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Targeting PSMB5-induced
PANoptosis in bladder cancer:
multi-omics insights and
TCM candidate discovery
Zhe Chang1,2†, Jirong Wang1,2†, Jiajia Cao3†, Xinpeng Fan1,2,
Kunpeng Li1,2, Chenyang Wang1,2, Yalong Zhang1,2, Li Wang1,2,
Jianwei Yang1,2, Siyu Chen1,2* and Li Yang1,2*

1Department of Urology, Second Hospital of Lanzhou University, Lanzhou, China, 2Gansu Province
Clinical Research Center for Urinary System Disease, Lanzhou, China, 3Department of Hematology,
Second Hospital of Lanzhou University, Lanzhou, China
Background: Bladder cancer (BLCA) is among the most common malignancies

worldwide, with significant mortality rates. The function of PANoptosis in BLCA,

as a controlled process of programmed cell death, remains largely unelucidated.

The study aimed to elucidate the role of PANoptosis-related genes in BLCA and

investigate their molecular mechanisms, prognostic significance, and

therapeutic potential.

Methods: By analyzing differentially expressed genes in BLCA from The Cancer

Genome Atlas (TCGA) and PANoptosis-associated genes, we discovered 98

genes associated with PANoptosis. Functional enrichment and consensus

clustering identified molecular subtypes linked to these genes. A prognostic

model was developed via LASSO regression based on these genes. Subsequent

analyses assessed clinical significance, characteristics of the immunological

milieu, and treatment responsiveness. Systematic screening with machine

learning (ML) identified PSMB5 as a pivotal gene, with its functional importance

further clarified using single-cell sequencing and Mendelian randomization

analysis (MR). In vitro research confirmed the biological activities of PSMB5 in

BLCA. Molecular docking demonstrated PSMB5’s binding affinity with traditional

Chinese medicines (TCMs).

Results: Clustering of 98 PANoptosis-associated genes revealed molecular

subgroups A and B. A prognostic approach identified high-risk and low-risk

cohorts, revealing considerable disparities in clinical characteristics and

immunological landscapes across the groups. ML and MR identified PSMB5 as

a risk factor in BLCA. Single-cell sequencing revealed that PSMB5 expression is

predominantly associated with three cell lines linked to lymph node metastases.

In vitro findings demonstrated that PSMB5 knockdown inhibited the proliferation

and migration of BLCA cells while promoting apoptosis, whereas overexpression

has the opposite effect. Molecular docking revealed a robust binding affinity

between PSMB5 and five TCMs.
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Conclusions: A prognostic model incorporating PANoptosis-related genes was

developed for stratifying BLCA risk and assessing the immune microenvironment.

PSMB5has been recognized as a crucial therapeutic target, exhibiting dual importance

in the molecular etiology of BLCA and traditional Chinese medicine intervention.
KEYWORDS

bladder cancer, PANoptosis, machine learning, prognostic model, PSMB5,
single-cell, TCM
Introduction

Bladder cancer (BLCA), the tenth most common disease

worldwide, presents a significant challenge to healthcare systems

internationally due to its very high treatment costs per patient (1, 2).

Despite a larger incidence rate in men, women generally experience

poorer outcomes due to factors such as menstruation and cystitis

(3, 4). Tobacco smoking and occupational exposures are

unequivocally significant risk factors (5). The definitive method for

diagnosing and monitoring BLCA, encompassing non-muscle-

invasive BLCA (NMIBC) and muscle-invasive BLCA (MIBC), is

invasive cystoscopy paired with pathological biopsy (6, 7). NMIBC

typically necessitates transurethral resection of bladder tumor

(TURBT). At the same time, radical cystectomy (RC) is employed

for MIBC or NMIBC patients who do not react to bacillus Calmette-
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n 1; AIM2, Absent in

1; NLRP12, NOD-like

, Traditional Chinese

Cancer Genome Atlas;

PPI, Protein–protein

, Standard error; HR,

rea Under Curve; OS,

ecision Curve Analysis;

score; GSEA, Gene Set

nrichment Analysis; IC,

TIDE, Tumor Immune

ity; SVM-RFE, Support

ut-of-Bag; SNP, Single

NA, Small interfering

SD, Standard deviation;

lular component; MF,

Genes and Genomes;

Receiver Operating

Natural killer; Tregs,

Tfh, T follicular helper

mal transition; VEGF,

ived suppressor cell.

02
Guérin (BCG) therapy, as well as for tumors with the highest

progression risk (8, 9). Nevertheless, this treatment is inaccessible

to several patients, whereas RC significantly diminishes patient

quality of life (10, 11). BLCA is a significant therapeutic challenge,

requiring advanced research and innovative treatment strategies to

improve prognosis and life quality (12).

Programmed cell death (PCD), considered a meticulously

regulated type of cell death under normal settings, can impede

the growth of neoplastic cells and maintain tissue homeostasis (13,

14). The three most thoroughly researched forms of PCD—

pyroptosis, apoptosis, and necroptosis—interact during the PCD

process rather than functioning independently of one another (15,

16). PANoptosis, a novel concept of programmed cell death

presented by American researcher Malireddi et al., is induced by

a complex PANoptosis that activates downstream molecules and all

three programmed cell death pathways (17, 18). Moreover, four

unique PANoptosome complexes have been structurally and

functionally characterized at the molecular level, namely Z-DNA

binding protein 1 (ZBP1) (19), absent in melanoma 2 (AIM2) (20),

receptor-interacting protein kinase 1 (RIPK1) (21), and NOD-like

receptor family, pyrin domain containing 12 (NLRP12) (22). These

multiprotein platforms amalgamate elements from pyroptosis,

apoptosis, and necroptosis pathways to orchestrate inflammatory

cell death via PANoptosis (23). The characterization encompasses

the identification of essential regulatory proteins, interaction

networks, and activation mechanisms in response to pathogenic

or cellular stress signals (24).

The relationship between PANoptosis and malignancies may yield

novel insights into tumor initiation and development, as well as identify

unique therapeutic targets and treatment strategies. Researchers

synthesized ultrasmall Bi2Sn2O7 as an effective inducer of

PANoptosis, consistently activating PANoptosis in hepatocellular

carcinoma (25). The chlorin e6 photosensitizer generates reactive

oxygen species, whereas Jolkinolide B specifically targets and

activates the PANoptosis switch, thereby synergistically causing

apoptosis in gastric cancer cells (26). Moreover, research indicates

that baicalin mitigates disc degeneration, and licochalcone B reduces

pulmonary fibrosis by regulating PANoptosis, underscoring

PANoptosis as a pivotal mechanism in TCM (27, 28). Exploring the

therapeutic potential of traditional Chinese medicine targeting

PANoptosis-related genes is essential for cancer treatment.
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Nonetheless, the mechanistic foundation and pathophysiological

significance of PANoptosis in BLCA remain to be clarified, and no

relevant TCM studies are focusing on genes associated with

PANoptosis, particularly in BLCA. This research utilized datasets

of PANoptosis and BLCA to categorize BLCA patients into two

subgroups, examining immunological risk and checkpoints between

these subtypes. Subsequently, we developed a predictive model for

BLCA. We performed Mendelian Randomization (MR), single-cell

sequencing, andmany in vitro assays to further evaluate the biological

function and molecular mechanism of the core gene PSMB5. The

therapeutic potential of PSMB5 was investigated by reverse drug

discovery and molecular docking.
Methods

Data collection about BLCA and
PANoptosis

The data for BLCA patients was obtained from the TCGA and

encompasses transcriptomic and clinical information. A total of 431

files (comprising 406 cases) were acquired, consisting of 412 tumor

files and 19 normal files. To facilitate analysis, the TPM format was

employed for the data. Owing to the incomplete clinical data,

certain information was omitted from the clinical study. The 277

PANoptosis genes were discerned from the existing literature (29).
Filtration of genes associated PANoptosis
and BLCA

We computed the t-statistics, LogFC, and P value using the

“eBays” function. The comparative limma analysis (version 4.3.3)

identified 1.5-fold differently expressed transcripts (adj.P<0.05) in

BLCA, indicating PANoptosis-related molecular signatures in the

TCGA cohort (30). We intersected the two gene sets to produce a

collection of PANoptosis-associated BLCA genes (BLCA-PANs) for

subsequent investigation.
Function enrichment analysis

Enrichment analysis for the BLCA-PANs was performed using

the “org.Hs.eg.db” and “clusterProfiler” R packages (version 4.3.3)

(31). All P values were less than 0.05. Based on protein-protein

interaction (PPI) analysis, we identified communications and many

key genes within the BLCA-PANs (STRING: functional protein

association networks (string-db.org)).
Unsupervised clustering and survival
analysis

Unsupervised consensus clustering utilizing the K-means

algorithm was executed with ConsensusClusterPlus to identify
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novel BLCA molecular subtypes based on characteristic gene

profiles (32). The empirical cumulative distribution function

(CDF) was utilized to ascertain the appropriate number of

clusters (33). We subsequently evaluated prognostic variations

using the R package “survival” and BLCA-PANs signatures in

connection to clinical outcomes and immune infiltration.
Foundation of prognosis model

We conducted univariate Cox regression analysis to identify

genes with P-values of less than 0.05. Following data preprocessing,

the raw data were randomly divided into training and testing sets

(1:1 ratio) using the “caret” package. A prognostic model was

developed using LASSO stepwise regression (34). Utilizing 10-fold

cross-validation, the l value associated with the smallest mean

squared error and its standard error (SE) was identified as the stable

solution, and regularization methods were employed to reduce the

hazards of overfitting (35). This procedure discovered features with

non-zero coefficients and produced coefficient path visualizations

and cross-validation error curves. Hazard ratios (HR) and their 95%

confidence intervals (CI) were derived using the model gene

coefficients, with findings displayed in a forest plot format.

Compute the AUC (Area Under Curve) and the P-value for

survival analysis. The threshold for the training set is established at

P < 0.01, whereas the threshold for the test set is set at P < 0.05. The

training set AUC exceeds 0.65, while the test set AUC surpasses 0.63

(36). Feature selection and model training are conducted solely on the

training set, with the test set used only for final validation and

verification. The formula for calculating the risk score is as follows:

RiskScore =on
i=1 (bi � Expressioni). Risk stratification thresholds are

established by the predetermined median risk score, categorizing

patients into high-risk and low-risk groups for a comparative

survival study, including overall survival (OS) and progression free

survival (PFS). Graph the C-index, AUC curve, and decision curve

analysis (DCA) to assess the correlation between the model risk score

and clinical baseline variations (37). Develop a nomogram utilizing

clinical parameters and generate the calibration curve. The “maftools”

R package was used to evaluate tumor mutational burden (TMB) (38).
Somatic mutation and immune landscape
analysis

We conducted several analyses based on risk stratification,

encompassing RNA stemness score (RNAss), immunological

subtypes, Gene Set Enrichment Analysis (GSEA), and Single

Sample Gene Set Enrichment Analysis (ssGSEA). RNAss is a score

system derived from transcriptome data that evaluates stem cell

characteristics, primarily utilized to analyze the stemness aspects of

cells in tumor or other tissue samples. 1000 permutation tests

determined levels of significance (P < 0.05, FDR<0.25) to guarantee

robust statistical inference (39, 40). Comparisons between high-risk

and low-risk groups revealed immunophenotypic difference across

four dimensions: effector cells, signaling pathways, functional
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annotations, and the repertoire of Immune checkpoint (IC)

molecules. Immune cell infiltration analysis primarily relies on the

CIBERSORTx algorithm. Furthermore, we computed Tumor

Microenvironment (TME) scores derived from the stromal score,

immune score, ESTIMATE score, and tumor purity to evaluate

variations in the tumor microenvironment (41). Additionally, the

IMvigor 210 dataset from the immunotherapy cohort was utilized for

relevant assessment, encompassing Tumor Immune Dysfunction and

Exclusion (TIDE) and Microsatellite Instability (MSI), which can

elucidate immune evasion and immunotherapy for high-risk and

low-risk individuals (42). Ultimately, we conducted a drug

susceptibility prediction study using the “oncoPredict” R package,

which is grounded in the prognostic model.
Key feature gene screening and single
gene correlation analysis

We utilized four machine learning techniques to identify

significant feature genes for the model. Boruta does a top-down

feature relevance analysis by systematically comparing the

significance of characteristics with that of shadow attributes

generated through the random permutation of the original qualities

(43). It assesses significance by its permuted equivalents and

systematically removes extraneous aspects to stabilize the evaluation.

Support Vector Machine Recursive Feature Elimination (SVM-RFE)

was applied to a dataset subjected to 10-fold cross-validation, with the

number of folds set at 10. This produced indices for the training and

testing sets. Following the application of the SVM-RFE algorithm to

each training fold, features were prioritized according to their average

rank (44). The Random Forest model is trained utilizing the

“randomForest” package, with a specification of 2000 trees. A graph

illustrates the Out-of-Bag (OOB) error rate of the Random Forest in

relation to the number of trees. The Random Forest model is

reconfigured using the ideal tree count, and feature significance is

assessed via the “importance” function (45). Additionally, we cross-

referenced the model genes with genes exhibiting differential

expression identified using multi-omic analysis of BLCA from our

previous publication, which analyzed urinary specimens from five

BLCA cases compared to five healthy donors (46) and supplemented

by additional proteomics from Zhang et al. (47). Ultimately we

identified PSMB5 as the primary gene of interest.

We performed extensive analyses on PSMB5, encompassing gene

expression profiling, assessment of survival probability, evaluation of

progression-free survival, and clinical correlation studies. Additionally,

we performed an extensive analysis of the immune landscape and

tumor mutational burden to clarify immune-related characteristics and

investigate possible implications for immunotherapy.
MR and single-cell data analysis for PSMB5

To investigate the causal link between PSMB5 and BLCA, we

used MR using Wald ratio methods (48). Exposure data comprised

three single nucleotide polymorphisms (SNPs) from the eqtl-a-
Frontiers in Immunology 04
ENSG00000100804, filtered using a clumping window size of 10,000

Kb, R2<0.001, and F>10 (Supplementary Table 1). The outcome

data was obtained from FinnGen (https://www.finngen.fi/en).

We employed single-cell RNA sequencing data from the GEO

dataset GSE222315, which includes 9 BLCA cases and 4 surrounding

normal tissue samples. Raw scRNA-seq data were converted into

Seurat objects and underwent quality control according to specified

thresholds to preserve high-quality cells: (1) Detection of 200–5,000

genes per cell; (2) Mitochondrial gene content not exceeding 15%; (3)

Red blood cell gene expression rate surpassing 3%. Following

normalization, batch effects were corrected using the Harmony

integration method. Data was subjected to log-normalization and

subsequently scaled using linear regression (49). Dimensionality

reduction was performed using principal component analysis,

followed by graph-based clustering via the “Find-clusters”

algorithm (50). Visualization was conducted using UMAP, and the

expression informed the annotation of various cell populations of

classical marker genes (51). We examined the disparities in PSMB5

expression across different cell types and between the negative and

positive groups. The correlation between PSMB5 expression and

lymph node metastases was investigated in particular cell lines.
Cell culture and transfection

All cell lines were acquired from the Gansu Province Clinical

Research Center for Urinary System Diseases. SV-HUC-1 urethral

epithelial cells were cultivated in Ham’s F12K medium, while BLCA

cell (T24, UMUC-3, J82, 5637) were sustained in RPMI-1640

(Shanghai Yuanpei Biotechnology). Both media included 10%

fetal bovine serum (FBS) from PAN Biotech and 1% penicillin-

streptomycin at a concentration of 100 U/mL-100 mg/mL from

Solarbio. Standard incubation conditions of 37 °C, 5% CO2, and

humidity were maintained consistently.

The two small interfering RNAs (siRNAs) directed against

PSMB5 were procured from Tsingke Biological, and the

transfection reagent was sourced from Shanghai GenePharma

Biotechnology (si1: 5’-CGAAAUGCUUCAUGGAACA-3’; si2: 5’-

GGCAAUGUCGAAUCUAUGA-3’; si-NC: UUCUCCGAACG

UGUCACGUTT). The efficacy of the knockdown was validated

using western blot (WB) analysis at 48 hours post-transfection.

Moreover, concurrent phenotypic experiments were conducted

using the same procedure.
Construction of overexpression cell line

The whole coding sequence of human PSMB5 was inserted into

the pLV3-CMV-3×FLAG-mCherry-Puro vector (Miaoling Bio,

China). HEK293T cells were co-transfected with psPAX2 and

pMD2.G vectors, and the viral supernatant was harvested to infect

J82 cells. Following puromycin selection, stable cell lines exhibiting

PSMB5 overexpression were established. Cell transfection was

performed using Polybrene (Solaibao, China) according to the

manufacturer’s instructions.
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Western blotting

Total protein was extracted utilizing RIPA buffer (P0013B,

Beyotime, China) augmented with protease inhibitors. Protein

concentrations were measured via the Bicinchoninic Acid assay.

After separation by SDS-PAGE electrophoresis, proteins were

transferred to PVDF membranes. Membranes for immunoblotting

were blocked with 6% non-fat dry milk and then treated with primary

antibodies at 4 °C overnight. Protein bands were identified utilizing

the Odyssey imaging system in conjunction with the appropriate

secondary antibody (926-32211, Li-Cor, USA) for visualization. This

work utilized the following antibodies: b-actin (cat#66009-1-Ig,

Proteintech) and PSMB5 (cat#19178-1-AP, Proteintech).
Cell counting kit-8

The Cell Counting Kit-8 (CCK8) was utilized to evaluate the

proliferation. In accordance with the guidelines, cells (2 × 10³/well)

were inoculated in 100 μL of media using 96-well plates, with three

replicate plates established for various time points. CCK-8 reagent

(AbMole BioScience) was applied at 10 μL per well at intervals of 0

to 96 hours. Following a 2-hour incubation, the optical density at

450 nm was assessed via a BioTek plate reader.
Colony formation assay

For clonogenic tests, 6-well plates were inoculated with 1 × 10³

cells per well in 2 mL of medium. Following an 8–10 day cultivation

at 37°C with 5% CO2, colonies were fixed with 4% PFA (Biosharp

#BL539A), stained with 0.1% crystal violet (Solarbio #G1063), and

subsequently photographed and quantified.
Wound-healing assay

Transfected cells (6×105) attained confluence 48 hours after

transfection. Monolayers were scraped with sterile 200 mL tips,

rinsed with PBS, and subsequently treated with serum-free media.

Migration was evaluated by photographing wounds at 0 and 24

hours using inverted microscopy, with closure rates measured

using ImageJ.
Transwell migration assay

BLCA cells (1×105 in 200 mL of serum-free media) were

inoculated into LABSELECT chambers (8 mm holes; #14342). The

lower chambers had 600 mL of RPMI-1640 enriched with 20% FBS

as a chemoattractant. After 24–48 hours of incubation at 37 °C with

5% CO2, the transmigrated cells were subjected to methanol fixation

(4%), crystal violet staining (0.1%; Solarbio #G1063), and

subsequent microscopic counting.
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Cell apoptosis

Apoptosis was evaluated utilizing the Annexin V-FITC/PI kit

(Multi Sciences #AP101) in accordance with the manufacturer’s

specifications. Flow cytometric analysis (Beckman CytoFLEX S) was

used to assess overall apoptosis by aggregating early and late

apoptotic populations.
Prediction of TCMs and molecular docking

To investigate the therapeutic potential of PSMB5 as a target, we

employed the Coremine medical ontology information retrieval tool

(www.coremine.com/medical/) to delineate PSMB5. Additionally,

to obtain the target protein result files, the structures of TCMs were

retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/),

while the structure of PSMB5 (PDB ID: 5l5w) was acquired from

the PDB database (https://www.rcsb.org/). The requisite alterations

to the receptor proteins, encompassing hydrogenation and charge

equilibrium, were executed utilizing AutoDockTools 1.5.7 software.

AutoDock Vina 1.1.2 was subsequently employed to mimic

molecular docking between the pharmaceuticals and PSMB5 (52).

The molecular docking results were visualized using PyMOL

3.1.5.1, focusing on high-affinity complexes.
Statistical analysis

Statistical analyses were conducted using R (v4.3.3) and

GraphPad Prism (v9.0). Continuous variables were compared

between groups using either Student’s t-test (parametric) or

Wilcoxon rank-sum test (non-parametric), based on normality

assessment. Categorical variables were evaluated with the c²
test or Fisher’s exact test, chosen based on anticipated

cell frequencies. Survival outcomes were evaluated with

Kaplan-Meier estimation and log-rank testing for group

comparisons, augmented by multivariate Cox proportional

hazards regression. All experimental techniques were conducted

in three biological replicates, with data presented as mean ±

standard deviation (SD). Statistical significance was determined at

p < 0.05, with asterisk notation indicating non-significant (n.s.);

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001. P values below

0.05 were considered statistically significant (53).
Result

Identification and functional
characterization of differentially expressed
genes linked to PANoptosis in BLCA

We found 4,968 differentially expressed genes in BLCA. These

were compared with 277 PANoptosis-related genes sourced from

the literature, resulting in the identification of 98 BLCA-PANs
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(Figures 1A, B). Gene Ontology (GO) analysis revealed the

abundance and enrichment significance of BLCA-PANs across

various levels (Figure 1C). The biological process (BP) exhibited

significant enrichment in proteasome-mediated ubiquitin-

dependent protein degradation (Figure 1D). The cellular

component (CC) revealed that the principal enrichment functions

of BLCA-PANs were endopeptidase, peptidase, and proteasome

complexes (Figure 1E). The molecular function (MF) exhibited

significant enrichment in DNA-binding transcription factor

interactions and ubiquitin-related ligase interactions (Figure 1F).

The Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated

that BLCA-PANs were predominantly abundant in the proteasome

and apoptotic pathways (Figure 1G). Furthermore, we conducted a

PPI analysis to demonstrate the interactions of BLCA-PANs and

identified several key genes primarily associated with the

proteasome subunit family (Figures 1H, I).
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Prognosis, immunological profiles, and
mutational landscapes in BLCA-PANs
distinct subtypes

Consensus clustering analysis was performed on BLCA-PANs

expression patterns to categorize patients into two distinct subtypes:

Cluster A (n = 246) and Cluster B (n = 160) (Figures 2A, B). A

heatmap was later generated to depict the differential expression of

BLCA-PANs concerning molecular subtypes (Cluster A/B) and

clinicopathological characteristics, including gender, age, and

staging factors (T, N, M) (Figure 2C). OS analysis indicated that

Cluster A demonstrated a markedly inferior overall survival

probability relative to Cluster B (p = 0.033; Figure 2D). The study

revealed that most ICs were considerably overexpressed in Cluster

A, while only a select few showed elevated expression in Cluster B

(p < 0.05; Figure 2E). Immune infiltration with ssGSEA indicated
FIGURE 1

Identification and functional analyses for the BLCA-PANs. (A) Venn diagram shows 98 BLCA-PANs overlapping PANoptosis and differential BLCA
genes. (B) Heatmap shows 98 BLCA-PANs between BLCA and normal patients. (C) Circle chart shows GO enrichment analysis. (D-F) Bubble charts
indicates the main enrichment functions. (G) KEGG analysis shows 5 pathway enriched by the BLCA-PANs. (H, I) PPI and 10 core genes.
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that Cluster A exhibited a statistically significant prevalence of gd
T cells, while Cluster B had a predominant infiltration of activated

CD8 T cells and CD56bright natural killer cells (p < 0.05; Figure 2F).

Waterfall charts of TMB indicated that Cluster A displayed elevated

gene mutation rates compared to Cluster B (Figures 2G, H).

Furthermore, the TMB score values indicated a significant

difference between the two clusters (p < 0.05; Figures 2I-L).
Creation and internal validation of a
prognostic risk score model based on
BLCA-PANs

Employing Cox regression studies, we developed a prediction

model comprising four BLCA-PANs by LASSO regression
Frontiers in Immunology 07
(Figures 3A-D). The model exhibited enhanced predictive

accuracy relative to the clinical baseline, as evidenced by C-index,

AUC curve, and DCA analyses (Supplementary Figures 1A-C). The

Receiver Operating Characteristic (ROC) curves demonstrated the

model’s prognostic capability (Figure 3E). Based on the computed

risk scores in BLCA (BLCA-Riskscore), patients were classified into

High- and Low-risk categories (Figure 3F). Marked enhancements

in OS (p < 0.001) and PFS (p = 0.007) were noted in the Low-risk

group (Figures 3G, H). As a result, we constructed a nomogram

(Figure 3I) and a standard curve (Supplementary Figure 1D).

To validate the model’s credibility and consistency, we

partitioned the TCGA database into training and testing sets

(Figures 4A, B). The operating system results for the two sets

were consistent with the prior findings (p-value for test set =

0.038, p-value for train set = 0.001; (Figures 4D, E). Utilizing the
FIGURE 2

Clinical and immunological difference between the two molecular subtypes. (A) CDF curves assess average consistency. (B) Patients were divided
into two molecular subtypes. (C) Heatmap shows clinical characterizations. (D) Survival analysis between the two subtypes. (E) Differential expression
of ICs. (F) Immune infiltration analysis with ssGSEA. (G, H) Waterfall charts of TMB shows mutated genes for the two subtypes. (I-L) TME score
includes Stromal Score, immune Score, ESTIMATE Score, and Tumor Purity. ** p ≤ 0.01; *** p ≤ 0.001.
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BLCA-Riskscore to evaluate Clusters A and B, Cluster A had

markedly higher risk scores compared to Cluster B, correlating

with inferior overall survival rates in this cohort (Figure 4C). The

Sankey diagram was used to illustrate the relationship between the

groups and clinical features (Figure 4F). Furthermore, we

conducted GSEA analyses for high-risk and low-risk groups based

on GO and KEGG. The high-risk group was primarily

characterized by the chemotaxis and migration of granulocytes

and neutrophils, as well as the interaction with extracellular

matrix receptors and the activation of the JAK-STAT signaling

pathway. The low-risk group was linked to the epoxygenase P450

pathway, arachidonic acid epoxygenase or monooxygenase activity,

and so on(Figures 4G-J).
Frontiers in Immunology 08
Somatic mutation profiles and immune
micro-environment features among
BLCA-Riskscore categories

The cascade charts illustrated the disparity in mutational

landscapes between high-risk and low-risk groups (Figures 5A, B).

The association investigation indicated a small inverse correlation

between RNAss and risk score, implying diminished stemness

characteristics (Figure 5C). We identified statistically significant

dysregulations in pathways, notably impacting the KRAS cascade,

NF-kB-mediated TNF-a signaling, b-catenin-dependent WNT

pathway, TGF-b transduction, IL-6-JAK-STAT3 axis, and the

PI3K-AKT-mTOR network (Figures 5D, E).
FIGURE 3

Prognostic model based on BLCA-PANs. (A) Forest map shows the result of univariate Cox regression. (B, C) The process of LASSO regression.
(D) Forest plot presents four genes selected for risk scoring model. (E) ROC curves at 1, 3, 5 years. (F) Distribution of all patients. (G, H) OS and
PFS analyses between high-risk and low-risk groups. (i) Nomogram with clinical characterizations.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1656682
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chang et al. 10.3389/fimmu.2025.1656682
According to ssGSEA, plasmacytoid dendritic cells (pDC)

exhibited substantial immunological infiltration in the high-risk

cohort. Moreover, CD8+ T cells and CD56brilliant natural killer (NK)

cells were significantly infiltrated in the low-risk cohort (Figure 5F).

The high-risk cohort had significant expression of M0, M1, and M2

macrophages, corresponding with specific immunological activity
Frontiers in Immunology 09
patterns. Conversely, the low-risk group exhibited a predominance

of immunosuppressive regulatory T cells (Tregs), antibody-

secreting plasma cells, monocytic lineage cells, and activated

dendritic cell populations (Figure 5G). The examination of

immune function indicated that immune responses were

predominantly heightened in the high-risk group, encompassing
FIGURE 4

Internal validation and functional enrichment with the model. (A, B) Test and train sets. (C) A significant difference between Cluster A and B (D, E) OS analysis
of the two sets. (F) Sankey diagram shows associations between the model and clinical data. (G-J) GSEA analyses with high-risk and low-risk groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1656682
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chang et al. 10.3389/fimmu.2025.1656682
APC co-inhibition, APC co-stimulation, MHC-I, neutrophils, para-

inflammation, T cell co-inhibition, T cell co-stimulation, Th1 cells,

Th2 cells, tumor-infiltrating lymphocytes (TILs), Tregs, and Type-I

interferon response. Only the Type-II IFN response is considerably

elevated in the low-risk group (Figure 5H). A cohort of 371 BLCA

patients was categorized into four clusters (C1, C2, C3, C4) and

classified as high-risk or low-risk based on established BLCA-

Riskscore thresholds. A statistically significant difference was

noted between risk strata using the chi-square test (Figure 5I).

The comparative study of IC expression profiles differentiated the
Frontiers in Immunology 10
high-risk group from the low-risk group. Most ICs exhibited

considerable differential expression among cohorts (Figure 5J).

Analysis of immune cell correlations indicated that seven immune

cell types were significantly associated with the BLCA-Riskscore,

comprising three positively correlated (M0, M2, Neutrophils) and

four negatively correlated [Dendritic cells (activated), Monocytes, T

follicular helper cells (Tfh), Tregs] cell types (Figures 6A-J). The TME

score exhibited notable disparities (Figure 6K). Furthermore,

assessments of TIDE and MSI indicated that the TIDE score, MSI

status, and Dysfunction score, excluding the Exclusion score, exhibited
FIGURE 5

Immune landscape of High-risk and Low-risk groups. (A, B) Waterfall charts show mutated genes for the two groups. (C) The correlation between
risk score and RNAss. (D, E) Differential immune-related signaling pathways between High-risk and Low-risk groups. (F) Immune infiltration based
on the ssGSEA algorithm between high- and low-risk groups. (G, H) Immune cell expression and immune function analyses. (I) Immune subtypes
analysis based on the TCGA. (J) Differential analyses of ICs. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.
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considerable variance specific to the cohort (Figure 6L). Ultimately,

drug susceptibility analysis revealed that 29 medications exhibited a

significant correlation (Supplementary Figure 2).
Machine learning identifies the key feature
gene

To advance research on BLCA-PANs, we employed four

machine learning techniques and integrated the results of Zhang

et al. with our urine proteomics data to identify critical feature genes

(Figure 7A). The Boruta algorithm demonstrates that PSMB5

attained the highest score (Supplementary Figures 3A, B). SVM-

RFE indicates that PSMB5 is the nearest to the scatter
Frontiers in Immunology 11
point, exhibiting the highest average ranking (Supplementary

Figure 3C). PSMB5 demonstrates the most excellent absolute

coefficient value in the Lasso regression model (Supplementary

Figure 3D). Random Forest demonstrates the most excellent Mean

Decrease Gini score (Supplementary Figures 3E, F). The essential

gene PSMB5 was ultimately acquired.
Clinical and immunological correlation,
MR, and single-cell analysis of PSMB5

Differential expression analysis revealed that PSMB5 was

markedly overexpressed in BLCA patients (Figure 7B). The

studies of OS (p = 0.025) and PFS (p < 0.001) demonstrated that
FIGURE 6

Correlation analyses of immune cells and TME with the risk groups. (A-C) Immune cells exhibit meaningful connections with risk score and model
genes. (D-J) Plots show significant correlations between seven immune cells and risk score. (K) Box plot shows TME scores between High-risk and
Low-risk groups. (L) TIDE, MSI, Dysfunction and Exclusion analyses. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.
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PSMB5 was significantly associated with clinical prognosis

(Figures 7C, D). A heatmap illustrating the relationship between

PSMB5 and clinical characteristics was generated (Figure 7E).

Subsequently, we examined the connection between PSMB5 and

other BLCA genes (Figure 7F). Analysis of immune cells yielded

results consistent with the high-risk and low-risk groups,

correlating with M0, M2, Monocytes, and Tregs (Figure 7G).

Furthermore, we identified several ICs that were statistically

significant with PSMB5 (Figure 7H). The TMB exhibited a

positive correlation with PSMB5 expression (p = 0.036; Figure 7I).

Furthermore, we identified three SNPs in PSMB5 (rs12590429,

rs117058979, rs11543947) to conduct MR. Results identified

rs117058979 as a causative variant for BLCA [OR = 2.267 (1.008,

5.097), p = 0.048] (Supplementary Table 2).

Upon normalizing and annotating the single-cell database, the

BLCA group and the normal group predominantly clustered into

nine categories of cell lines (Figure 8A). PSMB5 exhibited markedly
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elevated expression in the BLCA cohort, predominantly among

Endothelial cells, Epithelial cells, and Fibroblasts (Figures 8B, C).

Consequently, we meticulously analyzed the relationship between

PSMB5 expression and lymph node metastasis in all three cell lines,

discovering substantial statistical differences for endothelial cells

(p < 0.0001) and fibroblasts (p < 0.0001) (Figure 8D).
The impact of knockdown and
overexpression of PSMB5 on the biological
behavior of BLCA cells

WB analysis revealed distinct expression profiles of PSMB5 across

various BLCA cell lines, with significantly increased expression levels

observed in T24 and UMUC-3 cells (Figure 9A). In these two cell lines,

siRNA transfection resulted in a knockdown efficiency of about 60%

for PSMB5. Subsequently, comprehensive in vitro functional studies
FIGURE 7

Clinical and immunological analyses of PSMB5. (A) Venn diagram shows PSMB5 overlapping the model and two datasets. (B) Expression of PSMB5
between normal and tumor patients. (C, D) OS and PFS analyses of PSMB5. (E) Heatmap shows associations between PSMB5 and clinical parameters.
(F) Interaction of PSMB5 with other genes. (G) Immune cells correlation analysis of PSMB5. (H) Association analysis of PSMB5 with ICs. (I) Positive
relationship between PSMB5 expression and TMB.
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were performed. (Figure 9B). The CCK-8 proliferation assay and

analysis of colony formation consistently indicated that PSMB5

depletion markedly reduced cellular proliferation compared to the

negative control (NC) groups (Figures 9C, D). Additionally, both

wound-healing and transwell migration experiments demonstrated

significantly reduced migratory ability in PSMB5-knockdown cells

compared to controls (Figures 9E, F). Flow cytometric examination

of apoptosis revealed that silencing PSMB5 markedly increased

apoptotic rates compared to the NC groups (Figure 8G). After

overexpressing PSMB5 in J82 with an overexpression efficiency of

about 40%, the opposite biological behavior was displayed

(Supplementary Figure 4A). The abilities of proliferation and

migration are enhanced, and cell apoptosis is significantly reduced

(Supplementary Figures 4B-F).
TCMs prediction analysis

We identified five TCMs related to PSMB5 from the Coremine

dataset: Chuanxiong Rhizoma (Chuan Xiong in Chinese),

Ligusticum sinense Oliv. (Gao Ben in Chinese), Fuxiong Rhizome

(Fu Xiong in Chinese), Tripterygium wilfordii Hook. f. (Lei Gong

Teng in Chinese), and Scutellaria baicalensis Georgi (Huang Qin in

Chinese) (Figure 10A). Subsequently, molecular dockings were

performed, revealing that binding energies below -5.0 kcal·mol-¹

indicated increased molecular affinity (Figures 10B-F). These

interactions offer a potential pathway for further investigation

into the use of TCMs in the treatment of BLCA.
Discussion

Recent investigations have identified PANoptosis as strongly

associated with diverse oncogenesis in several malignancies,
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including gastric cancer, colorectal cancer, and prostate cancer

(54–57). In the study, we methodically performed consensus

clustering on filtered BLCA-PANs and created the BLCA-

Riskscore to formulate a predictive model. The cohort was

divided into two separate clusters matching the BLCA-Risk score

groups. Subsequent analyses assessed prognostic disparities,

characteristics of the immunological microenvironment, and

mutational landscapes among these clusters and risk categories.

Analysis of differential expression of immune checkpoints

suggested potential targets for IC inhibitors in high-risk groups.

At the same time, drug sensitivity profiling indicated increased

therapeutic responses to several drugs in high-risk patients. The

large intergroup differences observed strongly substantiated the

PANoptosis-based classification technique. This classification

presents a molecular framework for studying PANoptosis-related

processes in BLCA and suggests possible treatment targets.

Significantly, the findings demonstrated that PANoptosis

regulates BLCA heterogeneity, providing therapeutically relevant

insights for enhancing personalized therapy strategies (58).

GSEA analysis indicated that PANoptosis-related genes affect

BLCA progression, stem cell preservation, invasion, and therapeutic

resistance via modulating pathways including Wnt/b-catenin, TNF-
a/NF-kB, KRAS and so on. Research has demonstrated that the

deletion or mutation of the PTEN gene is a common occurrence in

BLCA (59). Inactivation of PTEN results in substantial buildup of

PIP3, thus activating the PI3K/AKT/mTOR pathway. This route

modulates BLCA proliferation by suppressing pro-apoptotic proteins

(e.g., Caspase-9), enhancing glycolysis in neoplastic cells, and

boosting angiogenesis (60). In advanced phases, TGF-b facilitates

tumor invasion and metastasis by triggering the epithelial-

mesenchymal transition (EMT), fostering an immunosuppressive

environment, and promoting angiogenesis. The activation of the

IL-6/JAK/STAT3 pathway enhances the expression of cell cycle-

promoting proteins, including Cyclin D1 and c-Myc, as well as
FIGURE 8

Single-cell analysis of PSMB5. (A) Clustering of cells in BLCA and normal groups. (B) Proportion of PSMB5 in 9 cell lines. (C) Expression of PSMB5 in BLCA
and normal groups. (D) Differential analyses between PSMB5 expression and lymph node metastasis in Endothelial cells and Fibroblasts. **** p ≤ 0.0001.
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anti-apoptotic proteins such as Bcl-2 and Bcl-xL (61). This facilitates

the proliferation of BLCA cells and contributes to their resistance to

apoptosis induced by therapies such as chemotherapy and

radiotherapy. Concurrently, pathway activation stimulates the

expression of vascular endothelial growth factor (VEGF) and

enhances stromal markers, including N-cadherin and vimentin,

thereby facilitating tumor growth and metastasis (62). Additionally,

it inhibits the activity of CD8 T cells and helper T cells, attracts

myeloid-derived suppressor cells (MDSCs) and Tregs, and enhances

PD-L1 expression on both tumor and immune cells. These acts

jointly promote the establishment of an immunosuppressive

microenvironment (63).

Our examination of immune infiltration revealed that the levels

of CD8+ T cells and CD56brilliant NK cells were markedly elevated in

the favorable prognosis B cluster and low-risk groups,

corroborating existing research on immune cells. CD8+ T cells

directly eliminate tumor cells by identifying tumor antigens, such as
Frontiers in Immunology 14
peptide fragments presented by MHC class I molecules (64). The

granzyme and perforin they release can then trigger tumor cell

apoptosis. Furthermore, these cells establish immunological

memory inside the tumor microenvironment, sustaining

prolonged anti-tumor responses and diminishing the likelihood of

recurrence. Prior research indicates that BLCA patients exhibiting

elevated CD8+ T cell infiltration demonstrate improved responses

to PD-1 medications (65). The CD56bright NK cell fraction

predominantly secretes cytokines (IFN-g and TNF-a), which

augment antigen presentation by stimulating macrophages and

dendritic cells, thereby facilitating T cell infiltration (66). They

exhibit elevated expression of CD16 and NKG2D receptors, which

are capable of identifying stress ligands on tumor cells (such as

MICA/B) and function synergistically with CD8+ T cells to

eradicate immuno-evasive tumor cells. Research has established

that CD56bright NK cells signify a favorable prognosis for patients

with BLCA. Conversely, gd T cells may facilitate tumor angiogenesis
FIGURE 9

In vitro experiments with PSMB5 knockdown. (A). Expression levels of PSMB5 in SV, T24, UMUC-3, J82 and 5637 cell lines. (B) Knockdown of PSMB5
in T24 and UMUC-3. (C) CCK-8 proliferation assay. (D) Colony formation experiment. (E) Wound-healing assay. (F) Trans-well migration assay.
(G) Flow cytometric analysis of apoptosis. All experimental techniques were conducted in three biological replicates with asterisk notation indicating
non-significant (n.s.); *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
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and stroma remodeling by secreting cytokines such as IL-17 and

IL-22. pDCs within the tumor microenvironment inhibit the anti-

tumor functions of CD8+ T cells and NK cells by releasing

immunosuppressive cytokines (IL-10 and TGF-b) and promoting

the proliferation of Tregs (67). Moreover, pDCs can directly

suppress effector T cell activities and facilitate tumor immune

evasion by expressing immune checkpoint molecules, such as

PD-L1 (68).

By using various machine learning methods to screen for

important feature genes (69), combined with previous proteomics

data, we found that PSMB5 is a significantly upregulated oncogenic

gene. MR further validated that PSMB5 is a crucial pro-cancer

factor for BLCA. Its functional relevance in BLCA remains notably

unexamined. Therefore, it is imperative to investigate the processes

in BLCA related to PSMB5. Single-cell profiling revealed

enrichment of PSMB5 in endothelial cells, epithelial cells, and

fibroblasts, while PSMB5 overexpression exhibited a substantial

correlation with lymph node metastases. Our validation

experiments verified the overexpression of PSMB5 in BLCA.

Subsequent in vitro functional tests demonstrated that PSMB5

knockdown significantly impeded tumor cell growth and

migration while markedly promoting apoptosis. Five TCMs

targeting PSMB5 demonstrated considerable therapeutic efficacy.

PSMB5 is one of the 17 critical subunits of the 20S core particle

b-subunit family (70). The beta type-5 subunit of the proteasome

co-assembles with other b-subunits to create two heptameric rings
Frontiers in Immunology 15
that comprise the proteolytic compartment responsible for

substrate cleavage (71, 72). This subunit is crucial for the

development of the 20S proteasome and is functionally involved

in ubiquitin-dependent proteolysis (73). This pathway is

accountable for the deterioration of approximately 80% of

proteins within cells in eukaryotes and demonstrates a substantial

association with apoptosis (74). PSMB5 is mechanistically

associated with oncogenesis in several malignancies, especially in

breast, prostate, and esophageal cancers (75). The correlation

between the expression levels of this subunit and tumor cell

resistance to chemotherapeutic agents is particularly significant

(76, 77). The findings suggest that further research on PSMB5

may reveal new pathways involved in bladder carcinogenesis, and

that targeted suppression of PSMB5 expression could potentially

enhance tumor cell sensitivity to chemotherapy. The exact

regulatory mechanisms linking the ubiquitin-proteasome system

to apoptosis, as well as the molecular pathways by which PSMB5

affects chemosensitivity, are not fully understood and require

further investigation.

Moreover, the most prominent characteristic of TCM that can

efficiently activate or suppress PANoptosis is the synergistic process

involving several components and targets (78). The distinctive

mechanism of “network pharmacology” allows traditional Chinese

medicine to demonstrate considerable benefits in intricate

pathological states, including tumors and inflammatory disorders.

The aqueous extract of Achyranthes aspera mitigates cisplatin-
FIGURE 10

TCMs prediction and molecular dockings. (A) Five TCMs targeting PSMB5. (B) Molecular docking of Chuanxiong, binding energy= -7.1 kcal·mol-1.
(C) Molecular docking of Gao Ben, binding energy= -9.4 kcal·mol-1. (D) Molecular docking of Fu Xiong, binding energy= -7.0 kcal·mol-1.
(E) Molecular docking of Lei Gong Teng, binding energy= -9.3 kcal·mol-1. (F) Molecular docking of Huang Qin, binding energy= -6.6 kcal·mol-1.
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induced nephrotoxicity by regulating PANoptosis, thereby maintaining

tubular integrity (79). Chlorogenic acid produced from Yinhua

Pinggan Granules demonstrates dual antioxidative and anti-

inflammatory properties, mitigating macrophage PANoptosis

triggered by drug-resistant E. coli (80). This multi-target intervention

is crucial, as it can prevent treatment resistance resulting from

single-pathway restriction and offers a novel approach to addressing

tumor heterogeneity and microenvironment adaptation. The

coadministration of cisplatin and berberine synergistically enhances

the lethality of ovarian cancer cells by simultaneously activating

apoptosis and necroptosis, thereby enhancing chemotherapeutic

efficacy (81). We identified five TCMs, namely Chuan Xiong, Gao

Ben, Fuxiong, Lei Gong Teng, and Huang Qin, which have therapeutic

potential for BLCA, improve patient prognosis and indicate

prospective avenues for further research.

We recognize multiple limitations in our present investigation.

We recognize some limitations in the present investigation. This

study relies exclusively on the TCGA database, where the disparity

between normal and tumor samples may compromise the efficacy of

detecting differentially expressed genes, and there is a lack of

external cohort validation. Future research should augment the

quantity of normal samples, enhance unbalanced learning

algorithms, and do external validation. Furthermore, it is essential

to validate the biological functions of the 98 differentially expressed

genes using tumor samples or animal models. The predictive model

employs only LASSO regression, which may result in lower AUC

values. Future investigations may integrate supplementary machine

learning algorithms (82). Only one SNP demonstrated a probable

causal link with BLCA, hence precluding sensitivity and

heterogeneity studies. The molecular mechanisms underlying

PANoptosis between PSMB5 and BLCA progression remain to be

fully elucidated through experimental validation. Moreover,

although the expected TCMs were validated by molecular

dockings, their fundamental associations on PSMB5 and

PANoptosis necessitate additional verification. These constraints

may affect the generalizability of conclusions and the depth of

mechanistic interpretation. Subsequent studies should address these

concerns through multicenter validation, algorithm enhancement,

and empirical exploration.
Conclusions

In conclusion, our comprehensive analysis of differentially

expressed genes linked to PANoptosis in BLCA revealed two

molecularly distinct subgroups with divergent prognostic

outcomes, mutational profiles, and immune milieu features. This

study clarifies BLCA progression through PANoptotic regulation,

uncovering hitherto unrecognized pathogenic pathways. The

established BLCA-Riskscore exhibits strong clinical value,

indicating significant correlations with overall survival prognosis,

response to immunotherapy, and vulnerability to molecularly

targeted therapies. This classification technique enables the

precise selection of patients for the most effective treatment

options—either immunotherapy or targeted therapy. The primary
Frontiers in Immunology 16
gene PSMB5 significantly facilitates the progression of BLCA, and

the control of PSMB5 by herbal drugs offers dual advantages for the

treatment of BLCA and chemosensitization.
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SUPPLEMENTARY FIGURE 1

Comparison between risk score and clinical baseline measurements. (A) The
risk score exhibits the greatest C-index. (B) The risk score has the highest
AUC. (C) The DCA indicates that the risk score yields the most net benefit. (D)
The standard curve indicates that the projected values are largely congruent

with the actual values.
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SUPPLEMENTARY FIGURE 2

29 significantly different drug susceptibility analyses between High-risk and
Low-risk groups.

SUPPLEMENTARY FIGURE 3

Comparison between risk scores with clinical baseline measurements. The

risk score exhibits the greatest utility when multiple machine learning
techniques are employed to screen essential feature genes. (A, B) The

feature importance boxplot indicates that the PSMB5 score is the most
significant. Cyan signifies that this characteristic has been validated by the

Boruta algorithm as a “confirmed” feature significantly correlated with the

predictive variable. (C) SVM-RFE indicates that PSMB5 is nearest to the scatter
points of SVM-RFE and possesses the highest average ranking. (D) The Lasso

method indicates that the coefficient of PSMB5 possesses the most excellent
absolute value. (E, F) The random forest analysis reveals that PSMB5 has the

most excellent Mean Decrease Gini score.

SUPPLEMENTARY FIGURE 4

Overexpression of PSMB5 in in vitro experiments. (A) Overexpression of
PSMB5 in J82 cells. (B) CCK-8 proliferation assay. (C) Colony formation

assay. (D) Transwell migration assay in 24h. (E) Wound healing assay. (F)
Flow cytometry analysis of cell apoptosis. All experimental techniques were

conducted in three biological replicates with asterisk notation indicating non-
significant (n.s.); *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.

SUPPLEMENTARY TABLE 1

Three SNPs of PSMB5. SNP, single nucleotide polymorphism; SE, standard

error; Effect Allele Frequency.

SUPPLEMENTARY TABLE 2

The result of MR between PSMB5 and BLCA. BLCA, bladder cancer;SE,

standard error; OR, Odds Ratio; 95%CI, 95% Confidence Interval.
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