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Anthropogenic noise exposure
suppresses the immune response
in Mytilus spp. following Vibrio
splendidus challenge

Ambre F. Chapuis™, Matthew A. Wale? Morgan Bailey*,
Hannah M. Farley?’, Tim P. Bean' and Tim Regan™

The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh,
Midlothian, United Kingdom, 2Centre for Conservation and Restoration Science, School of Applied
Sciences, Edinburgh Napier University, Edinburgh, United Kingdom

Introduction: Anthropogenic noise is a growing environmental stressor in
marine ecosystems, yet its effects on immune function in bivalves remain
poorly understood.

Methods: This study examined the transcriptional response of blue mussels,
Mytilus spp., following exposure to ship noise for seven days, followed by a low-
dose Vibrio splendidus bath challenge.

Results: Transcriptomic analysis at multiple time points postnoise exposure
revealed only subtle changes in expression signatures which appeared to
resolve at later time points. However, compared with the controls, mussels
exposed to ship noise showed a reduced number of differentially expressed
genes in their gill tissue following bacterial challenge. This indicated a suppressed
immune response, as indicated by reduced expression of immunerelated genes
compared to controls. While bacterial burden and mortality did not significantly
differ between noise-exposed and control groups, the proportion of GFP-tagged
Vibrio splendidus colonies was higher in noise-exposed mussels.

Conclusions: These findings contribute to a growing body of evidence that
anthropogenic noise may impair immune function in bivalves, with implications
for aquaculture and marine ecosystem health.

KEYWORDS

mussel (Mytilus spp.), noise - exposure, stress response, transcriptomics (RNA
sequencing), Vibrio splendidus, GFP tagging

Introduction

Anthropogenic noise pollution is increasingly recognised as a significant environmental
stressor in marine ecosystems. Increasing levels of underwater noise, driven by vessel traffic,
industrial activity, and offshore construction have led to elevated ambient noise levels that can
impact marine organisms at multiple biological scales from behaviour to physiology and
immune function (1-3). While much research has focused on noise impacts in fish and marine
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mammals, invertebrates, including Mytilus spp. (blue mussels), are
also affected (1), yet remain comparatively understudied.

Mpytilus spp. play critical ecological and economic roles. These
reef-building bivalves are ecosystem engineers, dominating fouling
communities and forming dense aggregations on hard substrata in
shallow coastal zones (4). Their filter-feeding activity reduces
eutrophication and mediates nutrient cycling, with potential for
bioremediation applications, including pollution monitoring and
reducing environmental impacts of aquaculture waste from e.g.
salmon farms (5-7).

As a key aquaculture species, Mytilus spp. underpin significant
shellfish production globally (8), and are the second most heavily
produced aquaculture species in the UK (9). However, mussel
populations face increasing threats from environmental stressors,
including warming seas, ocean acidification, and emerging
pathogens (10-12). In the UK and elsewhere, declines in wild
spat availability have raised concerns over the long-term
sustainability of mussel farming (9). These changes, along with
increasing ocean temperatures, coincide with poleward range shifts
(13), potentially leading to weakened immune responses, and
greater susceptibility to disease (14, 15). Disseminated neoplasia
and pathogenic Vibrio species continue to pose persistent
challenges, particularly in hybrid zones of the Mytilus complex
where immunological consequences of introgression remain
unclear (16-19). Taken together, these findings underscore the
importance of better understanding the effects of environmental
stressors on the immune functioning of Mytilus spp.

Mussels rely on mechanosensory detection of waterborne
vibrations, and exhibit a range of physiological responses to
acoustic stress. These include reduced filtration rates, increased
oxidative stress, and impaired immune function (1, 3). Previous
studies on Mytilus edulis indicate that noise exposure can induce
DNA damage, alter haemocyte function, and suppress metabolic
activity (1, 2). Hubert et al. (3) demonstrated that acoustic
disturbance leads to valve closure and potential disruption of
feeding behaviour, which may exacerbate physiological stress.
Similarly, a study by Vazzana et al. (20) showed an increase in
the number of Mpytilus haemocytes following noise exposure,
however their cytotoxicity was reduced with decreased peroxidase
activity, pointing to a decoupling between immune cell recruitment
and function.

Given the crucial role of immune responses in host defence
against pathogenic infections, understanding how noise exposure
influences immune responses is essential. In this study, we
investigated the effects of noise exposure on immune responses in
Mpytilus spp. by combining transcriptional profiling with a
functional bacterial challenge. Mussels were exposed to
underwater ship noise played on a 12-hour cycle for 7 days,
allowed a day to recover, then subjected to a bath challenge with
a GFP-tagged strain of V. splendidus. Samples were collected at
multiple time points during and after noise exposure, as well as
following bacterial challenge, to assess transcriptional dynamics and
bacterial burden in the haemolymph.

Together, these findings highlight an underappreciated
dimension of anthropogenic noise as an immune-modulatory
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factor in marine invertebrates, with potential relevance for both
ecological dynamics and aquaculture practices.

Materials and methods
Animals

Adult mussels (M. edulis and M. galloprovincialis, hybrids
hereafter referred to as Mytilus spp. (21)), of approximately 7 cm
shell-length, were obtained from a commercial mussel farm
(Shetland, UK) via the Scottish Shellfish Marketing Group
(SSMG, Bellshill, UK). Mussels were allowed acclimation of at
least one week prior to experiments (n=446). They were
maintained at the Roslin Institute in a flow through artificial
seawater (ASW) system with constant aeration maintained at 15°
C with a salinity of 30-35 ppt and a pH of 7.5-8.5. The mussels were
fed daily during acclimation and noise exposure with 1ml of liquid
algae concentrate, PhytoBloom® Shellbreed (Necton, Portugal),
containing Skeletonema sp., Tisochrysis lutea (T-iso), and
Tetraselmis sp. The system was maintained under the same
conditions throughout the experiment, but no feed was provided
during bacterial challenge.

Experimental design

A tank of mussels were exposed to underwater ship noise for
seven days (12-hour noise cycles, n=208), while another tank for the
control mussels had a speaker but no noise was played (n=208).
Both groups (noise-exposed and non-noise) were then separated
into infected and uninfected controls (n=101 in each tank). The
infection was carried out via a 24-hour bath challenge with 2x107
CFU/ml GFP+ V. splendidus. This concentration was chosen to
assess host immune responses without inducing overt disease, and
is within the range used in comparable studies e.g., Saco et al., 2020,
used 1x10® CFU/ml to induce mortality (22). Mussels were held in a
flow-through system during noise exposure and transferred to static
water for the bacterial challenge (Figure 1).

Noise exposure

Noise exposure consisted of ship passage recordings from three
UK ports, produced previously (23), randomized over a 12-hour
exposure period. These playback sounds were calibrated to reflect
the noise levels encountered at a distance of roughly 200-300
meters from a vessel, based on previous studies (24, 25), and were
played for durations consistent with typical exposure times in
frequently trafficked shipping routes. These tracks were played
back as WAV files via a Laptop; amplifier (Pioneer A-10-K, 50W,
frequency response: 20-20,000 Hz, Pioneer Corporation, Tokyo,
Japan); and Clark Synthesis AQ339 underwater speaker (effective
frequency range 20-17,000 Hz, Clark Synthesis Inc., Littleton, CO,
U.S.A) in a controlled tank environment. Control tanks experienced
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FIGURE 1

Schematic of the experiment Schematic of the experimental design. Mussels were exposed to ship noise for 7 days in a 12 h on/off cycle. On day 7,
all groups were subjected to a bath challenge with GFP-labelled Vibrio splendidus or mock infection. Transcriptomic and bacterial burden
measurements were collected at multiple time points. Figure 1 was created with BioRender.com.

identical conditions without noise playback. Sound levels were
recorded at the mussels’ position in the experimental tanks using
a HiTech HTI-94-SSQ hydrophone with inbuilt preamplifier (High
Tech, Inc., USA) for pressure or a custom calibrated sensor
(suspended triaxial accelerometer potted in epoxy resin, as
described previously (1), for particle acceleration, attached to a
Zoom H6 Portable Recorder (Zoom Corp, Tokyo, UK). Sound
pressure peaked at 134 dB (re 1 pPa* Hz™") for the noise exposure
and 106 dB (re 1 pPa2 Hz") for control conditions, as measured in
PAMGuide (Merchant et al., 2015) (Figure 2A). Particle
acceleration, measured in paPAM (Nedelec et al., 2016), peaked
at 170 dB (re 1 (pm/sz)2 Hz) for noise exposure and 144 dB (re 1
(um/ %)% Hz) for control conditions (Figure 2B).

Construction of GFP-tagged V. splendidus

GFP-tagged Vibrio splendidus strain C04a (26) was generated
using a triparental mating approach following the protocol of
Travers et al. (27) and Stabb and Ruby (28). Briefly, donor and
helper E. coli strains harbouring plasmids pVSV102 (GFP,
kanamycin resistance) and pVSV104 (helper plasmid) were
grown overnight in LB with kanamycin. E. coli helper (CC118
Apir) and donor (DH5a) strains containing these plasmids were
received as a gift from the lab of Prof. Eric Stabb at the University of
Illinois Chicago. Stationary-phase cultures were mixed with
recipient V. splendidus and spotted onto LBS agar for conjugation

Frontiers in Immunology

at 28°C. After overnight incubation, cells were resuspended, diluted,
and plated onto selective marine agar. Transconjugants were
selected based on kanamycin resistance and confirmed by GFP
fluorescence and PCR screening.

Bacterial challenge and quantification

GFP-labelled V. splendidus (C04a) cultures were grown to an
OD of 1.0 overnight, shaking at 180 rpm in marine broth (Merck) at
22°C. Prior to infection, the culture was washed twice in ASW.
Infections were performed using 2x107 cfu/ml in 10 L of ASW in
static immersion tanks (n=101). A mock infection was carried out
on control mussels with no bacteria added to their tanks (n=101).
The concentration of bacteria used was confirmed by performing
serial dilutions and colony counts on marine agar. The timepoint of
24 hours after exposure was used to study the immune response as
this time point has previously been shown to generate a robust
response to V. splendidus in Mytilus spp. (22, 29). Bacterial burden
was quantified at 24 h post infection via haemolymph extraction,
serial dilution in sterile artificial seawater, and plating on marine
agar (Merck) in triplicate. GFP+ colonies were counted under blue
light to determine infection prevalence. Statistical analysis was
conducted using Student’s t-test. Gill tissue from infected and
uninfected mussels in control and noise-exposed groups was also
sampled from each tank 24 hours following infection (n=6
individuals sampled for each group).
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FIGURE 2

Analysis of acoustic stimuli and sound playback conditions. Mean power spectral density of 30 s of each sound condition of (A) acoustic pressure

and (B) particle acceleration, for control and exposure conditions. Analysis
R2013a (particle acceleration). fft lengths = 48 kHz (pressure) and 44.1 kHz

performed in MATLAB R2015b (pressure) and MATLAB Compiler Runtime
(particle acceleration), both resulting in 1 Hz bands.

RNA sequencing and transcriptomic
analysis

Gill tissue was dissected from mussels following 4 hours, 24
hours and 7 days of noise exposure and again at 48 hours recovery
after the noise was turned off (n=3 individuals sampled for each
time point). Mussels were also sampled at 24 hours post-Vibrio
challenge (n=6 individuals sampled for both infected and
uninfected). RNA was extracted from gill tissue using the RNeasy
Blood & Tissue Kit (Qiagen) according to manufacturer’s
instructions. Strand-specific RNA sequencing was performed on
the NovaSeq XPLUS platform (Illumina PE150) at 30M reads per
sample. Raw reads were deposited in the EMBL-EBI Array Express
database with accession numbers E-MTAB-15321 and E-MTAB-
15323. Fastp (v0.24.0) was used to trim adapters and filter for
PHRED score >15 and length >30. The annotated transcriptome
from the xbMytEdul2.2 assembly (GCF_963676685.1) was used to
map reads using default parameters for stranded mapping with
Kallisto (v0.44.0). Differentially expressed genes were identified
using DESeq2. All code used is available on Github repository
https://github.com/Roslin-Aquaculture/Mussel_Noise_RNAseq/.
DEGs with P < 0.05 were compared between treatments groups
using Venny 2.1 (30). Full lists of these genes are available in the
Supplementary Table.

Results

We first examined whether noise exposure influenced mussel
survival either alone or in combination with Vibrio splendidus
challenge. During the 7-day noise exposure period, no mortality
was observed in either control or noise-exposed groups
(Supplementary Figure 1a). Following bacterial bath challenge on
day 7, survival was tracked over the subsequent 7 days in four
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treatment groups: control (no noise, no Vibrio), noise-only, Vibrio-
only, and noise + Vibrio. No significant difference in cumulative
mortality was detected between groups (Supplementary Figure 1b,
log-rank test, p > 0.05), indicating that noise exposure did not
exacerbate mortality, even following bacterial infection.

To assess whether noise exposure altered the ability of mussels
to control bacterial infection, haemolymph samples were plated on
marine agar 24 hours after bacterial challenge. Neither the total
bacterial burden, nor the number of GFP-positive V. splendidus
colonies (CFU/ml) was significantly different between control and
noise-exposed mussels (Figures 3a, b). However, the fraction of GFP
+ colonies relative to total CFU (Figure 3c) was significantly
different between control and noise-exposed groups, suggesting
that while bacterial infection occurred in both groups, noise
exposure may lead to higher rates of infection.

We next explored the transcriptional response of Mytilus spp. to
ship noise using RNA sequencing at multiple time points: prior to
exposure (T0), 4 hours (T4), 24 hours (T24), and 7 days (T168)
post-noise onset. A recovery group was also sampled after 48 hours
of silence following 7 days of exposure (termed R48). PCA revealed
a subtle but progressive shift in gene expression with noise duration,
which largely returned toward baseline in the recovery group
(Figure 4a). Differential expression analysis across all time points
revealed a small number of genes (p < 0.01) differentially expressed
in noise-exposed mussels relative to TO controls (Figure 4b). A
heatmap of the 30 most significantly altered transcripts shows
relatively consistent patterns across exposure time points
(Figure 4c), indicating that the noise-induced transcriptional
response is mild.

To establish a baseline immune response to V. splendidus, we
performed transcriptomic analysis in control mussels (not exposed
to noise) 24 hours after bacterial challenge. PCA revealed a clear
separation between infected (V) and uninfected (C) mussels
(Figure 5a), with hundreds of differentially expressed genes
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(DEGs) identified (Figure 5b). The expression profile included
upregulation of known immune-related genes, including pattern
recognition receptors, signalling molecules, and antimicrobial
effectors. Heatmap clustering of the top 30 DEGs further
confirmed the distinct immune signature induced by V.
splendidus infection in mussels which were not exposed to
noise (Figure 5c).

We then examined whether prior exposure to ship noise altered
the immune transcriptional response to V. splendidus. Contrasting
with results in Figure 5, PCA (Figure 6a) showed virtually no
separation between infected and uninfected samples in the noise-
exposed cohort. Differential expression analysis revealed much
fewer DEGs in noise-exposed mussels (Figure 6b), with reduced
induction of typical immune markers. Heatmap clustering further
confirmed the attenuated nature of the transcriptional response
following V. splendidus infection in noise-exposed mussels
(Figure 6¢), with less clear grouping of the uninfected and
infected groups.

To compare the transcriptomic responses across treatments, we
generated Venn diagrams of up- and downregulated DEGs in three
contrasts: (i) V. splendidus infection in control mussels which had
not been exposed to noise (Vibrio only), (ii) V. splendidus infection
in noise-exposed mussels (Noise + Vibrio), and (iii) noise exposure
alone (Noise Only) with a threshold of p<0.5. This resulted in a total
number of 168 DEGs for response to “Vibrio only” compared with
20 in response to “Noise + Vibrio” and 9 in response to “Noise
Only” (Figure 7). The overlap of upregulated genes (Figure 7a) was
limited, with a distinct set of genes induced only in the “Vibrio
only” group, many of which were not activated following infection
in noise-exposed mussels. A similar pattern was observed for
downregulated genes (Figure 7b), indicating that noise alters both
the magnitude and composition of the mussel immune
transcriptional response.

We also generated Venn diagrams comparing the DEGs in
response to noise only at each of the 3 time points during noise
exposure (T4, T24 and T168) and the 48 h recovery period after 7
days of noise exposure (R48) compared with the control (Figure 8).
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Discussion

At 24 hours post-Vibrio challenge, mussels that had not been
previously exposed to noise exhibited a robust transcriptional
activation of immune pathways, consistent with a typical response
to pathogenic stimulation displaying 168 DEGs overall. In contrast,
mussels that experienced prior noise exposure demonstrated a
markedly attenuated immune response, with only 20 DEGs in
total, suggesting that the acoustic stress may impair host capacity
to mount an effective defence.

The principal component analysis of samples collected at
multiple time points during and following noise exposure
revealed a shift in gene expression patterns driven by time. A
deviation from baseline was detectable as early as 4 hours post-
exposure, with maximal divergence observed at 24 hours. Several
genes implicated in immune and stress responses displayed
differential regulation at this 24-hour time point (see
Supplementary Table). Among upregulated transcripts were
GRB2-associated and regulator of MAPK protein-like, suggesting
potential activation of MAPK signalling pathways relevant to
immune modulation (31). Cytochrome P450 12a5 and oxysterol-
binding protein 1-like were also elevated, indicating possible shifts
in xenobiotic metabolism and cellular lipid signalling under stress
(32, 33). Conversely, downregulated genes included
phosphatidylinositol 3-kinase catalytic subunit type 3-like (PI3K),
which plays a role in immune cell signalling and survival (34).
Additional stress-linked downregulated genes included acidic
phospholipase A2, dynein assembly factor WD repeat-containing
1-like, reticulon-4 receptor-like 1, signal peptide peptidase-like 24,
and Nek7-like kinase — many of which are involved in vesicular
transport, ER stress response, and cell cycle regulation (22, 35-37).

Notably, mussels sampled after seven days of continuous noise
exposure (T168), as well as those given 48 hours of recovery
following noise cessation (R48), exhibited transcriptional profiles
closer to those of the control group. However, despite this apparent
return to baseline at the transcriptomic level, the functional
immune response to bacterial challenge remained altered. This
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Transcriptomic response to noise exposure. (a) PCA of mussel transcriptomes at baseline (T0), 4 h (T4), 24 h (T24), 7 days (T168), and 48 h recovery
post-noise (R48). n = 3 per time point. Ellipses were manually drawn using group range along PC axes. (b) Volcano plot showing 6 DEGs (threshold:
p < 0.01) between noise-exposed groups (T4, T24, T168) and baseline (T0). (c) Heatmap of 30 most significant DEGs across time points.

could indicate that regulation of immune competence is driven
through mechanisms such as epigenetics, or in part by shifts in
metabolic activity.

It was also noted that when analysing the noise-exposed mussels
as a single group across time points (Figures 4B, C), TLR13 was the
only immune-related gene identified among the most significant
DEGs. This suggests that immune modulation may be subtle or
timepoint-specific rather than a dominant feature of the overall
response to noise alone.

The V. splendidus strain used in this study was originally isolated
from a mortality event in Pacific oysters, Crassostrea gigas, in Scotland
(26). While this strain is not known to be directly pathogenic to
Mytilus spp., it represents an environmentally relevant opportunistic
bacteria and was selected to assess host immune competence rather
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than to induce disease. Opportunistic pathogens such as V. splendidus
are typically controlled by a functional immune system, thus immune
impairment may be revealed by a failure to mount an appropriate
response to such exposures (38). The relatively modest transcriptional
response we observed following Vibrio challenge, compared with
previous studies using more virulent strains (22), likely reflects both
the lower pathogenicity of our isolate and the lower bacterial dose
used in this experiment (10”7 CFU/ml vs. 10° CFU/ml). Nonetheless,
clear differences between noise-exposed and control mussels highlight
the value of using sublethal bacterial challenges to detect functional
immune changes.

Although no significant difference was observed in total
bacterial burden between groups, all colonies recovered from the
haemolymph of noise-exposed mussels were GFP-positive Vibrio,
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whereas approximately half of the colonies from the control group
were not. This may either suggest a selective impairment in
preventing early infection following acoustic stress, or potentially
an increase in filtration by the noise-exposed mussels, reflective of
metabolic stress.

While enrichment of GO terms was limited or inconsistent across
most comparisons, notable DEGs were up- or down-regulated in
response to Vibrio exposure, both with and without prior noise stress.
Several immune-related genes upregulated following Vibrio challenge
alone included MyD88-like proteins that are a key adaptor molecule
in the Toll-like receptor (TLR) signalling pathways. MyD88 has also
been studied in molluscs revealing unique evolutionary patterns and
functional roles in immune signalling (39, 40). NF-xB p105 subunit-
like, another protein that plays a central role in immune signalling
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and defence in vertebrates and marine invertebrates (41). Other
upregulated genes included peptidoglycan recognition protein 1
(PGRP1)-like a key component of the innate immune system in
molluscs, potentially acting as a pattern recognition receptor that
detects bacterial cell wall components. Studies have identified and
characterized several PGRP1-like proteins in different mollusc species,
highlighting their structural features, expression patterns, and roles in
antibacterial defence (42-44). Similarly, Toll-like receptor 13 (TLR13)
and tumour necrosis-associated factor 6 (TRAF6) (45) are key
components of the innate immune system. TLR13 acts as a pattern
recognition receptor, detecting pathogen-associated molecular
patterns and initiating immune responses. These include activation
of MyD88, TRAF6 and NF-kB (46-48). Also upregulated was
TNFAIP3-interacting protein 2-like (TNIP2), a protein involved in
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Transcriptional response to V. splendidus infection in noise-exposed mussels. (a) PCA of transcriptomes from noise-exposed uninfected (C) and
infected (V) mussels, n = 6 per group. Ellipses were generated using stat_ellipse() based on a multivariate normal distribution. (b) Volcano plot of 14
DEGs (threshold: p < 0.01) between infected and uninfected mussels. (c) Heatmap of 30 most significant DEGs.

regulating inflammation, cell death, and RNA metabolism (49, 50).
Several stress-responsive genes were also differentially expressed,
including HSP68-like, HSP70 B2-like, and small HSP p36-like.
HSP68-like is known for its role in cellular protection, particularly
under changing salinity conditions, and is associated with
endoplasmic reticulum chaperone BiP-like (GRP78) (51). These
changes are consistent with cellular stress and protein folding
demands associated with infection (50, 52-54). PARP1, a DNA
repair enzyme also involved in inflammatory responses, was
downregulated in response to Vibrio (55, 56). In contrast, the
transcriptomic response to Vibrio in noise-exposed mussels was
minimal, with TRAF6 as the only immune-related gene showing
significant upregulation. HMGB2, a chromatin-associated protein
linked to DNA repair and immune activation, was downregulated,
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further suggesting altered immune readiness and resistance to
bacterial infection (57).

These findings are consistent with growing evidence that
anthropogenic noise can act as a physiological stressor in marine
invertebrates (1-3). Previous studies have reported reduced
haemocyte activity, elevated oxidative stress markers, and altered
behaviour (e.g., changes in valve closure) in noise-exposed mussels
(1). Increased valve closure rates in noise-exposed mussels, as
reported by Hubert et al. (3), may contribute to altered immune
responses by limiting exposure to environmental microbial signals.
Researchers working on M. galloprovincialis found that noise
exposure led to an increased number of haemocytes, but these
displayed reduced cytotoxic activity with lower levels of peroxidase
(20, 58). It should be noted that the reference genome used in our
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analysis was derived from a Mytilus edulis individual. While this fully
annotated reference is the most genetically appropriate assembly
currently available for our study population, high levels of gene
presence-absence variation (PAV) have been documented across
Mytilus spp. (59-62). As such, some stress- or immune-related genes
may have been absent from either the reference or the study
individuals, potentially influencing downstream interpretation.

T24

(22.5%)

FIGURE 8

Nevertheless, the transcriptomic data presented here provide a
molecular framework for these observations and suggest that noise
exposure may alter immune gene regulation, potentially through
stress hormone signalling, redox imbalance, or neuroendocrine
modulation — mechanisms that warrant further investigation.

From an applied perspective, the persistence of immune
alteration despite transcriptional return to baseline raises relevant

T168

7
(8.8%)

Venn diagrams comparing DEGs in noise exposure only. Differentially Expressed Genes (p<0.05, |In|>1), either up- or downregulated in response to
noise only compared to control at TO at either 4 h (T4), 24 h, or 168 h of noise exposure, or 48 h of recovery following 168 h of noise exposure
(R48).
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questions for shellfish aquaculture. With increasing vessel traffic and
offshore development, mussels and other aquatic species may be
subject to chronic or intermittent acoustic disturbances. While our
data suggest that noise exposure can modulate immune responses,
the long-term implications for disease resistance and productivity
remain unclear. Importantly, the transient transcriptomic effects and
persistent immune alteration we observed in response to noise is
consistent with patterns seen under other environmental stressors
such as thermal or oxidative stress. This suggests that noise functions
as a physiological stressor, eliciting classical features of stress-induced
immune modulation. It is possible that with extended exposure or
acclimation, mussels might regain full immunocompetence, but this
has yet to be demonstrated. Indeed, on offshore wind structures,
mussel biomass can exceed 3.4 kg m™ (63), transforming artificial
substrates into rich secondary habitats. Future work should therefore
assess both the duration and reversibility of noise-induced immune
modulation, to better inform aquaculture management strategies,
including site selection and noise mitigation.

This study demonstrates that exposure to anthropogenic noise
suppresses the transcriptional immune response of Mpytilus spp. to
bacterial challenge. While gene expression profiles appeared to
normalize following extended exposure or recovery, immune
competence remained impaired, indicating a decoupling of
transcriptomic recovery and functional immunity. These findings
highlight the immunomodulatory potential of acoustic stress in
marine invertebrates and underscore the need for further
mechanistic studies to determine the pathways involved. In the
context of sustainable aquaculture, our results suggest that
environmental noise may be an underappreciated factor influencing
host-pathogen dynamics and mussel health in farmed settings.
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SUPPLEMENTARY FIGURE 1

Mussel survival during noise exposure and after Vibrio challenge. (a) Survival
during the 7-day noise exposure period(n = 208 mussels per tank, 1 tank per
group). (b) Survival during the week following Vibrio or mock challenge, across
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