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Construction of a prognostic
model based on palmitoylation-
related lncRNAs for assessing
drug benefits in breast cancer
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Southwest Cancer Centre, Southwest Hospital, Army Medical University, Chongqing, China,
4Department of Information, Shanxi Provincial Armed Police Corps Hospital, Taiyuan, China,
5Department of Respiratory and Critical Care Medicine, Southwest Hospital, Army Medical University,
Chongqing, China
Background: The lncRNAs associated with protein palmitoylation in breast

cancer (BC) remain largely unexplored.

Methods:We retrieved transcriptome, proteome, andmutation data from TCGA-

BRCA (BC), identified 592 palmitoylation-related lncRNAs (PRLs), constructed a

prognostic model (PmPRLs) based on their characteristics. According to the

score of the median risk, the “High-”and “Low” risk groups were distinguished.

The predictive potential of PmPRLs for the prognosis of BC was determined

through Kaplan-Meier (KM) survival analysis, ROC curve analysis, and risk scoring

verification using the training set and validation set. The differences of PmPRLs in

different risk groups were illustrated by using gene mutation frequency, immune

function, tumour immune dysfunction and rejection (TIDE) score and drug

sensitivity analysis. Based on this model, key feature LncRNAs were screened

out. After the identified LncRNAs were verified by the external dataset TANRIC, a

series of tumour phenotypic experiments were conducted to comprehensively

demonstrate their role in tumourigenesis and development.

Results: We identified 2 key feature lncRNAs, AC016394.2 and AC022150.4, as

the most significant prognostic factors. Both of these lncRNAs exhibited high

expression levels in the TCGA and TANRIC datasets and were closely associated

with tumour cell growth, proliferation, and migration. More importantly, based

on co-expression analysis, we proposed that AC016394.2 and AC022150.4 may

respectively regulate SEC24C and ZNF611. Furthermore, these two lncRNAs

enhanced the palmitoylation modification of these proteins.

Conclusion: The insights regarding the potential roles of AC016394.2 and

AC022150.4 can enhance our understanding of the mechanisms towards the

pathogenesis and progression of BC.
KEYWORDS

palmitoylation-related lncRNA, breast cancer, prognostic model, potential therapeutic
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1 Introduction

BC is a highly prevalent malignant neoplasm, and according to

the recently published Cancer Statistics 2025, female patients

constitute 32% of all newly diagnosed cases (1). Although

advancements in treatment methods and early screening

strategies have reduced the mortality, approximately 420,000 new

cases are diagnosed annually, thereby imposing a significant health

burden on families and society.

Protein palmitoylation (primarily S-palmitoylation) represents

a novel lipid modification that relies on the coordinated actions of

protein acyltransferases (PATs, specifically the ZDHHC family

harbouring zinc finger Asp-His-Cys motifs) and protein acyl

thioesterases (APTs). This process modulates protein function by

altering their lipophilicity, thereby impacting tumour progression,

drug response, and immune response (2). Such enzymes have been

implicated in breast cancer, exhibiting diverse roles as either

oncogenes or tumour suppressors and influencing various aspects

of tumour biology. For instance, ZDHHC4 and ZDHHC22

expression are frequently silenced in breast cancer cell lines, and

their functions appear to suppress tumour growth and metastasis by

regulating RAS and mTOR/AKT (3–5). In contrast, ZDHHC3

palmitates B7-H4, an immune checkpoint, at Cys130 in breast

cancer cells, thus preventing it from being degraded by lysosomes

and maintaining B7-H4-mediated tumour immunosuppression (6).

Beyond these examples, literature has also identified other ZDHHC

PATs that directly or indirectly regulate breast cancer proliferation

(7–9).

Long noncoding RNAs (lncRNAs) are non-coding RNA

molecules which primarily influence the maintenance of

proliferation signals, evasion of growth inhibitors, and resistance

to cell death in tumour cells (10). Although lncRNAs are not

proteins and do not undergo post-translational modifications,

some reports suggest a correlation between lncRNAs and protein

palmitoylation, in that lncRNAs co-expressed with PATs or APTs

not only promote protein palmitoylation or depalmitoylation by

affecting the interaction of their enzyme active sites, but are also

associated with survival prognosis. Such as the lncRNA DUXAP8,

which promotes the palmitoylation and then inhibits ferroptosis in

hepatocellular carcinoma (11). Therefore, in-depth research on the

association between lncRNAs and protein palmitoylation may

facilitate the development of targeted therapeutics.

However, these lncRNAs, which we referred to as palmitoylation-

related lncRNAs (PRLs), have been scarcely investigated to date in

breast cancer. Therefore, the present study aimed to investigate

whether PRLs could regulate BC malignant phenotypes.

Furthermore, we sought to determine if a novel prognostic model

based on these lncRNAs (PmPRLs) could accurately predict patient

prognosis in BC. This research endeavours to provide new insights

for both pharmacological interventions and clinical application

in BC.
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2 Materials and methods

2.1 Data retrieval and preparation of
sample set

The data were retrieved from The Cancer Genome Atlas

(TCGA; TCGA-BRCA cohort; https://tcga-data.nci.nih.gov/tcga/).

The expression data (transcriptome data) include a total of 1,118

breast cancer (BC) tissue samples and 113 adjacent normal

tissue samples, which are followed by 1,098 BC clinical data and

967 somatic mutation data. After differentiating the mRNAs

from lncRNAs, the expression patterns of 30 genes related to

palmitoylation (PALMs) reported in the literature were analysed in

the BC tumour tissues and adjacent normal tissue samples, leading to

the identification of 592 PRLs.
2.2 Development and validation of PmPRLs

After filtering, a total of 1,098 BC samples were randomly divided

into a training set (n = 594) and a validation set (n = 594) at a 1:1 ratio.

A total of 22 PRLs associated with the prognosis of BC were identified

in the training set using univariate Cox regression analysis. A subset of

these PRLs was selected by LASSO-Cox regression analysis to prevent

overfitting. A predictive model for estimating the prognosis of BC was

subsequently developed based on the training set, using multivariate

Cox regression analysis. It was determined that the optimal number of

lncRNAs corresponding to the lowest error point was 17, where

prognostic models were constructed utilising these specific lncRNAs

from which model formulas were derived. The coefficients of 9 specific

PRLs were incorporated into themodel to enhance prognostic accuracy

through screening. The coefficients of the 9 PRLs used for model

development were as follows: AC096642.2 (0.506456858), AP000331.1

(-0.38367969), AC016394.2 (0.283605425), AC090510.2

(-0.553689916), AC011815.1 (-0.580334682), AC022150.4

(0.288210056), Z68871.1 (0.330530176), AL109936.9 (-0.711784776),

and AL162386.2 (-0.641615803). The patients were categorised into

“High-risk” or “Low-risk” groups based on the median risk score

obtained using the model. The overall survival and survival rates across

different clinical subgroups were compared by KM analysis. The

predictive performance of the model was evaluated using ROC

curves, and the area under the ROC curve (AUC) values were

calculated at 1-, 2-, and 3-year intervals.
2.3 Classification of tumours based on PRL
expression

The ConsensusClusterPlus package in R v4.4.2 was used to

classify the 1,098 BC samples into three subtypes based on the

expression levels of PRLs. Principal component analysis (PCA) was
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performed using the ggplot2 package in R to analyse the variations

in the data. The differences in overall survival (OS) across the

subtypes were examined by KM analysis. The ESTIMATE and

CIBERSORT packages in R were used to quantify the immune cells

and stromal cells in the BC samples.
2.4 Construction of nomogram and
analysis of risk differences

The “rms package” in R was used to create a nomogram based

on the clinical factors and risk scores. The nomogram predicted the

survival probabilities at 1, 2, and 3 years based on the total score.

The performance of the model in predicting patient survival was

evaluated using calibration and ROC curves. The differentially

expressed genes (DEGs) in the “High-risk”and “Low-risk” groups

were identified after analysing the risk differences. PCA was

performed using the “scatterplot3d package” in R to assess the

differences in the PRLs used for model development between the

two risk groups. The feature enrichment annotations and pathways

of the DEGs in each group were identified by Gene Ontology (GO),

Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set

Enrichment Analysis (GSEA).
2.5 Integrated analysis of somatic
mutations and drug sensitivity

The maftools package in R was used to identify the somatic

mutations in patients with BC. The mutation spectra of the “High-

risk” and “Low-risk” groups were compared using waterfall plots.

The IC50 values of drugs commonly administered to patient groups

with different types of BC were estimated using the oncoPredict

algorithm to assess drug sensitivity and evaluate the potential

therapeutic effects based on the drug sensitivity profiles.
2.6 Screening of differentially expressed
lncRNAs selected for model development

The Limma, survival, and survminer packages in R were used to

verify the expression, OS, and clinical grouping models of the 17

PRLs selected for model development. The AC016394.2 and

AC022150.4 lncRNAs were selected as research objects, and the

Tidyverse package in R was used to screen the genes co-expressed

with AC016394.2 and AC022150.4.
2.7 Prediction of co-expressed genes at
single-cell landscape

Gene set related to breast cancer was retrieved from http://

tisch.compbio.cn/, and the BRCA_EMTAAB8107 gene set was

finally selected for analysis. After annotating the cell clusters, the
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immune-related cells with the most significant differences in co-

expressed genes among various immune cells were identified.
2.8 Cell culture

The luminal-type MCF-7, Her-2-type SKBR3, BT474 and

TNBC-type MDA-MB-231, MDA-MB-468, and SUM-159 human

BC cell lines, as well as normal breast epithelial MCF-10A cells,

were purchased from the American Type Culture Collection

(ATCC). All the cells were cultured in Dulbecco’s Modified Eagle

Medium (DMEM) supplemented with high glucose (Gibco, USA)

and 10% foetal bovine serum (Gibco, USA) at 37°C in a humidified

incubator with 5% CO2.
2.9 Fluorescence-based real-time
quantitative polymerase chain reaction

The total RNA was extracted as protocol, and 2 × ChamQ

Universal SYBR qPCR Master Mix (Q711-02, Vazyme, Nanjing,

China) were used for qRT-PCR. The following primer sequences

used for qRT-PCR (details in Table 1).
2.10 Transfection

The overexpression and siRNA plasmids of AC016394.2 and

AC022150.4 were purchased from Qingke Biotechnology Co., Ltd.,

Wuhan, China. The cells were seeded into 6-well plates at 1×105,

and transfection was performed after 24h using Lipofectamine

3000, according to the standard protocol.
2.11 Assessment of cell proliferation
potential

Cell viability was assessed using CCK-8 assays with a HY-K0301

kit (Shanghai, China), and 1000 cells were seeded and incubated for

2 weeks for the colony formation assay. The cells were fixed with

paraformaldehyde for 0.5 h and stained with crystal violet by

incubating for 1 h, following which the colonies were enumerated

and images were captured at 24, 48, 72, and 96 h.
2.12 Cell scratch assay

The cells were inoculated into a 6-well plate, and the tip of a

sterile 200mL pipette was used to create scratches on the surface of

the culture when the cells reached a confluence of 90%. The

detached cells were subsequently washed with PBS, following

which serum-free medium was added to the culture, and the cells

were incubated for 24 h. Images of the cell plates were captured

using an inverted microscope at 0 and 48 h. The pixel area of the
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scratch was calculated using Image J software, and the scratch

recovery rate was calculated as: (pixel area at 0 h - pixel area at

48 h)/pixel area at 0 h.
2.13 Mouse xenograft model and
immunohistochemistry (IHC) analysis

BALB/c nudemice, aged 3–4 weeks, were purchased from Southern

Model Biotechnology Co., Ltd. (Shanghai, China). The mice were

divided into a control group 1, AC016394.2 overexpression group,

control group 2, and AC092894.1 overexpression group. Approximately

3 × 106 SUM159/BT-474/MCF-7 vector or SUM159 BT-474/MCF-7-

AC022150.4 cells were implanted in situ onto the right adipose pads of

the mice. The mice were euthanised after 14 days and the tumours were

surgically removed.

The tumour tissues were embedded in paraffin, sectioned,

deparaffinised, and rehydrated through a graded alcohol series.

Antigen retrieval was subsequently performed with Tris-EDTA

buffer, followed by incubation with 3% H2O2 for 30min to block

the activity of endogenous peroxidases. The slides were blocked with

10% normal goat serum (BOSTER Biological Technology co.Ltd.) for

30min at 37°C, and subsequently incubated overnight at 4°C with

mouse anti-human Ki-67 antibody (cat. no. ZM-0166; ZSGB-BIO,

Beijing, China). The sections were rinsed with wash buffer and

subsequently incubated with an anti-mouse/rabbit polymer kit

(EnVision Plus; Dake) for 30 min at 20°C. The IHC samples were

incubated with a secondary antibody for 30 min at 20°C the following

day, followed by detection with 3,3’-Diaminobenzidine (DAB). The

stained sections were finally observed under a microscope, and

images were captured.
2.14 ABE assay

Protein palmitoylation modification was detected using the ABE

method. The HA-SEC24C/HA-ZNF611 plasmid was transiently

transfected into HEK293T cells, which were then collected and

washed with cold PBS after 48 hours. Subsequently, sh-LncRNA (sh-

AC016394.2/AC022150.4) was transfected 24 hours prior to cell

collection. The cells were lysed on ice for 1 hour in lysis buffer

containing 50 mM NEM (Sigma-Aldrich, E3876) and a protease

inhibitor. The target protein was immunoprecipitated using an anti-

HA antibody (Beyotime, AF0039) and protein A/G magnetic beads
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(Beyotime, P2108-5ml). The purified protein was incubated at room

temperature with a buffer containing 1 M HAM (Sigma-Aldrich,

814441) for 1 hour, followed by treatment with a buffer containing

5 mM biotin-BMCC (Invitrogen, 21900) at pH 6.2 for an additional

hour at 4°C. Finally, the samples were analysed via Western blotting

using an anti-HA antibody (1:1000; Beyotime) and HRP-streptavidin

(1:5000; Beyotime).
2.15 Western blot

The cells were washed three times with PBS and subsequently

lysed on ice for 15 minutes using RIPA buffer (Beyotime, P0013B)

supplemented with PhosSTOP™ protease inhibitor (Roche,

04906837001). Following lysis, the samples were centrifuged at

15,000 rpm for 15 minutes to obtain the supernatant. After

quantifying the protein concentration via BCA assay, an equal

amount of protein was subjected to SDS-PAGE. The specified

antibody was employed as a probe, and detection was performed

utilising a chemiluminescence substrate (Pierce). The antibodies

used in this study included: anti-SEC24C (Novus, NBP2-94294-

0.02ml) for human SEC24C; anti-ZNF611 (CUSABIO, CSB-

PA026891GA01HU) for human ZNF611; anti-Ki67 (Proteintech,

28074-1-AP) for mouse Ki67; anti-b-actin (GenScript, A00702);

anti-GAPDH (Proteintech, 60004-1-Ig); HRP-linked anti-Mouse

IgG (CST, 7076); and HRP-linked anti-Rabbit IgG (CST, 7074).
2.16 Statistical analyses

The data are presented as the mean ± standard deviation (SD),

and the statistical analyses were performed using R v4.4.2 (https://

www.r-project.org/) and SPSS v25.0. Statistical significance was

considered at P < 0.05 and indicated by asterisks: *P< 0.05, **P <

0.01, ***P < 0.005, and ****P < 0.001.
3 Results

3.1 Schematic representation of PRLs and
research methodology

The process of protein palmitoylation is illustrated in Figure 1A.

LncRNAs play critical roles in promoting or suppressing the
TABLE 1 Real-time RT-qPCR primer sequences.

Species Molecule Forward (5’-3’) Reverse (5’-3’)

Human AC016394.2 ACCCGAAGGAAGACTCCTCT ATCCTGGTGTGCAGAATGGG

Human AC022150.4 GATCTGTGTGGACCCCAGAA CTCCGGTCCCCAGCATAGAA

Human SEC24C CGTCTCCTACAATGCCATCAGG GGTGACAAAGCCAACGCGGATT

Human ZNF611 CCCTTCACAGAGGGCTTTGTAC GCAATGTCCCTGTGTGGATCAC

Human GAPDH CCATGGGTCGAATCATATTGGA TCAACGGATTTGGTCGTATTGG
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development of cancer, and several aspects of lncRNA biology,

including their functions in tumour metastasis, tumour

proliferation, angiogenesis, drug resistance, and immune escape,

have been extensively investigated (Figure 1B). Protein

palmitoylation and lncRNAs have substantial research potential, as

depicted in Figure 1C. The research methodology is depicted in a

flowchart in Supplementary Figure S1.
3.2 Determination of expression of PRLs
and model development

The transcriptome expression data of 1,118 BC tissue samples

and 113 adjacent normal tissue samples were retrieved from TCGA.

The expression levels of 30 PALMs reported in the literature
Frontiers in Immunology 05
(Supplementary Table S1) were determined after distinguishing the

mRNAs from lncRNAs, and their differential expression between

tumour tissues and adjacent normal tissue samples was analysed

(Figure 2A). The lncRNAs that were co-expressed with PALMs were

identified, and the network nodes were subsequently visualised

(Figure 2B). The nodes were then statistically analysed to identify

the lncRNAs that were differentially expressed between tumour

tissues and adjacent normal tissue samples (Supplementary Table

S2). The differentially expressed lncRNAs were represented using

volcano plots and heat maps (Figure 2C). The correlation between the

PALMs and differentially expressed lncRNAs was illustrated using a

Sankey diagram (Figure 2D), and a total of 592 PRLs were finally

identified (Supplementary Table S3). A total of 1,098 clinical samples

were retrieved from TCGA-BRCA, and the lncRNA expression data

were combined with the survival data to identify 22 lncRNAs
FIGURE 1

Potential significance of the combined study of palmitoylation and LncRNA. (A) The diagram of protein palmitoylation. (B) The bidirectional
regulatory role of LncRNA in tumours. (C) The potential research value of palmitoylation and LncRNA.
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associated with the prognosis of BC (Figure 2E). In our analysis, we

aimed to maximise sample matching by merging expression and

survival datasets. Ultimately, we identified a total of 1,098 cases and

divided them into training and validation sets at a ratio of 1:1

(n1=n2=594). The training set was used to construct a prognostic
Frontiers in Immunology 06
model, and the accuracy of the model was validated using the test set.

The model was represented using the following formula, which was

used to calculate the risk score for each sample: Risk score=

o∞
n=1(en � bn).As aforementioned, the samples were divided into

the Risk-high and Risk-low groups, based on the median risk score.
FIGURE 2

Expression and Prognostic Model of PRLs. (A) Differential expression analysis of 30 palmitoylation-related genes (PALMs) in breast cancer cells.
(B) Node diagram illustrating the co-expression relationship network between PALMs and LncRNA. (C) Analysis of differential expression of LncRNA
in breast cancer cells. (D) Sankey plot depicting the correlation between differentially expressed lncRNAs and PALMs. (E) Distinction between the
training set and test set for “high-risk” and “low-risk” groups, including a forest plot of 22 lncRNAs associated with prognosis, as well as results from
Lasso regression analysis. (F) Heat map representing the differential expression of 22 lncRNAs in breast cancer cells. (G) Correspondence between
the nine PRLs utilised for model development and PALMs. *P < 0.05, **P<0. 01, ***P<0. 001.
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The results of univariate analysis revealed that 22 lncRNAs were

associated with the prognosis of BC, of which 17 characteristic

lncRNAs were identified by Lasso regression analysis (Figure 2F).

Statistical analysis of the clinical data revealed no significant

differences in the clinical characteristics between the training and

test sets (P > 0.05; Supplementary Table S4). The correlation between

the PALMs and the 9 PRLs used for model development was

represented using a heat map to observe the corresponding

relationships between these PRLs and PALMs (Figure 2G).
3.3 Validation of the survival prediction
potential of PmPRLs

The differences between the “High-risk” and “Low-risk” patient

groups were analysed using the survival and survminer packages in

R. The findings revealed significant differences in progression-free

survival (PFS; P < 0.05; Figure 3A) and OS rates (P < 0.05;

Figure 3B) among the sample, training, and test sets derived from

the “High-risk” and “Low-risk” groups. The mortality rate increased

with higher risk scores across all three groups. The risk score,

survival status, and results of differential heat map analysis are

discussed hereafter. Among the 9 PRLs selected for model

development in this study, AC096642.2, AC016394.2,

AC022150.4, and Z68871.1 were identified as high-risk lncRNAs

(associated with poor prognosis), while AP000331.1, AC090510.2,

AC011815.1, AL109936.9, and AL162386.2 were low-risk lncRNAs

(associated with good prognosis), and these classifications remained

consistent across the sample, training, and test sets (Figure 3C).

Further classification of the tumour samples indicated that the PRL-

based model developed herein exhibited significant potential for the

classification of BC tumours and risk stratification (Supplementary

Figure S2). Due to variations in age, stage, and risk score (P < 0.05),

the accuracy of PmPRLs can be attributed to the inclusion of PRLs,

which serve as an independent prognostic factor of BC (Figure 3D).
3.4 Association between PmPRLs and
clinical traits, and functional analysis of
“High-risk” and “Low-risk” patient groups

The PRL-based prediction model created in this study can be

used to estimate the 1-year, 3-year, and 5-year survival rates of

patients. The AUC value of the model exceeds 0.65 (AUC > 0.5),

suggesting its robust predictive performance. Furthermore, by

integrating the model with clinical features and validating it

through ROC curve analysis, the results demonstrated that the

model’s AUC was significantly higher than 0.5 (Figure 4A),

confirming its high accuracy in predicting survival. Additionally,

C-index analysis revealed that the model’s performance in survival

prediction is comparable to or even surpasses traditional clinical

features (Figure 4B). This study also constructed a nomogram to

assist in survival prediction. By quantifying the scores of various

clinical features and calculating the composite score, the survival
Frontiers in Immunology 07
probabilities of patients can be intuitively estimated. For instance, if

the composite score of a sample is 247, the predicted survival

probabilities for 1 year, 3 years, and 5 years are 0.978, 0.878, and

0.776, respectively. Calibration curve analysis further validated the

high accuracy of the nomogram in predicting 1-year, 3-year, and

5-year survival periods (Figure 4C). Clinical correlation analysis

showed significant differences between the “High-risk” group and

the “low-risk” group in overall staging, T staging, and N staging (P <

0.05; Figure 4D), indicating that the risk stratification of the model

has important clinical implications. Further validation of the model

using the clinical dataset demonstrated its applicability to samples

from different clinical groups (Supplementary Figure S3). The nine

PRLs used for model development varied more significantly

between the “High-risk” and “Low-risk” groups than the other

PRLs, PALMs, and all lncRNAs. The PRLs used for model

construction exhibited significant discriminative potential,

distinguishing between the “High-risk” and “Low-risk” groups

(Figure 4E). Analysis of risk differences revealed that 173 genes

were differentially expressed between the “High-risk” and “Low-

risk” groups (Supplementary Table S5). These DEGs were subjected

to GO analysis, and the results were depicted using circle plots. The

findings revealed that the DEGs were significantly enriched in

various GO terms across the biological process (BP), cellular

component (CC), and molecular function (MF) categories. These

terms included the cell chemotaxis term in the BP category;

secretory granule lumen, cytoplasmic vesicle lumen, vesicle

lumen, and collagen-containing extracellular matrix terms in the

CC category; and the G protein-coupled receptor binding term in

MF (Figure 4F). KEGG enrichment analysis revealed that the

neuroactive ligand-receptor interaction pathway was most

significantly enriched and associated with the highest number of

DEGs (Figure 4G). The results of GSEA revealed that the cell cycle,

Natural Killer cell (NK)cell-mediated cytotoxicity, proteasome,

tight junction, and viral myocarditis pathways were activated in

the “High-risk” group, while hematopoietic cell lineage, primary

immunodeficiency, and systemic lupus erythematosus were

activated in the “Low-risk” group (Figure 4H).
3.5 Relationship between PmPRLs and
immune function

The ESTIMATE package in R was used to calculate the

StromalScore, ImmuneScore and ESTIMATEScore of the samples,

and a differential analysis of the tumour microenvironment was

conducted. The results showed that StromalScore, ImmuneScore

and ESTIMATEScore were significantly different between the

“High-risk” group and the “Low-risk” group (Figure 5A). The

Cibersort package in R was used to analyse immune cell

infiltration, and the abundance of each immune cell type in the

samples was statistically analysed. The bar chart showed the

differences in immune cell composition between the “High-risk”

group and the “low-risk” group, as well as the positive and negative

regulatory relationships among immune cells. The violin plot

further depicted the significant differences in the abundance of
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CD4+ memory T cells and NK cells between the two groups

(Figures 5B-C). Further analysis revealed that CD4+ Th2 cells and

CD4+ memory T cells were the key differential immune cell types

between the “High-risk” group and the “low-risk” group

(correlation coefficients: 0.319 vs. 0.190; P-values:3.18E-27 vs.

2.30E-10) (Figure 5D). Subsequently, the GSVA package in R was

used to evaluate the significant differences in immune function

between the “High-risk” group and the “low-risk” group. Further

ssGSEA revealed variations in the abundance of Th cells in the

“High-risk” group (Figure 5E). T cell co-inhibition, APC co-

stimulation, APC co-inhibition, checkpoints, para-inflammation,
Frontiers in Immunology 08
MHC class I, and type I IFN response were all significantly elevated

in the “High-risk” group (P < 0.05; Figure 5F). The genes associated

with key immune checkpoints, including PDCD1LG2, TNFRSF25,

ICOS, TNFRSF9, TNFRSF15 , TNFRSF4, and CD80, were

differentially expressed between the “High-risk” and “Low-risk”

groups (Figure 5G). The number and percentage of C1–C5 immune

subtypes were compared between the “High-risk” and “Low-risk”

groups for immune typing analysis. The chi-square test yielded a P

value< 0.05, indicating significant differences in immune typing

between the groups (Figure 5H). The efficacy of immunotherapy in

the “High-risk” group and “Low-risk” group was evaluated based on
FIGURE 3

Validation of the correlation between PmPRLs and survival rate in “high-risk” and “low-risk” groups. (A) Progression-free-survival (PFS) in two groups.
(B) Overall Survival (OS)of patients in the sample, training, and test sets. (C) Risk scores and survival status. (D) Correlation between model prediction
and prognostic outcomes.
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FIGURE 4

Association of PmPRLs with clinical characteristics and functional analysis. (A) The AUC values of the model were used to predict 1-year, 3-year and
5-year survival rates. (B) C-index analysis indicated that the predictive performance of the model in estimating patient survival rates was comparable
to or even better than that of other clinical characteristics. (C) The nomogram and calibration curve were used to quantitatively score the prognosis
of breast cancer (BC). (D) Correlation analysis of clinical characteristics revealed significant differences. (E) The nine PRLs used in model
development showed significant discriminatory ability. (F–H) The results of GO, KEGG and GSEA enrichment analysis between different groups.
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FIGURE 5

Prediction of immune functions using PmPRLs between the “high-risk” and “low-risk” groups (A) Comparison of the StromalScore, ImmuneScore,
and ESTIMATEScore. (B) Composition of immune cells. (C) Differences in the abundance of CD4+ memory T cells and NK cells. (D) Further analysis
using additional software identified CD4+ Th2 cells and CD4+ memory T cells as the key immune cell types that exhibited significant differences in
abundance. (E) Significant differences in the immune functions of Th cells in the “High-risk” group, as revealed by ssGSEA. (F) T cell co-inhibition,
APC co-stimulation, APC co-inhibition, checkpoint, para-inflammation, MHC class I, and type I IFN response were all significantly elevated in the
“High-risk” group (P < 0.05). (G) Significant variations in key immune checkpoint-related genes (P < 0.05) and (H) immune typing of clinical traits
(P < 0.05). (I) TIDE score in “High-risk” and “Low-risk” groups. *P < 0.05, **P < 0. 01, ***P < 0. 001.
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the TIDE score retrieved from http://tide.dfci.harvard.edu/.

Analysis of the violin plot revealed that the TIDE score was

higher in the “High-risk” group, indicating a greater potential for

immune escape and a poorer response to immunotherapy, which

may contribute to poor prognosis (Figure 5I).
3.6 Association between model score and
gene mutations

A total of 967 samples harbouring mutations were retrieved

from TCGA-BRCA and categorized into the “High-risk” group and

“Low-risk” groups based on the median risk score. The mutation

frequency and tumour mutational burden (TMB) of the two groups

were calculated using the maftools package in R. The mutation

frequencies of PIK3CA, CDH1, GATA3, and MAP3K1 were higher

in the “Low-risk” group compared to those of the “Low-risk” group

(Figure 6A). The TMB data and base mutation data of BC samples

were retrieved from TCGA. A KM plot was generated to compare

the survival probabilities of the high and low TMB groups, which

revealed that the high TMB group exhibited a lower survival

probability (P = 0.021; Figure 6B). The samples from TCGA were

subsequently divided into four groups based on the level of risk

(high or low) and TMB status, and the survival curves were fitted.
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The findings revealed that the “High-risk” and high TMB group

exhibited the highest risk of BC (P < 0.001; Figure 6C).
3.7 Screening anti-cancer drugs against
risk groups identified with PmPRLs

A total of 79 anti-cancer drugs with known sensitivity data (IC50)

and significant associations with the developed model were screened

using the “oncoPredict package” in R. Among the commonly used

chemotherapy and targeted drugs for BC, we selected and analysed

the sensitivity to 12 drugs. The findings demonstrated that the “Low-

risk” group exhibited higher sensitivity to these drugs compared to

the “High-risk” group (Figure 7).
3.8 Differential expression of PRLs for
model development: correlation analysis

Subsequently, we analysed the differential expression of nine

PRLs used for model development in tumour tissues compared to

adjacent normal tissues. The results showed that AC016394.2 and

AC022150.4 were significantly upregulated in tumour tissues
FIGURE 6

Analysis of somatic cell mutations based on model scores. (A) The waterfall plot illustrates the mutated genes and their mutation frequencies in the
“High-risk” and “Low-risk” groups. (B) TMB levels in the two groups (P = 0.021). (C) Survival curves of the high TMB and low TMB groups, and the
combined survival curve incorporating TMB levels and risk score (P = 0.001).
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compared to adjacent normal tissues (Figure 8A, P < 0.05), while the

expression levels of AC096642.2, AP000331.1, AC090510.2,

AC011815.1, Z68871.1, AL109936.9, and AL162386.2 were

significantly downregulated (Supplementary Figure S4A). Further

analysis indicated that the low expression of AC016394.2 and

AC022150.4 was associated with a higher overall survival rate (OS)

(Figure 8B), and a similar trend was observed for AC096642.2 (P =
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0.044) and Z68871.1 (P = 0.025). In contrast, the high expression of

AP000331.1 (P = 0.036), AC011815.1 (P = 0.026), and AL109936.9 (P

= 0.005) was associated with a higher OS. However, the expression

levels of AC090510.2 and AL162386.2 were not significantly

correlated with OS (P > 0.05; Supplementary Figure S4B).

Interestingly, the external dataset TANRIC confirmed the high

expression of AC022150.4 in tumours compared to normal cells
FIGURE 7

Differences in drug sensitivity of risk groups identified using PmPRLs. (A–L) Variations in the sensitivity of the different risk groups identified using
PmPRLs to the 12 drugs for BC.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1656593
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1656593
(P<0.05; Supplementary Figure S4C). Based on these findings, we

selected AC016394.2 and AC022150.4 for further study. Through co-

expression analysis, we initially identified the genes regulated by these

two lncRNAs and screened out differentially expressed genes (DEGs)

with correlations (R) greater than 0.6 and 0.8. Ranked in the
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descending order of correlation, the genes regulated by AC016394.2

were SEC24C, SMARCAD1, andAP3M1, while the genes regulated by

AC022150.4 included ZNF611 and USP34 (Figure 8C). The

expression profiles of the other related genes with weak correlation

are depicted in Supplementary Figure S5. The co-expression patterns
FIGURE 8

Correlation analysis of differentially expressed PRLs used for model development. (A, B) Analyses of the differential expression of AC016394.2 and
AC022150.4 in tumour and adjacent tissues, and associated survival trends. (C) Correlation between the genes regulated by AC016394.2 (SEC24C,
SMARCAD1, and AP3M1) and AC016394.2, as well as the correlation between the genes regulated by AC022150.4 (ZNF611 and USP34) and
AC022150.4. (D) Differences in the positive and negative regulatory relationships between the risk of BC associated with lncRNAs and various genes.
**P < 0. 01, ***P < 0. 001.
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of AC016394.2 and AC022150.4 were visualized using a heat map,

which revealed that an increase in the expression of these lncRNAs

was associated with both positive and negative regulatory

relationships between different genes and target lncRNAs (P <

0.01; Figure 8D).
3.9 Prediction of immune functions of
SEC24C and ZNF611 at single-cell level

The BRCA_EMTAAB8107 BC gene set was retrieved from

http://tisch.compbio.cn/ and subsequently divided into 19 clusters

(Figure 9A). The distribution of various immune cell types was

analysed following cell annotation (Figure 9B). The findings

revealed that the proportion of malignant and CD8+ T cells was

the highest (Figures 9C–D), while SEC24C and ZNF611 were

predominantly localized in mast cells (Figures 9E–F).
3.10 Effects of AC016394.2 and
AC022150.4 on cell growth, proliferation,
and migration

The total RNAwas extracted from the six breast cell lines, including

normal MCF-10A breast epithelial cells, luminal-type MCF-7 cells,

Her-2-type SKBR3 cells, and TNBC-type MDA-MB-231, MDA-MB-

468, and SUM-159 cells, and subjected to qPCR analysis. The results

demonstrated that the two PRLs used for model development,

AC016394.2 and AC022150.4, were markedly differentially expressed

across the different subtypes of BC cell lines, which was consistent with

the results of earlier bioinformatics predictions (Figure 10A). TheMCF-

7 and SUM-159 cells were subsequently transfected with

overexpression and siRNA plasmids constructed for the

overexpression and knockdown of AC016394.2 and AC022150.4, and

the findings revealed that the expression of AC016394.2 and

AC022150.4 was significantly affected (Figure 10B). CCK-8

proliferation assays revealed that the proliferation of MCF-7 and

SUM-159 cells was significantly activated/inhibited at the 96-h mark

following treatment with the overexpression/siRNAs (Figure 10C).

Clone formation assays additionally demonstrated that treatment

with siRNAs targeting AC016394.2 and AC022150.4 inhibited cell

growth but acquired rescue after overexpression (Figure 10D). The

treatment of MCF-7 cells with siRNAs targeting AC016394.2 and

AC022150.4 significantly reduced the rate of migration after 48 h,

compared to that of the control group (Figure 10E). Following surgery,

the SUM-159 (TNBC), BT-474 (HER2+), and MCF-7 (Luminal) cells

overexpressing AC016394.2 and AC022150.4, along with control cells

harbouring the vector, were xenografted into BALB/c nude mice. The

mice were euthanised after 14 days and the tumours were removed.

Histopathological sections were prepared and stained, and subsequent

IHC analysis revealed that the nuclear expression of Ki-67 was

significantly upregulated (Figure 10F).
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3.11 The relationship between these two
lncRNAs and palmitoylation

Based on the previous co-expression analysis, it has been

established that the gene regulated by AC016394.2 is primarily

SEC24C, while the gene regulated by AC022150.4 is predominantly

ZNF611. Following the lysis of SUM-159 cells, the supernatant was

collected for further analysis. The expression levels of LncRNA and

target gene mRNA were assessed using quantitative PCR

(qPCR), revealing no significant differences in expression levels

(Figure 11A). Subsequently, overexpression vectors for AC016394.2

and AC022150.4 were transfected into target cells, leading to a

marked increase in protein expression levels of SEC24C and

ZNF611, as determined by Western Blot analysis(Figure 11B).

This suggests that LncRNA may have facilitated post-translational

modifications of these target proteins. To investigate palmitoylated

proteins, ABE (Acyl-Biotin Exchange) assays were conducted with

interference from AC016394.2/AC022150.4 knockdown

experiments. The results indicated that silencing AC016394.2

significantly diminished the palmitoylation of SEC24C, whereas

knockdown of AC022150.4 resulted in decreased palmitoylation of

ZNF611 (Figure 11C).
4 Discussion

PRL can regulate various stages of transcription, for instance, by

forming a triple helix structure with DNA and interfering with the

binding of transcription factors to DNA. Unlike mRNAs, lncRNAs

can directly regulate gene expression at the transcription initiation

stage. Some PRLs can act as tumour suppressors or promoters,

thereby controlling the proliferation, invasion, and metastasis of

tumour cells. These findings suggest that therapeutic intervention

targeting lncRNAs involved in protein palmitoylation may have

higher specificity and fewer side effects, providing new strategies

and directions for the treatment of various malignant tumours.

Therefore, this study identified 592 PRLs and constructed a

predictive model (PmPRL) based on their risk levels to assess the

prognosis of breast cancer (BC). The training set was validated

using an internal validation set based on clinical features, and the

results demonstrated that PmPRL could serve as an independent

prognostic model. Subsequently, patients were divided into “High-

risk” and “low-risk” groups based on PmPRL, and differentially

expressed genes (DEGs) between the two groups were analysed,

ultimately identifying 173 DEGs. Further gene set enrichment

analysis (GSEA) revealed that these genes exhibited significantly

different activities between the “High-risk” and “low-risk” groups.

Patients in the “High-risk” group had lower survival rates and

decreased drug sensitivity. Additionally, immune cell and immune

microenvironment analysis indicated significant differences in Th

cell immune function in the “High-risk” group. Moreover, multiple

immune-related pathways were activated, including T cell
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co-inhibition, antigen-presenting cell (APC) co-stimulation, APC

co-inhibition, checkpoints, anti-inflammatory responses, MHC

class I molecule expression, and type I IFN responses. Through

in-depth exploration of the nine PRLs involved in the model

development process, two key lncRNAs, AC016394.2 and
Frontiers in Immunology 15
AC022150.4, were identified. Co-expression analysis revealed that

SEC24C and ZNF611 were highly correlated with AC016394.2 and

AC022150.4, respectively, and predicted their potential roles in

immune function. The research results showed that these two genes

were mainly located in mast cells. In vitro and in vivo experiments
FIGURE 9

Prediction of the potential immune roles of SEC24C and ZNF611 at the single-cell level. (A, B) Clustering and annotation of the BRCA_EMTAAB8107
BC dataset. (C, D) Malignant and CD8+ T cells were the most abundant cell types in the dataset. (E, F) SEC24C and ZNF611 were predominantly
localized in mast cells.
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FIGURE 10

Functional verification of LncRNA AC016394.2 and AC022150.4. (A) Expression of lncRNAs in normal breast epithelial cells and different subtypes of
BC cells. (B) Expression of AC016394.2 and AC022150.4 after the process of siRNA and siRNA+OE. (C) Proliferation rates of MCF-7 and SUM-159
cells at different time points following treatment with siRNAs and siRNA+OE targeting AC016394.2 and AC022150.4. (D) Alterations in cell growth
following treatment with siRNAs and siRNA+OE targeting AC016394.2 and AC022150.4. (E) The migration rate of MCF-7 cells treated with siRNAs
targeting AC016394.2 and AC022150.4 was lower than that of the control group after 48 (h) (F) Assessment of Ki-67 expression in cells
overexpressing AC016394.2 and AC022150.4 by IHC analysis. *P < 0.05, **P < 0.01, ***P < 0.005, ****P < 0.001, ns, not significant (P > 0.05).
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further confirmed that both AC016394.2 and AC022150.4 could

promote the proliferation and migration of breast cancer cells,

laying the foundation for further investigation of the molecular

mechanisms of these two lncRNAs.

It is worth noting that recent studies have shown that mast cells

play a crucial role in the anti-tumour immunity of triple-negative

breast cancer (TNBC).Moreover, there is evidence that the functional

activation of mast cells in combination with PD-L1 inhibitors can

significantly inhibit the growth and progression of TNBC tumours.

Therefore, mast cells may become potential targets for enhancing the

efficacy of immunotherapy (12). Given that SEC24C and ZNF611 are

regulated by lncRNAs AC016394.2 and AC022150.4, respectively, it
Frontiers in Immunology 17
is speculated that they may regulate immune function by influencing

the activity of mast cells.

Lu et al. reported that AC016394.2 can act as a copper death-

related lncRNA, and its differential expression can be used to

predict the functional characteristics of prostate cancer (13). The

study by Xing et al. revealed that AC016394.2 can also function as a

disulfide death-related lncRNA, and can be used to predict the

prognosis of gastric cancer (14). Another study demonstrated that

the AC022150.4 lncRNA likely holds predictive potential for

assessing lipid metabolism in BC (15). AC022150.4 can also

function as a blood exosome-related lncRNA and act as a

prognostic predictor in small cell lung cancer (16).
FIGURE 11

The role of LNCRNA in palmitoylation modification of co-expressed proteins. (A) The expression levels of both LncRNA and target gene Mrna.
(B) The protein expression status of their interacting proteins after overexpression of two LncRNAs respectively. (C) SEC24C and ZNF611
palmitoylation in sh-LncRNA lentivirus–infected HEK293T cells analysed by ABE assay. ns, not significant (P> 0.05).
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The present study has one limitation, namely, all the data

pertaining to BC were retrieved from TCGA, which may have

introduced potential biases.

In summary, the present study established a novel PRL

signature in BC and experimentally validated the predictive

potential of the PRLs, AC016394.2 and AC022150.4, in estimating

the prognosis of BC, and their verification of palmitoylation

modification in co-expressed proteins.
5 Conclusion

The present study identified two novel PRLs that are likely

associated with the prognosis of BC. By screening the “High-risk”

and “Low-risk”groups for drug sensitivity, the study identified

potential therapeutic targets for the treatment of BC in these

groups. Given the critical roles of lncRNAs in cellular physiology,

immune function, and other cellular processes, the findings offer

novel insights for increasing the survival rate of patients with BC.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author/s.
Ethics statement

The animal study was approved by All the animal experiments

were approved by the Mouse Research Ethics Committee of

Southwest Hospital (approval number: KY2023153). The study

was conducted in accordance with the local legislation and

institutional requirements.
Author contributions

YW: Writing – original draft, Data curation. MZ: Visualization,

Formal Analysis, Writing – original draft. YuZ: Writing – original

draft, Formal Analysis. ZL: Software, Writing – original draft.

XY: Investigation, Writing – review & editing. LR: Writing –

review & editing, Validation, Project administration, Supervision.

YiZ: Conceptualization, Investigation, Writing – review & editing,

Methodology, Funding acquisition, Project administration.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. The present study was

funded by Chongqing Major Medical Research Program (Joint

Program of Chongqing Municipal Health Commission and

Science and Technology Bureau; grant number: 2024DBXM001)
Frontiers in Immunology 18
and Chongqing Clinical Diagnosis and Treatment Centre of Breast

Cancer (grant number: 425Z2a1).
Acknowledgments

The authors acknowledge the use of publicly available data from

The Cancer Genome Atlas.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1656593/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

Flowchart depict ing the research methodology for PRL-based

model development.

SUPPLEMENTARY FIGURE 2

Classification of tumor samples using PmPRLs. The tumor samples were

classified based on the expression levels of PRLs used for model

development, and were divided into three subtypes. The BC tumor samples
were classified using PmPRLs. Among the tested values, k = 3 exhibited a flatter

distribution and was more closely aligned with the maximum Cumulative
Distribution Function (CDF). A Based on this, k = 3 was selected for

classification, and the BC tumor samples were categorized into three
subtypes, namely, cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). B Survival

analysis indicated that the prognosis of C1 was poorer than that of C1 and C3. C
The relationship between tumor subtypes and the “High-risk” and “Low-risk”
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groups was illustrated using the Sankey diagram, which revealed that C3 and C1
primarily consisted of patients with low and high risk scores, respectively. D
Analysis of the tumor microenvironment of classified tumors. The stromal cell
scores varied between C1 and C2. Differences in immune cell scores between

C1 and C2, and between C2 and C3. Differences in the ESTIMATEScore

between C2 and C3. The findings indicate the potential of PmPRLs in
classifying BC tumors and risk stratification. E Analysis of immune cell types in

the three subtypes, as determined by various software. F Analysis of immune
checkpoints across the classified subtypes revealed differences among C1, C2,

and C3. *:P < 0.05, **:P<0.01, ***:P<0. 001.

SUPPLEMENTARY FIGURE 3

Survival curves of different clinical subgroups based onrisk scores. The model
was applicable to samples from different clinical groups, primarily showing

survival differences in terms of A age (>65 (P = 0.007) and ≤65 (P < 0.001); B
sex (female; P < 0.001), C overall stage (P < 0.001), D T stage (P < 0.001), and E
N stage (P < 0.05). F The model was not applicable to male patients (P =
0.540) and those with M1 stage tumors (P = 0.860).
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SUPPLEMENTARY FIGURE 4

Expression and survival plots of the seven lncRNAs used for modeling. A The
lncRNAs AC096642.2, AP000331.1, AC090510.2, AC011815.1, Z68871.1,

AL109936.9, and AL162386.2 were expressed at low levels. B Low
expression levels of AC096642.2 (P = 0.044) and Z68871.1 (P = 0.025)

were associated with higher OS. Conversely, high expression levels of

AP000331.1 (P = 0.036), AC011815.1 (P = 0.026), and AL109936.9 (P =
0.005) were associated with higher OS, while high or low expression levels

of AC090510.2 and AL162386.2 were not associated with significant
differences in OS (P > 0.05). C. The external dataset TANRIC confirmed the

differential expression of AC022150.4 between tumor and normal cells
(P<0.05). *:P < 0.05, **:P<0. 01, ***:P<0. 001.

SUPPLEMENTARY FIGURE 5

Genes co-expressed with AC016394.2 and AC022150.4. A Correlation

between AC016394.2 and the co-expressed genes, INO80, TNKS2, WAPL,
and ZSCAN29. B Correlation between AC022150.4 and the co-expressed

genes, USP37 and ZNF808.
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Glossary

PPT1 Palmitoyl - protein thioesterase 1
APT1 Protein acyl – thioesterases 1
APT2 Protein acyl – thioesterases 2
ABHD17A Abhydrolase Domain Containing 17A
ABHD17B Abhydrolase Domain Containing 17B
ABHD17C Abhydrolase Domain Containing 17C
FASN Fatty Acid Synthase
YTHDF3 YTH Domain Family Protein 3
MYC Myelocytomatosis Oncogene
CLOCK Circadian Locomotor Output Cycles Kaput
CircPDIA3 Circular RNA - Protein Disulfide - Isomerase A3
GSDME Gasdermin E
IFNGR1 Interferon - gamma Receptor 1
TIM – 3 T -cell immunoglobulin and mucin - domain molecule-3
CAR-T Chimeric Antigen Receptor T – cell
DUXAP8 Double Homeobox A Pseudogene 8
SLC7A11 Solute Carrier Family 7 Member 11
PCA Principal component analysis
MHC Major Histocompatibility Complex
IFN Interferon
PDCD1LG2 Programmed Cell Death 1 Ligand 2
TNFRSF25 Tumour Necrosis Factor Receptor Superfamily Member 25
ICOS Inducible T - cell Co – stimulator
TNFRSF9 Tumour Necrosis Factor Receptor Superfamily Member 9
TNFRSF15 Tumour Necrosis Factor Receptor Superfamily Member 15
TNFRSF4 Tumour Necrosis Factor Receptor Superfamily Member 4
CD80 Cluster of Differentiation 80
TMB Tumour mutational burden
PIK3CA Phosphatidylinositol - 4,5 - bisphosphate 3 - kinase, catalytic

subunit alpha
CDH1 Cadherin – 1
GATA3 GATA - binding protein 3
MAP3K1 Mitogen - activated protein kinase kinase kinase 1
SEC24C SEC24 Homolog C, COPII Coat Complex Component
SMARCAD1 SNF2 Related Chromatin Remodelling ATPase With DExD

Box 1
AP3M1 Adaptor Related Protein Complex 3 Subunit Mu 1
ZNF611 Zinc Finger Protein 611
USP34 Ubiquitin Specific Peptidase 34
TNBC Triple-negative Breast Cancer
PD-L1 Programmed Death - Ligand 1
CDF Cumulative Distribution Function
INO80 INO80 complex ATPase subunit
TNKS2 Tankyrase 2
WAPL WAPL cohesin release factor
ZSCAN29 Zinc Finger and SCAN Domain Containing 29
USP37 Ubiquitin Specific Peptidase 37
ZNF808 Zinc Finger Protein 808
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