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Background: Recurrent miscarriage (RM) is a pregnancy complication with

growing evidence suggesting a role for paraptosis in its pathogenesis, though

the underlying mechanisms remain unclear. This study investigated paraptosis-

related genes (PRGs) as potential therapeutic targets.

Methods: Transcriptome data for RMwere obtained from public databases, while

PRGs were sourced from existing literature. Biomarkers were identified through

the intersection of differential expression analysis, weighted gene co-expression

network analysis, machine learning algorithms and expression validation,

followed by the construction and validation of a nomogram. Molecular

mechanisms of the biomarkers were further explored through immune

infiltration, enrichment analysis, and the construction of regulatory networks.

Single-cell RNA sequencing (scRNA-seq) was performed for deeper insights

into RM.

Results: PCNPP3 and ELOA were selected as biomarkers related to paraptosis. A

predictive nomogram was developed with strong accuracy. Enrichment analysis

revealed that both PCNPP3 and ELOA were associated with E2F targets and the

G2M checkpoint. In immune infiltration analysis, PCNPP3 exhibited a significant

positive correlation with smooth muscle cells, while ELOA was notably

associated with myocytes. Regulatory network analysis suggested that NEAT1

and NPPA-AS1 might modulate ELOA expression via hsa-miR-49-5p. ScRNA-seq

analysis identified decidual natural killer (dNK) cells and macrophages as key cell

types, with ELOA expression decreasing in dNK cells as their state changed, while

in macrophages, expression followed a pattern of increase, decrease, and

increase again.

Conclusion: This study identified PCNPP3 and ELOA as biomarkers of RM and

provides comprehensive insights into their molecular mechanisms, offering

valuable perspectives for future RM research.
KEYWORDS

recurrent miscarriage, paraptosis, biomarker, single-cell RNA sequencing,
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1 Introduction

Recurrent miscarriage (RM) is a significant reproductive health

issue characterized by two or more consecutive pregnancy losses

prior to the 20th week of gestation (1). Affecting approximately 1-

5% of couples attempting conception, RM represents a common

early pregnancy complication (2). Its multifactorial etiology

involves genetic, anatomical, immunological, hormonal, and

environmental factors (3). However, despite extensive research,

50-75% of RM cases remain idiopathic or unexplained,

highlighting a critical gap in understanding the underlying

mechanisms (4). Beyond its physical impact, RM often causes

profound psychological distress and emotional trauma for

individuals and couples, which can affect overall well-being and

family dynamics (5).

Current diagnostic and therapeutic strategies for RM remain

limited and often ineffective. While treatments such as

pharmacological interventions, hormone therapy, and surgery are

available, many patients show poor responses, underscoring the

urgent need for the identification of reliable biomarkers and

personalized treatment strategies (6). This further emphasizes the

necessity of investigating the pathophysiological mechanisms

underlying this disorder (7).

Non-apoptotic cell death, characterized by specific cell

morphology and extensive cytoplasmic vacuolation during

embryonic development or neuronal degeneration, is known as

type III cell death or paraptosis (8). Paraptosis is a distinct form of

programmed cell death, with cytoplasmic vacuolation being a

hallmark feature, primarily resulting from the swelling of the

endoplasmic reticulum and mitochondria (9). Under stress

conditions such as oxidative stress or protein misfolding, the

endoplasmic reticulum and mitochondria undergo significant

swelling, forming vacuole-like structures within the cytoplasm

(10). Paraptosis-related genes (PRGs) play a pivotal role in cancer

treatment and regulation (11–13), and the paraptosis process has

been described in various models (14, 15). However, its precise

molecular mechanisms remain unclear (11). Previous studies

suggest that paraptosis is regulated by various factors, including
Abbreviations: RM, Recurrent Miscarriage; PRGs, Paraptosis-Related Genes;

dNK, Decidual Natural Killer Cells; MFs, Molecular Functions; BPs, Biological

Processes; EVT, Extravillous Trophoblasts; GO, Gene Ontology; STRING, Search

Tool for Interacting Genes; PPI, Protein-Protein Interaction; LOOCV, Leave-

One-Out Cross-Validation; AUC, Area Under Curve; LASSO, Least Absolute

Shrinkage and Selection Operator; Stepglm, stepwise generalized linear model;

SVM-RFE, Support Vector Machine - Recursive Feature Elimination; GlmBoost,

Generalized linear model Boosting; LDA, Linear Discriminant Analysis; PlsRglm,

Partial least squares Regression regularized generalized linear model; RF,

Random Forest; GBM, Generalized Boosted Model; XGBoost, eXtreme

Gradient Boosting; ROC, Receiver Operating Characteristic; GSEA, Gene Set

Enrichment Analysis; GSVA, Gene Set Variation Analysis; NES, Normalized

Enrichment Score; MisgDB, Molecular Signatures Database; MiRNAs,

microRNAs; LncRNAs, Long non-coding RNAs; PCA, Principal Component

Analysis; PCs, Principal Components; T-SNE, T-distributed Stochastic

Neighborhood Embedding.
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endoplasmic reticulum stress, proteasomal inhibition, reactive

oxygen species production, and disturbances in cellular Ca2+

homeostasis (16). As a complex and dynamic process, paraptosis

involves multiple factors, with the endoplasmic reticulum and

mitochondria serving as critical organelles at the center of these

processes (13). A unique aspect of the human reproductive cycle is

the “spontaneous” deciduation of the endometrium in the absence

of embryos, during which stromal cells undergo reticular stress and

an unfolded protein response, leading to endoplasmic reticulum

expansion and the production of immunomodulatory factors (17).

Mitochondrial processes such as ATP synthesis, calcium ion

storage, paraptosis induction, and ROS production significantly

affect reproductive function (18, 19). PRGs in endometrial stromal

cells, including endoplasmic reticulum stress markers such as

CHOP and sXBP1, are upregulated in patients with RM,

suggesting that endoplasmic reticulum dysfunction may play a

pivotal role in this pathological condition (17). This form of cell

death could impair the survival and function of placental cells,

contributing to pregnancy failure. In animal models, endoplasmic

reticulum stress has been shown to promote placental

dysmorphogenesis, which is associated with pregnancy loss (20).

Given these findings, it can be hypothesized that PRGs may also be

involved in the pathogenesis of RM.

To further investigate this, the current study utilizes

transcriptomic data related to RM to identify potential

biomarkers linked to paraptosis. By constructing regulatory

networks, performing enrichment analyses, and conducting

immune infiltration assessments, the study aims to uncover the

molecular mechanisms underlying the identified biomarkers.

Additionally, single-cell RNA sequencing data will be used to

examine the expression patterns of these biomarkers, identify key

cell populations, and explore their differentiation pathways. This

comprehensive approach seeks to deepen the understanding of RM

and c o n t r i b u t e t o t h e d e v e l o pmen t o f t a r g e t e d

therapeutic strategies.
2 Materials and methods

2.1 Data acquisition

The GSE165004 (GPL1699), GSE111974 (GPL17077), and

GSE214607 (GPL24676) datasets were sourced from the Gene

E x p r e s s i o n Omn i b u s ( G EO ) d a t a b a s e ( h t t p s : / /

www.ncbi.nlm.nih.gov/geo/). The GSE165004 dataset served as

the training set, originally comprising 72 samples. After excluding

unexplained infertility samples, 24 endometrial tissue samples from

individuals with RM and 24 corresponding control samples were

selected for analysis. All RM samples were collected at the same

stage of the menstrual cycle (LH + 7), ensuring the comparability of

the samples. The RM group had a higher number of pregnancies but

a lower number of deliveries, which was in line with the clinical

characteristics of recurrent miscarriage. There was no significant

difference in BMI between the two groups, ruling out the possibility

of obesity as a confounding factor. The control group consisted of
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https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2025.1656650
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wan et al. 10.3389/fimmu.2025.1656650
healthy women with a normal history of childbirth and no history

of miscarriage, with regular menstrual cycles (25–35 days), and

their ages were matched with those of the experimental group.

Exclusion criteria for samples (applicable to both groups):

Abnormal uterine anatomical structure, endocrine diseases (such

as thyroid dysfunction, diabetes, etc.) (Table 1). The GSE111974

dataset, used as the validation set, contained 48 samples, including

24 endometrial samples from patients with RM and 24 control

samples. GSE214607, a single-cell RNA sequencing dataset,

included 16 samples, from which 3 decidual tissue samples from

patients with RM and 5 endometrial tissue samples from controls

were selected. The paraptosis-like genes (PRGs) adopted in this

study were derived from systematic literature retrieval. The specific

screening criteria were as follows: The literature was sourced from

the PubMed database, with a time range up to August 2023. The

screening criteria must explicitly mention genes related to

paraptosis, which had been experimentally verified in human cells

or tissues and are associated with cell death, endoplasmic reticulum

stress, mitochondrial function, etc. Genes that had only been

reported in mice or other models and have not been verified in

humans were excluded. Then, a total of 66 PRGs were acquired

from previous research (21) (Supplementary Tables S1).
2.2 Differential expression analysis

The Limma package (v 3.54.0) (22) was utilized to identify

differentially expressed genes (DEGs) between the RM and control

groups in the GSE165004 dataset (|log2 fold change (FC)| > 0.5 and

p < 0.05). The ggplot2 package (v 3.4.4) (23) was employed to

generate a volcano plot for the DEGs, marking the top 5 up- and

down-regulated genes sorted by |log2FC|. A heatmap of the top 10

upregulated and downregulated DEGs sorted by |log2FC| was then

created using ComplexHeatmap (v 2.14.0) (24).
2.3 Weighted gene co-expression network
analysis

The WGCNA package (v 1.71) (25) was used to analyze gene

modules associated with PRGs. Initially, the Wilcoxon test was applied
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to evaluate significant differences in the expression of PRGs between

the RM and control groups in the GSE165004 dataset (p < 0.05). PRGs

showing significant expression differences were selected for further

analysis. Next, the GSVA package (v 1.46.0) (26) was utilized to

calculate PRG scores, and the Wilcoxon test was again used to

compare the differences between the RM and control cohorts in

GSE165004 (p < 0.05). Afterward, all samples were clustered, and

outliers were removed. To determine the optimal soft threshold for

module construction, the scale-free topology model fitting index (R2)

was set to 0.85. The optimal soft threshold was identified when R2 first

exceeded this value and the average connectivity of the co-expression

network approached zero, using the PickSoftThreshold function. An

average connectivity approaching zero reduced redundant connections

between modules, allowing for more specific co-expression within each

module. The Dynamic Tree Cutting method was then applied to

construct a scale-free network, with the minimum gene number per

module set to 100, deepSplitG set to 4, and reassignThreshold set to 0.2,

ensuring proper grouping of genes into distinct modules. Finally,

Pearson’s correlation analysis was conducted with PRG scores as the

trait to calculate correlation coefficients and p-values between the

modules and the trait. Modules significantly correlated with the PRG

scores (|correlation coefficient (cor)| > 0.3 and p < 0.05) were selected,

and the genes within these modules were designated as key module

genes. Finally, we conducted a sensitivity analysis via the WGCNA

package (v 1.71) to verify the reliability of the results.
2.4 Protein-protein interaction
relationships and functional evaluation of
candidate genes

Candidate genes were identified by intersecting DEGs and key

module genes using the ggvenn package (v 0.1.9) (27). To explore the

biological functions of these candidate genes, clusterProfiler package

(v 4.7.1.003) (28) was used to conduct Gene Ontology (GO)

enrichment analysis. Although the False Discovery Rate (FDR)

correction was applied, no terms remained statistically significant

after this adjustment. Consequently, the results were selected based

on a nominal p-value < 0.05 to identify potential biological trends. To

construct the protein-protein interaction (PPI) network of candidate

genes, this study used the Search Tool for Interacting Genes
TABLE 1 Baseline characteristics of the population.

Baseline category
Group

Overall Control RM P

n 48 24 24

age 31.62 (± 4.24) 30.06 (± 2.39) 33.18 (± 5.10) 0.009**

bmi 22.81 (± 2.52) 22.39 (± 2.42) 23.22 (± 2.60) 0.259

gravidity 2.44 (± 1.43) 2.00 (± 1.06) 2.88 (± 1.62) 0.032*

parity 1.69 (1.52) 2.38 (1.66) 1.00 (± 0.98) 0.001**

abortion_history 1.00 (± 1.38) 0.00 (± 0.00) 2.00 (± 1.35) <0.001***

menstrual_cycle LH+7(100%) LH+7(100%) LH+7(100%) NA
p < 0.05, **p < 0.01, ***p < 0.001, NA, Not involved.
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(STRING) database (https://string-db.org/). Since higher confidence

thresholds (≥0.4, ≥0.7) yielded no or only very few interaction

relationships, and to avoid missing potentially meaningful weak

interactions, a threshold of 0.15 was finally selected. This choice was

consistent with the feasible thresholds adopted in previous studies

(29–31). The network was visualized using Cytoscape (v 3.9.1) (32).
2.5 Identification of biomarkers

For further refinement of candidate genes, 113 different

combination models were constructed using 12 machine learning

algorithms within a leave-one-out cross-validation (LOOCV)

framework, based on the GSE165004 and GSE111974 datasets. The

12 algorithms used in this study included least absolute shrinkage and

selection operator (LASSO), ridge regression, elastic net (elnet),

stepwise generalized linear model (stepglm), support vector

machine-recursive feature elimination (SVM-RFE), generalized

linear model boosting (glmBoost), linear discriminant analysis

(LDA), partial least squares regression regularized generalized

linear model (plsRglm), random forest (RF), generalized boosted

model (GBM), eXtreme gradient boosting (XGBoost), and

NaiveBayes. Data preprocessing was initially carried out by

retrieving datasets from GSE165004 and GSE111974, ensuring the

inclusion of only the samples and expression data corresponding to

the candidate genes across both datasets. Feature selection and model

training followed, with feature subsets combined according to model

configurations (e.g., “lasso+rf”) or derived from single methods (e.g.,
Frontiers in Immunology 04
“lasso”) to enhance efficiency and consistency. The pROC package (v

1.18.0) (33) was employed to compute the area under the receiver

operating characteristic (ROC) curve (AUC) for evaluating the

classification performance of each model. Models were excluded

based on their AUC values, and a heatmap was generated to

visualize the AUC values of different model combinations in both

the training and validation sets. Figure 1 illustrates the analytical

flowchart 113 models. The model with the highest AUC values (AUC

≥ 0.7) in both the training and validation sets was selected as the

optimal model, and the genes within this model were designated as

candidate biomarkers. The ROC curve of the optimal model was

plotted to assess its performance.

The expression of candidate biomarkers in GSE165004 and

GSE111974 was subsequently validated. Genes that exhibited

significant expression differences between the RM and control

groups (p < 0.05) and demonstrated consistent expression trends

in both datasets were identified as biomarkers.
2.6 Constructed of nomogram

To assess the ability of these biomarkers to distinguish between

RM and control groups, a nomogram based on their expression

levels was constructed in GSE165004 using the rms package (v

6.5.0) (34). Calibration curves and ROC curves (AUC > 0.7) were

generated using the rms and pROC packages (v 1.18.0) (33),

respectively, to assess the accuracy of the nomogram in the

GSE165004 and GSE111974.
FIGURE 1

Flowchart of 113 machine learning methods.
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2.7 Gene set enrichment analysis and gene
set variation analysis

To investigate the biological functions and pathways associated

with biomarkers in RM, GSEA was performed on the GSE165004

dataset. First, Spearman correlation coefficients between the

biomarkers and all other genes were calculated using the psych

package (v 2.2.9) (35). The correlation coefficients were then ranked

from highest to lowest, and GSEA was conducted on the biomarkers

using the clusterProfiler package (p < 0.05 and |normalized

enrichment score (NES)| > 1). The reference gene set

h.all.v2023.2.Hs.symbols.gmt was sourced from the Molecular

Signatures Database (MisgDB, https://www.gsea-msigdb.org/

gsea/msigdb).

Additionally, differences in enriched pathways between RM and

control samples in GSE165004 were examined. The GSVA package

was used to calculate the gene set scores for each sample, and the

limma package assessed differences in gene expression (p.adj <

0.05). The pheatmap package (v 1.0.12) (36) was employed to

generate heatmaps visualizing the top 10 pathways with the

h ighes t and lowes t t -va lues , us ing the background

set c2.all.v7.2.symbols.gmt.
2.8 Immune infiltration analysis

To explore the immune environment in RM, the xCell package

(v 1.1.0) (37) was applied to assess the infiltration of 64 immune cell

types (38) in RM and control groups within GSE165004. Immune

cells exhibiting significant differences in infiltration (p < 0.05) were

identified. The psych package was then used to evaluate the

correlation between differential immune cells and biomarkers (|

cor| > 0.3 and p < 0.05). In addition, the Single-sample Gene Set

Enrichment Analysis (ssGSEA) algorithm of GSVA package (v

1.46.0) (26) was harnessed to determine the infiltration of 28

immune cells between RM and control groups in GSE165004, By

comparing the infiltration of the 28 immune cells (p < 0.05),

immune cells with significant differences were identified.

Subsequently, the psych package was used to study the correlation

between differential immune cells and biomarkers (with an absolute

correlation value |cor| > 0.3 and p < 0.05).
2.9 Construction of regulatory networks

To analyze the regulatory relationships of biomarkers, upstream

microRNAs (miRNAs) were predicted using the targetscan and

miRDB databases within the multiMiR package (v 1.20.0) (39). The

intersection of miRNAs from both databases identified key

miRNAs. Additionally, the Starbase database was consulted to

find upstream long non-coding RNAs (lncRNAs) for the

identified key miRNAs. The regulatory network was then

visualized using the ggraph package (v 2.1.0) (https://cloud.r-

project.org/web/packages/ggraph/index.html).
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2.10 Single-cell RNA sequence analysis

A series of single-cell analyses were performed to identify the

key cells associated with biomarkers. The Seurat package (v 5.0.1)

(40) was used to filter the GSE214607 dataset, applying the

following criteria: 200 < nFeature_RNA count < 6000,

nCount_RNA < 20, 000, and percent.mt < 10%. The

LogNormalize function was then applied for data normalization,

and high variabi l i ty genes were identified using the

FindVariableFeatures function. Principal component analysis

(PCA) was conducted, and a scree plot was generated to

determine the number of principal components (PCs) required

for subsequent analyses. t-distributed stochastic neighbor

embedding (T-SNE) was employed for cell clustering

(resolution = 0.5). Based on clustering results and insights from

single-cell RM literature (41), cell type annotation was performed,

and the proportion of each cell type in different cohorts was

displayed. Differential cell types were identified by comparing

biomarker expression across all cell types (p < 0.05), with

differential cells showing a higher proportion in the RM cohort

selected as key cells. Next, the ReactomeGSA package (v 1.12.0) (42)

was used to explore the biological functions associated with these

differential cells. CellChat package (v 1.6.1) (43) was employed for

cell-cell communication analysis. Subsequently, secondary

clustering of the key cells was performed following the same

procedure, and Monocle (v 2.26.0) (44) was utilized for pseudo-

time analysis of the key cells.
2.11 Statistical analysis

Bioinformatics analyses were performed in R (v 4.2.2), using the

Wilcoxon test for group comparisons, with p < 0.05 considered

s ign ificant . The t - te s t was used for compar i son of

experimental data.
3 Results

3.1 There were 1, 467 DEGs and 259 key
module genes ascertained

In the GSE165004 dataset, 1, 467 DEGs were identified,

including 648 up-regulated and 819 down-regulated genes in the

RM cohort (Figures 2A, B). A gene co-expression network based on

PRGs was subsequently constructed using WGCNA. Eighteen

PRGs exhibited significantly different expression levels between

the RM and control cohorts, with notable differences in their

scores (p = 0.032) (Figure 2C). Hierarchical clustering analysis of

all samples did not reveal any clear outliers (Figure 2D). An optimal

soft threshold of 14 was determined, yielding an R2 of 0.8720

(Figure 2E). Hierarchical clustering further categorized the genes

into 22 distinct co-expression modules (Figure 2F). The MEdarkred

module (cor = 0.45, p = 0.001) and the MEgrey60 module (cor =
frontiersin.org
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0.38, p = 0.008) were identified as key modules (Figure 2G), with the

259 genes within these modules defined as key module genes.The

results of the sensitivity analysis showed that network construction

was not sensitive to the selection of soft thresholds, and the

identification of key module genes was not sensitive to changes in
Frontiers in Immunology 06
module size parameters. When the soft threshold was 14, the

network not only maintains sufficient connectivity but also avoids

overconnection, which conformed to the characteristics of a scale-

free network. The above content enhances the reliability of the

results (Supplementary Figures 2A-C).
FIGURE 2

Recognition DEGs and key module genes. (A) Volcano plot of DEGs. (B) Heat map of the top 10 up-regulated genes and top 10 down-regulated
genes. (C) PRGs GSVA score difference analysis violin chart between RM sample and control sample. (D) Sample clustering dendrogram of
GSE165004. (E) The scale-free fit index for various softthresholding powers. (F) Clustering tree map of gene modules. (G) Heat map of correlation
between genes in the module and PRGs scores.
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3.2 The 30 candidate genes were identified

By intersecting the DEGs with the key module genes, 30

candidate genes were identified (Figure 3A). GO analysis revealed

that these candidate genes were enriched in 122 specific terms,

including 14 cellular components, 8 molecular functions (MFs), and

100 biological processes (BPs). The top five enriched terms for

cellular components, BPs, and MFs included pathways such as

autophagosome, regulation of autophagosome assembly, and JUN

kinase kinase kinase activity (Figure 3B). PPI analysis showed that

only 10 of the candidate genes interacted with others, with HELLS

displaying the strongest interaction potential (Figure 3C).
3.3 PCNPP3 and ELOA were considered as
biomarkers

Subsequent results from 113 machine learning algorithm models

indicated that the Stepglm[backward]+RF model had the best overall

performance in bothGSE165004 (AUC= 0.998) andGSE111974 (AUC

= 0.873) (Figures 4A, B). This model was selected as the optimal one,

with SFTA2, PCNPP3, and ELOA identified as candidate biomarkers.

Further expression validation showed that in GSE165004, SFTA2,
Frontiers in Immunology 07
PCNPP3, and ELOA were significantly down-regulated in the RM

cohort, while in GSE111974, only PCNPP3 and ELOA were

significantly down-regulated in RM (Figure 4C). Thus, PCNPP3 and

ELOA were considered key biomarkers for further analysis.

A nomogram was then constructed based on PCNPP3 and

ELOA (Figure 4D). The calibration curve demonstrated a high

degree of overlap between the nomogram curve and the reference

line, with an AUC of 0.946 and 0.870, confirming that the

nomogram had high diagnostic accuracy for RM (Figures 4E–H).
3.4 The biomarkers were associated with
multiple pathways and immune cells

GSEA results revealed that ELOA was significantly enriched in

30 pathways, while PCNPP3 was enriched in 19 pathways. Both

genes were involved in the top five pathways, which included E2F

targets and the G2M checkpoint (Figures 5A, B). Additionally,

GSVA enrichment analysis identified 229 pathways, such as DE

YY1 targets, ATF2 targets, and TONKS targets of RUNX1-

RUNX1T1 fusion sustained in monocytes (Figure 5C).

The infiltration of 64 different immune cell types was assessed

in RM and control samples (Figure 5D). Significant differences were
FIGURE 3

Recognition and functional annotation of candidate genes. (A) Venn diagram of DEGs and PRGs module genes. (B) GO enrichment analysis of
candidate genes. (BP, biological process; CC, cellular component; MF, molecular function). (C) The PPI network construction of candidate genes.
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FIGURE 4

Biomarker Identification and Risk Assessment. (A) 113 joint models of the two datasets. (B) Distribution of the training set (left) and the validation set
(right) on the ROC curve of the optimal model. (C) Box plots of the expression levels of candidate genes in the training set (left) and the validation
set (right). (D) Construction of the nomogram (E, G) calibration curve. (F, H) ROC curve.
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FIGURE 5

Systematic biological study of biomarkers. (A) GSEA enrichment analysis of ELOA. (B) GSEA enrichment analysis of PCNPP3. (C) GSVA analysis heat
map between RM group and control group. (D) The infiltration and accumulation of 64 different types of immune cells in RM samples and control
samples. (E) 8 differential immune cell types box diagram in the RM group and the control group.p < 0.05, **p < 0.01, (F) Pearman correlation
analysis of key genes and differential immune cells. (G) The infiltration and accumulation of 28 different types of immune cells in RM samples and
control samples. (H) 5 differential immune cell types box diagram in the RM group and the control group. p < 0.05, **p < 0.01, ***p < 0.001, ns, no
significance (I) Pearman correlation analysis of key genes and differential immune cells. (J) Lncrna-mirna-key gene (mRNA) regulatory network based
on ELOA, 7 key miRNAs and 16 lncRNAs.
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observed in 8 immune cell types, with all but melanocytes and

myocytes being significantly down-regulated in the RM cohort

(Figure 5E). Spearman correlation analysis revealed that PCNPP3

was most strongly associated with smooth muscle cells (cor = 0.44, p

< 0.05), while ELOA showed a significant negative correlation with

myocytes (cor = -0.40, p < 0.05) (Figure 5F). The infiltration of 28

different types of immune cells in RM samples and control samples

was shown in Figure 5G, with significant differences observed in 5

types of immune cells (Figure 5H). Following that, Spearman

correlation analysis showed that PCNPP3 had the strongest

negative with monocytes (cor = -0.47 and p < 0.05), while ELOA

had the strongest significant positive linked to natural killer cells

(cor = 0.39 and p < 0.05) (Figure 5I). Since xCell is mainly used to

estimate the relative abundance of 64 types of immune and stromal

cells, while ssGSEA is used to evaluate the activity of immune-

related pathways and biological functions. These two methods

characterize the immune status from different dimensions, so

there may be certain differences in their results.

Using the Targetscan and miRDB databases, 40 and 22 miRNAs

were predicted, respectively, and 7 key miRNAs were retained after

intersection. The Starbase database was then used to predict 16

upstream lncRNAs for these miRNAs. A regulatory network was

constructed around ELOA, the 7 key miRNAs, and 16

lncRNAs (Figure 5J).
3.5 The 14 differential cell types were
annotated in GSE214607

The distribution of gene count ranges, sequencing depth, and

mitochondrial content ratios for all samples is shown in Figure 6A.

Following rigorous quality control, 52, 077 cells and 26, 032 genes

were retained for analysis. After data normalization, 2, 000 highly

variable genes were identified, with the top 5 most variable genes

highlighted, including CCL21 and TPSB2 (Figure 6B). PCA analysis

revealed no clear boundaries between samples (Figure 6C), with

data stabilization occurring after 30 PCs, which were selected for

subsequent analysis (Figure 6D). t-SNE identified 27 distinct cell

clusters (Figure 6E), which were annotated into 14 different cell

types based on single-cell literature related to RM in the GSE214607

dataset. These cell types included granulocytes, SCT, B cells,

endothelial cells, dendritic cells, neutrophils, extravillous

trophoblasts (EVT), vascular tumor cells, epithelial cells, T cells,

monocytes, dental stem cells, macrophages, and decidual natural

killer cells (dNKs) (Figures 6F, G). In both RM and control cohorts,

dNKs represented the largest proportion of cell types (Figure 6H).
3.6 The dNKs and macrophages were
ascertained as key cells

The expression of PCNPP3 and ELOA in GSE214607 revealed

that ELOA was present in the single-cell dataset and exhibited

notable differences between the RM and control cohorts

(Figures 7A, B). Further analysis showed that ELOA expression
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was significantly distinct in dNK cells, macrophages, T cells, VCT,

EVT, and endothelial cells (Figure 7C). Based on the proportion of

these cells in the RM cohort, dNK cells and macrophages were

defined as key cell types. Enrichment analysis of these key cells

indicated their involvement in processes such as proline catabolism,

NADPH regeneration, and lactose synthesis (Figure 7D).

Next, a communication analysis was conducted on the 14 cell

types, revealing that dNK cells did not communicate with epithelial

cells or VCT, and macrophages did not communicate with

epithelial cells either (Figures 7E, F).
3.7 Development of key cells was
correlated with the expression of key
genes

Dimensionality reduction and clustering were performed on

dNK cells and macrophages. As shown in Figures 8A, B, both cell

types stabilized at 30 PCs. dNK cells were further divided into 13

clusters (Figure 8C), while macrophages formed 11 clusters

(Figure 8D). Pseudotime analysis of cellular trajectories revealed

that dNK cells differentiated gradually from right to left, with cluster

2 present throughout the entire differentiation process, cluster 6

confined to the beginning and end of differentiation, and the entire

process divided into 7 stages, with stage 3 being the shortest

(Figure 8E). Macrophages differentiated from left to right, with

cluster 5 present throughout the differentiation process, spanning 9

distinct stages, with stage 8 being the shortest (Figure 8F). ELOA

expression in dNK cells decreased as differentiation progressed

(Figure 8G), while in macrophages, it followed a pattern of

increase, decrease, and then increase again (Figure 8H).
4 Discussion

RM is the most common clinical pathological pregnancy

disorder, significantly impacting both the physical and mental

health of patients, as well as their reproductive health (45). Its

etiology is multifactorial, involving chromosomal abnormalities,

autoimmune diseases, metabolic disorders, and more. However,

the cause remains unknown in more than 50% of RM cases (3, 7).

Although some biomarkers related to RM have been identified (46,

47), their clinical utility requires further validation. Additionally,

many cases remain unexplained by known pathological

mechanisms, highlighting the urgent need to discover new

biomarkers and therapeutic options to improve RM diagnosis and

treatment (48).

Recent studies (13, 16, 49) have focused on PRGs involved in

cell death regulation, which play pivotal roles in paraptosis and

autophagy, and may be closely linked to the pathological

mechanisms of RM. PRGs have been shown to influence various

biological processes, such as cell growth and death, offering new

insights into the study of RM (15, 50). Study has shown that the

natural compound tripterine can simultaneously induce paraptosis

in cancer cells, accompanied by autophagy and apoptosis,
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FIGURE 6

The scRNA-seq analysis of RM. (A) Violin chart of nFeature_RNA, nCount_RNA and percent.mt distribution before and after quality control. (B) High
variant gene screening. (C) PCA analysis. (D) Linear dimension diagram and lithotripsy diagram. (E) t-SNE of the 27 cell cluster. (F) Relative expression
of marker genes in cell clusters. (G) Annotated TSNE cluster diagram.Different colors represent different cell types. (H) Visualization of intergroup
proportion in RM and control cohorts. The horizontal axis is the proportion of cells, and the vertical axis is the different cell types.
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confirming the concurrent occurrence of three programmed cell

death patterns under the same stimulus (51). Additionally, research

has indicated that endoplasmic reticulum stress and unfolded

protein response can induce various cell death patterns, including

apoptosis, autophagy, and ferroptosis. There are also common

regulatory factors between paraptosis and various cell deaths,

such as oxidative stress (52), indicating the association between

paraptosis and other cell death patterns.

In this study, using 113 machine learning models, SFTA2,

PCNPP3, and ELOA were identified as candidate biomarkers.
Frontiers in Immunology 12
Further expression validation retained PCNPP3 and ELOA as

paraptosis-related biomarkers for subsequent analysis.

ELOA (Elongin A) is a transcriptional elongation factor that

enhances the mRNA strand elongation rate of RNA polymerase II

(53). Additionally, ELOA expression levels are closely associated

with the development of various diseases. For instance, in tumor

cells, high ELOA expression can promote cell proliferation and

migration, thereby enhancing tumor aggressiveness and metastatic

potential (12, 54). Additionally, ELOA may play a pivotal role in

paraptosis by regulating intracellular signaling pathways,
FIGURE 7

Key cell identification and cell communication. (A) TSNE diagram. Each dot represents a cell, and the closer it is to red, the higher the gene
expression, and the closer it is to blue, the lower the gene expression. (B) ELOA expression in RM and control cohorts. (C) Expression of key genes
between RM and control groups in all cells. ***p < 0.001, **p < 0.01, *p < 0.05, ns: p>0.05. (D) Heat map of cell functional enrichment. (E, F) Cell
communication interaction diagram.
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FIGURE 8

Pseudo-time analysis. (A-D) Analysis of key cell heterogeneity. (A) dNK cell dimension reduction analysis. (B) Macrophage dimension reduction
analysis. (C) dNK cell cluster analysis. (D) Macrophage cluster analysis. (E) dNK pseudo-time series analysis. (F) Macrophage pseudo-time series
analysis. (G) Expression of ELOA in dNK cells. (H) Expression of ELOA in Macrophage.
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influencing cell sensitivity to anti-apoptotic signals (55). While the

role of ELOA in RM has not been previously reported, this study

found a significant downregulation of ELOA in RM decidual tissue

(P < 0.0001). As an elongation factor of RNA polymerase II, ELOA

is directly involved in the ubiquitination and degradation of Rpb1

(the largest subunit of RNA polymerase II) following DNA damage

and plays a critical role in activating stress response genes (56).

Moreover, ELOA has been confirmed as essential for early

embryonic development. For example, experiments show that

homozygous mutant Elongin A mice (Elongin A (-/-)) exhibit

severely delayed embryonic development and die between days

10.5 and 12.5 of pregnancy. Mouse embryonic fibroblasts (MEF)

derived from Elongin A (-/-) embryos show increased paraptosis

and aging-like growth defects, along with the activation of p38

MAPK and p53 pathways. These findings suggest that ELOA may

contribute to embryo loss through these mechanisms (57). These

results provide novel perspectives for the early diagnosis and

personalized treatment of RM.

In investigating the biological functions of the candidate

biomarkers, the GSEA results highlighted the significant roles of

ELOA and PCNPP3 in cell cycle regulation and cell proliferation.

ELOA was significantly enriched in 30 pathways, while PCNPP3

was enriched in 19 pathways, with both genes involved in key

pathways such as E2F targets and the G2M checkpoint. The E2F

transcription factor family plays a critical role in regulating the cell

cycle and promoting cell proliferation (58, 59). Additionally, E2F8 is

particularly important in RM by regulating alpha-enolase 1 and its

downstream signaling pathways. Specifically, E2F8 can positively

regulate the expression of alpha-enolase 1 (60), which in turn

activates the Wnt signaling pathway by inhibiting secreted

Frizzled protein 1/4, thereby enhancing trophoblastic invasion—

an essential process for maintaining a healthy pregnancy (60). The

G2M checkpoint, a critical component of the cell cycle, monitors

DNA damage and determines whether a cell can proceed to mitosis

(61). During normal pregnancy, precise regulation of cell

proliferation in both maternal and fetal tissues is necessary to

ensure proper placental formation and function (60). Abnormal

activation of the G2M checkpoint has been shown to lead to

uncontrolled cell proliferation, disrupting embryo development

and increasing the risk of miscarriage (62, 63). Genes associated

with the G2M checkpoint, such as CDK1 and CCNB1, are

upregulated in patients with RM, which may lead to adverse

maternal responses to the embryo, potentially resulting in

abortion (64, 65). Additionally, high G2M scores correlate with

tumor mutation rates and immune cell infiltration, emphasizing the

importance of this pathway in regulating the maternal immune

environment (66). Several studies have also examined the interplay

between the G2M pathway and other signaling pathways, such as

MYC and E2F target genes (63, 67, 68). In summary, these pathways

are integral to cell proliferation, paraptosis, and DNA repair, and

their dysregulation may heighten the risk of RM. These pathways

play a critical role in cell cycle regulation and may offer insight into

the cellular dysfunctions linked to RM. The integration of pathway

analysis with biomarker findings presents a multifaceted approach

to understanding RM, suggesting that disruptions in cellular
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signaling and immune responses could be pivotal in its etiology.

Therefore, ELOA may influence cell proliferation and genomic

stability at the embryo-maternal interface through key cell cycle

regulatory mechanisms (E2F/G2M-related pathways), contributing

to the onset of RM. Targeting the E2F/G2M-related pathway could

thus emerge as a potential therapeutic strategy for RM. Further

functional experiments are needed to clarify its molecular targets

and elucidate the upstream and downstream networks involved.

PCNPP3 is a member of a necrotic protein gene family secreted by

Phytophthora capsicum strains, classified as a pathogenic effector

molecule. It primarily interacts with plant-specific receptors,

initiating calcium ion influx, reactive oxygen species bursts, and

allergic necrosis (69). To the best of our knowledge, the present

study is the first to report the potential role of PCNPP3 in the

human reproductive system, as it showed significant differential

expression in the tissues of patients with RM (p < 0.001). While

existing literature mainly describes the function of PCNPP3 in plant

immune responses, such as hypersensitivity reactions (70), its

potential role in mammalian systems has yet to be explored.

Interestingly, some plant immune-related proteins share

functional homologs in animal cells. For example, plant disease-

resistant proteins, such as NLRs, have structural similarities with

animal inflammasome components (71, 72), and plant cell death-

related proteins, such as Metacaspases, function similarly to the

paraptosis executive protein Caspase in animals (73). PCNPP3 may

represent a new class of cross-species conserved proteins, with its

core functional module potentially involved in cell fate regulation in

both plant and animal systems. Based on “Immune-related protein

functional homology between plants and animals”, it could be

speculated that PCNPP3 might bind to the homologous

conserved receptors at the maternal-fetal interface, mimicking the

“receptor-ligand interaction” pattern in plants; it activaes abnormal

calcium signals or ROS signals, ultimately triggering RM.

Additionally, one of the important pathological mechanisms of

RM was the insufficient invasive ability of trophoblast cells and the

disorder of placental formation. The abnormal calcium/ROS signals

activated by PCNPP3 may also directly inhibit the invasive ability of

trophoblast cells (normal trophoblast cell invasion depends on

precise calcium signal regulation), further hindering placental

formation and ultimately increasing the risk of RM. However,

this mechanism still requires more functional experiments for

verification. Should the new function of PCNPP3 in mammals be

confirmed, it could serve as a novel diagnostic marker for RM.

In an infiltration analysis of 64 immune cell types, significant

differences were observed between the RM and control groups, with

macrophages, melanocytes, smooth muscle cells, immature

dendritic cells (iDC), lymphatic endothelial cells (ly Endothelial),

plasmacytoid dendritic cells (pDC), M1 macrophages, and

myocytes showing notable variations. All immune cells, except

melanocytes and myocytes, were significantly down-regulated in

the RM cohort. In a study by Ding et al. (74), macrophages inhibited

TRAF6 expression at the post-transcriptional level through the

transport of miR-146a-5p and miR-146b-5p, thus inhibiting

epithelial-to-mesenchymal transition (EMT), migration, and

invasion of trophoblast cells, contributing to the pathogenesis of
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recurrent spontaneous abortion (RSA). Other studies have similarly

highlighted the important roles of macrophages, dendritic cells, and

endothelial cells in regulating trophoblast activity in RM (41, 75–

78). Subsequent Spearman correlation analysis revealed that

PCNPP3 had the strongest significant correlation with smooth

muscle cells, while ELOA exhibited the strongest negative

correlation with muscle cells. These findings provide valuable

insights into the immunological characteristics of RM and offer a

reference point for future strategies aimed at improving

reproductive outcomes by modulating the immune response.

This study constructed a regulatory network involving ELOA,

key miRNAs, and upstream lncRNAs, offering a novel perspective

for understanding the molecular mechanisms underlying RM. The

network identified potential pathways through which lncRNAs,

such as NEAT1 and NPPA-AS1, might regulate ELOA expression

by targeting hsa-miR-49-5p. NEAT1 has been shown to be

associated with the development of various tumors (79) and plays

a role in pulmonary fibrosis (80). In pregnancy-related diseases, the

regulatory function of NEAT1 has been increasingly recognized.

For instance, in preeclampsia, NEAT1 can inhibit trophoblast cell

proliferation (81). Previous studies have reported that miR-49-5p in

placental trophoblast cells regulates cell survival by targeting

paraptosis-related genes, suggesting its potential involvement in

maternal-fetal interface immune tolerance (74). Abnormal

expression of NEAT1 may lead to reduced ELOA expression by

sponging miR-49-5p, thereby impacting decidual cell proliferation

and the embryonic developmental microenvironment (82). The

discovery of this “lncRNA-miRNA-mRNA” regulatory axis

expands our understanding of RM’s molecular mechanisms,

shifting the focus from a single gene to a complex network level

and highlighting the central role of non-coding RNAs in regulating

the maternal-fetal interface.

dNK cells are the most abundant immune cell population at the

maternal-fetal interface. They promote the remodeling of spiral

arterioles in the decidua by facilitating the invasion of EVT cells and

interacting with them during early pregnancy. As pregnancy

progresses, dNK cells help clear decidualized cells, thereby

maintaining endometrial balance and ensuring a normal

physiological state post-implantation (83, 84). Zhang et al. (85)

showed that dNK cells promote decidualization by secreting

interleukin 25. However, in miscarriage patients, the number of

dNK cells is reduced, accompanied by elevated TNF-a levels, which

inhibit decidualization by decreasing the expression of

decidualization markers such as PRL and IGFBP-1 (86).

Moreover, CD39 and CD73 levels were significantly lower in the

tissues of patients with unexplained RM compared to those in

normal gestation, leading to increased toxicity and decreased

paraptosis of dNK cells (87). Therefore, changes in the function

or number of dNK cells may disrupt decidualization, ultimately

contributing to RM. Macrophages are key immune cells in the

decidual tissue, playing an essential role in embryo implantation

and pregnancy maintenance (88). Both M1 and M2 macrophages

participate in angiogenesis and immune suppression at the

maternal-fetal interface (89). Abnormal polarization of

macrophages is closely linked to unexplained RSA (90). In the
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present study, single-cell RNA sequencing revealed that ELOA was

expressed in the single-cell dataset and showed significant

differences between the RM and control groups. Further

pseudotime analysis indicated that ELOA expression in dNK cells

gradually decreased as the cellular state changed, whereas in

macrophages, ELOA expression exhibited a dynamic trend of

initially increasing, then decreasing, and increasing again. These

findings highlight the heterogeneity within immune cell

populations, particularly in dNK cells and macrophages,

emphasizing their distinct roles during pregnancy. Fluctuations in

ELOA expression in dNK cells and its dynamic regulation in

macrophages suggest that these immune cells may play pivotal

roles in modulat ing the uterine environment during

early pregnancy.

This study highlights the multi-dimensional correlations among

genes, immune cells, and regulatory networks, thereby enhancing

the understanding of the immune mechanisms underlying diseases

and offering potential diagnostic markers, therapeutic targets, and

individualized treatment strategies for clinical application. The

expression levels of ELOA and PCNPP3 are significantly

associated with the infiltration of various immune cells, such as

smooth muscle cells and myocytes, suggesting that these two genes

may contribute to the development and progression of diseases like

RM by regulating the immune microenvironment (91). For

instance, the negative correlation between ELOA and myocytes

may indicate its involvement in the pathological process by

influencing the immune homeostasis or cell function of muscle

tissue (92). Both ELOA and PCNPP3 are significantly

downregulated in RM samples and are linked to the

differentiation trajectories of key immune cells, suggesting that

their expression levels could serve as diagnostic or prognostic

markers for RM. For example, assessing ELOA expression in

decidual tissue may aid in evaluating the risk of pregnancy failure

or distinguishing between normal and pathological pregnancies

(93). Abnormal proportions of dNK cells and macrophages in the

RM group, such as changes in dNK cell proportions, could serve as

early warning indicators of immune imbalance. Monitoring these

proportions using single-cell sequencing or flow cytometry may

provide a foundation for individualized clinical treatment (94).

Although the research results are encouraging, this study still

has some limitations. Firstly, the research results are based on

bioinformatics analysis and lack in vivo and in vitro experiments for

validation to confirm the biological functions of PCNPP3 and

ELOA in RM. Secondly, the analysis is limited by the size of the

existing cohort and the scarcity of single-cell datasets, which may

affect the generalizability of the results and the in-depth

understanding of the cellular-level mechanisms. Future research

can proceed in the following directions: Firstly, it is necessary to

obtain larger-scale, multi-center RM-related datasets, and focus on

the external validation of the nomogram model and the expression

stability assessment of biomarkers in independent cohorts;

Secondly, single-cell sequencing technology should be used to

deeply analyze the endometrial samples of RM patients and

controls, to clarify the expression patterns and key cell

characteristics of paraptosis-related biomarkers in specific cells;
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Moreover, the sample size of clinical cohorts should be further

expanded and rigorous statistical analysis should be adopted to

reduce the interference of confounding factors, and animal models

and other in vivo experiments should be used to verify the

functional mechanism of PCNPP3 and ELOA in RM, providing a

more solid theoretical basis and practical guidance for the clinical

diagnosis, treatment and prognosis assessment of RM.

In conclusion, PCNPP3 and ELOA have been identified as

paraptosis-related biomarkers for RM for the first time. This

discovery opens new avenues for studying their specific roles in

the paraptosis processes of RM cells and presents new targets and

research directions for the treatment of RM.
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