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Targeting PSMB5-induced
PANoptosis in bladder cancer:
multi-omics insights and

TCM candidate discovery

Zhe Chang™?*, Jirong Wang*?', Jiajia Cao*', Xinpeng Fan'?,
Kunpeng Li*?, Chenyang Wang'?, Yalong Zhang™?, Li Wang'?,
Jianwei Yang™?, Siyu Chen*** and Li Yang™**

tDepartment of Urology, Second Hospital of Lanzhou University, Lanzhou, China, 2Gansu Province
Clinical Research Center for Urinary System Disease, Lanzhou, China, *Department of Hematology,
Second Hospital of Lanzhou University, Lanzhou, China

Background: Bladder cancer (BLCA) is among the most common malignancies
worldwide, with significant mortality rates. The function of PANoptosis in BLCA,
as a controlled process of programmed cell death, remains largely unelucidated.
The study aimed to elucidate the role of PANoptosis-related genes in BLCA and
investigate their molecular mechanisms, prognostic significance, and
therapeutic potential.

Methods: By analyzing differentially expressed genes in BLCA from The Cancer
Genome Atlas (TCGA) and PANoptosis-associated genes, we discovered 98
genes associated with PANoptosis. Functional enrichment and consensus
clustering identified molecular subtypes linked to these genes. A prognostic
model was developed via LASSO regression based on these genes. Subsequent
analyses assessed clinical significance, characteristics of the immunological
milieu, and treatment responsiveness. Systematic screening with machine
learning (ML) identified PSMB5 as a pivotal gene, with its functional importance
further clarified using single-cell sequencing and Mendelian randomization
analysis (MR). In vitro research confirmed the biological activities of PSMB5 in
BLCA. Molecular docking demonstrated PSMB5's binding affinity with traditional
Chinese medicines (TCMs).

Results: Clustering of 98 PANoptosis-associated genes revealed molecular
subgroups A and B. A prognostic approach identified high-risk and low-risk
cohorts, revealing considerable disparities in clinical characteristics and
immunological landscapes across the groups. ML and MR identified PSMB5 as
a risk factor in BLCA. Single-cell sequencing revealed that PSMB5 expression is
predominantly associated with three cell lines linked to lymph node metastases.
In vitro findings demonstrated that PSMB5 knockdown inhibited the proliferation
and migration of BLCA cells while promoting apoptosis, whereas overexpression
has the opposite effect. Molecular docking revealed a robust binding affinity
between PSMB5 and five TCMs.
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Conclusions: A prognostic model incorporating PANoptosis-related genes was
developed for stratifying BLCA risk and assessing the immune microenvironment.
PSMBS5 has been recognized as a crucial therapeutic target, exhibiting dual importance
in the molecular etiology of BLCA and traditional Chinese medicine intervention.

bladder cancer, PANoptosis, machine learning, prognostic model, PSMBS5,

single-cell, TCM

Introduction

Bladder cancer (BLCA), the tenth most common disease
worldwide, presents a significant challenge to healthcare systems
internationally due to its very high treatment costs per patient (1, 2).
Despite a larger incidence rate in men, women generally experience
poorer outcomes due to factors such as menstruation and cystitis
(3, 4). Tobacco smoking and occupational exposures are
unequivocally significant risk factors (5). The definitive method for
diagnosing and monitoring BLCA, encompassing non-muscle-
invasive BLCA (NMIBC) and muscle-invasive BLCA (MIBC), is
invasive cystoscopy paired with pathological biopsy (6, 7). NMIBC
typically necessitates transurethral resection of bladder tumor
(TURBT). At the same time, radical cystectomy (RC) is employed
for MIBC or NMIBC patients who do not react to bacillus Calmette-

Abbreviations: BLCA, Bladder cancer; NMIBC, Non-muscle-invasive bladder
cancer; MIBC, Muscle-invasive bladder cancer; TURBT, Transurethral resection
of bladder tumor; RC, Radical cystectomy; BCG, Bacillus Calmette-Guérin; PCD,
Programmed cell death; ZBP1, Z-DNA binding protein 1; AIM2, Absent in
melanoma 2; RIPK1, Receptor interacting protein kinase 1; NLRP12, NOD-like
receptor family, pyrin domain containing 12; TCM, Traditional Chinese
medicine; MR, Mendelian randomization; TCGA, The Cancer Genome Atlas;
BLCA-PANs, PANoptosis-associated BLCA genes; PPI, Protein-protein
interaction; CDF, Cumulative distribution function; SE, Standard error; HR,
Hazard ratio; 95% CI, 95% confidence interval; AUC, Area Under Curve; OS,
Overall survival; PFS, Progression free survival; DCA, Decision Curve Analysis;
TMB, Tumor mutation burden; RNAss, RNA stemness score; GSEA, Gene Set
Enrichment Analysis; ssGSEA, Single Sample Gene Set Enrichment Analysis; IC,
Immune checkpoint; TME, Tumor microenvironment; TIDE, Tumor Immune
Dysfunction and Exclusion; MSI, Microsatellite Instability; SVM-RFE, Support
Vector Machine Recursive Feature Elimination; OOB, Out-of-Bag; SNP, Single
nucleotide polymorphism; FBS, Fetal bovine serum; siRNA, Small interfering
RNA; WB, Western blotting; CCK8, Cell counting kit-8; SD, Standard deviation;
GO, Gene Ontology; BP, Biological process; CC, Cellular component; MF,
Molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes;
BLCA-Riskscore, Risk scores in BLCA; ROC, Receiver Operating
Characteristic; pDC, Plasmacytoid dendritic cell; NK, Natural killer; Tregs,
Regulatory T cells; TIL, Tumor-infiltrating lymphocyte; Tth, T follicular helper
cells; NC, Negative control; EMT, Epithelial-mesenchymal transition; VEGF,
Vascular endothelial growth factor; MDSC, Myeloid-derived suppressor cell.
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Guerin (BCG) therapy, as well as for tumors with the highest
progression risk (8, 9). Nevertheless, this treatment is inaccessible
to several patients, whereas RC significantly diminishes patient
quality of life (10, 11). BLCA is a significant therapeutic challenge,
requiring advanced research and innovative treatment strategies to
improve prognosis and life quality (12).

Programmed cell death (PCD), considered a meticulously
regulated type of cell death under normal settings, can impede
the growth of neoplastic cells and maintain tissue homeostasis (13,
14). The three most thoroughly researched forms of PCD—
pyroptosis, apoptosis, and necroptosis—interact during the PCD
process rather than functioning independently of one another (15,
16). PANoptosis, a novel concept of programmed cell death
presented by American researcher Malireddi et al., is induced by
a complex PANoptosis that activates downstream molecules and all
three programmed cell death pathways (17, 18). Moreover, four
unique PANoptosome complexes have been structurally and
functionally characterized at the molecular level, namely Z-DNA
binding protein 1 (ZBP1) (19), absent in melanoma 2 (AIM2) (20),
receptor-interacting protein kinase 1 (RIPK1) (21), and NOD-like
receptor family, pyrin domain containing 12 (NLRP12) (22). These
multiprotein platforms amalgamate elements from pyroptosis,
apoptosis, and necroptosis pathways to orchestrate inflammatory
cell death via PANoptosis (23). The characterization encompasses
the identification of essential regulatory proteins, interaction
networks, and activation mechanisms in response to pathogenic
or cellular stress signals (24).

The relationship between PANoptosis and malignancies may yield
novel insights into tumor initiation and development, as well as identify
unique therapeutic targets and treatment strategies. Researchers
synthesized ultrasmall Bi2Sn207 as an effective inducer of
PANoptosis, consistently activating PANoptosis in hepatocellular
carcinoma (25). The chlorin e6 photosensitizer generates reactive
oxygen species, whereas Jolkinolide B specifically targets and
activates the PANoptosis switch, thereby synergistically causing
apoptosis in gastric cancer cells (26). Moreover, research indicates
that baicalin mitigates disc degeneration, and licochalcone B reduces
pulmonary fibrosis by regulating PANoptosis, underscoring
PANoptosis as a pivotal mechanism in TCM (27, 28). Exploring the
therapeutic potential of traditional Chinese medicine targeting
PANoptosis-related genes is essential for cancer treatment.
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Nonetheless, the mechanistic foundation and pathophysiological
significance of PANoptosis in BLCA remain to be clarified, and no
relevant TCM studies are focusing on genes associated with
PANoptosis, particularly in BLCA. This research utilized datasets
of PANoptosis and BLCA to categorize BLCA patients into two
subgroups, examining immunological risk and checkpoints between
these subtypes. Subsequently, we developed a predictive model for
BLCA. We performed Mendelian Randomization (MR), single-cell
sequencing, and many in vitro assays to further evaluate the biological
function and molecular mechanism of the core gene PSMB5. The
therapeutic potential of PSMB5 was investigated by reverse drug
discovery and molecular docking.

Methods

Data collection about BLCA and
PANoptosis

The data for BLCA patients was obtained from the TCGA and
encompasses transcriptomic and clinical information. A total of 431
files (comprising 406 cases) were acquired, consisting of 412 tumor
files and 19 normal files. To facilitate analysis, the TPM format was
employed for the data. Owing to the incomplete clinical data,
certain information was omitted from the clinical study. The 277
PANoptosis genes were discerned from the existing literature (29).

Filtration of genes associated PANoptosis
and BLCA

We computed the t-statistics, LogFC, and P value using the
“eBays” function. The comparative limma analysis (version 4.3.3)
identified 1.5-fold differently expressed transcripts (adj.P<0.05) in
BLCA, indicating PANoptosis-related molecular signatures in the
TCGA cohort (30). We intersected the two gene sets to produce a
collection of PANoptosis-associated BLCA genes (BLCA-PANS) for
subsequent investigation.

Function enrichment analysis

Enrichment analysis for the BLCA-PANSs was performed using
the “org.Hs.eg.db” and “clusterProfiler” R packages (version 4.3.3)
(31). All P values were less than 0.05. Based on protein-protein
interaction (PPI) analysis, we identified communications and many
key genes within the BLCA-PANs (STRING: functional protein
association networks (string-db.org)).

Unsupervised clustering and survival
analysis

Unsupervised consensus clustering utilizing the K-means
algorithm was executed with ConsensusClusterPlus to identify
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novel BLCA molecular subtypes based on characteristic gene
profiles (32). The empirical cumulative distribution function
(CDF) was utilized to ascertain the appropriate number of
clusters (33). We subsequently evaluated prognostic variations
using the R package “survival” and BLCA-PANSs signatures in
connection to clinical outcomes and immune infiltration.

Foundation of prognosis model

We conducted univariate Cox regression analysis to identify
genes with P-values of less than 0.05. Following data preprocessing,
the raw data were randomly divided into training and testing sets
(I:1 ratio) using the “caret” package. A prognostic model was
developed using LASSO stepwise regression (34). Utilizing 10-fold
cross-validation, the A value associated with the smallest mean
squared error and its standard error (SE) was identified as the stable
solution, and regularization methods were employed to reduce the
hazards of overfitting (35). This procedure discovered features with
non-zero coefficients and produced coefficient path visualizations
and cross-validation error curves. Hazard ratios (HR) and their 95%
confidence intervals (CI) were derived using the model gene
coefficients, with findings displayed in a forest plot format.

Compute the AUC (Area Under Curve) and the P-value for
survival analysis. The threshold for the training set is established at
P < 0.01, whereas the threshold for the test set is set at P < 0.05. The
training set AUC exceeds 0.65, while the test set AUC surpasses 0.63
(36). Feature selection and model training are conducted solely on the
training set, with the test set used only for final validation and
verification. The formula for calculating the risk score is as follows:
RiskScore = """, (B; x Expression;). Risk stratification thresholds are
established by the predetermined median risk score, categorizing
patients into high-risk and low-risk groups for a comparative
survival study, including overall survival (OS) and progression free
survival (PFS). Graph the C-index, AUC curve, and decision curve
analysis (DCA) to assess the correlation between the model risk score
and clinical baseline variations (37). Develop a nomogram utilizing
clinical parameters and generate the calibration curve. The “maftools”
R package was used to evaluate tumor mutational burden (TMB) (38).

Somatic mutation and immune landscape
analysis

We conducted several analyses based on risk stratification,
encompassing RNA stemness score (RNAss), immunological
subtypes, Gene Set Enrichment Analysis (GSEA), and Single
Sample Gene Set Enrichment Analysis (ssGSEA). RNAss is a score
system derived from transcriptome data that evaluates stem cell
characteristics, primarily utilized to analyze the stemness aspects of
cells in tumor or other tissue samples. 1000 permutation tests
determined levels of significance (P < 0.05, FDR<0.25) to guarantee
robust statistical inference (39, 40). Comparisons between high-risk
and low-risk groups revealed immunophenotypic difference across
four dimensions: effector cells, signaling pathways, functional
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annotations, and the repertoire of Immune checkpoint (IC)
molecules. Immune cell infiltration analysis primarily relies on the
CIBERSORTx algorithm. Furthermore, we computed Tumor
Microenvironment (TME) scores derived from the stromal score,
immune score, ESTIMATE score, and tumor purity to evaluate
variations in the tumor microenvironment (41). Additionally, the
IMvigor 210 dataset from the immunotherapy cohort was utilized for
relevant assessment, encompassing Tumor Immune Dysfunction and
Exclusion (TIDE) and Microsatellite Instability (MSI), which can
elucidate immune evasion and immunotherapy for high-risk and
low-risk individuals (42). Ultimately, we conducted a drug
susceptibility prediction study using the “oncoPredict” R package,
which is grounded in the prognostic model.

Key feature gene screening and single
gene correlation analysis

We utilized four machine learning techniques to identify
significant feature genes for the model. Boruta does a top-down
feature relevance analysis by systematically comparing the
significance of characteristics with that of shadow attributes
generated through the random permutation of the original qualities
(43). It assesses significance by its permuted equivalents and
systematically removes extraneous aspects to stabilize the evaluation.
Support Vector Machine Recursive Feature Elimination (SVM-RFE)
was applied to a dataset subjected to 10-fold cross-validation, with the
number of folds set at 10. This produced indices for the training and
testing sets. Following the application of the SVM-RFE algorithm to
each training fold, features were prioritized according to their average
rank (44). The Random Forest model is trained utilizing the
“randomForest” package, with a specification of 2000 trees. A graph
illustrates the Out-of-Bag (OOB) error rate of the Random Forest in
relation to the number of trees. The Random Forest model is
reconfigured using the ideal tree count, and feature significance is
assessed via the “importance” function (45). Additionally, we cross-
referenced the model genes with genes exhibiting differential
expression identified using multi-omic analysis of BLCA from our
previous publication, which analyzed urinary specimens from five
BLCA cases compared to five healthy donors (46) and supplemented
by additional proteomics from Zhang et al. (47). Ultimately we
identified PSMBS5 as the primary gene of interest.

We performed extensive analyses on PSMB5, encompassing gene
expression profiling, assessment of survival probability, evaluation of
progression-free survival, and clinical correlation studies. Additionally,
we performed an extensive analysis of the immune landscape and
tumor mutational burden to clarify immune-related characteristics and
investigate possible implications for immunotherapy.

MR and single-cell data analysis for PSMBS5
To investigate the causal link between PSMB5 and BLCA, we

used MR using Wald ratio methods (48). Exposure data comprised
three single nucleotide polymorphisms (SNPs) from the eqtl-a-
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ENSG00000100804, filtered using a clumping window size of 10,000
Kb, R2<0.001, and F>10 (Supplementary Table 1). The outcome
data was obtained from FinnGen (https://www.finngen.fi/en).

We employed single-cell RNA sequencing data from the GEO
dataset GSE222315, which includes 9 BLCA cases and 4 surrounding
normal tissue samples. Raw scRNA-seq data were converted into
Seurat objects and underwent quality control according to specified
thresholds to preserve high-quality cells: (1) Detection of 200-5,000
genes per cell; (2) Mitochondrial gene content not exceeding 15%; (3)
Red blood cell gene expression rate surpassing 3%. Following
normalization, batch effects were corrected using the Harmony
integration method. Data was subjected to log-normalization and
subsequently scaled using linear regression (49). Dimensionality
reduction was performed using principal component analysis,
followed by graph-based clustering via the “Find-clusters”
algorithm (50). Visualization was conducted using UMAP, and the
expression informed the annotation of various cell populations of
classical marker genes (51). We examined the disparities in PSMB5
expression across different cell types and between the negative and
positive groups. The correlation between PSMB5 expression and
lymph node metastases was investigated in particular cell lines.

Cell culture and transfection

All cell lines were acquired from the Gansu Province Clinical
Research Center for Urinary System Diseases. SV-HUC-1 urethral
epithelial cells were cultivated in Ham’s F12K medium, while BLCA
cell (T24, UMUC-3, J82, 5637) were sustained in RPMI-1640
(Shanghai Yuanpei Biotechnology). Both media included 10%
fetal bovine serum (FBS) from PAN Biotech and 1% penicillin-
streptomycin at a concentration of 100 U/mL-100 pg/mL from
Solarbio. Standard incubation conditions of 37 °C, 5% CO,, and
humidity were maintained consistently.

The two small interfering RNAs (siRNAs) directed against
PSMB5 were procured from Tsingke Biological, and the
transfection reagent was sourced from Shanghai GenePharma
Biotechnology (sil: 5-CGAAAUGCUUCAUGGAACA-3’; si2: 5-
GGCAAUGUCGAAUCUAUGA-3’; si-NC: UUCUCCGAACG
UGUCACGUTT). The efficacy of the knockdown was validated
using western blot (WB) analysis at 48 hours post-transfection.
Moreover, concurrent phenotypic experiments were conducted
using the same procedure.

Construction of overexpression cell line

The whole coding sequence of human PSMB5 was inserted into
the pLV3-CMV-3xFLAG-mCherry-Puro vector (Miaoling Bio,
China). HEK293T cells were co-transfected with psPAX2 and
pMD2.G vectors, and the viral supernatant was harvested to infect
J82 cells. Following puromycin selection, stable cell lines exhibiting
PSMB5 overexpression were established. Cell transfection was
performed using Polybrene (Solaibao, China) according to the
manufacturer’s instructions.
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Western blotting

Total protein was extracted utilizing RIPA buffer (P0013B,
Beyotime, China) augmented with protease inhibitors. Protein
concentrations were measured via the Bicinchoninic Acid assay.
After separation by SDS-PAGE electrophoresis, proteins were
transferred to PVDF membranes. Membranes for immunoblotting
were blocked with 6% non-fat dry milk and then treated with primary
antibodies at 4 °C overnight. Protein bands were identified utilizing
the Odyssey imaging system in conjunction with the appropriate
secondary antibody (926-32211, Li-Cor, USA) for visualization. This
work utilized the following antibodies: B-actin (cat#66009-1-Ig,
Proteintech) and PSMB5 (cat#19178-1-AP, Proteintech).

Cell counting kit-8

The Cell Counting Kit-8 (CCK8) was utilized to evaluate the
proliferation. In accordance with the guidelines, cells (2 x 10°/well)
were inoculated in 100 pL of media using 96-well plates, with three
replicate plates established for various time points. CCK-8 reagent
(AbMole BioScience) was applied at 10 pL per well at intervals of 0
to 96 hours. Following a 2-hour incubation, the optical density at
450 nm was assessed via a BioTek plate reader.

Colony formation assay

For clonogenic tests, 6-well plates were inoculated with 1 x 10*
cells per well in 2 mL of medium. Following an 8-10 day cultivation
at 37°C with 5% CO,, colonies were fixed with 4% PFA (Biosharp
#BL539A), stained with 0.1% crystal violet (Solarbio #G1063), and
subsequently photographed and quantified.

Wound-healing assay

Transfected cells (6x10°) attained confluence 48 hours after
transfection. Monolayers were scraped with sterile 200 UL tips,
rinsed with PBS, and subsequently treated with serum-free media.
Migration was evaluated by photographing wounds at 0 and 24
hours using inverted microscopy, with closure rates measured
using Image].

Transwell migration assay

BLCA cells (1x10° in 200 pL of serum-free media) were
inoculated into LABSELECT chambers (8 wm holes; #14342). The
lower chambers had 600 UL of RPMI-1640 enriched with 20% FBS
as a chemoattractant. After 24-48 hours of incubation at 37 °C with
5% CO,, the transmigrated cells were subjected to methanol fixation
(4%), crystal violet staining (0.1%; Solarbio #G1063), and
subsequent microscopic counting.
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Cell apoptosis

Apoptosis was evaluated utilizing the Annexin V-FITC/PI kit
(Multi Sciences #AP101) in accordance with the manufacturer’s
specifications. Flow cytometric analysis (Beckman CytoFLEX S) was
used to assess overall apoptosis by aggregating early and late
apoptotic populations.

Prediction of TCMs and molecular docking

To investigate the therapeutic potential of PSMB5 as a target, we
employed the Coremine medical ontology information retrieval tool
(www.coremine.com/medical/) to delineate PSMB5. Additionally,
to obtain the target protein result files, the structures of TCMs were
retrieved from PubChem (https://pubchem.ncbinlm.nih.gov/),
while the structure of PSMB5 (PDB ID: 515w) was acquired from
the PDB database (https://www.rcsb.org/). The requisite alterations
to the receptor proteins, encompassing hydrogenation and charge
equilibrium, were executed utilizing AutoDockTools 1.5.7 software.
AutoDock Vina 1.1.2 was subsequently employed to mimic
molecular docking between the pharmaceuticals and PSMB5 (52).
The molecular docking results were visualized using PyMOL
3.1.5.1, focusing on high-affinity complexes.

Statistical analysis

Statistical analyses were conducted using R (v4.3.3) and
GraphPad Prism (v9.0). Continuous variables were compared
between groups using either Student’s t-test (parametric) or
Wilcoxon rank-sum test (non-parametric), based on normality
assessment. Categorical variables were evaluated with the y*
test or Fisher’s exact test, chosen based on anticipated
cell frequencies. Survival outcomes were evaluated with
Kaplan-Meier estimation and log-rank testing for group
comparisons, augmented by multivariate Cox proportional
hazards regression. All experimental techniques were conducted
in three biological replicates, with data presented as mean *
standard deviation (SD). Statistical significance was determined at
p < 0.05, with asterisk notation indicating non-significant (n.s.);
*p<0.05; *p<0.01; **p<0.001; ***p<0.0001. P values below
0.05 were considered statistically significant (53).

Result
Identification and functional
characterization of differentially expressed
genes linked to PANoptosis in BLCA

We found 4,968 differentially expressed genes in BLCA. These

were compared with 277 PANoptosis-related genes sourced from
the literature, resulting in the identification of 98 BLCA-PANs
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(Figures 1A, B). Gene Ontology (GO) analysis revealed the
abundance and enrichment significance of BLCA-PANs across
various levels (Figure 1C). The biological process (BP) exhibited
significant enrichment in proteasome-mediated ubiquitin-
dependent protein degradation (Figure 1D). The cellular
component (CC) revealed that the principal enrichment functions
of BLCA-PANs were endopeptidase, peptidase, and proteasome
complexes (Figure 1E). The molecular function (MF) exhibited
significant enrichment in DNA-binding transcription factor
interactions and ubiquitin-related ligase interactions (Figure 1F).
The Kyoto Encyclopedia of Genes and Genomes (KEGG) indicated
that BLCA-PANs were predominantly abundant in the proteasome
and apoptotic pathways (Figure 1G). Furthermore, we conducted a
PPI analysis to demonstrate the interactions of BLCA-PANs and
identified several key genes primarily associated with the
proteasome subunit family (Figures 1H, I).

10.3389/fimmu.2025.1656682

Prognosis, immunological profiles, and
mutational landscapes in BLCA-PANs
distinct subtypes

Consensus clustering analysis was performed on BLCA-PANs
expression patterns to categorize patients into two distinct subtypes:
Cluster A (n = 246) and Cluster B (n = 160) (Figures 2A, B). A
heatmap was later generated to depict the differential expression of
BLCA-PANs concerning molecular subtypes (Cluster A/B) and
clinicopathological characteristics, including gender, age, and
staging factors (T, N, M) (Figure 2C). OS analysis indicated that
Cluster A demonstrated a markedly inferior overall survival
probability relative to Cluster B (p = 0.033; Figure 2D). The study
revealed that most ICs were considerably overexpressed in Cluster
A, while only a select few showed elevated expression in Cluster B
(p < 0.05; Figure 2E). Immune infiltration with ssGSEA indicated
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FIGURE 2

PRGeluster

Clinical and immunological difference between the two molecular subtypes. (A) CDF curves assess average consistency. (B) Patients were divided
into two molecular subtypes. (C) Heatmap shows clinical characterizations. (D) Survival analysis between the two subtypes. (E) Differential expression
of ICs. (F) Immune infiltration analysis with ssGSEA. (G, H) Waterfall charts of TMB shows mutated genes for the two subtypes. (I-L) TME score
includes Stromal Score, immune Score, ESTIMATE Score, and Tumor Purity. ** p < 0.01; *** p < 0.001.

that Cluster A exhibited a statistically significant prevalence of Yo
T cells, while Cluster B had a predominant infiltration of activated
CD8 T cells and CD56bright natural killer cells (p < 0.05; Figure 2F).
Waterfall charts of TMB indicated that Cluster A displayed elevated
gene mutation rates compared to Cluster B (Figures 2G, H).
Furthermore, the TMB score values indicated a significant
difference between the two clusters (p < 0.05; Figures 2I-L).

Creation and internal validation of a
prognostic risk score model based on
BLCA-PANs

Employing Cox regression studies, we developed a prediction
model comprising four BLCA-PANs by LASSO regression

Frontiers in Immunology

(Figures 3A-D). The model exhibited enhanced predictive
accuracy relative to the clinical baseline, as evidenced by C-index,
AUC curve, and DCA analyses (Supplementary Figures 1A-C). The
Receiver Operating Characteristic (ROC) curves demonstrated the
model’s prognostic capability (Figure 3E). Based on the computed
risk scores in BLCA (BLCA-Riskscore), patients were classified into
High- and Low-risk categories (Figure 3F). Marked enhancements
in OS (p < 0.001) and PFS (p = 0.007) were noted in the Low-risk
group (Figures 3G, H). As a result, we constructed a nomogram
(Figure 3I) and a standard curve (Supplementary Figure 1D).

To validate the model’s credibility and consistency, we
partitioned the TCGA database into training and testing sets
(Figures 4A, B). The operating system results for the two sets
were consistent with the prior findings (p-value for test set =
0.038, p-value for train set = 0.001; (Figures 4D, E). Utilizing the
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FIGURE 3

Prognostic model based on BLCA-PANSs. (A) Forest map shows the result of univariate Cox regression. (B, C) The process of LASSO regression.
(D) Forest plot presents four genes selected for risk scoring model. (E) ROC curves at 1, 3, 5 years. (F) Distribution of all patients. (G, H) OS and
PFS analyses between high-risk and low-risk groups. (i) Nomogram with clinical characterizations.

BLCA-Riskscore to evaluate Clusters A and B, Cluster A had
markedly higher risk scores compared to Cluster B, correlating
with inferior overall survival rates in this cohort (Figure 4C). The
Sankey diagram was used to illustrate the relationship between the
groups and clinical features (Figure 4F). Furthermore, we
conducted GSEA analyses for high-risk and low-risk groups based
on GO and KEGG. The high-risk group was primarily
characterized by the chemotaxis and migration of granulocytes
and neutrophils, as well as the interaction with extracellular
matrix receptors and the activation of the JAK-STAT signaling
pathway. The low-risk group was linked to the epoxygenase P450
pathway, arachidonic acid epoxygenase or monooxygenase activity,
and so on(Figures 4G-J).
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Somatic mutation profiles and immune
micro-environment features among
BLCA-Riskscore categories

The cascade charts illustrated the disparity in mutational
landscapes between high-risk and low-risk groups (Figures 5A, B).
The association investigation indicated a small inverse correlation
between RNAss and risk score, implying diminished stemness
characteristics (Figure 5C). We identified statistically significant
dysregulations in pathways, notably impacting the KRAS cascade,
NF-kB-mediated TNF-o. signaling, B-catenin-dependent WNT
pathway, TGF-B transduction, IL-6-JAK-STAT3 axis, and the
PI3K-AKT-mTOR network (Figures 5D, E).
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Internal validation and functional enrichment with the model. (A, B) Test and train sets. (C) A significant difference between Cluster A and B (D, E) OS analysis
of the two sets. (F) Sankey diagram shows associations between the model and clinical data. (G-J) GSEA analyses with high-risk and low-risk groups.

According to ssGSEA, plasmacytoid dendritic cells (pDC)
exhibited substantial immunological infiltration in the high-risk
cohort. Moreover, CD8" T cells and CD56" @™ natural killer (NK)
cells were significantly infiltrated in the low-risk cohort (Figure 5F).
The high-risk cohort had significant expression of M0, M1, and M2
macrophages, corresponding with specific immunological activity
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patterns. Conversely, the low-risk group exhibited a predominance
of immunosuppressive regulatory T cells (Tregs), antibody-
secreting plasma cells, monocytic lineage cells, and activated
dendritic cell populations (Figure 5G). The examination of
immune function indicated that immune responses were
predominantly heightened in the high-risk group, encompassing
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FIGURE 5

Immune landscape of High-risk and Low-risk groups. (A, B) Waterfall charts show mutated genes for the two groups. (C) The correlation between
risk score and RNAss. (D, E) Differential immune-related signaling pathways between High-risk and Low-risk groups. (F) Immune infiltration based
on the ssGSEA algorithm between high- and low-risk groups. (G, H) Immune cell expression and immune function analyses. (I) Immune subtypes
analysis based on the TCGA. (J) Differential analyses of ICs. * p < 0.05; ** p < 0.01; *** p < 0.001.

APC co-inhibition, APC co-stimulation, MHC-I, neutrophils, para-
inflammation, T cell co-inhibition, T cell co-stimulation, Th1 cells,
Th2 cells, tumor-infiltrating lymphocytes (TILs), Tregs, and Type-I
interferon response. Only the Type-II IFN response is considerably
elevated in the low-risk group (Figure 5H). A cohort of 371 BLCA
patients was categorized into four clusters (C1, C2, C3, C4) and
classified as high-risk or low-risk based on established BLCA-
Riskscore thresholds. A statistically significant difference was
noted between risk strata using the chi-square test (Figure 5I).
The comparative study of IC expression profiles differentiated the
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high-risk group from the low-risk group. Most ICs exhibited
considerable differential expression among cohorts (Figure 5J).
Analysis of immune cell correlations indicated that seven immune
cell types were significantly associated with the BLCA-Riskscore,
comprising three positively correlated (MO, M2, Neutrophils) and
four negatively correlated [Dendritic cells (activated), Monocytes, T
follicular helper cells (Tth), Tregs] cell types (Figures 6A-]). The TME
score exhibited notable disparities (Figure 6K). Furthermore,
assessments of TIDE and MSI indicated that the TIDE score, MSI
status, and Dysfunction score, excluding the Exclusion score, exhibited
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considerable variance specific to the cohort (Figure 6L). Ultimately,
drug susceptibility analysis revealed that 29 medications exhibited a
significant correlation (Supplementary Figure 2).

Machine learning identifies the key feature
gene

To advance research on BLCA-PANs, we employed four
machine learning techniques and integrated the results of Zhang
et al. with our urine proteomics data to identify critical feature genes
(Figure 7A). The Boruta algorithm demonstrates that PSMB5
attained the highest score (Supplementary Figures 3A, B). SVM-
RFE indicates that PSMB5 is the nearest to the scatter
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point, exhibiting the highest average ranking (Supplementary
Figure 3C). PSMB5 demonstrates the most excellent absolute
coefficient value in the Lasso regression model (Supplementary
Figure 3D). Random Forest demonstrates the most excellent Mean
Decrease Gini score (Supplementary Figures 3E, F). The essential
gene PSMB5 was ultimately acquired.

Clinical and immunological correlation,
MR, and single-cell analysis of PSMB5

Differential expression analysis revealed that PSMB5 was

markedly overexpressed in BLCA patients (Figure 7B). The
studies of OS (p = 0.025) and PFS (p < 0.001) demonstrated that
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PSMB5 was significantly associated with clinical prognosis
(Figures 7C, D). A heatmap illustrating the relationship between
PSMBS5 and clinical characteristics was generated (Figure 7E).
Subsequently, we examined the connection between PSMB5 and
other BLCA genes (Figure 7F). Analysis of immune cells yielded
results consistent with the high-risk and low-risk groups,
correlating with M0, M2, Monocytes, and Tregs (Figure 7G).
Furthermore, we identified several ICs that were statistically
significant with PSMB5 (Figure 7H). The TMB exhibited a
positive correlation with PSMB5 expression (p = 0.036; Figure 71).

Furthermore, we identified three SNPs in PSMB5 (rs12590429,
rs117058979, rs11543947) to conduct MR. Results identified
rs117058979 as a causative variant for BLCA [OR = 2.267 (1.008,
5.097), p = 0.048] (Supplementary Table 2).

Upon normalizing and annotating the single-cell database, the
BLCA group and the normal group predominantly clustered into
nine categories of cell lines (Figure 8A). PSMB5 exhibited markedly
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elevated expression in the BLCA cohort, predominantly among
Endothelial cells, Epithelial cells, and Fibroblasts (Figures 8B, C).
Consequently, we meticulously analyzed the relationship between
PSMBS5 expression and lymph node metastasis in all three cell lines,
discovering substantial statistical differences for endothelial cells
(p < 0.0001) and fibroblasts (p < 0.0001) (Figure 8D).

The impact of knockdown and
overexpression of PSMB5 on the biological
behavior of BLCA cells

WB analysis revealed distinct expression profiles of PSMB5 across
various BLCA cell lines, with significantly increased expression levels
observed in T24 and UMUC-3 cells (Figure 9A). In these two cell lines,
siRNA transfection resulted in a knockdown efficiency of about 60%
for PSMB5. Subsequently, comprehensive in vitro functional studies

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1656682
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chang et al.

10.3389/fimmu.2025.1656682

celltype

FIA\ ts © Beels
., CD4+Teels
‘Qﬁ“" © CD8+ Tcells

@ e
® Endothelial cells

s P|a§ﬁ.ens
© Epithelial cells
’ce”& )/ Encofiligcets © Fibroblasts

® Mast cells

las s

N © Myeloid cells
Masteells . Epithelisfgells © Plasma cells

SaWsd

FIGURE 8

PSMBS

B cells
CD4+ T cells
CDB+ T cells

Myeloid cells
Plasma cells

Identity

Endothelial cells Fibroblasts

pouss
T g
H

Pouss

rrrrr

Single-cell analysis of PSMB5. (A) Clustering of cells in BLCA and normal groups. (B) Proportion of PSMB5 in 9 cell lines. (C) Expression of PSMB5 in BLCA
and normal groups. (D) Differential analyses between PSMB5 expression and lymph node metastasis in Endothelial cells and Fibroblasts. **** p < 0.0001.

were performed. (Figure 9B). The CCK-8 proliferation assay and
analysis of colony formation consistently indicated that PSMB5
depletion markedly reduced cellular proliferation compared to the
negative control (NC) groups (Figures 9C, D). Additionally, both
wound-healing and transwell migration experiments demonstrated
significantly reduced migratory ability in PSMB5-knockdown cells
compared to controls (Figures 9E, F). Flow cytometric examination
of apoptosis revealed that silencing PSMB5 markedly increased
apoptotic rates compared to the NC groups (Figure 8G). After
overexpressing PSMB5 in J82 with an overexpression efficiency of
about 40%, the opposite biological behavior was displayed
(Supplementary Figure 4A). The abilities of proliferation and
migration are enhanced, and cell apoptosis is significantly reduced
(Supplementary Figures 4B-F).

TCMs prediction analysis

We identified five TCMs related to PSMB5 from the Coremine
dataset: Chuanxiong Rhizoma (Chuan Xiong in Chinese),
Ligusticum sinense Oliv. (Gao Ben in Chinese), Fuxiong Rhizome
(Fu Xiong in Chinese), Tripterygium wilfordii Hook. f. (Lei Gong
Teng in Chinese), and Scutellaria baicalensis Georgi (Huang Qin in
Chinese) (Figure 10A). Subsequently, molecular dockings were
performed, revealing that binding energies below -5.0 kcal-mol™
indicated increased molecular affinity (Figures 10B-F). These
interactions offer a potential pathway for further investigation
into the use of TCMs in the treatment of BLCA.

Discussion

Recent investigations have identified PANoptosis as strongly
associated with diverse oncogenesis in several malignancies,
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including gastric cancer, colorectal cancer, and prostate cancer
(54-57). In the study, we methodically performed consensus
clustering on filtered BLCA-PANs and created the BLCA-
Riskscore to formulate a predictive model. The cohort was
divided into two separate clusters matching the BLCA-Risk score
groups. Subsequent analyses assessed prognostic disparities,
characteristics of the immunological microenvironment, and
mutational landscapes among these clusters and risk categories.
Analysis of differential expression of immune checkpoints
suggested potential targets for IC inhibitors in high-risk groups.
At the same time, drug sensitivity profiling indicated increased
therapeutic responses to several drugs in high-risk patients. The
large intergroup differences observed strongly substantiated the
PANoptosis-based classification technique. This classification
presents a molecular framework for studying PANoptosis-related
processes in BLCA and suggests possible treatment targets.
Significantly, the findings demonstrated that PANoptosis
regulates BLCA heterogeneity, providing therapeutically relevant
insights for enhancing personalized therapy strategies (58).

GSEA analysis indicated that PANoptosis-related genes affect
BLCA progression, stem cell preservation, invasion, and therapeutic
resistance via modulating pathways including Wnt/B-catenin, TNF-
o/NF-xB, KRAS and so on. Research has demonstrated that the
deletion or mutation of the PTEN gene is a common occurrence in
BLCA (59). Inactivation of PTEN results in substantial buildup of
PIP3, thus activating the PI3K/AKT/mTOR pathway. This route
modulates BLCA proliferation by suppressing pro-apoptotic proteins
(e.g., Caspase-9), enhancing glycolysis in neoplastic cells, and
boosting angiogenesis (60). In advanced phases, TGF-B facilitates
tumor invasion and metastasis by triggering the epithelial-
mesenchymal transition (EMT), fostering an immunosuppressive
environment, and promoting angiogenesis. The activation of the
IL-6/JAK/STAT3 pathway enhances the expression of cell cycle-
promoting proteins, including Cyclin DI and c-Myc, as well as
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In vitro experiments with PSMB5 knockdown. (A). Expression levels of PSMB5 in SV, T24, UMUC-3, J82 and 5637 cell lines. (B) Knockdown of PSMB5
in T24 and UMUC-3. (C) CCK-8 proliferation assay. (D) Colony formation experiment. (E) Wound-healing assay. (F) Trans-well migration assay.
(G) Flow cytometric analysis of apoptosis. All experimental techniques were conducted in three biological replicates with asterisk notation indicating

non-significant (n.s.); *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

anti-apoptotic proteins such as Bcl-2 and Bcl-xL (61). This facilitates
the proliferation of BLCA cells and contributes to their resistance to
apoptosis induced by therapies such as chemotherapy and
radiotherapy. Concurrently, pathway activation stimulates the
expression of vascular endothelial growth factor (VEGF) and
enhances stromal markers, including N-cadherin and vimentin,
thereby facilitating tumor growth and metastasis (62). Additionally,
it inhibits the activity of CD8 T cells and helper T cells, attracts
myeloid-derived suppressor cells (MDSCs) and Tregs, and enhances
PD-L1 expression on both tumor and immune cells. These acts
jointly promote the establishment of an immunosuppressive
microenvironment (63).

Our examination of immune infiltration revealed that the levels
of CD8" T cells and CD56"" " NK cells were markedly elevated in
the favorable prognosis B cluster and low-risk groups,
corroborating existing research on immune cells. CD8" T cells
directly eliminate tumor cells by identifying tumor antigens, such as
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peptide fragments presented by MHC class I molecules (64). The
granzyme and perforin they release can then trigger tumor cell
apoptosis. Furthermore, these cells establish immunological
memory inside the tumor microenvironment, sustaining
prolonged anti-tumor responses and diminishing the likelihood of
recurrence. Prior research indicates that BLCA patients exhibiting
elevated CD8" T cell infiltration demonstrate improved responses
to PD-1 medications (65). The CD56" " NK cell fraction
predominantly secretes cytokines (IFN-y and TNF-o), which
augment antigen presentation by stimulating macrophages and
dendritic cells, thereby facilitating T cell infiltration (66). They
exhibit elevated expression of CD16 and NKG2D receptors, which
are capable of identifying stress ligands on tumor cells (such as
MICA/B) and function synergistically with CD8" T cells to
eradicate immuno-evasive tumor cells. Research has established
that CD56"8" NK cells signify a favorable prognosis for patients
with BLCA. Conversely, Y0 T cells may facilitate tumor angiogenesis
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FIGURE 10

TCMs prediction and molecular dockings. (A) Five TCMs targeting PSMB5. (B) Molecular docking of Chuanxiong, binding energy= -7.1 kcal-mol™.
(C) Molecular docking of Gao Ben, binding energy= -9.4 kcal-mol™. (D) Molecular docking of Fu Xiong, binding energy= -7.0 kcal-mol-1.
(E) Molecular docking of Lei Gong Teng, binding energy= -9.3 kcal-mol™. (F) Molecular docking of Huang Qin, binding energy= -6.6 kcal-mol™.

and stroma remodeling by secreting cytokines such as IL-17 and
IL-22. pDCs within the tumor microenvironment inhibit the anti-
tumor functions of CD8" T cells and NK cells by releasing
immunosuppressive cytokines (IL-10 and TGF-B) and promoting
the proliferation of Tregs (67). Moreover, pDCs can directly
suppress effector T cell activities and facilitate tumor immune
evasion by expressing immune checkpoint molecules, such as
PD-L1 (68).

By using various machine learning methods to screen for
important feature genes (69), combined with previous proteomics
data, we found that PSMBS5 is a significantly upregulated oncogenic
gene. MR further validated that PSMB5 is a crucial pro-cancer
factor for BLCA. Its functional relevance in BLCA remains notably
unexamined. Therefore, it is imperative to investigate the processes
in BLCA related to PSMB5. Single-cell profiling revealed
enrichment of PSMB5 in endothelial cells, epithelial cells, and
fibroblasts, while PSMB5 overexpression exhibited a substantial
correlation with lymph node metastases. Our validation
experiments verified the overexpression of PSMB5 in BLCA.
Subsequent in vitro functional tests demonstrated that PSMB5
knockdown significantly impeded tumor cell growth and
migration while markedly promoting apoptosis. Five TCMs
targeting PSMB5 demonstrated considerable therapeutic efficacy.

PSMBS5 is one of the 17 critical subunits of the 20S core particle
B-subunit family (70). The beta type-5 subunit of the proteasome
co-assembles with other B-subunits to create two heptameric rings
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that comprise the proteolytic compartment responsible for
substrate cleavage (71, 72). This subunit is crucial for the
development of the 20S proteasome and is functionally involved
in ubiquitin-dependent proteolysis (73). This pathway is
accountable for the deterioration of approximately 80% of
proteins within cells in eukaryotes and demonstrates a substantial
association with apoptosis (74). PSMB5 is mechanistically
associated with oncogenesis in several malignancies, especially in
breast, prostate, and esophageal cancers (75). The correlation
between the expression levels of this subunit and tumor cell
resistance to chemotherapeutic agents is particularly significant
(76, 77). The findings suggest that further research on PSMB5
may reveal new pathways involved in bladder carcinogenesis, and
that targeted suppression of PSMB5 expression could potentially
enhance tumor cell sensitivity to chemotherapy. The exact
regulatory mechanisms linking the ubiquitin-proteasome system
to apoptosis, as well as the molecular pathways by which PSMB5
affects chemosensitivity, are not fully understood and require
further investigation.

Moreover, the most prominent characteristic of TCM that can
efficiently activate or suppress PANoptosis is the synergistic process
involving several components and targets (78). The distinctive
mechanism of “network pharmacology” allows traditional Chinese
medicine to demonstrate considerable benefits in intricate
pathological states, including tumors and inflammatory disorders.
The aqueous extract of Achyranthes aspera mitigates cisplatin-
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induced nephrotoxicity by regulating PANoptosis, thereby maintaining
tubular integrity (79). Chlorogenic acid produced from Yinhua
Pinggan Granules demonstrates dual antioxidative and anti-
inflammatory properties, mitigating macrophage PANoptosis
triggered by drug-resistant E. coli (80). This multi-target intervention
is crucial, as it can prevent treatment resistance resulting from
single-pathway restriction and offers a novel approach to addressing
tumor heterogeneity and microenvironment adaptation. The
coadministration of cisplatin and berberine synergistically enhances
the lethality of ovarian cancer cells by simultaneously activating
apoptosis and necroptosis, thereby enhancing chemotherapeutic
efficacy (81). We identified five TCMs, namely Chuan Xiong, Gao
Ben, Fuxiong, Lei Gong Teng, and Huang Qin, which have therapeutic
potential for BLCA, improve patient prognosis and indicate
prospective avenues for further research.

We recognize multiple limitations in our present investigation.
We recognize some limitations in the present investigation. This
study relies exclusively on the TCGA database, where the disparity
between normal and tumor samples may compromise the efficacy of
detecting differentially expressed genes, and there is a lack of
external cohort validation. Future research should augment the
quantity of normal samples, enhance unbalanced learning
algorithms, and do external validation. Furthermore, it is essential
to validate the biological functions of the 98 differentially expressed
genes using tumor samples or animal models. The predictive model
employs only LASSO regression, which may result in lower AUC
values. Future investigations may integrate supplementary machine
learning algorithms (82). Only one SNP demonstrated a probable
causal link with BLCA, hence precluding sensitivity and
heterogeneity studies. The molecular mechanisms underlying
PANoptosis between PSMB5 and BLCA progression remain to be
fully elucidated through experimental validation. Moreover,
although the expected TCMs were validated by molecular
dockings, their fundamental associations on PSMB5 and
PANoptosis necessitate additional verification. These constraints
may affect the generalizability of conclusions and the depth of
mechanistic interpretation. Subsequent studies should address these
concerns through multicenter validation, algorithm enhancement,
and empirical exploration.

Conclusions

In conclusion, our comprehensive analysis of differentially
expressed genes linked to PANoptosis in BLCA revealed two
molecularly distinct subgroups with divergent prognostic
outcomes, mutational profiles, and immune milieu features. This
study clarifies BLCA progression through PANoptotic regulation,
uncovering hitherto unrecognized pathogenic pathways. The
established BLCA-Riskscore exhibits strong clinical value,
indicating significant correlations with overall survival prognosis,
response to immunotherapy, and vulnerability to molecularly
targeted therapies. This classification technique enables the
precise selection of patients for the most effective treatment
options—either immunotherapy or targeted therapy. The primary

Frontiers in Immunology

10.3389/fimmu.2025.1656682

gene PSMB5 significantly facilitates the progression of BLCA, and
the control of PSMB5 by herbal drugs offers dual advantages for the
treatment of BLCA and chemosensitization.
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SUPPLEMENTARY FIGURE 1
Comparison between risk score and clinical baseline measurements. (A) The
risk score exhibits the greatest C-index. (B) The risk score has the highest
AUC. (C) The DCA indicates that the risk score yields the most net benefit. (D)
The standard curve indicates that the projected values are largely congruent
with the actual values.
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