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Background: Recurrent miscarriage (RM) is a pregnancy complication with
growing evidence suggesting a role for paraptosis in its pathogenesis, though
the underlying mechanisms remain unclear. This study investigated paraptosis-
related genes (PRGs) as potential therapeutic targets.

Methods: Transcriptome data for RM were obtained from public databases, while
PRGs were sourced from existing literature. Biomarkers were identified through
the intersection of differential expression analysis, weighted gene co-expression
network analysis, machine learning algorithms and expression validation,
followed by the construction and validation of a nomogram. Molecular
mechanisms of the biomarkers were further explored through immune
infiltration, enrichment analysis, and the construction of regulatory networks.
Single-cell RNA sequencing (scRNA-seq) was performed for deeper insights
into RM.

Results: PCNPP3 and ELOA were selected as biomarkers related to paraptosis. A
predictive nomogram was developed with strong accuracy. Enrichment analysis
revealed that both PCNPP3 and ELOA were associated with E2F targets and the
G2M checkpoint. In immune infiltration analysis, PCNPP3 exhibited a significant
positive correlation with smooth muscle cells, while ELOA was notably
associated with myocytes. Regulatory network analysis suggested that NEAT1
and NPPA-AS1 might modulate ELOA expression via hsa-miR-49-5p. SCRNA-seq
analysis identified decidual natural killer (dNK) cells and macrophages as key cell
types, with ELOA expression decreasing in dNK cells as their state changed, while
in macrophages, expression followed a pattern of increase, decrease, and
increase again.

Conclusion: This study identified PCNPP3 and ELOA as biomarkers of RM and
provides comprehensive insights into their molecular mechanisms, offering
valuable perspectives for future RM research.
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1 Introduction

Recurrent miscarriage (RM) is a significant reproductive health
issue characterized by two or more consecutive pregnancy losses
prior to the 20th week of gestation (1). Affecting approximately 1-
5% of couples attempting conception, RM represents a common
early pregnancy complication (2). Its multifactorial etiology
involves genetic, anatomical, immunological, hormonal, and
environmental factors (3). However, despite extensive research,
50-75% of RM cases remain idiopathic or unexplained,
highlighting a critical gap in understanding the underlying
mechanisms (4). Beyond its physical impact, RM often causes
profound psychological distress and emotional trauma for
individuals and couples, which can affect overall well-being and
family dynamics (5).

Current diagnostic and therapeutic strategies for RM remain
limited and often ineffective. While treatments such as
pharmacological interventions, hormone therapy, and surgery are
available, many patients show poor responses, underscoring the
urgent need for the identification of reliable biomarkers and
personalized treatment strategies (6). This further emphasizes the
necessity of investigating the pathophysiological mechanisms
underlying this disorder (7).

Non-apoptotic cell death, characterized by specific cell
morphology and extensive cytoplasmic vacuolation during
embryonic development or neuronal degeneration, is known as
type III cell death or paraptosis (8). Paraptosis is a distinct form of
programmed cell death, with cytoplasmic vacuolation being a
hallmark feature, primarily resulting from the swelling of the
endoplasmic reticulum and mitochondria (9). Under stress
conditions such as oxidative stress or protein misfolding, the
endoplasmic reticulum and mitochondria undergo significant
swelling, forming vacuole-like structures within the cytoplasm
(10). Paraptosis-related genes (PRGs) play a pivotal role in cancer
treatment and regulation (11-13), and the paraptosis process has
been described in various models (14, 15). However, its precise
molecular mechanisms remain unclear (11). Previous studies
suggest that paraptosis is regulated by various factors, including

Abbreviations: RM, Recurrent Miscarriage; PRGs, Paraptosis-Related Genes;
dNK, Decidual Natural Killer Cells; MFs, Molecular Functions; BPs, Biological
Processes; EVT, Extravillous Trophoblasts; GO, Gene Ontology; STRING, Search
Tool for Interacting Genes; PPI, Protein-Protein Interaction; LOOCV, Leave-
One-Out Cross-Validation; AUC, Area Under Curve; LASSO, Least Absolute
Shrinkage and Selection Operator; Stepglm, stepwise generalized linear model;
SVM-REFE, Support Vector Machine - Recursive Feature Elimination; GlmBoost,
Generalized linear model Boosting; LDA, Linear Discriminant Analysis; PIsRglm,
Partial least squares Regression regularized generalized linear model; RF,
Random Forest; GBM, Generalized Boosted Model; XGBoost, eXtreme
Gradient Boosting; ROC, Receiver Operating Characteristic; GSEA, Gene Set
Enrichment Analysis; GSVA, Gene Set Variation Analysis; NES, Normalized
Enrichment Score; MisgDB, Molecular Signatures Database; MiRNAs,
microRNAs; LncRNAs, Long non-coding RNAs; PCA, Principal Component
Analysis; PCs, Principal Components; T-SNE, T-distributed Stochastic
Neighborhood Embedding.
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endoplasmic reticulum stress, proteasomal inhibition, reactive
oxygen species production, and disturbances in cellular Ca**
homeostasis (16). As a complex and dynamic process, paraptosis
involves multiple factors, with the endoplasmic reticulum and
mitochondria serving as critical organelles at the center of these
processes (13). A unique aspect of the human reproductive cycle is
the “spontaneous” deciduation of the endometrium in the absence
of embryos, during which stromal cells undergo reticular stress and
an unfolded protein response, leading to endoplasmic reticulum
expansion and the production of immunomodulatory factors (17).
Mitochondrial processes such as ATP synthesis, calcium ion
storage, paraptosis induction, and ROS production significantly
affect reproductive function (18, 19). PRGs in endometrial stromal
cells, including endoplasmic reticulum stress markers such as
CHOP and sXBP1, are upregulated in patients with RM,
suggesting that endoplasmic reticulum dysfunction may play a
pivotal role in this pathological condition (17). This form of cell
death could impair the survival and function of placental cells,
contributing to pregnancy failure. In animal models, endoplasmic
reticulum stress has been shown to promote placental
dysmorphogenesis, which is associated with pregnancy loss (20).
Given these findings, it can be hypothesized that PRGs may also be
involved in the pathogenesis of RM.

To further investigate this, the current study utilizes
transcriptomic data related to RM to identify potential
biomarkers linked to paraptosis. By constructing regulatory
networks, performing enrichment analyses, and conducting
immune infiltration assessments, the study aims to uncover the
molecular mechanisms underlying the identified biomarkers.
Additionally, single-cell RNA sequencing data will be used to
examine the expression patterns of these biomarkers, identify key
cell populations, and explore their differentiation pathways. This
comprehensive approach seeks to deepen the understanding of RM
and contribute to the development of targeted
therapeutic strategies.

2 Materials and methods
2.1 Data acquisition

The GSE165004 (GPL1699), GSE111974 (GPL17077), and
GSE214607 (GPL24676) datasets were sourced from the Gene
Expression Omnibus (GEO) database (https://
www.ncbinlm.nih.gov/geo/). The GSE165004 dataset served as
the training set, originally comprising 72 samples. After excluding
unexplained infertility samples, 24 endometrial tissue samples from
individuals with RM and 24 corresponding control samples were
selected for analysis. All RM samples were collected at the same
stage of the menstrual cycle (LH + 7), ensuring the comparability of
the samples. The RM group had a higher number of pregnancies but
a lower number of deliveries, which was in line with the clinical
characteristics of recurrent miscarriage. There was no significant
difterence in BMI between the two groups, ruling out the possibility
of obesity as a confounding factor. The control group consisted of
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healthy women with a normal history of childbirth and no history
of miscarriage, with regular menstrual cycles (25-35 days), and
their ages were matched with those of the experimental group.
Exclusion criteria for samples (applicable to both groups):
Abnormal uterine anatomical structure, endocrine diseases (such
as thyroid dysfunction, diabetes, etc.) (Table 1). The GSE111974
dataset, used as the validation set, contained 48 samples, including
24 endometrial samples from patients with RM and 24 control
samples. GSE214607, a single-cell RNA sequencing dataset,
included 16 samples, from which 3 decidual tissue samples from
patients with RM and 5 endometrial tissue samples from controls
were selected. The paraptosis-like genes (PRGs) adopted in this
study were derived from systematic literature retrieval. The specific
screening criteria were as follows: The literature was sourced from
the PubMed database, with a time range up to August 2023. The
screening criteria must explicitly mention genes related to
paraptosis, which had been experimentally verified in human cells
or tissues and are associated with cell death, endoplasmic reticulum
stress, mitochondrial function, etc. Genes that had only been
reported in mice or other models and have not been verified in
humans were excluded. Then, a total of 66 PRGs were acquired
from previous research (21) (Supplementary Tables S1).

2.2 Differential expression analysis

The Limma package (v 3.54.0) (22) was utilized to identify
differentially expressed genes (DEGs) between the RM and control
groups in the GSE165004 dataset (|log, fold change (FC)| > 0.5 and
p < 0.05). The ggplot2 package (v 3.4.4) (23) was employed to
generate a volcano plot for the DEGs, marking the top 5 up- and
down-regulated genes sorted by |log,FC|. A heatmap of the top 10
upregulated and downregulated DEGs sorted by [log,FC| was then
created using ComplexHeatmap (v 2.14.0) (24).

2.3 Weighted gene co-expression network
analysis

The WGCNA package (v 1.71) (25) was used to analyze gene
modules associated with PRGs. Initially, the Wilcoxon test was applied

TABLE 1 Baseline characteristics of the population.

Baseline category

10.3389/fimmu.2025.1656650

to evaluate significant differences in the expression of PRGs between
the RM and control groups in the GSE165004 dataset (p < 0.05). PRGs
showing significant expression differences were selected for further
analysis. Next, the GSVA package (v 1.46.0) (26) was utilized to
calculate PRG scores, and the Wilcoxon test was again used to
compare the differences between the RM and control cohorts in
GSE165004 (p < 0.05). Afterward, all samples were clustered, and
outliers were removed. To determine the optimal soft threshold for
module construction, the scale-free topology model fitting index (R*)
was set to 0.85. The optimal soft threshold was identified when R* first
exceeded this value and the average connectivity of the co-expression
network approached zero, using the PickSoftThreshold function. An
average connectivity approaching zero reduced redundant connections
between modules, allowing for more specific co-expression within each
module. The Dynamic Tree Cutting method was then applied to
construct a scale-free network, with the minimum gene number per
module set to 100, deepSplitG set to 4, and reassignThreshold set to 0.2,
ensuring proper grouping of genes into distinct modules. Finally,
Pearson’s correlation analysis was conducted with PRG scores as the
trait to calculate correlation coefficients and p-values between the
modules and the trait. Modules significantly correlated with the PRG
scores (|correlation coefficient (cor)| > 0.3 and p < 0.05) were selected,
and the genes within these modules were designated as key module
genes. Finally, we conducted a sensitivity analysis via the WGCNA
package (v 1.71) to verify the reliability of the results.

2.4 Protein-protein interaction
relationships and functional evaluation of
candidate genes

Candidate genes were identified by intersecting DEGs and key
module genes using the ggvenn package (v 0.1.9) (27). To explore the
biological functions of these candidate genes, clusterProfiler package
(v 4.7.1.003) (28) was used to conduct Gene Ontology (GO)
enrichment analysis. Although the False Discovery Rate (FDR)
correction was applied, no terms remained statistically significant
after this adjustment. Consequently, the results were selected based
on a nominal p-value < 0.05 to identify potential biological trends. To
construct the protein-protein interaction (PPI) network of candidate
genes, this study used the Search Tool for Interacting Genes

Group Overall Control RM P
n 48 24 24
age 31.62 (+ 4.24) 30.06 (+ 2.39) 33.18 (+ 5.10) 0.009**
bmi 22.81 (+ 2.52) 22.39 (+ 2.42) 23.22 (+ 2.60) 0.259
gravidity 244 (+ 1.43) 2.00 (+ 1.06) 2.88 (+ 1.62) 0.032*
parity 1.69 (1.52) 2.38 (1.66) 1.00 (+ 0.98) 0.001**
abortion_history 1.00 (+ 1.38) 0.00 (+ 0.00) 2.00 (+ 1.35) <0.001***
menstrual_cycle LH+7(100%) LH+7(100%) LH+7(100%) NA
p < 0.05, **p < 0.01, **p < 0.001, NA, Not involved.
Frontiers in Immunology 03 frontiersin.org
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(STRING) database (https://string-db.org/). Since higher confidence
thresholds (0.4, 20.7) yielded no or only very few interaction
relationships, and to avoid missing potentially meaningful weak
interactions, a threshold of 0.15 was finally selected. This choice was
consistent with the feasible thresholds adopted in previous studies
(29-31). The network was visualized using Cytoscape (v 3.9.1) (32).

2.5 Identification of biomarkers

For further refinement of candidate genes, 113 different
combination models were constructed using 12 machine learning
algorithms within a leave-one-out cross-validation (LOOCV)
framework, based on the GSE165004 and GSE111974 datasets. The
12 algorithms used in this study included least absolute shrinkage and
selection operator (LASSO), ridge regression, elastic net (elnet),
stepwise generalized linear model (stepglm), support vector
machine-recursive feature elimination (SVM-RFE), generalized
linear model boosting (glmBoost), linear discriminant analysis
(LDA), partial least squares regression regularized generalized
linear model (plsRglm), random forest (RF), generalized boosted
model (GBM), eXtreme gradient boosting (XGBoost), and
NaiveBayes. Data preprocessing was initially carried out by
retrieving datasets from GSE165004 and GSE111974, ensuring the
inclusion of only the samples and expression data corresponding to
the candidate genes across both datasets. Feature selection and model
training followed, with feature subsets combined according to model
configurations (e.g., “lasso+1f”) or derived from single methods (e.g.,

10.3389/fimmu.2025.1656650

“lasso”) to enhance efficiency and consistency. The pROC package (v
1.18.0) (33) was employed to compute the area under the receiver
operating characteristic (ROC) curve (AUC) for evaluating the
classification performance of each model. Models were excluded
based on their AUC values, and a heatmap was generated to
visualize the AUC values of different model combinations in both
the training and validation sets. Figure 1 illustrates the analytical
flowchart 113 models. The model with the highest AUC values (AUC
> 0.7) in both the training and validation sets was selected as the
optimal model, and the genes within this model were designated as
candidate biomarkers. The ROC curve of the optimal model was
plotted to assess its performance.

The expression of candidate biomarkers in GSE165004 and
GSE111974 was subsequently validated. Genes that exhibited
significant expression differences between the RM and control
groups (p < 0.05) and demonstrated consistent expression trends
in both datasets were identified as biomarkers.

2.6 Constructed of nomogram

To assess the ability of these biomarkers to distinguish between
RM and control groups, a nomogram based on their expression
levels was constructed in GSE165004 using the rms package (v
6.5.0) (34). Calibration curves and ROC curves (AUC > 0.7) were
generated using the rms and pROC packages (v 1.18.0) (33),
respectively, to assess the accuracy of the nomogram in the
GSE165004 and GSE111974.

Data preprocessing (GSE165004 and
L GSE111974)
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FIGURE 1
Flowchart of 113 machine learning methods.
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2.7 Gene set enrichment analysis and gene
set variation analysis

To investigate the biological functions and pathways associated
with biomarkers in RM, GSEA was performed on the GSE165004
dataset. First, Spearman correlation coefficients between the
biomarkers and all other genes were calculated using the psych
package (v 2.2.9) (35). The correlation coefficients were then ranked
from highest to lowest, and GSEA was conducted on the biomarkers
using the clusterProfiler package (p < 0.05 and |normalized
enrichment score (NES)| > 1). The reference gene set
h.all.v2023.2.Hs.symbols.gmt was sourced from the Molecular
Signatures Database (MisgDB, https://www.gsea-msigdb.org/
gsea/msigdb).

Additionally, differences in enriched pathways between RM and
control samples in GSE165004 were examined. The GSVA package
was used to calculate the gene set scores for each sample, and the
limma package assessed differences in gene expression (p.adj <
0.05). The pheatmap package (v 1.0.12) (36) was employed to
generate heatmaps visualizing the top 10 pathways with the
highest and lowest t-values, using the background
set c2.all.v7.2.symbols.gmt.

2.8 Immune infiltration analysis

To explore the immune environment in RM, the xCell package
(v 1.1.0) (37) was applied to assess the infiltration of 64 immune cell
types (38) in RM and control groups within GSE165004. Immune
cells exhibiting significant differences in infiltration (p < 0.05) were
identified. The psych package was then used to evaluate the
correlation between differential immune cells and biomarkers (|
cor| > 0.3 and p < 0.05). In addition, the Single-sample Gene Set
Enrichment Analysis (ssGSEA) algorithm of GSVA package (v
1.46.0) (26) was harnessed to determine the infiltration of 28
immune cells between RM and control groups in GSE165004, By
comparing the infiltration of the 28 immune cells (p < 0.05),
immune cells with significant differences were identified.
Subsequently, the psych package was used to study the correlation
between differential immune cells and biomarkers (with an absolute
correlation value |cor| > 0.3 and p < 0.05).

2.9 Construction of regulatory networks

To analyze the regulatory relationships of biomarkers, upstream
microRNAs (miRNAs) were predicted using the targetscan and
miRDB databases within the multiMiR package (v 1.20.0) (39). The
intersection of miRNAs from both databases identified key
miRNAs. Additionally, the Starbase database was consulted to
find upstream long non-coding RNAs (IncRNAs) for the
identified key miRNAs. The regulatory network was then
visualized using the ggraph package (v 2.1.0) (https://cloud.r-
project.org/web/packages/ggraph/index.html).
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2.10 Single-cell RNA sequence analysis

A series of single-cell analyses were performed to identify the
key cells associated with biomarkers. The Seurat package (v 5.0.1)
(40) was used to filter the GSE214607 dataset, applying the
following criteria: 200 < nFeature_RNA count < 6000,
nCount_RNA < 20, 000, and percent.mt < 10%. The
LogNormalize function was then applied for data normalization,
and high variability genes were identified using the
FindVariableFeatures function. Principal component analysis
(PCA) was conducted, and a scree plot was generated to
determine the number of principal components (PCs) required
for subsequent analyses. t-distributed stochastic neighbor
embedding (T-SNE) was employed for cell clustering
(resolution = 0.5). Based on clustering results and insights from
single-cell RM literature (41), cell type annotation was performed,
and the proportion of each cell type in different cohorts was
displayed. Differential cell types were identified by comparing
biomarker expression across all cell types (p < 0.05), with
differential cells showing a higher proportion in the RM cohort
selected as key cells. Next, the ReactomeGSA package (v 1.12.0) (42)
was used to explore the biological functions associated with these
differential cells. CellChat package (v 1.6.1) (43) was employed for
cell-cell communication analysis. Subsequently, secondary
clustering of the key cells was performed following the same
procedure, and Monocle (v 2.26.0) (44) was utilized for pseudo-
time analysis of the key cells.

2.11 Statistical analysis

Bioinformatics analyses were performed in R (v 4.2.2), using the
Wilcoxon test for group comparisons, with p < 0.05 considered
significant. The t-test was used for comparison of
experimental data.

3 Results

3.1 There were 1, 467 DEGs and 259 key
module genes ascertained

In the GSE165004 dataset, 1, 467 DEGs were identified,
including 648 up-regulated and 819 down-regulated genes in the
RM cohort (Figures 2A, B). A gene co-expression network based on
PRGs was subsequently constructed using WGCNA. Eighteen
PRGs exhibited significantly different expression levels between
the RM and control cohorts, with notable differences in their
scores (p = 0.032) (Figure 2C). Hierarchical clustering analysis of
all samples did not reveal any clear outliers (Figure 2D). An optimal
soft threshold of 14 was determined, yielding an R* of 0.8720
(Figure 2E). Hierarchical clustering further categorized the genes
into 22 distinct co-expression modules (Figure 2F). The MEdarkred
module (cor = 0.45, p = 0.001) and the MEgrey60 module (cor =

frontiersin.org


https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://cloud.r-project.org/web/packages/ggraph/index.html
https://cloud.r-project.org/web/packages/ggraph/index.html
https://doi.org/10.3389/fimmu.2025.1656650
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wan et al. 10.3389/fimmu.2025.1656650
Volcano Plot
(A) T T (B) Distribution as heatmap
DOWN ' 1 UP
RPL6P: ' 1
30 WARS2-AS1 : H dosity
ZNFo ' i '1
| i logFC
EOCPAR___ @ ! ! . 05
B P wooes Mo
320 ® | ! koo - Group
[ HSPD1P : ; - 5\2‘&6522/\51 B conteol
S o Lo I -2 K HRu
@ | H DRT‘ expression
2 ! ! ~log10(P.Value) Rhokr 2
o ] @ PozKIPt 1
10 o ! H u 0
4 * @ » | | ALU‘/BS‘JUZ 2
& ! : SLCTA4 FAM|55B l
& ! i
e | 5902 cAPNe gkgw
.q' : H | ';3536‘)7191
o o . AC096719.1 I CAPNG
I 1
-25 0.0 25
logFC
Score ° Sample Clustering and trait heatmap
06 Wilcoxon, p = 0.032 ]
o
£
0.4- 8
g
3
g E
3 02 group 28 §8
< lRM T P g N
2 contrl 3 Sgs= 3 2
8 " S g ] faenadiBBong hoggsezaiss 38 e Int Sy
7jaiigatas 8320882850 8 53 °° pipaians®t
35 38 288
3] ==
-0.2 §§ 38
$sGSEA|
RM control
(E) Scale independence Mean connectivil (G)
g indep ivity Module-trait relationships
b= 20| 8|1
@ 16 18 S 4 0.38
.E'm 14 3 MEgrey60 . (0 008)
&8s 10 12 ° " —1
E | suser®’ 28 MEPink <§223>
s
fal? - MEblue. o
g8 88| Cos
5 - MEyellow 0.6
3 Cs 5
< =
23 5§87 MEmidnightblue . 0.3
Q2 2 2 (0:9)
” o 0.067
o 8 MEcyan 0.7
g e (0.7)
s ° 3 0.062 ro.5
] 4 MEdarkgreen 0.7)
a8 |1 o | 5678910 12 14 16 18 20 i ~021
5 10 15 20 5 10 15 20 MElightgreen 0.2)
Soft Threshold (power) Soft Threshold (power) 0.068
(@ ) (e ) MEroyalblue 06)
-0.071
(F) Cluster Dendrogram MEbrown (0.6)
o 0.16
e MEgreen 03) Lo
MEred =
o | 045
e MEdarkred (0.001)
-0.13
) MEtan 04
£ ° -0..
= MElightyellow (g 5)1
3 !
I~ -0.24
S MEsalmon (31)5 L_os
N MEmagenta (0:3)
2 -0.26
=1 MEgreenyellow (0.08)
-0.21
w MEpurple ©2)
@ . -0.26
MEturquoise ©.07)
Module colors, MEblack . '(31)2 4
" -0.26
MElightcyan ©.07)
GSVA score
FIGURE 2

Recognition DEGs and key module genes. (A) Volcano plot of DEGs. (B) Heat map of the top 10 up-regulated genes and top 10 down-regulated
genes. (C) PRGs GSVA score difference analysis violin chart between RM sample and control sample. (D) Sample clustering dendrogram of
GSE165004. (E) The scale-free fit index for various softthresholding powers. (F) Clustering tree map of gene modules. (G) Heat map of correlation

between genes in the module and PRGs scores.

0.38, p = 0.008) were identified as key modules (Figure 2G), with the
259 genes within these modules defined as key module genes.The
results of the sensitivity analysis showed that network construction
was not sensitive to the selection of soft thresholds, and the
identification of key module genes was not sensitive to changes in
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module size parameters. When the soft threshold was 14, the
network not only maintains sufficient connectivity but also avoids
overconnection, which conformed to the characteristics of a scale-
free network. The above content enhances the reliability of the
results (Supplementary Figures 2A-C).
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3.2 The 30 candidate genes were identified

By intersecting the DEGs with the key module genes, 30
candidate genes were identified (Figure 3A). GO analysis revealed
that these candidate genes were enriched in 122 specific terms,
including 14 cellular components, 8 molecular functions (MFs), and
100 biological processes (BPs). The top five enriched terms for
cellular components, BPs, and MFs included pathways such as
autophagosome, regulation of autophagosome assembly, and JUN
kinase kinase kinase activity (Figure 3B). PPI analysis showed that
only 10 of the candidate genes interacted with others, with HELLS
displaying the strongest interaction potential (Figure 3C).

3.3 PCNPP3 and ELOA were considered as
biomarkers

Subsequent results from 113 machine learning algorithm models
indicated that the Stepglm[backward]+RF model had the best overall
performance in both GSE165004 (AUC = 0.998) and GSE111974 (AUC
= 0.873) (Figures 4A, B). This model was selected as the optimal one,
with SFTA2, PCNPP3, and ELOA identified as candidate biomarkers.
Further expression validation showed that in GSE165004, SFTA2,

regulation of autophagosome assembly

10.3389/fimmu.2025.1656650

PCNPP3, and ELOA were significantly down-regulated in the RM
cohort, while in GSE111974, only PCNPP3 and ELOA were
significantly down-regulated in RM (Figure 4C). Thus, PCNPP3 and
ELOA were considered key biomarkers for further analysis.

A nomogram was then constructed based on PCNPP3 and
ELOA (Figure 4D). The calibration curve demonstrated a high
degree of overlap between the nomogram curve and the reference
line, with an AUC of 0.946 and 0.870, confirming that the
nomogram had high diagnostic accuracy for RM (Figures 4E-H).

3.4 The biomarkers were associated with
multiple pathways and immune cells

GSEA results revealed that ELOA was significantly enriched in
30 pathways, while PCNPP3 was enriched in 19 pathways. Both
genes were involved in the top five pathways, which included E2F
targets and the G2M checkpoint (Figures 5A, B). Additionally,
GSVA enrichment analysis identified 229 pathways, such as DE
YY1 targets, ATF2 targets, and TONKS targets of RUNXI-
RUNXI1T1 fusion sustained in monocytes (Figure 5C).

The infiltration of 64 different immune cell types was assessed
in RM and control samples (Figure 5D). Significant differences were
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observed in 8 immune cell types, with all but melanocytes and
myocytes being significantly down-regulated in the RM cohort
(Figure 5E). Spearman correlation analysis revealed that PCNPP3
was most strongly associated with smooth muscle cells (cor = 0.44, p
< 0.05), while ELOA showed a significant negative correlation with
myocytes (cor = -0.40, p < 0.05) (Figure 5F). The infiltration of 28
different types of immune cells in RM samples and control samples
was shown in Figure 5G, with significant differences observed in 5
types of immune cells (Figure 5H). Following that, Spearman
correlation analysis showed that PCNPP3 had the strongest
negative with monocytes (cor = -0.47 and p < 0.05), while ELOA
had the strongest significant positive linked to natural killer cells
(cor = 0.39 and p < 0.05) (Figure 5I). Since xCell is mainly used to
estimate the relative abundance of 64 types of immune and stromal
cells, while ssGSEA is used to evaluate the activity of immune-
related pathways and biological functions. These two methods
characterize the immune status from different dimensions, so
there may be certain differences in their results.

Using the Targetscan and miRDB databases, 40 and 22 miRNAs
were predicted, respectively, and 7 key miRNAs were retained after
intersection. The Starbase database was then used to predict 16
upstream IncRNAs for these miRNAs. A regulatory network was
constructed around ELOA, the 7 key miRNAs, and 16
IncRNAs (Figure 5]).

3.5 The 14 differential cell types were
annotated in GSE214607

The distribution of gene count ranges, sequencing depth, and
mitochondrial content ratios for all samples is shown in Figure 6A.
Following rigorous quality control, 52, 077 cells and 26, 032 genes
were retained for analysis. After data normalization, 2, 000 highly
variable genes were identified, with the top 5 most variable genes
highlighted, including CCL21 and TPSB2 (Figure 6B). PCA analysis
revealed no clear boundaries between samples (Figure 6C), with
data stabilization occurring after 30 PCs, which were selected for
subsequent analysis (Figure 6D). t-SNE identified 27 distinct cell
clusters (Figure 6E), which were annotated into 14 different cell
types based on single-cell literature related to RM in the GSE214607
dataset. These cell types included granulocytes, SCT, B cells,
endothelial cells, dendritic cells, neutrophils, extravillous
trophoblasts (EVT), vascular tumor cells, epithelial cells, T cells,
monocytes, dental stem cells, macrophages, and decidual natural
killer cells (ANKs) (Figures 6F, G). In both RM and control cohorts,
dNKs represented the largest proportion of cell types (Figure 6H).

3.6 The dNKs and macrophages were
ascertained as key cells

The expression of PCNPP3 and ELOA in GSE214607 revealed
that ELOA was present in the single-cell dataset and exhibited
notable differences between the RM and control cohorts
(Figures 7A, B). Further analysis showed that ELOA expression
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was significantly distinct in dNK cells, macrophages, T cells, VCT,
EVT, and endothelial cells (Figure 7C). Based on the proportion of
these cells in the RM cohort, dNK cells and macrophages were
defined as key cell types. Enrichment analysis of these key cells
indicated their involvement in processes such as proline catabolism,
NADPH regeneration, and lactose synthesis (Figure 7D).

Next, a communication analysis was conducted on the 14 cell
types, revealing that dNK cells did not communicate with epithelial
cells or VCT, and macrophages did not communicate with
epithelial cells either (Figures 7E, F).

3.7 Development of key cells was
correlated with the expression of key
genes

Dimensionality reduction and clustering were performed on
dNK cells and macrophages. As shown in Figures 8A, B, both cell
types stabilized at 30 PCs. dNK cells were further divided into 13
clusters (Figure 8C), while macrophages formed 11 clusters
(Figure 8D). Pseudotime analysis of cellular trajectories revealed
that dNK cells differentiated gradually from right to left, with cluster
2 present throughout the entire differentiation process, cluster 6
confined to the beginning and end of differentiation, and the entire
process divided into 7 stages, with stage 3 being the shortest
(Figure 8E). Macrophages differentiated from left to right, with
cluster 5 present throughout the differentiation process, spanning 9
distinct stages, with stage 8 being the shortest (Figure 8F). ELOA
expression in dNK cells decreased as differentiation progressed
(Figure 8G), while in macrophages, it followed a pattern of
increase, decrease, and then increase again (Figure 8H).

4 Discussion

RM is the most common clinical pathological pregnancy
disorder, significantly impacting both the physical and mental
health of patients, as well as their reproductive health (45). Its
etiology is multifactorial, involving chromosomal abnormalities,
autoimmune diseases, metabolic disorders, and more. However,
the cause remains unknown in more than 50% of RM cases (3, 7).
Although some biomarkers related to RM have been identified (46,
47), their clinical utility requires further validation. Additionally,
many cases remain unexplained by known pathological
mechanisms, highlighting the urgent need to discover new
biomarkers and therapeutic options to improve RM diagnosis and
treatment (48).

Recent studies (13, 16, 49) have focused on PRGs involved in
cell death regulation, which play pivotal roles in paraptosis and
autophagy, and may be closely linked to the pathological
mechanisms of RM. PRGs have been shown to influence various
biological processes, such as cell growth and death, offering new
insights into the study of RM (15, 50). Study has shown that the
natural compound tripterine can simultaneously induce paraptosis
in cancer cells, accompanied by autophagy and apoptosis,
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(F)

Key cell identification and cell communication. (A) TSNE diagram. Each dot represents a cell, and the closer it is to red, the higher the gene
expression, and the closer it is to blue, the lower the gene expression. (B) ELOA expression in RM and control cohorts. (C) Expression of key genes
between RM and control groups in all cells. ***p < 0.001, **p < 0.01, *p < 0.05, ns: p>0.05. (D) Heat map of cell functional enrichment. (E, F) Cell

communication interaction diagram.

confirming the concurrent occurrence of three programmed cell
death patterns under the same stimulus (51). Additionally, research
has indicated that endoplasmic reticulum stress and unfolded
protein response can induce various cell death patterns, including
apoptosis, autophagy, and ferroptosis. There are also common
regulatory factors between paraptosis and various cell deaths,
such as oxidative stress (52), indicating the association between
paraptosis and other cell death patterns.

In this study, using 113 machine learning models, SFTA2,
PCNPP3, and ELOA were identified as candidate biomarkers.
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Further expression validation retained PCNPP3 and ELOA as
paraptosis-related biomarkers for subsequent analysis.

ELOA (Elongin A) is a transcriptional elongation factor that
enhances the mRNA strand elongation rate of RNA polymerase II
(53). Additionally, ELOA expression levels are closely associated
with the development of various diseases. For instance, in tumor
cells, high ELOA expression can promote cell proliferation and
migration, thereby enhancing tumor aggressiveness and metastatic
potential (12, 54). Additionally, ELOA may play a pivotal role in
paraptosis by regulating intracellular signaling pathways,
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influencing cell sensitivity to anti-apoptotic signals (55). While the
role of ELOA in RM has not been previously reported, this study
found a significant downregulation of ELOA in RM decidual tissue
(P < 0.0001). As an elongation factor of RNA polymerase II, ELOA
is directly involved in the ubiquitination and degradation of Rpbl
(the largest subunit of RNA polymerase II) following DNA damage
and plays a critical role in activating stress response genes (56).
Moreover, ELOA has been confirmed as essential for early
embryonic development. For example, experiments show that
homozygous mutant Elongin A mice (Elongin A (-/-)) exhibit
severely delayed embryonic development and die between days
10.5 and 12.5 of pregnancy. Mouse embryonic fibroblasts (MEF)
derived from Elongin A (-/-) embryos show increased paraptosis
and aging-like growth defects, along with the activation of p38
MAPK and p53 pathways. These findings suggest that ELOA may
contribute to embryo loss through these mechanisms (57). These
results provide novel perspectives for the early diagnosis and
personalized treatment of RM.

In investigating the biological functions of the candidate
biomarkers, the GSEA results highlighted the significant roles of
ELOA and PCNPP3 in cell cycle regulation and cell proliferation.
ELOA was significantly enriched in 30 pathways, while PCNPP3
was enriched in 19 pathways, with both genes involved in key
pathways such as E2F targets and the G2M checkpoint. The E2F
transcription factor family plays a critical role in regulating the cell
cycle and promoting cell proliferation (58, 59). Additionally, E2F8 is
particularly important in RM by regulating alpha-enolase 1 and its
downstream signaling pathways. Specifically, E2F8 can positively
regulate the expression of alpha-enolase 1 (60), which in turn
activates the Wnt signaling pathway by inhibiting secreted
Frizzled protein 1/4, thereby enhancing trophoblastic invasion—
an essential process for maintaining a healthy pregnancy (60). The
G2M checkpoint, a critical component of the cell cycle, monitors
DNA damage and determines whether a cell can proceed to mitosis
(61). During normal pregnancy, precise regulation of cell
proliferation in both maternal and fetal tissues is necessary to
ensure proper placental formation and function (60). Abnormal
activation of the G2M checkpoint has been shown to lead to
uncontrolled cell proliferation, disrupting embryo development
and increasing the risk of miscarriage (62, 63). Genes associated
with the G2M checkpoint, such as CDK1 and CCNBI, are
upregulated in patients with RM, which may lead to adverse
maternal responses to the embryo, potentially resulting in
abortion (64, 65). Additionally, high G2M scores correlate with
tumor mutation rates and immune cell infiltration, emphasizing the
importance of this pathway in regulating the maternal immune
environment (66). Several studies have also examined the interplay
between the G2M pathway and other signaling pathways, such as
MYC and E2F target genes (63, 67, 68). In summary, these pathways
are integral to cell proliferation, paraptosis, and DNA repair, and
their dysregulation may heighten the risk of RM. These pathways
play a critical role in cell cycle regulation and may offer insight into
the cellular dysfunctions linked to RM. The integration of pathway
analysis with biomarker findings presents a multifaceted approach
to understanding RM, suggesting that disruptions in cellular
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signaling and immune responses could be pivotal in its etiology.
Therefore, ELOA may influence cell proliferation and genomic
stability at the embryo-maternal interface through key cell cycle
regulatory mechanisms (E2F/G2M-related pathways), contributing
to the onset of RM. Targeting the E2F/G2M-related pathway could
thus emerge as a potential therapeutic strategy for RM. Further
functional experiments are needed to clarify its molecular targets
and elucidate the upstream and downstream networks involved.
PCNPP3 is a member of a necrotic protein gene family secreted by
Phytophthora capsicum strains, classified as a pathogenic effector
molecule. It primarily interacts with plant-specific receptors,
initiating calcium ion influx, reactive oxygen species bursts, and
allergic necrosis (69). To the best of our knowledge, the present
study is the first to report the potential role of PCNPP3 in the
human reproductive system, as it showed significant differential
expression in the tissues of patients with RM (p < 0.001). While
existing literature mainly describes the function of PCNPP3 in plant
immune responses, such as hypersensitivity reactions (70), its
potential role in mammalian systems has yet to be explored.
Interestingly, some plant immune-related proteins share
functional homologs in animal cells. For example, plant disease-
resistant proteins, such as NLRs, have structural similarities with
animal inflammasome components (71, 72), and plant cell death-
related proteins, such as Metacaspases, function similarly to the
paraptosis executive protein Caspase in animals (73). PCNPP3 may
represent a new class of cross-species conserved proteins, with its
core functional module potentially involved in cell fate regulation in
both plant and animal systems. Based on “Immune-related protein
functional homology between plants and animals”, it could be
speculated that PCNPP3 might bind to the homologous
conserved receptors at the maternal-fetal interface, mimicking the
“receptor-ligand interaction” pattern in plants; it activaes abnormal
calcium signals or ROS signals, ultimately triggering RM.
Additionally, one of the important pathological mechanisms of
RM was the insufficient invasive ability of trophoblast cells and the
disorder of placental formation. The abnormal calcium/ROS signals
activated by PCNPP3 may also directly inhibit the invasive ability of
trophoblast cells (normal trophoblast cell invasion depends on
precise calcium signal regulation), further hindering placental
formation and ultimately increasing the risk of RM. However,
this mechanism still requires more functional experiments for
verification. Should the new function of PCNPP3 in mammals be
confirmed, it could serve as a novel diagnostic marker for RM.

In an infiltration analysis of 64 immune cell types, significant
differences were observed between the RM and control groups, with
macrophages, melanocytes, smooth muscle cells, immature
dendritic cells (iDC), lymphatic endothelial cells (Iy Endothelial),
plasmacytoid dendritic cells (pDC), M1 macrophages, and
myocytes showing notable variations. All immune cells, except
melanocytes and myocytes, were significantly down-regulated in
the RM cohort. In a study by Ding et al. (74), macrophages inhibited
TRAF6 expression at the post-transcriptional level through the
transport of miR-146a-5p and miR-146b-5p, thus inhibiting
epithelial-to-mesenchymal transition (EMT), migration, and
invasion of trophoblast cells, contributing to the pathogenesis of
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recurrent spontaneous abortion (RSA). Other studies have similarly
highlighted the important roles of macrophages, dendritic cells, and
endothelial cells in regulating trophoblast activity in RM (41, 75-
78). Subsequent Spearman correlation analysis revealed that
PCNPP3 had the strongest significant correlation with smooth
muscle cells, while ELOA exhibited the strongest negative
correlation with muscle cells. These findings provide valuable
insights into the immunological characteristics of RM and offer a
reference point for future strategies aimed at improving
reproductive outcomes by modulating the immune response.

This study constructed a regulatory network involving ELOA,
key miRNAs, and upstream IncRNAs, offering a novel perspective
for understanding the molecular mechanisms underlying RM. The
network identified potential pathways through which IncRNAs,
such as NEAT1 and NPPA-AS1, might regulate ELOA expression
by targeting hsa-miR-49-5p. NEAT1 has been shown to be
associated with the development of various tumors (79) and plays
a role in pulmonary fibrosis (80). In pregnancy-related diseases, the
regulatory function of NEAT1 has been increasingly recognized.
For instance, in preeclampsia, NEAT1 can inhibit trophoblast cell
proliferation (81). Previous studies have reported that miR-49-5p in
placental trophoblast cells regulates cell survival by targeting
paraptosis-related genes, suggesting its potential involvement in
maternal-fetal interface immune tolerance (74). Abnormal
expression of NEATI may lead to reduced ELOA expression by
sponging miR-49-5p, thereby impacting decidual cell proliferation
and the embryonic developmental microenvironment (82). The
discovery of this “IncRNA-miRNA-mRNA” regulatory axis
expands our understanding of RM’s molecular mechanisms,
shifting the focus from a single gene to a complex network level
and highlighting the central role of non-coding RNAs in regulating
the maternal-fetal interface.

dNK cells are the most abundant immune cell population at the
maternal-fetal interface. They promote the remodeling of spiral
arterioles in the decidua by facilitating the invasion of EVT cells and
interacting with them during early pregnancy. As pregnancy
progresses, dNK cells help clear decidualized cells, thereby
maintaining endometrial balance and ensuring a normal
physiological state post-implantation (83, 84). Zhang et al. (85)
showed that dNK cells promote decidualization by secreting
interleukin 25. However, in miscarriage patients, the number of
dNK cells is reduced, accompanied by elevated TNF-o levels, which
inhibit decidualization by decreasing the expression of
decidualization markers such as PRL and IGFBP-1 (86).
Moreover, CD39 and CD73 levels were significantly lower in the
tissues of patients with unexplained RM compared to those in
normal gestation, leading to increased toxicity and decreased
paraptosis of dNK cells (87). Therefore, changes in the function
or number of dNK cells may disrupt decidualization, ultimately
contributing to RM. Macrophages are key immune cells in the
decidual tissue, playing an essential role in embryo implantation
and pregnancy maintenance (88). Both M1 and M2 macrophages
participate in angiogenesis and immune suppression at the
maternal-fetal interface (89). Abnormal polarization of
macrophages is closely linked to unexplained RSA (90). In the
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present study, single-cell RNA sequencing revealed that ELOA was
expressed in the single-cell dataset and showed significant
differences between the RM and control groups. Further
pseudotime analysis indicated that ELOA expression in dNK cells
gradually decreased as the cellular state changed, whereas in
macrophages, ELOA expression exhibited a dynamic trend of
initially increasing, then decreasing, and increasing again. These
findings highlight the heterogeneity within immune cell
populations, particularly in dNK cells and macrophages,
emphasizing their distinct roles during pregnancy. Fluctuations in
ELOA expression in dNK cells and its dynamic regulation in
macrophages suggest that these immune cells may play pivotal
roles in modulating the uterine environment during
early pregnancy.

This study highlights the multi-dimensional correlations among
genes, immune cells, and regulatory networks, thereby enhancing
the understanding of the immune mechanisms underlying diseases
and offering potential diagnostic markers, therapeutic targets, and
individualized treatment strategies for clinical application. The
expression levels of ELOA and PCNPP3 are significantly
associated with the infiltration of various immune cells, such as
smooth muscle cells and myocytes, suggesting that these two genes
may contribute to the development and progression of diseases like
RM by regulating the immune microenvironment (91). For
instance, the negative correlation between ELOA and myocytes
may indicate its involvement in the pathological process by
influencing the immune homeostasis or cell function of muscle
tissue (92). Both ELOA and PCNPP3 are significantly
downregulated in RM samples and are linked to the
differentiation trajectories of key immune cells, suggesting that
their expression levels could serve as diagnostic or prognostic
markers for RM. For example, assessing ELOA expression in
decidual tissue may aid in evaluating the risk of pregnancy failure
or distinguishing between normal and pathological pregnancies
(93). Abnormal proportions of dNK cells and macrophages in the
RM group, such as changes in dNK cell proportions, could serve as
early warning indicators of immune imbalance. Monitoring these
proportions using single-cell sequencing or flow cytometry may
provide a foundation for individualized clinical treatment (94).

Although the research results are encouraging, this study still
has some limitations. Firstly, the research results are based on
bioinformatics analysis and lack in vivo and in vitro experiments for
validation to confirm the biological functions of PCNPP3 and
ELOA in RM. Secondly, the analysis is limited by the size of the
existing cohort and the scarcity of single-cell datasets, which may
affect the generalizability of the results and the in-depth
understanding of the cellular-level mechanisms. Future research
can proceed in the following directions: Firstly, it is necessary to
obtain larger-scale, multi-center RM-related datasets, and focus on
the external validation of the nomogram model and the expression
stability assessment of biomarkers in independent cohorts;
Secondly, single-cell sequencing technology should be used to
deeply analyze the endometrial samples of RM patients and
controls, to clarify the expression patterns and key cell
characteristics of paraptosis-related biomarkers in specific cells;
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Moreover, the sample size of clinical cohorts should be further
expanded and rigorous statistical analysis should be adopted to
reduce the interference of confounding factors, and animal models
and other in vivo experiments should be used to verify the
functional mechanism of PCNPP3 and ELOA in RM, providing a
more solid theoretical basis and practical guidance for the clinical
diagnosis, treatment and prognosis assessment of RM.

In conclusion, PCNPP3 and ELOA have been identified as
paraptosis-related biomarkers for RM for the first time. This
discovery opens new avenues for studying their specific roles in
the paraptosis processes of RM cells and presents new targets and
research directions for the treatment of RM.
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