited, its effects on

different contexts provide insights into its broader immunomodulatory

capacity. One of the first described immunomodulatory effects of

ouabain was its ability to inhibit lymphocyte proliferation induced by

the mitogens phytohemagglutinin and concanavalin A (93).

Subsequent studies demonstrated that ouabain reduces the

proliferation of CD4+ and CD8+ T lymphocytes at concentrations

that do not diminish NKA activity, indicating that this

immunomodulatory mechanism occurs independently of pump

inhibition (94). Complementing these effects, it was demonstrated

that pre-treatment of mice with ouabain, both injected and non-

injected with melanoma, reduced the number of Tregs in their

spleens, an effect associated with increased survival in these animals

(95). Given the well-established role of Tregs in suppressing cytotoxic

responses in the GBM microenvironment (58), this effect raises the

possibility that ouabain could alleviate immune suppression in gliomas

by modulating Treg homeostasis, as observed with other approaches

(96, 97).

Ouabain also influences B lymphocyte behavior, decreasing the

quantity of mature B lymphocytes in peripheral blood while

increasing their presence in lymph nodes (95, 98). Although B

cells are less prominent in the GBM immune landscape, tertiary
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lymphoid structures and activated B cell subsets have been

implicated in both contexts of promoting tumor progression (99,

100) and shaping antitumor immunity (101–103), warranting

further exploration of ouabain’s influence on humoral responses

in glioma.

Regarding innate immunity, ouabain appears to exert dose-

dependent effects on NK cells. While early in vitro studies suggested

that NK cell cytotoxicity is largely resistant to ouabain at low

concentrations (104), more recent in vivo data indicate enhanced

NK cell activity following ouabain treatment, evidenced by increased

cytotoxic potential in NK cells isolated from mice administered 0.75

mg/kg of ouabain (105). This is particularly relevant given the capacity
Frontiers in Immunology 05
of NK cells in targeting glioma stem-like cells (106, 107) and their

association with improved outcomes in certain GBM subtypes (61,

62). In addition, neutrophil infiltration promotes glioma cell

proliferation, alters cellular organization, enhances NF-kB–
dependent signaling, and correlates with poor prognosis (72, 78).

Thus, given the prominent role of neutrophil migration in promoting

glioblastoma progression, the ability of ouabain to inhibit neutrophil

infiltration (108–110) may represent a beneficial immunomodulatory

effect within the GBM tumor microenvironment.

Beyond its effects previously mentioned, ouabain has also been

shown to reduce IL-2 production and CD83 expression in DCs

stimulated with TNF-a (111). It also promotes an increase in
FIGURE 1

Summary of the main effects of ouabain on immune cells.
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intracellular calcium in monocytes, along with higher expression of

activation surface markers like CD69, HLA-DR, CD86, and CD80,

and an increased production of cytokines such as IL-1b and TNF-a
(112). Corroborating this, a recent study demonstrated that ouabain

induces HLA-DR expression in monocytes, mediated by the

phosphorylation of CIITA4, IRF1, c-Src, and STAT1 (113).

Considering that monocyte-derived cells are the predominant

myeloid population in the GBM microenvironment and that

defective antigen presentation is a major barrier to effective

antitumor immunity (114–116), these findings suggest that

ouabain may have the potential to modulate myeloid cells toward

a more immunostimulatory phenotype in gliomas. Figure 1

summarizes and integrates the main effects of ouabain on

immune cells.

Despite the reported preclinical data, several challenges still

limit the translational potential of ouabain in GBM therapy. A

major obstacle is its poor permeability through the blood–brain

barrier (BBB), which may restrict its therapeutic concentrations

within the tumor parenchyma (117, 118). Strategies such as

nanoencapsulation or chemical modification to improve BBB

penetration could help overcome this limitation (119). Another

critical aspect is ouabain’s narrow therapeutic index. As a

cardiotonic steroid, its systemic use carries the risk of cardiac and

metabolic toxicity, emphasizing the need for precise dose control

and the development of targeted delivery systems capable of
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minimizing off-target effects (35, 120). Furthermore, the biological

responses elicited by ouabain are highly dose-dependent, ranging

from cytotoxic to immunomodulatory (30, 121), underscoring the

importance of determining concentration-specific effects in

glioma models.

From a therapeutic standpoint, the pleiotropic mechanisms of

ouabain suggest that it could act synergistically with current GBM

treatments. Its ability to inhibit proliferative and prosurvival

signaling pathways may potentiate temozolomide or radiotherapy

efficacy, while its immunomodulatory properties could complement

immune checkpoint inhibitors by alleviating local immune

suppression (30, 122, 123). Future studies should focus on

integrating these mechanistic insights into combinatorial

approaches, while addressing pharmacological limitations such as

BBB permeability and toxicity.

Collectively, these findings explore how ouabain exhibits

extensive immunomodulatory action directly or indirectly affects

GBM biology. The integration of these mechanisms reinforces

ouabain’s relevance as a candidate for therapeutic repurposing.

To date, there are no clinical or clinical-stage studies evaluating

ouabain or other cardiotonic steroids as therapeutic agents for

GBM. All available evidence remains preclinical. This highlights

the current insufficiency of translational data and reinforces the

need for future studies to address key issues such as efficacy in

immunocompetent models, blood–brain barrier permeability, and
FIGURE 2

Schematic representation of the potential immunomodulatory effects of ouabain on the tumor microenvironment of glioblastoma (GBM). The
enlarged panel on the right details the tumor microenvironment, composed of tumor cells (Tumor), glioma stem cells (GSC), immunosuppressive
cells such as TAMs (tumor-associated macrophages), MDSCs (myeloid suppressor cells), Tregs (regulatory T lymphocytes) and neutrophils (e.g.: N2
phenotype), as well as effector cells such as tumor infiltrating lymphocytes (TILs), NK cells and dendritic cells (DCs). Ouabain influences intracellular
pathways associated with oxidative stress (ROS), Akt/mTOR pathway, HIF-1a, and tumor cell death. In addition, it appears to modulate different
cellular components: NK cell cytotoxicity, Treg frequency, antigen presentation by DCs, and monocyte activation. The suggested effects still lack
confirmation (indicated by “?”) and reflect hypotheses based on evidence in other models. ↑ - increase, ↓ - decrease. Created in https://
BioRender.com.
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potential systemic toxicity before any clinical application can

be considered.
4 Final considerations

Glioblastoma remains one of the most difficult challenges in

oncology due to its intrinsic resistance mechanisms and profoundly

immunosuppressive microenvironment. Ouabain, a classical

cardiotonic steroid, has demonstrated promising antitumor

activity in GBM models (Figure 2), primarily through the

modulation of intracellular signaling pathways, induction of cell

death, and inhibition of tumor-promoting processes such as

migration and angiogenesis. While direct evidence of its effects on

the GBM tumor immune microenvironment remains limited,

findings from other biological systems suggest that ouabain may

exert broad immunomodulatory effects on both innate and adaptive

immunity. These preliminary insights position ouabain as a

candidate for therapeutic repurposing in GBM; however, further

studies, particularly in vivo and within immunocompetent models,

are essential to validate its efficacy, define optimal dosing, and

understand its impact on immune-tumor dynamics. Future

research should also address pharmacological challenges, such as

brain barrier permeability and potential systemic toxicity, to enable

safe and effective clinical translation.
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108. Cavalcante-Silva LHA, de É, Lima A, Carvalho DCM, Rodrigues-Mascarenhas
S. Ouabain reduces the expression of the adhesion molecule CD18 in neutrophils, I.
nflammopharmacology. (2020) 28:787–93. doi: 10.1007/S10787-019-00602-8

109. Cavalcante Silva LHA, Carvalho DCM, de Almeida Lima É, Rodrigues
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