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Background: Amphibians are valuable models for comparative immunology. In
the caudate Ambystoma mexicanum, the architecture of immunoglobulin loci
resembles that of the anuran Xenopus tropicalis, although some antibody gene
features are absent. Evidence supports the presence of T lymphocytes in axolotl,
the expression of T cell receptor alpha, beta, and delta chains, and a restricted
diversity in the delta chain. Here, we describe the T cell receptor loci in the A.
mexicanum genome and compare them with X. tropicalis and other tetrapods.
Methods: T cell receptor loci were mapped and annotated in the A. mexicanum
genome (UKY_AMEXF1_1) using reference sequences from axolotl, X. tropicalis,
human, and mouse. Gene models were refined with RNA sequencing data from
spleen, lung, and liver.

Results: The T cell receptor alpha and delta locus in axolotl shows an overall
conserved structure compared with other tetrapods. The alpha locus contained a
higher number of variable genes than the beta and delta loci, with a
predominance of functional genes (ratio 3.06). No gene encoding the pre-T
cell receptor chain alpha was identified. The delta locus harbored two
conventional variable genes, but no expression was detected in RNA
sequencing data, suggesting pseudogenization. Neither delta chain diversity
genes nor gamma chain elements were found in the genome or spleen
transcriptome. The beta locus displayed structural similarity to that of other
tetrapods and included five translocons with diversity, joining, and constant
segments. One constant gene consisted of two exons encoding two constant
domains. Functional variable genes predominated in the beta locus (ratio 3.6).

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1656386/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1656386/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1656386/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1656386&domain=pdf&date_stamp=2025-09-30
mailto:jmbarnet@insp.mx
mailto:constantino.lopez135@gmail.com
https://doi.org/10.3389/fimmu.2025.1656386
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1656386
https://www.frontiersin.org/journals/immunology

Pacheco-Olvera et al.

10.3389/fimmu.2025.1656386

Conclusion: Our study reveals conserved but distinctive features of axolotl T cell
receptor loci, including restricted delta-chain diversity, absence of gamma chain
and pre-T cell receptor alpha, and structural novelty in the beta locus. These
findings provide new insights into the evolution of T cell receptors in amphibians
and offer a genomic framework to explore the links between adaptive immunity
and tissue regeneration in A. mexicanum.

Ambystoma, T-cell receptor (TR), TRA/TRD locus, TRB locus, pseudogenes, amphibians

1 Introduction

T-cell receptors (TR) recognize peptide antigens and other
pathogen-derived molecules presented by antigen-presenting cells
(APCs), a process essential for initiating adaptive cellular immunity.
These receptors are expressed on the surface of T lymphocytes and
enable specific antigen recognition through their variable
extracellular domains. TR-mediated recognition is coupled to
signaling via the CD3 complex (conformed by CD3y, CD33,
CD3e chains), which transmits activation signals that drive T-cell
activation, effector and memory differentiation, and clonal
expansion (1, 2).

The general organization of TR genes has remained remarkably
conserved throughout 400 million years of gnathostome evolution.
Unlike the high variability of immunoglobulin loci, TR loci exhibit
structural stability across vertebrates (3). A conventional TR is a
disulfide-linked heterodimer composed of o and 3 chains, or y and
d chains. Each of these four types of TR chains comprises two
immunoglobulin superfamily domains: a membrane-proximal
constant domain (C) and the antigen-binding variable domain
(V). The V domains of TRP and TR are assembled via somatic
recombination of variable, diversity (D), and joining (J) genes,
whereas the V domains of TRo and TRy are assembled only by V
and J genes (4). This recombination is mediated by recombination
signal sequences (RSS) flanking each gene, consisting of a conserved
heptamer and nonamer motif separated by either a 12- or 23-base
pair spacer. According to the 12/23 rule, recombination typically
occurs between one RSS with a 12-bp spacer and another with a 23-
bp spacer, ensuring proper assembly of V(D)]J junctions (5).

The TR o, B, ¥, and & chains are found across all jawed
vertebrates, exhibiting significant conservation in both sequence
and genomic arrangement. A distinctive feature is that the T cell
receptor alpha (TRA) locus is embedded within the T cell receptor
delta (TRD) locus (TRA-TRD locus), an organization conserved in
all jawed vertebrates studied, including fish, amphibians, reptiles,
birds, and mammals (6-11). However, the availability of non-model
vertebrate genome sequences provides valuable insights into the
distant origins of rearranging gene systems and their links to both
adaptive and innate recognition processes (12). This approach has
led to the identification of additional TR chains, such as the New
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Antigen Receptor (NAR-TCR) in sharks (13-15) and the T cell
receptor W (TRu) chain in marsupials and monotremes, which
originated from TRJ gene duplication during early mammalian
evolution (16). Furthermore, in Xenopus tropicalis, the TRD locus
contains canonical variable 8 (V) genes and VH-like genes termed
VHS, which are VH domains related to the variable domain of the
immunoglobulin heavy chain, adapted as V-domains for TR
chains (6). VHO is also found in fish, birds, and monotremes.
Overall, this highlights the remarkable evolutionary plasticity of TR
evolution, likely due to selective pressure imposed by pathogen
recognition (14, 17, 18).

Amphibians are well-suited models for comparative immune
system analysis (1, 19), due to their key evolutionary relations as the
first tetrapods, bridging aquatic vertebrates (e.g., fishes) and terrestrial
vertebrates (20, 21). Their immune system comprises all major
components of adaptive immunity, including T and B lymphocytes,
immunoglobulins, and Major histocompatibility complex (MHC)
molecules, enabling direct comparisons across both ancestral and
derived vertebrate lineages. In addition, exhibit unique immunological
features, such as unconventional TR gene arrangements or limited
receptor diversity (6), offering insights into the evolutionary plasticity
of the immune system. The study of TR loci in amphibians like
Ambystoma mexicanum is particularly relevant because the immune
system is increasingly recognized as a critical player in tissue repair
and regeneration. Characterizing the genomic architecture and
diversity of these loci not only informs our understanding of
adaptive immunity in urodele amphibians but also provides a
framework for investigating how immune components modulate
regenerative processes. Such knowledge could facilitate the
development of species-specific immunological tools, enhancing
both biomedical research and conservation strategies.

A. mexicanum, a neotenic urodele amphibian endemic to the
Mexico City valley, is an endangered species (22) and has one of the
largest genome (32 Gb) among vertebrates sequenced to date (23).
Previously, we characterized the immunoglobulin heavy (IGH) and
lambda (IGL) loci in the Ambystoma mexicanum, finding that it
shares the same general syntenic architecture with X. tropicalis, but
lacks the kappa locus (IGK) and other antibody features described in
X. tropicalis (24). Pre-genomic studies in A. mexicanum revealed the
presence of T lymphocytes found in the spleen and thymus, as well as

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1656386
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Pacheco-Olvera et al.

the presence of T cells expressing o, 3, and 8 chains (25-27). Of note,
the junctional diversity of the TR chain is minimal (27, 28) and so far,
no description of TRy chains has been provided. Two genome
assemblies are currently available for A. mexicanum: The
AmbMex60DD genome assembly, based on a highly inbred
laboratory strain (d/d), a two-year-old leucistic male (23, 29) has
27,157 unmapped scaffolds and revealed several positional and
orientation inconsistencies in the IGH locus, likely reflecting
assembly errors (24). Recently, a new assembly, UKY_AMEXFI_1,
generated from an F1 hybrid between A. mexicanum and A. tigrinum,
both of wild origin has been publicly released. This assembly, which is
currently the reference genome in GenBank, presents an improved
chromosomal organization with 21 chromosomes and only 220
unmapped scaffolds (BioProject: PRINA1165261), suggesting a more
accurate annotation of complex loci.

To further investigate the germ-line structure of T cell receptors
in A. mexicanum, we present here a genomic characterization and
annotation of TR loci in the axolotl compared with X. tropicalis.
This is one of the few amphibian species whose adaptive immune
system has been extensively characterized at the genomic level (6,
30). In our previous analysis of the IGH and IGL loci in A.
mexicanum, we reported the absence of certain components, such
as the IGK locus and the pseudogenization of the IgF isotype (24).
This feature had also been described in X. tropicalis. Building on
these findings, one of the main objectives of the present study is to
determine whether, as observed in the case of immunoglobulins, TR
loci in A. mexicanum also exhibit missing or divergent components
compared with other tetrapods.

2 Results
2.1 Ambystoma mexicanum TRA-TRD locus

A phylogenetically conserved feature of the TRA and TRD locus
organization in vertebrates is that both loci are closely embedded (6,
14, 31, 32) near the centromere of chrl3. Accordingly, in A.
mexicanum, the TRA and TRD locus are closely linked, with
some TRD genes nested within the TRA locus. The TRA-TRD
locus in A. mexicanum is located in chromosome 13p: 264.6-285.3
Mbp (size 20.7 Mbp) (Figures 1A, B) (Supplementary File 1;
Supplementary Figure S1; Supplementary File 2; Table 1 and
Glossary) and is not interrupted by gaps. In X. tropicalis, the
TRA-TRD locus was mapped to chromosome 1 (0.72-1.24 Mbp;
size 0.52 Mbp) (6). We identified 61 T cell receptor alpha variable
genes (TRAV), 46 of which are functional, flanked by canonic
Recombination Signal Sequences of Variable genes (V-RSS) with
23-bp spacers, corresponding to Functional/Pseudogenes (F/P)
ratio of 3.06. We identified 36 T cell receptor alpha join genes
(TRAJ), of which 33 are functional. All TRAJ genes encode the
canonical FGXG motif and have a 12-bp spacer and conserved
heptamer and nonamer in their Recombination Signal Sequences of
Join genes (J-RSS) (Supplementary File 1; Supplementary Figure
S2). We found three TRA]J pseudogenes, one of which (TRAJ_036)
is intercalated within the intron of the T cell receptor alpha constant
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gene (TRAC). Its J-RSS lacks the conserved 5-CAC-3" motif in the
RSS heptamer, which is required for Recombination activator gene
(RAG) recognition during V(D)] recombination (33). The
pseudogenes TRAJ_015 and TRAJ_023 contain a frameshift
(Supplementary File 2; Table 1, Glossary and GFF file). A single
TRAC gene with canonical exons, including cytoplasmic (M2),
transmembrane (M1), and C-Ig domain exons (Figures 1D-F;
Table 1), has three glycosylation sites in 42-45 (NDTE), 72-75
(NDTQ), and 106-109 (NESF). In the transmembrane region (TM),
residues Cys225, Glu237, Arg251, Lys256, Asn261, Tyr265, and
Trp269, which interact with CD3, are mostly conserved in A.
mexicanum except for Arg251, which is replaced with Lys (34,
35). The connecting peptide motif (FETDXXLN), another
important site in the TM region for the transduction of activation
upon antigen recognition (36), is well conserved in the axolotl.
Furthermore, Co. sequence alignment across human, mice,
opossums, frogs, and axolotls reveal limited conservation of the
AB loop in X. tropicalis and A. mexicanum regarding mammals
(Supplementary File 1; Supplementary Figure S3).

The TRD locus harbors two conventional T cell receptor delta
variable genes (TRDV) flanked by a canonical V-RSS with a 23-bp
spacer; however, one of them is not transcribed based on spleen, lung,
and liver RNA-seq data, suggesting it is a pseudogene. Only two T cell
receptor delta join genes (TRDJ) were found (Figures 1C-E)
(Supplementary File 1; Supplementary Figure S1). Both TRDJ genes
appear to be functional; however, the consensus ] motif (FGXG)
encoding the di-glycine bulge is not present in J81 (FKKG), whereas
J&2 retains the canonical sequence. The J-RSS is conserved in both
genes, with a 12-bp spacer (Supplementary File 1; Supplementary
Figure S4). No DJ genes or their corresponding recombination signal
sequences of diversity (D-RSS) were identified. The exon organization
of the single T cell receptor delta constant gene (TRDC) was found with
canonical exons, including cytoplasmic (M2), transmembrane (M1),
and C-Ig domain exons (Figure 1C; Table 1). This TRDC exon encodes
an N-glycosylation site (NSSS, pos 36-39).

In all studied vertebrates so far, the TRA and the TRD locus are
genetically linked (5, 33-35) in different vertebrates such as frog,
human, mouse, and opossum. In all of these species, the TRA-TRD
locus is flanked by the METTL3, SALL2, DAD1, and ABHD4 genes
(5,7, 8, 34, 36-38). However, the A. mexicanum locus is flanked by
NUMP and LPCAT4 in the centromere direction and the KLHL33
gene in the telomeric direction (Figure 2; Supplementary File
3: Table 2).

2.2 Ambystoma mexicanum TRB locus

The T cell receptor beta (TRB) locus in X. tropicalis has not
been previously described. We mapped the X. tropicalis TRB locus
to chr7p (3-8 Mbp), flanked by the DPH-like and EPHRIN genes
towards the centromere, and NOBOX and CNCL in the telomeric
direction (Figure 3). A trypsin gene cluster (PRSS) was found
between T cell receptor beta join genes (TRBJ) and T cell
receptor beta variables clusters (TRBV) (Figures 4A-C)
(Supplementary File 1; Supplementary Figure S5; Supplementary
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The TRA-TRD locus in Ambystoma mexicanum is located in the centromeric portion of chrl3p (20.7Mbp). (A) Gene density plot of chromosome
13p, where the TRA-TRD cluster is highligted (box); dark blue colors indicate low gene density. (B) Overview of the whole TRA-TRD locus (264.6-
285.3 Mbp), showing non-TR genes (black) in proximal flank, TRAC and TRDC genes (blue), TRAJ and TRDJ genes (yellow), and TRAV and TRDV
genes (red). (C) Close-up of the TRDC-J gene cluster (267.8-280.7 Mbp). (D) Detailed view of theTRAJ cluster (281-281.2 Mbp). (E) Spleen RNA-seq
coverage histogram of the TRDC-J region. (F) Spleen RNA-seq coverage histogram of the TRAC-J region. Note that in the E and F panels the color
intensity shifts from blue to red whith read counts increasing in the spleen transcriptome.

File 3: Table 2). A similar organization is observed in the human
and mouse TRB locus; however, in X. tropicalis, the locus is inverted
regarding the EPHRIN gene.

In A. mexicanum, the TRB locus was identified on chromosome
3p (30.03-34.85 Mbp, size 4.82) (Figures 4A, B; Supplementary File
2; Table 1 and GFF file) and contains a single gap in position 32.62
Mbp. The trypsin (PRSS) gene cluster divides the TRB locus into a
canonical locus towards the centromere (referred to hereafter as
cluster A), and a TRBV gene cluster (cluster B) towards the
telomere (Figure 4B). Cluster A compromises five tandem TRBC-
TRBJ-TRBD translocons and a TRBV gene cluster comprising 13
TRBV genes (Figure 4C). Cluster B contains 10 TRBV genes.
Overall, there are 18 functional TRBV genes (9 in cluster A and 9
in cluster B) to F/P ratio of 3.6. Additionally, there are 5 functional
T cell receptor beta diversity genes (TRBD). All TRBD genes exhibit
12-pb and 23-pb spacers. Recombination signal sequences of
diversity genes (D-RSS) at their respective flanks (Supplementary
File 1; Supplementary Figure S6). Furthermore, we found 17
functional TRBJ genes encoding the FGXG motif, with canonical
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12-bp spacer J-RSS (Supplementary File 1;
Figure S7).

We identified five functional T cell receptor beta constant genes
(TRBC), one associated with each translocon (Figures 4D, E).
Spleen, lung, and liver RNA-seq data revealed that all functional

Supplementary

genes are actively transcribed (Figures 4F, G). The functional genes
feature the conserved Trp at position 41, the Leu at position 86, and
the two characteristic Cys residues of the constant genes at positions
23 and 104 (Based on IMGT numbering of human TRBC1). Genes
TRBC_001, 002, 004 and 005 share the typical TRB gene structure
composed by a single CP exon with a glycosylation site (TRBC_001
100-103 (NITV), TRBC_002 100-103 (NITV), TRBC_004 7-10
(NVTQ), TRBC_005 51-54 (NRTK)), a M1 and M2 exons
encoding a linker peptide and the transmembrane region,
respectively (37-39). The TRBC_003 is unusual because it
comprises two CP-domain exons, (TRBC_003_1 and
TRBC_003_2) (Figures 4E-G; Table 2). The TRBC_003_1 exon
encodes for a glycosylation site (4-7 NITQ), whereas the
TRBC_003_2 exon lacks predicted N-glycosylation sites.
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In mammal CB-domain, the FG loop is implicated in the  intron that typically ranges in size from 80 to 250 bp (42). In axolot],
interaction with the CD3 complex (40). Sequence alignment of  the average V-intron length was 758 bp for TRA, 142 bp for TRD
the CP domains from human, mouse, opossum, frog, and axolotl  (considering two genes), and 237 bp for TRB (Supplementary File 2;
revealed the absence of the FG loop in all X. tropicalis and A.  Table 1, columns L-O). We analyzed the distribution of V-intron
mexicanum CP. In all compared amphibian CPB domains, the lengths in functional TRAV (P=0.0002) and TRBV (P=0.51) genes.
proline residue at position 232 is conserved, except in  No significant differences were observed between functional and
TRBC_003_2, where it is replaced by an alanine (Ala 228)  non-functional TRBV genes. In contrast, a significant difference was

(Supplementary File 1; Supplementary Figure S8) (40, 41). detected in TRAYV, suggesting that most TRAV genes with long V-
introns are functional (Supplementary File 1; Supplementary
Figure S9).

2.3 No evidence of an Ambys toma To investigate the relationship between V-intron length and V

mexicanum TRG locus gene functionality in the TRA and TRB loci of A. mexicanum, we

assessed whether the presence of long introns (>650 bp) was more
We use BLAST and HMMER alignment-based search tools,  frequent in non-functional TRAV and TRBV genes, as previously
either in the genome or in spleen RNA-seq transcriptome data, we  reported for the IGH and IGL loci (24). Fisher’s exact test was
found no evidence of the existence of the T cell receptor gamma  applied to the TRAV and TRBV genes. For TRAV, the analysis
locus (TRG) in A. mexicanum. In X. tropicalis, the TRG locus is  revealed that the odds of finding a long intron in a non-functional
located on chromosome 6 (Chr6: 63.4-63.6 Mb), flanked proximally ~ gene were 0, resulting in an odds ratio of 0.0 (p=0.01035; 95% CI:
by the STARD3NL, EPDRI, SFP4, GPR141, ELMOI, AOAH, ANLN,  0.0-0.66). This suggests a significant depletion of long introns
and MATCAP2 genes and the AMPH, POU6F2, NPSRI, BMPER,  among non-functional TRAV genes. In the case of TRBV, no
BBS9, NT5C3A, RP9, and VELOI genes at the distal flank. In  significant association was found (p=1; 95% CI: 0.0-233.15),
humans, the TRG locus is located on chromosome 7 (Chr7: likely due to the limited number of observations, making
38.24-38.36 Mb), with a genomic neighborhood like that of X.  statistical comparison uninformative.
tropicalis, although the orientation of the flanking genes is inverted.
In this case, the proximal flanking genes are AMPH, POU6F2,
NPSR1, BMPER, BBS9, NT5C3A, RP9, and VELOI, while the distal
flanking genes are STARD3NL, EPDRI, SFP4, GPR141, ELMO1, 2.5 Ambystoma mexicanum PTCRA locus
AOAH, ANLN, and MATCAP2. In contrast, A. mexicanum exhibits
a genomic architecture similar to that observed in humans, In humans and mice, the pre-TCRo. participates in oy T cell
although located on chromosome 5p (Chr5p: 834.5-863.3 Mb),  early development in association with the TR chain at the surface
with no evidence of the TRG locus in this region (Figure 55  of thymocytes. It is known that this receptor is absent in non-
Supplementary File 3; Table 2). mammalian species such as Xenopus spp. and Danio rerio
(Zebrafish) (43). We performed BLAST and HMMER searches in
the A. mexicanum genome and transcriptome and found no
2.4 V-intron length evidence of a PTCRA ortholog. Additionally, synteny analysis of
the PTCRA locus across multiple species revealed conserved
V genes are composed of two exons: Exon 1 encodes the L1 part ~ synteny between X. laevis, X. tropicalis, and A. mexicanum,
of the leader peptide, whereas exon 2 encodes the L2-part of the  confirming the absence of PTCRA in A. mexicanum in contrast
leader peptide and the V-region. Both exons are separated by the V- to mammals and sauropsids (Figure 6).

TABLE 1 Summary of total number and percentage of functional and pseudogenes of V, D, J and C genes found in the TRA-TRD locus mapped in Chr 13.

Number of functional = Percentage of functional Number of Percentage of
genes genes (%) pseudogenes pseudogenes (%)

TRAV 46 75.4 15 24.59 61
TRAJ 33 91.6 3 83 36
TRAC 1 100 0 0 1
TRDV 1 50 1 50 2
TRDD There is no evidence of the presence of TRDD genes

TRDJ 2 100 0 0 2
TRDC 1 100 0 0 1
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Synteny of the TRA-TRD locus in Ambystoma mexicanum compared to other tetrapods. Schematic representation of TRA-TRD locus in human
(Homo sapiens, GRCh38.p14), mouse (Mus musculus, GRCm39), opossum (Monodelphis domestica, ASM229v1), frog (Xenopus tropicalis,
UCB_Xtro_10.0), and axolotl (A. mexicanum, UKYF1_1) are shown. Solid-filled symbols represent the TRA locus, while open symbols correspond to
the TRD locus. Constant regions are indicated in blue, J gene cluster is depicted in dark yellow, and V clusters are highlighted in red. D genes are
displayed as green rectangles, and non-TR genes are depicted in black. Interestingly, in the axolotl, the IGHC locus (purple) is not linked to the TRAD
cluster as observed in X. tropicalis and spans across the centromere (depicted as a gray circle). The figures are not to scale, and the same scheme is
applied to all species for consistency. Gene orientation in mammals and axolotl is 5'-3'and in X. tropicalis is 3'-5'".

3 Discussion

The UKY_AMEXF1_1 genome assembly of A. mexicanum
enabled a comprehensive characterization of its TR loci,
supported by an increased N50 = 1.5 compared with the
AmbMex60DD genome version N50 = 1.2. The overall structure
of the TRA-TRD locus is conserved, but the TRD locus exhibits
strikingly low combinatorial diversity, and the TRG locus is absent,
suggesting that bona fide TRYS T cells may be lacking in axolotls.
The TRB locus displays a conserved structure with tandem
duplications of the TRBD-TRBJ-TRBC translocon, including a
particular TRBC gene with two CB domains. As in X. tropicalis,
the PTCRA gene is absent.

These findings provide important insights into the genomic
organization and evolutionary constraints of TR loci in urodele
amphibians. The limited diversity of TRD genes and absence of the
TRG locus highlight unique features of the axolotl adaptive immune
system, which may have implications for understanding T-cell
function in regeneration and immune response. Overall, this
work establishes a foundation for comparative immunogenomic
studies across amphibians and other vertebrates.

Here we confirm such findings. We found similarities in the
overall structure of the TRA-TRD locus, as well as a strikingly low
combinatorial diversity of the TRD locus and the absence of the
TRG locus, implying the absence of bona fide TRYS T cells in
axolotl. As for the TRB locus, we describe a conserved structure,
with tandem duplications of the TRBD-TRBJ-TRBC translocon and
a particular TRBC gene composed of two Cp domains. As in X.
tropicalis, the axolotl genome also lacks the PTCRA gene.

A. mexicanum’s exceptionally large genome (32 Gb) posed
significant challenges for its assembly. The AmbMex60DD (white
strain, d/d) version was released in 2021, based on 30x genomic
coverage of 28 chromosomes and 27,157 unmapped scaffolds. This
assembly presented several positional and orientation
inconsistencies in the IGH locus, likely reflecting assembly errors
(24). The current genome assembly (UKY_AMEXF1 1) was
released in 2024 and has an increased genomic coverage (48x), 21
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chromosomes, and only 220 unmapped scaffolds, suggesting that a
more accurate complex loci annotation can be achieved. However,
as with AmbMex60DD, no publicly available data on local coverage
is currently provided for UKY_AMEXF1_1. Therefore, it is not
possible to assess coverage-based metrics for individual TR genes.

In agreement with our previous analyses using the
AmbMex60DD assembly, the overall expression patterns of TR
genes did not substantially change in the present study
(Supplementary File 4; Supplementary Table 3). Remarkably, we
identified two genes, TRAV_060 and TRDV_001, that exhibit a
structurally complete configuration, including the SP, canonical
donor and acceptor splice sites, conserved methionine’s at positions
23 and 104, and canonical RSS. However, neither of these genes
showed detectable expression in the analyzed tissues. Conversely,
two additional genes, TRAV_025 and TRBV_012, also retained an
intact genomic organization and displayed transcriptional evidence
of the V gene, yet lacked detectable expression of the corresponding
SP. According to our classification criteria, these cases were
therefore categorized as pseudogenes, since evidence of both V
gene and SP expression was required to consider a gene
as functional.

Despite the mentioned limitations, the remarkably stable of the
TRA-TRD locus across species, maintaining a consistent genomic
architecture for over 340 million years of evolutionary history,
highlights strong evolutionary constraints on its organization (6).
The fact that TRA and TRD remain genetically linked in all
examined species (14, 44-46) reinforces the functional
importance of their physical association. This overall structure,
conserved in X. tropicalis, alligators, birds, and mammals. In all of
these species, the TRA-TRD locus is flanked by the METTL3,
SALL2, DADI, and ABHD4 genes (6, 9, 14, 16, 45, 47, 48)
suggesting that this syntenic arrangement may be critical for
maintaining locus integrity. In contrast, the distinct configuration
in A. mexicanum; located on chromosome 13p, near the centromere
and flanked by KLHL33, likely reflects a lineage-specific
chromosomal rearrangement that preserved the internal gene
order, indicating that positional changes do not necessarily
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TABLE 2 Summary of total number and percentage of functional and pseudogenesof V, D, J and C genes found in the TRB locus mapped in the Chr 3p.

Gene Number of functional = Percentage of functional
type genes (%)

TRBV 18 ‘ 78.26

TRBD 5 ‘ 100

TRBJ 17 ‘ 100

TRBC 6 ‘ 100

disrupt locus function (Figure 2) (Supplementary File I;
Supplementary Figure S1).

In A. mexicanum, the residue equivalent to mammalian TRo
Arg251 is replaced by Lys, a substitution that is unlikely to affect its
functional contact with CD38, given the chemical similarity of both
residues (34, 35). The connecting peptide motif in the Co
transmembrane region is conserved, maintaining its role in signal
transduction from the o3 heterodimer to the CD3/{ complex (36).

Interestingly, as in X. tropicalis, A. mexicanum lacks the AB-
loop, a structural feature essential for CD3ed contact and T cell
activation in mammals (34, 49). The absence of the AB-loop in
amphibians may reflect a distinct co-evolutionary trajectory of TR
and CD3 complexes compared to mammals (50).

We confirm the restricted diversity of germline genes previously
reported for the TRD locus. As described by Andre, et al. (28) the
cause of such restricted diversity is determined by a single
functional TRDV and two TRDJ genes, but significantly, we
confirm the absence of TRDD genes in the germline. As in other
tetrapod TRD loci, the V and J genes are flanked by 23-bp and 12-
bp spaced RSS, respectively. Hence, direct TRDV-TRD]J junctions
do not violate the 12/23 rule (51). TRDV-TRDJ junctions have been
described in a subset of human acute lymphoblastic leukemias (52).
To our knowledge, A. mexicanum is the first vertebrate capable of
non-pathological direct TRDV-TRDJ recombination.

A notable feature of the TRA-TRD locus in the axolotl is that
the only TRDV gene is of the conventional V9§ type and not of the
VHS type, in striking contrast to X. tropicalis, which contains 14

Number of Percentage of
pseudogenes pseudogenes (%)
5 217 23
0 0 5
0 17
0 0 6

VHS and 2 conventional V3 genes (6). The VHJ type is widely
distributed among non-placental mammals and other vertebrates
(9, 10, 15, 16, 48, 53, 54), and it remains to be determined if this type
of element was lost in all or some caudates or if it was never present.

Compared with the TRo and B chains, the presence of TRy and
TR chains shows more heterogeneity across different taxa (32). In
scaled reptiles, there is an absence of the TRD and TRG loci (55).
Although the syntenic blocks flanking the TRG locus in Xenopus
were identified in A. mexicanum, no genomic and transcriptomic
evidence of the presence of the TRG locus was found. These results
indicate that axolotl lacks true Y0 T cells. It remains to be determined
the functional role of the single TR chain, and if it pairs at all with
itself or with another chain, but due to its invariant structural nature,
it may function essentially as a Pattern Recognition Receptor (PRR),
similarly to BTNL/Btnl family of innate yd TR (56).

In this study, we updated and expanded the genomic annotation
of the TRB locus located on chr3p previously described using cDNA
libraries (57-59). The TRB locus in tetrapods is generally organized
into TRBD-TRBJ-TRBC units, resembling the organization of the
lambda chain locus (60). For instance, sheep possess three TRBD-
TRBJ-TRBC tandem units, while rabbits, mice, and humans have
two (42, 61, 62). In comparison, X. tropicalis has a simpler
configuration with a single unit. Remarkably, A. mexicanum
displays a more complex arrangement, consisting of five tandem
TRBD-TRBJ-TRBC units.

In conventional TR chains, the C3 domain interacts with CD3
through the FG-loop, contributing to signal transduction upon MHC-

Human MGAM2 MOXD2P  PRSS TRBV PRSS TRBD TRBJ TRBC TRBD TRBJ TRBC TRBV EPHB6 TRVP6
ezt P -D-D-D-D DD DD DDD-D DD DD DD DD DDl Dl e e p———
MGAM2 MOXD2P PRSS TRBV PRSS TRBD TRBJ TRBC TRBD TRBJ TRBC TRBV EPHB6 TRVP6
Chré: 4.08-4.16 Mb.
MGAM2 MOXD2P PRSS TRBV PRSS TRBD TRBJ TRBC TRBD TRBJ TRBC TRBV EPHB6 TRVP6
Opossum B S|
‘Chr7: 142.19-142.90 Mb
.
Chr7:7.78-7.84 Mb

.
PIG3  TIR2 TRBV PRSS

Axolotl
Chr3p:30.7-36 Mb

NYNRINHARBI1TRED TRB) TREC TRED TRBJ TRBCTRBD TRB) TREC TRBD TRE) TREC  TRBV

TRED TRB)  TREC TREY COL1A2 SRRM2 TRBV EPHBS TRVPS

FIGURE 3

Synteny of the TRB locus in Ambystoma mexicanum compared to other tetrapods. Schematic representation of the TRB locus in human (Homo
sapiens, GRCh38.p14), mouse (Mus musculus, GRCm39), opossum (Monodelphis domestica, ASM229v1), frog (Xenopus tropicalis, UCB_Xtro_10.0),
and axolotl (A. mexicanum, UKYF1_1). The TRBC genes (constant regions) are shown in blue, the TRBJ cluster in yellow, and the TRBV cluster in red.
TRBD genes are depicted in green, while non-TR genes are represented in black. The figure is not to scale, and the color scheme is consistent
across all species for clarity. Gene orientation in mammals is 5'-3'and in amphibians is 3'-5".
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FIGURE 4

The TRB locus of Ambystoma mexicanum is located in the telomeric portion of chromosome 3p (4.82 Mbp). (A) Gene density plot of chromosome
3, where the TRB locus is encoded (highlighted with a box). Dark blue regions indicate areas of low gene density. (B) Overview of the TRB locus
(30.03-34.85 Mbp), showing non-TR genes in black. Proximal and distal flanking genes include TRPV and PRSS, respectively.Gaps are represented in
gray. TRBC genes are shown in blue, TRBJ genes in yellow, TRBD genes in orange, and TRBV genes in red. (C) Zoomed view (32.03-32.9 Mbp) of
the TRB cluster A, showing detailed gene organization. (D) Close-up of the TRBC-J-D functional genes. (E) Close-up view of the TRBC_003 gene,
which includes two CB-domain exons. (F) Spleen RNA-seq coverage histogram of the TRBC-J-D region, showing transcriptional activity. (G) Spleen
RNA-seq coverage histogram of the TRBC-C2-J-D region, indicating transcription levels in this area. Note that in the E and F panels the color
intensity shifts from blue to red whith read counts increasing in the spleen transcriptome.

peptide recognition. In mammals, mutations in the FG-loop alter the
CD8+ and CD4+ T cell proportions, and it is associated with a poor
antigen response (63). Our study in axolotl is in agreement with a
previous report by Kim, et al,, reporting the absence of the FG-loop in
non-mammal vertebrates (Supplementary File 1; Supplementary
Figure S8) (40, 41). We identified a novel TRBC gene (TRBC_003)
that features two CP domains, along with transmembrane and
cytoplasmic domains, each encoded by a separate exon. The
TRBC_003 gene is actively transcribed in the spleen and associated
with putatively functional DB and JB genes. Moreover, in the distal
membrane exon (TRBC_003_1), there is a conserved Pro232, which is
a relevant position of the FG-loop in mammals with a single N-
glycosylation site. In contrast, in the proximal membrane exon
(TRBC_003_2), there is an Ala in the 228 position and no N-
glycosylation sites. This structural evidence suggests that the
proximal exon may have arisen from a duplication of the distal
exon. Whether a TR product of the TRBC_003 gene pairs with a
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TRov chain, how it interacts with CD3, and how MHC-peptide
interaction takes place remain as open questions.

Genome sequencing of F1 crosses between A. mexicanum and
A. tigrinum have revealed genomic regions of high polymorphism
(64, 65), however the TR loci are outside these regions. We consider
that spurious contributions of allelic variation to gene count are
likely minimal. Moreover, genome information derives from a
single individual, and our findings may thus fail to capture the
extent of intra-species variability, particularly copy number
variation in Adaptive Immune Receptor Repertoire (AIRR) loci,
which are well documented in mice, macaques, and humans (66—
68), that may explain discrepancies between the UKY_AMEXF1_1
and the AmbMex60DD assemblies.

We observed that many TRAV genes in A. mexicanum possess
notably long V-introns, some exceeding 1,000 bp; and are
considerably larger than IGH and IGL V-introns in A.
mexicanum (24). In the Gallus gallus genome, the average TRB
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FIGURE 5

Absence of the TRG locus in the Ambystoma mexicanum genome (UKYF1_1). Schematic representation illustrating the absence of the TRG locus. In
humans, the TRG locus is located on chromosome 7 (36.4-50.1 Mb), while in Xenopus tropicalis, it is located on chromosome 6 (61.99-63.99 Mb).
The V cluster is shown in red, the J cluster in yellow, and the constant (C) region in blue, regardless of functionality. Non-TR genes are depicted in
black. In A. mexicanum, analysis of chromosome 5p (834.5-863.2 Mb) reveals a complete absence of the TRG locus. However, strong synteny is
observed with the genomic neighborhood found in both humans and X. tropicalis. The proximal flanking genes include AMPH, POU6F2, NPSR1,
BMPER, BBS9, NT5C3A, RP9, and VELOI, while the distal flanking genes are STARD3NL, EPDR1, SFP4, GPR141, ELMO1, AOAH, ANLN, and MATCAP2.
Notably, the orientation of these flanking genes is inverted in X. tropicalis compared to A. mexicanum and humans, which share not only the same
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gene content but also a conserved gene orientation. This suggests that, despite the loss of the TRG locus in A. mexicanum, the surrounding

genomic architecture remains highly conserved.

V-intron length is 400 bp (69). The biological implication of longer
TR V-introns is uncertain. Long introns have been reported to
impose evolutionary costs by increasing the energetic demand due
to the greater nucleotide investment and extended transcription
time required. Additionally, they may compromise the fidelity of
mature mRNA and expand the sequence space available for allelic
variation and aberrant splicing (70). Intron length has also been
suggested to play a functional role in evolutionary dynamics (71).
Comeron and collaborators (72) proposed that extensively long
introns may enhance the efficiency of natural selection by
alleviating Hill-Robertson (HR) interference, a phenomenon
where selection acting on linked loci reduces selective efficacy. In
this context, long V-introns may act as spacer regions that decouple
selective pressures acting on neighboring functional elements.

Moreover, HR interference might prevent their elimination via
purifying selection if these introns are linked to active V genes.
Consequently, such introns could facilitate the emergence of
alternative splicing events or the production of non-functional
transcripts, potentially affecting the expression and functionality
of the antigen receptor repertoire (70, 73, 74). Collectively, these
findings reinforce the idea that introns do not merely represent
structural and energetic burdens but may also play key roles in gene
generation, conservation, and diversification; particularly in
immune-related loci such as those encoding T cell receptors.

It is noteworthy that the functional-to-pseudogene ratio in the A.
mexicanum TRB is 3.6 and 3.06 in the TRA locus, compared with 0.9
and 2.7 in the IGH locus (AmbMex60DD) (24) and
UKY_AMEXF1_1" assemblies, respectively. Within the framework

1 Saint Remy-Hernandez S, Pacheco-Olvera DL, Godoy-Lozano EE,
Miguel-Ruiz JA, Téllez-Sosa J, Valdovinos-Torres H, et al. An update of

immunoglobulin loci in Ambystoma mexicanum. (2025).
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of the “birth-and-death” model of T and B cell receptor gene
evolution (75), higher ratios may indicate a slower accumulation of
pseudogenes, potentially reflecting more recent functional gene birth
events, stronger purifying selection, or lower rates of gene
inactivation in T cell receptors compared with B cell receptors.
While such differences could be stochastic, they may also reflect
distinct selective pressures acting on these repertoires. The
comparison between genome versions further shows that
improvements in assembly quality can refine gene counts and alter
calculated ratios, underscoring the importance of high-quality
chromosome-level genome assemblies and thorough manual
curation of AIRR loci for robust evolutionary inferences (76).

Its absence in amphibians implies that early o8 T cell development
proceeds via alternative mechanisms, possibly involving different
surrogate chains or signaling pathways. This reinforces the
hypothesis that PTCRA originated as an amniote-specific innovation,
rather than an ancestral gene lost independently in teleosts and
amphibians. Identifying how amphibians compensate for the absence
of PTCRA could provide insights into the evolution and diversification
of T cell developmental programs in vertebrates.

The review and characterization of immune components in A.
mexicanum are essential for understanding the cellular processes in
which cells interact dynamically and persistently. These
components have been shown to play a key role in modulating
such interactions in other vertebrates with comparable regenerative
capacity, influencing both the persistence of immune responses and
the regulation of mechanisms underlying the regeneration of
complex structures such as limbs, tail, heart, retina, and spinal
cord. However, further studies are needed to clarify the specific role
of T cells in this process in A. mexicanum (77-80).

In conclusion, the A. mexicanum TRB locus exhibits greater
diversity than the TRA and TRD loci. Notably, no evidence of bona
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FIGURE 6

Absence of the PTCRA locus in the Ambystoma mexicanum genome (UKYF1_1). Schematic representation of the PTCRA locus across representative
genomes. Black arrows indicate syntenic genes, white arrows represent non-syntenic genes, and red arrows depict the PTCRA gene ortholog. In
mammals (Homo sapiens and Monodelphis domestica), there is perfect synteny in the locus. In sauropsids, such as Gallus gallus, Taeniopygia
castanotis (chicken and zebra finch) loci are syntenic; in Anolis carolinensis (lizard), only POLR1B, TLL upstream and downstream CNPY3, GNMT,
PEX6, and CUL7 are conserved. In X. tropicalis synteny is observed but there is no evidence of PTCRA. In the case of A. mexicanum, we identified all
neighboring genes of the PTCRA locus; however, a rearrangement of the entire chromosome is observed, leading to the absence of PTCRA.

fide YO T cells was found. This study leaves open questions regarding
the composition of T-cell subpopulations and the pairing of TR chains,
particularly the § chain in the absence of the y chain in axolotl. The
presence of two constant domains in TRB_003 warrants further
investigation to clarify their role in antigen recognition, functionality,
and pairing with the o chain. Such insights are crucial to understanding
the impact on this endangered species, which already presents a
marked deficit of heterozygosity, reflecting substantial inbreeding and
increasing vulnerability to infectious diseases (22).

This work provides valuable insights for comparative
evolutionary analyses in tetrapods and advances our knowledge of
immune response in caudate amphibians. Moreover, it may aid in
solving specific questions regarding the role of acquired immunity
in the regulation of the immune response implicated in tissue
regeneration (81).

4 Methods

4.1 Ambystoma mexicanum genome and
transcriptome data

The published sequence of the A. mexicanum haploid genome
(UKY_AmexF1_1; GenBank assembly: GCF_040938575.1) was
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generated from an adult female F1 hybrid (isolate Amex_F1_6;
BioSample SAMN41071122) derived from a cross between a
female A. mexicanum (isolate Mex_15411; BioSample
SAMN43142723) and a male A. tigrinum (isolate Tig_M23;
BioSample SAMN43142724). The phased haploid assembly has
48x coverage was sequenced using PacBio and Illumina HiSeq and
Hi-C data (82). The UKY_AmexF1_1 assembly consists of 21
chromosomes and 220 unplaced scaffolds, with a scaffold N50 of
1.5 Gb.

The corresponding genome annotation file
GCF_040938575.1_UKY_AmexF1_1_genomic.gff.gz; and gap positions
GCF_040938575.1_UKY_AmexF1_1_genomic_gaps.txt.gz, were
retrieved from https:/ftp.ncbi.nlm.nih.gov/genomes/all/GCF/040/938/
575/.

To validate gene models, we used previously published RNA-seq
and transcriptome data available in the NCBI SRA database. Specifically,
RNA-seq coverage bigWig (BW) files from spleen, liver, and lung
(SRR15610271, SRR15610267, SRR15610267), obtained from the NCBI
FTP repository (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/040/938/
575/GCF_040938575.1_UKY_AmexF1_1/RNASeq_coverage_graphs/),
were used as visual support for manual curation without further
processing. Additionally, transcriptome datasets (BioProject
PRJNA378970) from spleen, liver, and lung (SRR5341570,
SRR5341572, SRR5341571) (23) were aligned to the genome
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using STAR (83) with default parameters and a maximum intron
size of 3000 bp. Gene-level quantification was performed using the
—quantMode GeneCounts option.

Mapping statistics for each dataset and assembly including
input reads, uniquely mapped reads, spliced alignments,
mismatch rate per base, and reads discarded for being too short.
RNA-seq datasets were obtained from adult tissues (NCBI SRA:
SRR5341570: spleen; SRR5341572: liver; SRR15610267: lung) and
aligned to both AMEX_F1_1 and AmbMex60DD assemblies. These
statistics provide a benchmark for expression analysis and support
the reliability of TR gene annotation across assemblies
(Supplementary File 4; Supplementary Table 3).

4.2 TR loci mapping

Reference sequences (cDNA) for TRA, TRD, TRB, and TRG loci
from X. tropicalis, X. laevis, and A. mexicanum were obtained from
NCBI (https://www.ncbi.nlm.nih.gov/). These sequences were used to
map the TRA, TRD, and TRB loci using TBLASTX and Exonerate
(EST2genome alignment model). Hits with significant alignment
scores (e-value < 1.0E-05 for BLASTX, score > 100 for Exonerate)
were exported as GFF3 files. These annotations were visualized and
manually curated using the Integrative Genomics Viewer (IGV) (84).
To complement homology-based annotation and minimize the risk of
missing novel or lineage-specific V(D)] genes, we developed a custom
pipeline to detect RSSs according to the canonical 12/23 rule. The
workflow comprised: (i) BLAST alignments with bitscore filtering and
conversion to GFF to identify scaffolds or chromosomes of interest; (ii)
Exonerate-based exon and gene detection; (iii) RSS search using
HMMER with tbl-to-GFF conversion; (iv) redundancy reduction
across gene and exon annotations; (v) overlap analyses to confirm V
genes and their signal peptides; (vi) refinement of V gene and RSS-J
coordinates with Miniprot (protein-to-genome aligner); and (vii)
identification of candidate D genes based on flanking 5" and 3’ RSSs.
This pipeline was applied to the TRA, TRD, and TRB loci in the
AmbMex60DD assembly to uncover additional putative V, D, and |
genes. The search database was built from TR gene models previously
described in X. tropicalis and X. laevis. Genes identified through RSS
were integrated with homology-based results and manually curated. To
refine annotation, the AmbMex60DD-derived sequences were
subsequently aligned to the latest reference genome (AMEX F1_1),
yielding the final TR loci annotation. All TR genes were named by a
provisional numeric identifier. All our annotations are compliant with
the TUIS T-cell Receptor and Immunoglobulin Nomenclature Sub-
Committee, except for the fact that individual gene coverage and loci
coverage are not publicly available (85).

4.3 Definition of V, D, and J functionality

Functionality assessments were performed based on IMGT (86)
criteria. To classify a V, D, or ] gene as functional (F), each coding
region was required to have an open reading frame, proper splicing
sites, and recombination signals with 12/23 spacers. For V-exons, the
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presence of conserved residues Cys23, Trp41, Trp52, and Cys104 was
mandatory. Genes were classified as pseudogenes (P) if they contained
stop codons, lacked leader peptide exon and/or RSS and were frame-
shifted. For J-exons, the di-glycine bulge (FGXG) was required.

4.4 Search for TRDD and TRBD genes

We constructed a Hidden Markov Model (HMM) profile with
the HMMER3 (-hmmbuild option) (87) to represent the sequence
structure of the genes of TRBD and their associated RSS’s. This
profile was generated with multiple sequence alignments based on
TRBD genes from A. mexicanum previosuly published by Fellah
(59). The genes were flanked at the 5’ by a 12 bp-spaced RSS, and at
the 3’ end by a 23 bp-spaced RSS. The same HMM profile was
subsequently used to search for the TRA-TRD locus.

4.5 PTCRA gene search

A multiple sequence alignment of PTCRA orthologs described
by Smelthy et al. (43) was used to build an HMM profile with the
HMMER3 (-hmmbuild option). This probabilistic model captures
evolutionary changes in conserved amino acids across related
sequences (87). The resulting HMM profile was applied to the A.
mexicanum proteome using -hmmsearch. Additional searches were
performed with the PFAM model PF15028 for PTCRA.

For synteny analysis, we first identified PTCRA-flanking genes
in human, opossum, birds, reptiles, and frogs. Orthologous regions
were then located in A. mexicanum, followed by manual curation of
the surrounding genes to ensure the annotation was correct.

4.6 Intron length analysis

V-intron length was calculated from the exon coordinates of the
respective locus annotation file (Supplementary 2; Table 1, P
column). Due to the presence of abnormally long intron, we used
a non-parametric Wilcoxon rank-sum text to compare intron
lengths between functional and pseudogene V genes. Enrichment
of long introns in functional genes was further evaluated using
Fisher’s exact test in R.
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