? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Takahiro Tsujikawa,

Kyoto Prefectural University of Medicine,
Japan

REVIEWED BY

Yingpu Li,

Harbin Medical University Cancer Hospital,
China

Qizhang Li,

Huaibei Normal University, China

*CORRESPONDENCE
Yi Zhang
yzhang@tmmu.edu.cn
Lin Ren
renlin@tmmu.edu.cn
Xinglin Yi
xinglinyi2024@163.com
These authors share first authorship

RECEIVED 30 June 2025
AccepTED 10 October 2025
PUBLISHED 27 October 2025

CITATION
Wang Y, Zhang M, Zhou Y, Li Z, Yi X, Ren L
and Zhang Y (2025) Construction of a

prognostic model based on palmitoylation-

related IncRNAs for assessing drug benefits in

breast cancer.
Front. Immunol. 16:1656593.
doi: 10.3389/fimmu.2025.1656593

COPYRIGHT
© 2025 Wang, Zhang, Zhou, Li, Yi, Ren and
Zhang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TvPE Original Research
PUBLISHED 27 October 2025
po110.3389/fimmu.2025.1656593

Construction of a prognostic
model based on palmitoylation-
related IncRNAs for assessing
drug benefits in breast cancer

Yan Wang™*, Mengsi Zhang?*', Yuqin Zhou"*, Zaozhuo Li*,
Xinglin Yi**, Lin Ren** and Yi Zhang**

‘Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University,
Chongging, China, 2Key laboratory of Chongging Health Commission for Minimally Invasive and
Precise Diagnosis and Treatment of Breast cancer, Chongqing, China, Institute of Pathology and
Southwest Cancer Centre, Southwest Hospital, Army Medical University, Chongqging, China,
“Department of Information, Shanxi Provincial Armed Police Corps Hospital, Taiyuan, China,
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Background: The IncRNAs associated with protein palmitoylation in breast
cancer (BC) remain largely unexplored.

Methods: We retrieved transcriptome, proteome, and mutation data from TCGA-
BRCA (BC), identified 592 palmitoylation-related IncRNAs (PRLs), constructed a
prognostic model (PmPRLs) based on their characteristics. According to the
score of the median risk, the "High-"and “Low" risk groups were distinguished.
The predictive potential of PmPRLs for the prognosis of BC was determined
through Kaplan-Meier (KM) survival analysis, ROC curve analysis, and risk scoring
verification using the training set and validation set. The differences of PmPRLs in
different risk groups were illustrated by using gene mutation frequency, immune
function, tumour immune dysfunction and rejection (TIDE) score and drug
sensitivity analysis. Based on this model, key feature LncRNAs were screened
out. After the identified LncRNAs were verified by the external dataset TANRIC, a
series of tumour phenotypic experiments were conducted to comprehensively
demonstrate their role in tumourigenesis and development.

Results: We identified 2 key feature IncRNAs, AC016394.2 and AC022150.4, as
the most significant prognostic factors. Both of these IncRNAs exhibited high
expression levels in the TCGA and TANRIC datasets and were closely associated
with tumour cell growth, proliferation, and migration. More importantly, based
on co-expression analysis, we proposed that AC016394.2 and AC022150.4 may
respectively regulate SEC24C and ZNF611. Furthermore, these two IncRNAs
enhanced the palmitoylation modification of these proteins.

Conclusion: The insights regarding the potential roles of AC016394.2 and
AC022150.4 can enhance our understanding of the mechanisms towards the
pathogenesis and progression of BC.
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1 Introduction

BC is a highly prevalent malignant neoplasm, and according to
the recently published Cancer Statistics 2025, female patients
constitute 32% of all newly diagnosed cases (1). Although
advancements in treatment methods and early screening
strategies have reduced the mortality, approximately 420,000 new
cases are diagnosed annually, thereby imposing a significant health
burden on families and society.

Protein palmitoylation (primarily S-palmitoylation) represents
a novel lipid modification that relies on the coordinated actions of
protein acyltransferases (PATs, specifically the ZDHHC family
harbouring zinc finger Asp-His-Cys motifs) and protein acyl
thioesterases (APTs). This process modulates protein function by
altering their lipophilicity, thereby impacting tumour progression,
drug response, and immune response (2). Such enzymes have been
implicated in breast cancer, exhibiting diverse roles as either
oncogenes or tumour suppressors and influencing various aspects
of tumour biology. For instance, ZDHHC4 and ZDHHC22
expression are frequently silenced in breast cancer cell lines, and
their functions appear to suppress tumour growth and metastasis by
regulating RAS and mTOR/AKT (3-5). In contrast, ZDHHC3
palmitates B7-H4, an immune checkpoint, at Cys130 in breast
cancer cells, thus preventing it from being degraded by lysosomes
and maintaining B7-H4-mediated tumour immunosuppression (6).
Beyond these examples, literature has also identified other ZDHHC
PATs that directly or indirectly regulate breast cancer proliferation
(7-9).

Long noncoding RNAs (IncRNAs) are non-coding RNA
molecules which primarily influence the maintenance of
proliferation signals, evasion of growth inhibitors, and resistance
to cell death in tumour cells (10). Although IncRNAs are not
proteins and do not undergo post-translational modifications,
some reports suggest a correlation between IncRNAs and protein
palmitoylation, in that IncRNAs co-expressed with PATs or APTs
not only promote protein palmitoylation or depalmitoylation by
affecting the interaction of their enzyme active sites, but are also
associated with survival prognosis. Such as the IncRNA DUXAPS,
which promotes the palmitoylation and then inhibits ferroptosis in
hepatocellular carcinoma (11). Therefore, in-depth research on the
association between IncRNAs and protein palmitoylation may
facilitate the development of targeted therapeutics.

However, these IncRNAs, which we referred to as palmitoylation-
related IncRNAs (PRLs), have been scarcely investigated to date in
breast cancer. Therefore, the present study aimed to investigate
whether PRLs could regulate BC malignant phenotypes.
Furthermore, we sought to determine if a novel prognostic model
based on these IncRNAs (PmPRLs) could accurately predict patient
prognosis in BC. This research endeavours to provide new insights
for both pharmacological interventions and clinical application
in BC.
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2 Materials and methods

2.1 Data retrieval and preparation of
sample set

The data were retrieved from The Cancer Genome Atlas
(TCGA; TCGA-BRCA cohort; https://tcga-data.nci.nih.gov/tcga/).
The expression data (transcriptome data) include a total of 1,118
breast cancer (BC) tissue samples and 113 adjacent normal
tissue samples, which are followed by 1,098 BC clinical data and
967 somatic mutation data. After differentiating the mRNAs
from IncRNAs, the expression patterns of 30 genes related to
palmitoylation (PALMs) reported in the literature were analysed in
the BC tumour tissues and adjacent normal tissue samples, leading to
the identification of 592 PRLs.

2.2 Development and validation of PmPRLs

After filtering, a total of 1,098 BC samples were randomly divided
into a training set (n = 594) and a validation set (n = 594) at a 1:1 ratio.
A total of 22 PRLs associated with the prognosis of BC were identified
in the training set using univariate Cox regression analysis. A subset of
these PRLs was selected by LASSO-Cox regression analysis to prevent
overfitting. A predictive model for estimating the prognosis of BC was
subsequently developed based on the training set, using multivariate
Cox regression analysis. It was determined that the optimal number of
IncRNAs corresponding to the lowest error point was 17, where
prognostic models were constructed utilising these specific IncRNAs
from which model formulas were derived. The coefficients of 9 specific
PRLs were incorporated into the model to enhance prognostic accuracy
through screening. The coefficients of the 9 PRLs used for model
development were as follows: AC096642.2 (0.506456858), AP000331.1
(-0.38367969), AC016394.2 (0.283605425), AC090510.2
(-0.553689916), AC011815.1 (-0.580334682), AC022150.4
(0.288210056), Z68871.1 (0.330530176), AL109936.9 (-0.711784776),
and AL162386.2 (-0.641615803). The patients were categorised into
“High-risk” or “Low-risk” groups based on the median risk score
obtained using the model. The overall survival and survival rates across
different clinical subgroups were compared by KM analysis. The
predictive performance of the model was evaluated using ROC
curves, and the area under the ROC curve (AUC) values were
calculated at 1-, 2-, and 3-year intervals.

2.3 Classification of tumours based on PRL
expression

The ConsensusClusterPlus package in R v4.4.2 was used to

classify the 1,098 BC samples into three subtypes based on the
expression levels of PRLs. Principal component analysis (PCA) was
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performed using the ggplot2 package in R to analyse the variations
in the data. The differences in overall survival (OS) across the
subtypes were examined by KM analysis. The ESTIMATE and
CIBERSORT packages in R were used to quantify the immune cells
and stromal cells in the BC samples.

2.4 Construction of nomogram and
analysis of risk differences

The “rms package” in R was used to create a nomogram based
on the clinical factors and risk scores. The nomogram predicted the
survival probabilities at 1, 2, and 3 years based on the total score.
The performance of the model in predicting patient survival was
evaluated using calibration and ROC curves. The differentially
expressed genes (DEGs) in the “High-risk’and “Low-risk” groups
were identified after analysing the risk differences. PCA was
performed using the “scatterplot3d package” in R to assess the
differences in the PRLs used for model development between the
two risk groups. The feature enrichment annotations and pathways
of the DEGs in each group were identified by Gene Ontology (GO),
Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set
Enrichment Analysis (GSEA).

2.5 Integrated analysis of somatic
mutations and drug sensitivity

The maftools package in R was used to identify the somatic
mutations in patients with BC. The mutation spectra of the “High-
risk” and “Low-risk” groups were compared using waterfall plots.
The ICs, values of drugs commonly administered to patient groups
with different types of BC were estimated using the oncoPredict
algorithm to assess drug sensitivity and evaluate the potential
therapeutic effects based on the drug sensitivity profiles.

2.6 Screening of differentially expressed
IncRNAs selected for model development

The Limma, survival, and survminer packages in R were used to
verify the expression, OS, and clinical grouping models of the 17
PRLs selected for model development. The AC016394.2 and
AC022150.4 IncRNAs were selected as research objects, and the
Tidyverse package in R was used to screen the genes co-expressed
with AC016394.2 and AC022150.4.

2.7 Prediction of co-expressed genes at
single-cell landscape

Gene set related to breast cancer was retrieved from http://

tisch.compbio.cn/, and the BRCA_EMTAAB8107 gene set was
finally selected for analysis. After annotating the cell clusters, the
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immune-related cells with the most significant differences in co-
expressed genes among various immune cells were identified.

2.8 Cell culture

The luminal-type MCEF-7, Her-2-type SKBR3, BT474 and
TNBC-type MDA-MB-231, MDA-MB-468, and SUM-159 human
BC cell lines, as well as normal breast epithelial MCF-10A cells,
were purchased from the American Type Culture Collection
(ATCC). All the cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM) supplemented with high glucose (Gibco, USA)
and 10% foetal bovine serum (Gibco, USA) at 37°C in a humidified
incubator with 5% CO,.

2.9 Fluorescence-based real-time
quantitative polymerase chain reaction

The total RNA was extracted as protocol, and 2 x ChamQ
Universal SYBR qPCR Master Mix (Q711-02, Vazyme, Nanjing,
China) were used for qRT-PCR. The following primer sequences
used for qQRT-PCR (details in Table 1).

2.10 Transfection

The overexpression and siRNA plasmids of AC016394.2 and
AC022150.4 were purchased from Qingke Biotechnology Co., Ltd.,
Wuhan, China. The cells were seeded into 6-well plates at 1x10°,
and transfection was performed after 24h using Lipofectamine
3000, according to the standard protocol.

2.11 Assessment of cell proliferation
potential

Cell viability was assessed using CCK-8 assays with a HY-K0301
kit (Shanghai, China), and 1000 cells were seeded and incubated for
2 weeks for the colony formation assay. The cells were fixed with
paraformaldehyde for 0.5 h and stained with crystal violet by
incubating for 1 h, following which the colonies were enumerated
and images were captured at 24, 48, 72, and 96 h.

2.12 Cell scratch assay

The cells were inoculated into a 6-well plate, and the tip of a
sterile 200uL pipette was used to create scratches on the surface of
the culture when the cells reached a confluence of 90%. The
detached cells were subsequently washed with PBS, following
which serum-free medium was added to the culture, and the cells
were incubated for 24 h. Images of the cell plates were captured
using an inverted microscope at 0 and 48 h. The pixel area of the
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TABLE 1 Real-time RT-qPCR primer sequences.

Species Molecule
Human AC016394.2
Human AC022150.4
Human SEC24C
Human ZNF611
Human GAPDH

scratch was calculated using Image J software, and the scratch
recovery rate was calculated as: (pixel area at 0 h - pixel area at
48 h)/pixel area at 0 h.

2.13 Mouse xenograft model and
immunohistochemistry (IHC) analysis

BALB/c nude mice, aged 3-4 weeks, were purchased from Southern
Model Biotechnology Co., Ltd. (Shanghai, China). The mice were
divided into a control group 1, AC016394.2 overexpression group,
control group 2, and AC092894.1 overexpression group. Approximately
3 x 10° SUM159/BT-474/MCE-7 vector or SUM159 BT-474/MCF-7-
AC022150.4 cells were implanted in situ onto the right adipose pads of
the mice. The mice were euthanised after 14 days and the tumours were
surgically removed.

The tumour tissues were embedded in paraffin, sectioned,
deparaffinised, and rehydrated through a graded alcohol series.
Antigen retrieval was subsequently performed with Tris-EDTA
buffer, followed by incubation with 3% H,O, for 30 min to block
the activity of endogenous peroxidases. The slides were blocked with
10% normal goat serum (BOSTER Biological Technology co.Ltd.) for
30 min at 37°C, and subsequently incubated overnight at 4°C with
mouse anti-human Ki-67 antibody (cat. no. ZM-0166; ZSGB-BIO,
Beijing, China). The sections were rinsed with wash buffer and
subsequently incubated with an anti-mouse/rabbit polymer kit
(EnVision Plus; Dake) for 30 min at 20°C. The ITHC samples were
incubated with a secondary antibody for 30 min at 20°C the following
day, followed by detection with 3,3’-Diaminobenzidine (DAB). The
stained sections were finally observed under a microscope, and
images were captured.

2.14 ABE assay

Protein palmitoylation modification was detected using the ABE
method. The HA-SEC24C/HA-ZNF611 plasmid was transiently
transfected into HEK293T cells, which were then collected and
washed with cold PBS after 48 hours. Subsequently, sh-LncRNA (sh-
AC016394.2/AC022150.4) was transfected 24 hours prior to cell
collection. The cells were lysed on ice for 1 hour in lysis buffer
containing 50 mM NEM (Sigma-Aldrich, E3876) and a protease
inhibitor. The target protein was immunoprecipitated using an anti-
HA antibody (Beyotime, AF0039) and protein A/G magnetic beads
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Forward (5°-3’)

ACCCGAAGGAAGACTCCTCT

Reverse (5'-3)
ATCCTGGTGTGCAGAATGGG

GATCTGTGTGGACCCCAGAA CTCCGGTCCCCAGCATAGAA

CGTCTCCTACAATGCCATCAGG GGTGACAAAGCCAACGCGGATT

CCCTTCACAGAGGGCTTTGTAC GCAATGTCCCTGTGTGGATCAC

CCATGGGTCGAATCATATTGGA TCAACGGATTTGGTCGTATTGG

(Beyotime, P2108-5ml). The purified protein was incubated at room
temperature with a buffer containing 1 M HAM (Sigma-Aldrich,
814441) for 1 hour, followed by treatment with a buffer containing
5 UM biotin-BMCC (Invitrogen, 21900) at pH 6.2 for an additional
hour at 4°C. Finally, the samples were analysed via Western blotting
using an anti-HA antibody (1:1000; Beyotime) and HRP-streptavidin
(1:5000; Beyotime).

2.15 Western blot

The cells were washed three times with PBS and subsequently
lysed on ice for 15 minutes using RIPA buffer (Beyotime, P0013B)
supplemented with PhosSTOP ™ protease inhibitor (Roche,
04906837001). Following lysis, the samples were centrifuged at
15,000 rpm for 15 minutes to obtain the supernatant. After
quantifying the protein concentration via BCA assay, an equal
amount of protein was subjected to SDS-PAGE. The specified
antibody was employed as a probe, and detection was performed
utilising a chemiluminescence substrate (Pierce). The antibodies
used in this study included: anti-SEC24C (Novus, NBP2-94294-
0.02ml) for human SEC24C; anti-ZNF611 (CUSABIO, CSB-
PA026891GA01HU) for human ZNF611; anti-Ki67 (Proteintech,
28074-1-AP) for mouse Ki67; anti-B-actin (GenScript, A00702);
anti-GAPDH (Proteintech, 60004-1-Ig); HRP-linked anti-Mouse
IgG (CST, 7076); and HRP-linked anti-Rabbit IgG (CST, 7074).

2.16 Statistical analyses

The data are presented as the mean + standard deviation (SD),
and the statistical analyses were performed using R v4.4.2 (https://
www.r-project.org/) and SPSS v25.0. Statistical significance was

considered at P < 0.05 and indicated by asterisks: *P< 0.05, **P <
0.01, ***P < 0.005, and ****P < 0.001.

3 Results

3.1 Schematic representation of PRLs and
research methodology

The process of protein palmitoylation is illustrated in Figure 1A.
LncRNAs play critical roles in promoting or suppressing the
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Pattern diagram of palmitoylation
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development of cancer, and several aspects of IncRNA biology,
including their functions in tumour metastasis, tumour
proliferation, angiogenesis, drug resistance, and immune escape,
have been extensively investigated (Figure 1B). Protein
palmitoylation and IncRNAs have substantial research potential, as
depicted in Figure 1C. The research methodology is depicted in a
flowchart in Supplementary Figure SI.

3.2 Determination of expression of PRLs
and model development

The transcriptome expression data of 1,118 BC tissue samples

and 113 adjacent normal tissue samples were retrieved from TCGA.
The expression levels of 30 PALMs reported in the literature

Frontiers in Immunology

(Supplementary Table S1) were determined after distinguishing the
mRNAs from IncRNAs, and their differential expression between
tumour tissues and adjacent normal tissue samples was analysed
(Figure 2A). The IncRNAs that were co-expressed with PALMs were
identified, and the network nodes were subsequently visualised
(Figure 2B). The nodes were then statistically analysed to identify
the IncRNAs that were differentially expressed between tumour
tissues and adjacent normal tissue samples (Supplementary Table
S2). The differentially expressed IncRNAs were represented using
volcano plots and heat maps (Figure 2C). The correlation between the
PALMs and differentially expressed IncRNAs was illustrated using a
Sankey diagram (Figure 2D), and a total of 592 PRLs were finally
identified (Supplementary Table S3). A total of 1,098 clinical samples
were retrieved from TCGA-BRCA, and the IncRNA expression data
were combined with the survival data to identify 22 IncRNAs
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associated with the prognosis of BC (Figure 2E). In our analysis, we
aimed to maximise sample matching by merging expression and
survival datasets. Ultimately, we identified a total of 1,098 cases and
divided them into training and validation sets at a ratio of 1:1
(n;=n,=594). The training set was used to construct a prognostic
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model, and the accuracy of the model was validated using the test set.
The model was represented using the following formula, which was
used to calculate the risk score for each sample: Risk score=

>ei(e, x B,).As aforementioned, the samples were divided into
the Risk-high and Risk-low groups, based on the median risk score.
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The results of univariate analysis revealed that 22 IncRNAs were
associated with the prognosis of BC, of which 17 characteristic
IncRNAs were identified by Lasso regression analysis (Figure 2F).
Statistical analysis of the clinical data revealed no significant
differences in the clinical characteristics between the training and
test sets (P > 0.05; Supplementary Table S4). The correlation between
the PALMs and the 9 PRLs used for model development was
represented using a heat map to observe the corresponding
relationships between these PRLs and PALMs (Figure 2G).

3.3 Validation of the survival prediction
potential of PmPRLs

The differences between the “High-risk” and “Low-risk” patient
groups were analysed using the survival and survminer packages in
R. The findings revealed significant differences in progression-free
survival (PES; P < 0.05; Figure 3A) and OS rates (P < 0.05;
Figure 3B) among the sample, training, and test sets derived from
the “High-risk” and “Low-risk” groups. The mortality rate increased
with higher risk scores across all three groups. The risk score,
survival status, and results of differential heat map analysis are
discussed hereafter. Among the 9 PRLs selected for model
development in this study, AC096642.2, AC016394.2,
AC022150.4, and Z68871.1 were identified as high-risk IncRNAs
(associated with poor prognosis), while AP000331.1, AC090510.2,
ACO011815.1, AL109936.9, and AL162386.2 were low-risk IncRNAs
(associated with good prognosis), and these classifications remained
consistent across the sample, training, and test sets (Figure 3C).
Further classification of the tumour samples indicated that the PRL-
based model developed herein exhibited significant potential for the
classification of BC tumours and risk stratification (Supplementary
Figure S2). Due to variations in age, stage, and risk score (P < 0.05),
the accuracy of PmPRLs can be attributed to the inclusion of PRLs,
which serve as an independent prognostic factor of BC (Figure 3D).

3.4 Association between PmPRLs and
clinical traits, and functional analysis of
“High-risk” and “Low-risk” patient groups

The PRL-based prediction model created in this study can be
used to estimate the 1-year, 3-year, and 5-year survival rates of
patients. The AUC value of the model exceeds 0.65 (AUC > 0.5),
suggesting its robust predictive performance. Furthermore, by
integrating the model with clinical features and validating it
through ROC curve analysis, the results demonstrated that the
model’s AUC was significantly higher than 0.5 (Figure 4A),
confirming its high accuracy in predicting survival. Additionally,
C-index analysis revealed that the model’s performance in survival
prediction is comparable to or even surpasses traditional clinical
features (Figure 4B). This study also constructed a nomogram to
assist in survival prediction. By quantifying the scores of various
clinical features and calculating the composite score, the survival
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probabilities of patients can be intuitively estimated. For instance, if
the composite score of a sample is 247, the predicted survival
probabilities for 1 year, 3 years, and 5 years are 0.978, 0.878, and
0.776, respectively. Calibration curve analysis further validated the
high accuracy of the nomogram in predicting 1-year, 3-year, and
5-year survival periods (Figure 4C). Clinical correlation analysis
showed significant differences between the “High-risk” group and
the “low-risk” group in overall staging, T staging, and N staging (P <
0.05; Figure 4D), indicating that the risk stratification of the model
has important clinical implications. Further validation of the model
using the clinical dataset demonstrated its applicability to samples
from different clinical groups (Supplementary Figure S3). The nine
PRLs used for model development varied more significantly
between the “High-risk” and “Low-risk” groups than the other
PRLs, PALMs, and all IncRNAs. The PRLs used for model
construction exhibited significant discriminative potential,
distinguishing between the “High-risk” and “Low-risk” groups
(Figure 4E). Analysis of risk differences revealed that 173 genes
were differentially expressed between the “High-risk” and “Low-
risk” groups (Supplementary Table S5). These DEGs were subjected
to GO analysis, and the results were depicted using circle plots. The
findings revealed that the DEGs were significantly enriched in
various GO terms across the biological process (BP), cellular
component (CC), and molecular function (MF) categories. These
terms included the cell chemotaxis term in the BP category;
secretory granule lumen, cytoplasmic vesicle lumen, vesicle
lumen, and collagen-containing extracellular matrix terms in the
CC category; and the G protein-coupled receptor binding term in
MF (Figure 4F). KEGG enrichment analysis revealed that the
neuroactive ligand-receptor interaction pathway was most
significantly enriched and associated with the highest number of
DEGs (Figure 4G). The results of GSEA revealed that the cell cycle,
Natural Killer cell (NK)cell-mediated cytotoxicity, proteasome,
tight junction, and viral myocarditis pathways were activated in
the “High-risk” group, while hematopoietic cell lineage, primary
immunodeficiency, and systemic lupus erythematosus were
activated in the “Low-risk” group (Figure 4H).

3.5 Relationship between PmPRLs and
immune function

The ESTIMATE package in R was used to calculate the
StromalScore, ImmuneScore and ESTIMATEScore of the samples,
and a differential analysis of the tumour microenvironment was
conducted. The results showed that StromalScore, ImmuneScore
and ESTIMATEScore were significantly different between the
“High-risk” group and the “Low-risk” group (Figure 5A). The
Cibersort package in R was used to analyse immune cell
infiltration, and the abundance of each immune cell type in the
samples was statistically analysed. The bar chart showed the
differences in immune cell composition between the “High-risk”
group and the “low-risk” group, as well as the positive and negative
regulatory relationships among immune cells. The violin plot
further depicted the significant differences in the abundance of
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FIGURE 3

Validation of the correlation between PmPRLs and survival rate in “high-risk” and “low-risk” groups. (A) Progression-free-survival (PFS) in two groups.
(B) Overall Survival (OS)of patients in the sample, training, and test sets. (C) Risk scores and survival status. (D) Correlation between model prediction

and prognostic outcomes.

CD4" memory T cells and NK cells between the two groups
(Figures 5B-C). Further analysis revealed that CD4" Th2 cells and
CD4" memory T cells were the key differential immune cell types
between the “High-risk” group and the “low-risk” group
(correlation coefficients: 0.319 vs. 0.190; P-values:3.18E-27 vs.
2.30E-10) (Figure 5D). Subsequently, the GSVA package in R was
used to evaluate the significant differences in immune function
between the “High-risk” group and the “low-risk” group. Further
ssGSEA revealed variations in the abundance of Th cells in the
“High-risk” group (Figure 5E). T cell co-inhibition, APC co-
stimulation, APC co-inhibition, checkpoints, para-inflammation,
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MHC class I, and type I IFN response were all significantly elevated
in the “High-risk” group (P < 0.05; Figure 5F). The genes associated
with key immune checkpoints, including PDCD1LG2, TNFRSF25,
ICOS, TNFRSF9, TNFRSF15, TNFRSF4, and CD80, were
differentially expressed between the “High-risk” and “Low-risk”
groups (Figure 5G). The number and percentage of C1-C5 immune
subtypes were compared between the “High-risk” and “Low-risk”
groups for immune typing analysis. The chi-square test yielded a P
value< 0.05, indicating significant differences in immune typing
between the groups (Figure 5H). The efficacy of immunotherapy in
the “High-risk” group and “Low-risk” group was evaluated based on
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to or even better than that of other clinical characteristics. (C) The nomogram and calibration curve were used to quantitatively score the prognosis
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plot illustrates the mutated genes and their mutation frequencies in the
21). (C) Survival curves of the high TMB and low TMB groups, and the

combined survival curve incorporating TMB levels and risk score (P = 0.001).

the TIDE score retrieved from http://tide.dfciharvard.edu/.
Analysis of the violin plot revealed that the TIDE score was
higher in the “High-risk” group, indicating a greater potential for
immune escape and a poorer response to immunotherapy, which
may contribute to poor prognosis (Figure 5I).

3.6 Association between model score and
gene mutations

A total of 967 samples harbouring mutations were retrieved
from TCGA-BRCA and categorized into the “High-risk” group and
“Low-risk” groups based on the median risk score. The mutation
frequency and tumour mutational burden (TMB) of the two groups
were calculated using the maftools package in R. The mutation
frequencies of PIK3CA, CDHI1, GATA3, and MAP3KI were higher
in the “Low-risk” group compared to those of the “Low-risk” group
(Figure 6A). The TMB data and base mutation data of BC samples
were retrieved from TCGA. A KM plot was generated to compare
the survival probabilities of the high and low TMB groups, which
revealed that the high TMB group exhibited a lower survival
probability (P = 0.021; Figure 6B). The samples from TCGA were
subsequently divided into four groups based on the level of risk
(high or low) and TMB status, and the survival curves were fitted.
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The findings revealed that the “High-risk” and high TMB group
exhibited the highest risk of BC (P < 0.001; Figure 6C).

3.7 Screening anti-cancer drugs against
risk groups identified with PmPRLs

A total of 79 anti-cancer drugs with known sensitivity data (IC5,)
and significant associations with the developed model were screened
using the “oncoPredict package” in R. Among the commonly used
chemotherapy and targeted drugs for BC, we selected and analysed
the sensitivity to 12 drugs. The findings demonstrated that the “Low-
risk” group exhibited higher sensitivity to these drugs compared to
the “High-risk” group (Figure 7).

3.8 Differential expression of PRLs for
model development: correlation analysis

Subsequently, we analysed the differential expression of nine
PRLs used for model development in tumour tissues compared to
adjacent normal tissues. The results showed that AC016394.2 and
AC022150.4 were significantly upregulated in tumour tissues
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Differences in drug sensitivity of risk groups identified using PmPRLs. (A—L) Variations in the sensitivity of the different risk groups identified using

PmPRLs to the 12 drugs for BC.

compared to adjacent normal tissues (Figure 8A, P < 0.05), while the
expression levels of AC096642.2, AP000331.1, AC090510.2,
ACO011815.1, 7Z68871.1, AL109936.9, and AL162386.2 were
significantly downregulated (Supplementary Figure S4A). Further
analysis indicated that the low expression of AC016394.2 and
AC022150.4 was associated with a higher overall survival rate (OS)
(Figure 8B), and a similar trend was observed for AC096642.2 (P =
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0.044) and Z68871.1 (P = 0.025). In contrast, the high expression of
AP000331.1 (P = 0.036), AC011815.1 (P = 0.026), and AL109936.9 (P
= 0.005) was associated with a higher OS. However, the expression
levels of AC090510.2 and AL162386.2 were not significantly
correlated with OS (P > 0.05; Supplementary Figure S4B).
Interestingly, the external dataset TANRIC confirmed the high
expression of AC022150.4 in tumours compared to normal cells
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Correlation analysis of differentially expressed PRLs used for model development. (A, B) Analyses of the differential expression of AC016394.2 and
AC022150.4 in tumour and adjacent tissues, and associated survival trends. (C) Correlation between the genes regulated by AC016394.2 (SEC24C,
SMARCADI, and AP3M1) and AC016394.2, as well as the correlation between the genes regulated by AC022150.4 (ZNF611 and USP34) and
AC022150.4. (D) Differences in the positive and negative regulatory relationships between the risk of BC associated with IncRNAs and various genes.

**P < 0.01, ***P < 0. 001

(P<0.05; Supplementary Figure S4C). Based on these findings, we
selected AC016394.2 and AC022150.4 for further study. Through co-
expression analysis, we initially identified the genes regulated by these
two IncRNAs and screened out differentially expressed genes (DEGs)
with correlations (R) greater than 0.6 and 0.8. Ranked in the
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descending order of correlation, the genes regulated by AC016394.2
were SEC24C, SMARCADI, and AP3M1, while the genes regulated by
AC022150.4 included ZNF611 and USP34 (Figure 8C). The
expression profiles of the other related genes with weak correlation
are depicted in Supplementary Figure S5. The co-expression patterns
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of AC016394.2 and AC022150.4 were visualized using a heat map,
which revealed that an increase in the expression of these IncRNAs
was associated with both positive and negative regulatory
relationships between different genes and target IncRNAs (P <
0.01; Figure 8D).

3.9 Prediction of immune functions of
SEC24C and ZNF611 at single-cell level

The BRCA_EMTAAB8107 BC gene set was retrieved from
http://tisch.compbio.cn/ and subsequently divided into 19 clusters
(Figure 9A). The distribution of various immune cell types was
analysed following cell annotation (Figure 9B). The findings
revealed that the proportion of malignant and CD8" T cells was
the highest (Figures 9C-D), while SEC24C and ZNF611 were
predominantly localized in mast cells (Figures 9E-F).

3.10 Effects of AC016394.2 and
AC022150.4 on cell growth, proliferation,
and migration

The total RNA was extracted from the six breast cell lines, including
normal MCEF-10A breast epithelial cells, luminal-type MCF-7 cells,
Her-2-type SKBR3 cells, and TNBC-type MDA-MB-231, MDA-MB-
468, and SUM-159 cells, and subjected to gPCR analysis. The results
demonstrated that the two PRLs used for model development,
AC016394.2 and AC022150.4, were markedly differentially expressed
across the different subtypes of BC cell lines, which was consistent with
the results of earlier bioinformatics predictions (Figure 10A). The MCF-
7 and SUM-159 cells were subsequently transfected with
overexpression and siRNA plasmids constructed for the
overexpression and knockdown of AC016394.2 and AC022150.4, and
the findings revealed that the expression of AC016394.2 and
AC022150.4 was significantly affected (Figure 10B). CCK-8
proliferation assays revealed that the proliferation of MCF-7 and
SUM-159 cells was significantly activated/inhibited at the 96-h mark
following treatment with the overexpression/siRNAs (Figure 10C).
Clone formation assays additionally demonstrated that treatment
with siRNAs targeting AC016394.2 and AC022150.4 inhibited cell
growth but acquired rescue after overexpression (Figure 10D). The
treatment of MCF-7 cells with siRNAs targeting AC016394.2 and
AC022150.4 significantly reduced the rate of migration after 48 h,
compared to that of the control group (Figure 10E). Following surgery,
the SUM-159 (TNBC), BT-474 (HER2+), and MCF-7 (Luminal) cells
overexpressing AC016394.2 and AC022150.4, along with control cells
harbouring the vector, were xenografted into BALB/c nude mice. The
mice were euthanised after 14 days and the tumours were removed.
Histopathological sections were prepared and stained, and subsequent
IHC analysis revealed that the nuclear expression of Ki-67 was
significantly upregulated (Figure 10F).
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3.11 The relationship between these two
IncRNAs and palmitoylation

Based on the previous co-expression analysis, it has been
established that the gene regulated by AC016394.2 is primarily
SEC24C, while the gene regulated by AC022150.4 is predominantly
ZNF611. Following the lysis of SUM-159 cells, the supernatant was
collected for further analysis. The expression levels of LncRNA and
target gene mRNA were assessed using quantitative PCR
(qPCR), revealing no significant differences in expression levels
(Figure 11A). Subsequently, overexpression vectors for AC016394.2
and AC022150.4 were transfected into target cells, leading to a
marked increase in protein expression levels of SEC24C and
ZNF611, as determined by Western Blot analysis(Figure 11B).
This suggests that LncRNA may have facilitated post-translational
modifications of these target proteins. To investigate palmitoylated
proteins, ABE (Acyl-Biotin Exchange) assays were conducted with
interference from AC016394.2/AC022150.4 knockdown
experiments. The results indicated that silencing AC016394.2
significantly diminished the palmitoylation of SEC24C, whereas
knockdown of AC022150.4 resulted in decreased palmitoylation of
ZNF611 (Figure 11C).

4 Discussion

PRL can regulate various stages of transcription, for instance, by
forming a triple helix structure with DNA and interfering with the
binding of transcription factors to DNA. Unlike mRNAs, IncRNAs
can directly regulate gene expression at the transcription initiation
stage. Some PRLs can act as tumour suppressors or promoters,
thereby controlling the proliferation, invasion, and metastasis of
tumour cells. These findings suggest that therapeutic intervention
targeting IncRNAs involved in protein palmitoylation may have
higher specificity and fewer side effects, providing new strategies
and directions for the treatment of various malignant tumours.
Therefore, this study identified 592 PRLs and constructed a
predictive model (PmPRL) based on their risk levels to assess the
prognosis of breast cancer (BC). The training set was validated
using an internal validation set based on clinical features, and the
results demonstrated that PmPRL could serve as an independent
prognostic model. Subsequently, patients were divided into “High-
risk” and “low-risk” groups based on PmPRL, and differentially
expressed genes (DEGs) between the two groups were analysed,
ultimately identifying 173 DEGs. Further gene set enrichment
analysis (GSEA) revealed that these genes exhibited significantly
different activities between the “High-risk” and “low-risk” groups.
Patients in the “High-risk” group had lower survival rates and
decreased drug sensitivity. Additionally, immune cell and immune
microenvironment analysis indicated significant differences in Th
cell immune function in the “High-risk” group. Moreover, multiple
immune-related pathways were activated, including T cell
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FIGURE 9
Prediction of the potential immune roles of SEC24C and ZNF611 at the single-cell level. (A, B) Clustering and annotation of the BRCA_EMTAAB8107
BC dataset. (C, D) Malignant and CD8+ T cells were the most abundant cell types in the dataset. (E, F) SEC24C and ZNF611 were predominantly
localized in mast cells.

co-inhibition, antigen-presenting cell (APC) co-stimulation, APC
co-inhibition, checkpoints, anti-inflammatory responses, MHC
class T molecule expression, and type I IFN responses. Through
in-depth exploration of the nine PRLs involved in the model
development process, two key IncRNAs, AC016394.2 and
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AC022150.4, were identified. Co-expression analysis revealed that
SEC24C and ZNF611 were highly correlated with AC016394.2 and
AC022150.4, respectively, and predicted their potential roles in
immune function. The research results showed that these two genes
were mainly located in mast cells. In vitro and in vivo experiments
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further confirmed that both AC016394.2 and AC022150.4 could
promote the proliferation and migration of breast cancer cells,
laying the foundation for further investigation of the molecular
mechanisms of these two IncRNAs.

It is worth noting that recent studies have shown that mast cells
play a crucial role in the anti-tumour immunity of triple-negative
breast cancer (TNBC). Moreover, there is evidence that the functional
activation of mast cells in combination with PD-L1 inhibitors can
significantly inhibit the growth and progression of TNBC tumours.
Therefore, mast cells may become potential targets for enhancing the
efficacy of immunotherapy (12). Given that SEC24C and ZNF611 are
regulated by IncRNAs AC016394.2 and AC022150.4, respectively, it
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is speculated that they may regulate immune function by influencing
the activity of mast cells.

Lu et al. reported that AC016394.2 can act as a copper death-
related IncRNA, and its differential expression can be used to
predict the functional characteristics of prostate cancer (13). The
study by Xing et al. revealed that AC016394.2 can also function as a
disulfide death-related IncRNA, and can be used to predict the
prognosis of gastric cancer (14). Another study demonstrated that
the AC022150.4 IncRNA likely holds predictive potential for
assessing lipid metabolism in BC (15). AC022150.4 can also
function as a blood exosome-related IncRNA and act as a
prognostic predictor in small cell lung cancer (16).
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The present study has one limitation, namely, all the data
pertaining to BC were retrieved from TCGA, which may have
introduced potential biases.

In summary, the present study established a novel PRL
signature in BC and experimentally validated the predictive
potential of the PRLs, AC016394.2 and AC022150.4, in estimating
the prognosis of BC, and their verification of palmitoylation
modification in co-expressed proteins.

5 Conclusion

The present study identified two novel PRLs that are likely
associated with the prognosis of BC. By screening the “High-risk”
and “Low-risk”groups for drug sensitivity, the study identified
potential therapeutic targets for the treatment of BC in these
groups. Given the critical roles of IncRNAs in cellular physiology,
immune function, and other cellular processes, the findings offer
novel insights for increasing the survival rate of patients with BC.
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SUPPLEMENTARY FIGURE 1
Flowchart depicting the research methodology for PRL-based
model development.

SUPPLEMENTARY FIGURE 2

Classification of tumor samples using PmPRLs. The tumor samples were
classified based on the expression levels of PRLs used for model
development, and were divided into three subtypes. The BC tumor samples
were classified using PmPRLs. Among the tested values, k = 3 exhibited a flatter
distribution and was more closely aligned with the maximum Cumulative
Distribution Function (CDF). A Based on this, kK = 3 was selected for
classification, and the BC tumor samples were categorized into three
subtypes, namely, cluster 1 (C1), cluster 2 (C2), and cluster 3 (C3). B Survival
analysis indicated that the prognosis of C1 was poorer than that of Cland C3.C
The relationship between tumor subtypes and the "High-risk” and “Low-risk”
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groups was illustrated using the Sankey diagram, which revealed that C3 and C1
primarily consisted of patients with low and high risk scores, respectively. D
Analysis of the tumor microenvironment of classified tumors. The stromal cell
scores varied between C1 and C2. Differences in immune cell scores between
Cl1 and C2, and between C2 and C3. Differences in the ESTIMATEScore
between C2 and C3. The findings indicate the potential of PmPRLs in
classifying BC tumors and risk stratification. E Analysis of immune cell types in
the three subtypes, as determined by various software. F Analysis of immune
checkpoints across the classified subtypes revealed differences among C1, C2,
and C3. *:P < 0.05, **:P<0.01, ***:P<0. 001.

SUPPLEMENTARY FIGURE 3

Survival curves of different clinical subgroups based onrisk scores. The model
was applicable to samples from different clinical groups, primarily showing
survival differences in terms of A age (>65 (P = 0.007) and <65 (P < 0.001); B
sex (female; P < 0.001), C overall stage (P < 0.001), D T stage (P < 0.001), and E
N stage (P < 0.05). F The model was not applicable to male patients (P =
0.540) and those with M1 stage tumors (P = 0.860).
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APT1
APT2
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ABHD17B
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Abhydrolase Domain Containing 17B
Abhydrolase Domain Containing 17C

Fatty Acid Synthase

YTH Domain Family Protein 3
Myelocytomatosis Oncogene

Circadian Locomotor Output Cycles Kaput
Circular RNA - Protein Disulfide - Isomerase A3
Gasdermin E

Interferon - gamma Receptor 1

T -cell immunoglobulin and mucin - domain molecule-3
Chimeric Antigen Receptor T - cell

Double Homeobox A Pseudogene 8

Solute Carrier Family 7 Member 11

Principal component analysis

Major Histocompatibility Complex

Interferon

Programmed Cell Death 1 Ligand 2

Tumour Necrosis Factor Receptor Superfamily Member 25
Inducible T - cell Co - stimulator

Tumour Necrosis Factor Receptor Superfamily Member 9

TNFRSF15
TNFRSF4
CD80
TMB

PIK3CA

CDH1
GATA3
MAP3K1
SEC24C
SMARCAD1

AP3M1
ZNF611
USP34
TNBC
PD-L1
CDF
INO80
TNKS2
WAPL
ZSCAN29
USP37

ZNF808

Tumour Necrosis Factor Receptor Superfamily Member 15
Tumour Necrosis Factor Receptor Superfamily Member 4
Cluster of Differentiation 80

Tumour mutational burden

Phosphatidylinositol - 4,5 - bisphosphate 3 - kinase, catalytic
subunit alpha

Cadherin - 1

GATA - binding protein 3

Mitogen - activated protein kinase kinase kinase 1
SEC24 Homolog C, COPII Coat Complex Component

SNF2 Related Chromatin Remodelling ATPase With DExD
Box 1

Adaptor Related Protein Complex 3 Subunit Mu 1
Zinc Finger Protein 611

Ubiquitin Specific Peptidase 34
Triple-negative Breast Cancer

Programmed Death - Ligand 1

Cumulative Distribution Function

INO80 complex ATPase subunit

Tankyrase 2

WAPL cohesin release factor

Zinc Finger and SCAN Domain Containing 29
Ubiquitin Specific Peptidase 37

Zinc Finger Protein 808
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