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Objective: This study was designed to explore the value of machine
learning-based radiology in predicting overall survival (OS) among patients with
inoperable pancreatic cancer (PC) who are undergoing concurrent
chemoradiotherapy (CCRT).

Methods: This multicenter study enrolled 342 patients with inoperable PC. Firstly,
radiomic features were pre-screened by univariate Cox regression and
subsequently used to develop 101 machine-learning—based imaging models.
An optimized selection algorithm was applied to these models to derive each
patient’s radiomic signature (Rad-score). Secondly, key clinical predictors of OS
were identified via LASSO-Cox regression and incorporated into clinical
nomogram. Finally, the Rad-score was combined with the independent clinical
risk factors to construct clinical-radiomics nomogram.

Results: LASSO-Cox regression identified age, clinical stage, tumor size, and
albumin level as independent prognostic factors for OS. Based on these four
variables, we constructed a clinical nomogram in the training cohort, which
achieved a C-index of 0.71. In the internal validation cohort, the areas under the
receiver operating characteristic curve (AUC-ROC) for predicting 1-, 2-, and 3-
year OS were 0.577, 0.721, and 0.730, respectively; in the external validation
cohort, the corresponding AUC-ROCs were 0.841, 0.757, and 0.598.
Subsequently, each patient’s Rad-score was integrated with these clinical
predictors to develop a clinical-radiomics nomogram, which demonstrated a
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C-index of 0.892. The AUC-ROCs for predicting 1-, 2-, and 3-year OS were
0.791, 0.846, and 0.840 in the internal validation cohort, and 0.863, 0.830, and
0.734 in the external validation cohort.

Conclusion: The clinical-radiomics nomogram demonstrated superior
predictive performance for OS compared to the clinical nomogram in
inoperable PC patients undergoing CCRT.

pancreatic cancer, machine learning, prognosis, radiology, survival

Introduction

Pancreatic cancer (PC) is one of the most prevalent
malignancies and constitutes a leading cause of cancer-related
mortality, thereby representing a significant threat to human
health (1). When permitted, surgical resection is the primary
treatment modality for primary pancreatic tumors. However, the
majority of PC patients present with advanced-stage disease at
diagnosis, and only a minority are eligible for curative resection (2).
This leads to an extremely poor prognosis for patients with PC, with
a 5-year survival rate of < 5% following diagnosis (3). Continued
treatment of PC is important at this time, because the progression of
primary tumors leads to morbidity and mortality through invasion
of nearby organs and blood vessels. This process is identified as the
leading cause of mortality in at least 30% of patients with PC (4, 5).
Concurrent chemoradiotherapy (CCRT) provides an option for
local disease control (6).

Over the past few decades, there has been a gradual
improvement in the clinical outcomes of patients with PC have
gradually, largely attributable to the widespread adoption and
standardization of radiotherapy, as well as advances in
multimodal treatment strategies (7). Prior research have indicated
that patients with locally advanced PC who undergo CCRT achieve
a significantly higher 1-year survival rate than those treated with
chemotherapy alone (8). Additionally, the overall survival (OS) of
patients treated with radiotherapy (RT) in combination with
gemcitabine increased from 9.2 to 11.1 months compared with
that of patients receiving gemcitabine alone (9). Furthermore, dose-
response analysis revealed that patients receiving an RT
prescription dose of 61 Gy achieved significantly better outcomes
than those receiving <61 Gy, with 1-year OS rates of 74.7% versus
60.6%, and 1-year progression-free survival rates of 46.2% versus
30.9%, respectively (10). CCRT improves the prognosis of patients
with advanced PC. However, several problems associated with
CCRT still remain, such as a high risk of recurrence rate, high
mortality rate, and unsatisfactory accuracy of prognosis prediction.
These limitations are further compounded by the inability to
rapidly and dynamically monitor the tumor properties and
changes, as well as unsatisfactory treatment outcomes (11).
Therefore, improved efficacy prediction models are required.
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These current situations show that, in the era of personalized and
precision medicine, using more powerful auxiliary models to
further optimize the clinical workflow of PC is greatly significance.

A recent proposal has introduced a deep learning methods for
synthetic medical image generation, with the objective of enhancing
the efficiency of convolutional neural networks in cancer image
classification (12). Traditional diagnostic functions of medical
imaging can be taken one step forward with the introduction of
radiology (13). Radiomics converts medical images into high-
throughput, mineable data and automatically extracts quantitative
features to augment the estimation of clinical indicators in various
malignancies (14). Radiomic analysis is emerging as a promising
strategy for predicting cancer risk and cancer recurrence (15, 16).
This technology enables the revelation of unique insights into
tumor behavior through the integration of multimodal data with
clinical, pathological, and genomic information, facilitating the
decoding of diverse tissue biology (17, 18). However, limited
research has been conducted on risk prediction after
chemoradiotherapy for advanced inoperable PC.

Accordingly, our study aimed to apply machine learning
strategies to identify a new prognostic model and explore its
potential for predicting the efficacy of chemoradiotherapy in
patients with unresectable PC, with the goal of minimizing
diagnostic errors and improving patient treatment. Personalized
precision has considerable potential for improving
medical procedures.

Methods
Patient selection

The study cohort included patients from two hospitals between
2018 and 2024. The first dataset was obtained from Shandong
Province Cancer Hospital (Hospital 1) and divided into training
(n=187, 70%) and internal verification (n=85, 30%) datasets. The
second dataset was obtained from Chongqing City People’s
Hospital (Hospital 2) and served as an external verification set
(n=70) (Figure 1). The study was approved by the Ethical Review
Committees of Shandong Province Cancer Hospital
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(c)Eastern Cooperative therapy (n=4)
Oncology Group performance (b) Dual primary
status score 0-1 malignancies (n=5)
(d) At least one target lesion (c) Incomplete data (n=2)
measurable by
The Response Evaluation
Criteria In Solid Tumors
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Enrolled
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|
Y
Center
2(n=70)
A I
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set(n=187) set(n=85) set(n=70)
Combined with clinical
parameters
Y
Performance of responseand
prognosis
was analyzed in two cohorts
FIGURE 1

Patient selection flowchart.

(SDTHEC2024007030) and Chongging City People’s Hospital (KY
$2024-030-01). All patients gave informed consent.

The inclusion criteria were as follows: a) pathologically diagnosed
unresectable PC; b) receiving RT combined with chemotherapy; c)
Eastern Cooperative Oncology Group performance status score 0-1; d)
at least one target lesion measurable by The Response Evaluation
Criteria In Solid Tumors (RECIST). Patients exhibiting the following
characteristics were excluded: a) previous antitumor therapy; b) dual
primary malignancies; or ¢) incomplete data.

Treatment and follow-up

All patients received concurrent chemoradiotherapy. Target
volumes and critical organs were delineated by at least two senior
physicians and medical physicists on contrast-enhanced CT
simulation images, with reference to other imaging data such as
contrast-enhanced pancreatic MRI. CT scans were performed in the
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venous phase (60-70 seconds after contrast injection), and the slice
thickness was <3 mm. Radiotherapy was delivered using volumetric
modulated arc therapy (VMAT) and intensity modulated radiation
therapy (IMRT). The gross tumor volume (GTV) included
radiologically visible pancreatic tumors and metastatic lymph
nodes on CT/MRI. The clinical target volume (CTV)
encompassed the primary lesion, lymph nodes and perineural
invasion sites within approximately 5-10 mm around the
pancreatic vasculature, along with lymphatic drainage areas. The
planning target volume (PTV) was defined as a 5-10 mm expansion
of the CTV. The dose constraints for organs at risk (OARs) followed
the RTOG guidelines: Duodenum Dmax <55 Gy, V50 <10 cm%
Stomach: Dmax <55 Gy, V45 <75 cm?; Small bowel: Dmax <55 Gy,
V50 <10 cm?; Liver: Dmean <25 Gy; Kidneys: Dmean <18 Gy, V20
<32%; Spinal cord: D1 (dose to 1% volume) <45 Gy.

Subsequent patients were generally subjected to regular follow-
ups every 3 months during the first year to undergo computed
tomography/magnetic resonance imaging (CT/MRI) scans to
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monitor the effects of RT. Follow-ups were conducted every 6 months
in the second year and then annually. Tumor remission was
measured using imaging studies in accordance with the RECIST
V.1.1 The primary clinical endpoint was OS, defined as the time from
the date of initial radiation therapy until mortality or last follow-up.

Radiomics feature extraction and model
construction

A comprehensive set of 1130 radiomic features were extracted from
the gross tumor volume in the contrast-enhanced CT scan of each
patient with PC using 3D-slicer software. The regions of interest (ROIs)
were selected from the primary tumor sites, and the ROI was drawn
strictly within the tumor boundaries (Figure 2). First, a univariate Cox
regression model was used in the training set to select the optimized
feature imaging parameters. A total of 272 patients were randomly
divided into a training cohort (n = 187) and an internal validation
cohort (n = 85) at a 7:3 ratio. In the training cohort, univariate Cox
regression was applied to identify optimized imaging features associated
with survival. These selected features were subsequently incorporated
into the development of 101 different machine-learning radiomics
models. These models were constructed by combining 12 different
algorithms: StepCox[forward], Ridge, Enet, Random Survival Forest
(RSF), StepCox[both], StepCox[backward], CoxBoost, LASSO, Gradient
Boosting Machine, plsRcox, SuperPC, and Support Vector Machine.
The concordance index (C-index) of each model was calculated in the
training, internal validation, and external validation cohorts (n = 70,
Chongqing General Hospital). The model with the highest C-index in
the training cohort was chosen as the final model, and the
corresponding radiomics score (Rad-score) was calculated for each
patient based on this model. The codes used in this study are shown
in Supplementary Data Sheet 1.

CT imaging begore treatment Tumor delineation

FIGURE 2
Radiomics pipeline for predicting OS in patients with pancreatic cancer.
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Nomogram construction

In the training cohort, Least Absolute Shrinkage and Selection
Operator (LASSO) regression was applied to screen prognostic
factors associated with OS. The factors selected by LASSO were
then entered into univariate and multivariate Cox proportional-
hazards models to identify independent predictors of OS, which
were used to construct Nomogram 1 (clinical nomogram). Next,
each patient’s Rad-score was combined with the independent
clinical predictors to build Nomogram 2 (clinical-radiomics
nomogram). Finally, in both the internal and external validation
cohorts, we evaluated the predictive performance of these two
models by plotting receiver operating characteristic (ROC) curves,
calibration curves, and decision curve analysis (DCA) curves. The
online dynamic nomogram uses DynNom (v5.1), shiny (v. 1.11.1),
rms (v. 8.0 - 0), survivminer (v. 0.5.0), survival (v3.8 - 3), and an
rsconnect (v1.5.1). The website platform is hosted using https://
docs.posit.co/shinyapps.io/.

Statistical analysis

For categorical variables, the chi-square test was used for
assessment. For continuous baseline variables, the Shapiro-Wilk
test was first applied to examine the normality of data distribution.
compared using one-way analysis of variance (ANOVA), whereas
non-normally using the Kruskal-Wallis test. Additionally, the
Kaplan-Meier method was employed to estimate the survival rate,
with the log-rank test subsequently utilized to compare survival
curves. All analyses were conducted using R software version 3.3.2.
A two-sided P value of less than 0.05 was considered to indicate
statistically significant.

Feature extraction

Feature selection
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Result
Patient characteristics

This study included a total of 342 patients with PC. The analysis
of baseline characteristics is shown in Table 1. No significant
baseline differences were observed among the training set (n =
187), internal validation group (n = 85), and external validation
group (n = 70).

OS

In the training set, internal validation group, and external
validation groups, the median OS was 20.3, 22.2, and 21.5
months respectively, while the 3-year survival rates were 36.9%,
30.4%, and 28.7%, respectively (P = 0.9, Supplementary Figure 1).

Radiomics models

Nine risk indicators were screened from 1,130 data using single-
factor Cox. The selected characteristics were as follows:

wavelet. LHL firstorder.Range

wavelet. LHL.glszm.SizeZoneNonUniformityNormalized
wavelet. HLH.glszm.GrayLevelNonUniformity

wavelet. HHH.gldm.LowGrayLevelEmphasis

wavelet HHH.glrlm . LowGrayLevel RunEmphasis
wavelet. HHH.glrlm.ShortRunLowGrayLevelEmphasis
wavelet HHH.glszm.GrayLevelNonUniformity

wavelet. HHH.glszm.SmallAreaEmphasis

wavelet. HHH.glszm.ZoneEntropy

Based on these nine risk indicators, 101 machine learning
models were constructed by combining 12 models: StepCox
[forward], Ridge, Enet, random survival forest (RSF), StepCox
[both], StepCox[backward], CoxBoost, LASSO, gradient boosting
machine, plsRcox, SuperPC, and survival support vector machine
(Figure 3). The results revealed that StepCox|[forward]+ RSF had
the highest C-index of 0.89 (Supplementary Figure 2). The Rad-
score for each patient was determined by means of calculation using
the model. As shown in Supplementary Figure 3, three sets of
survival curves are presented based on the cutoff value of the
median risk score. These results indicate that the image model
demonstrates a satisfactory predictive capacity.

Clinical prognostic factor selection: LASSO
+ Cox

In the training set, LASSO regression selected the following 11
variables associated with OS: Age, body mass index (BMI), sex, T
stage, N stage, lymphocyte count, neutrophil count, CA19-9 level,
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clinical stage, tumor size, and serum albumin (Supplementary
Figures 4A, B). Subsequently, the 11 prognostic factors were
entered into univariate and multivariate Cox regression analyses,
which confirmed that age, clinical stage, tumor size, and albumin
level were independent prognostic factors (Table 2).

Clinical nomogram and clinical-radiomics
nomogram

In the training cohort, a clinical nomogram was first developed
based on independent clinical prognostic factors identified by
multivariate Cox analysis (Figure 4A). Subsequently, each
patient’s radiomics signature (Rad-score) was integrated with
these independent clinical predictors to construct a clinical-
radiomics nomogram (Figure 4B). At the same time, we have
developed online dynamic nomograms for real-time use by
clinicians. One of them is an online nomogram for clinical model
(https://yanzeli95.shinyapps.io/DynNomapp_no_risk_score/). The
other is an online nomogram for clinical-radiomics model
(https://yanzeli95.shinyapps.io/DynNomapp_risk_score/).

For the clinical nomogram, the area under the ROC curves
(AUC-ROC) for predicting 1-, 2-, and 3-year OS were 0.577, 0.721,
and 0.730 in the internal validation cohort (Figure 5A), and 0.841,
0.757, and 0.598 in the external validation cohort (Figure 5B). DCA
showed that the clinical nomogram provided greater net benefit
than treat-all or treat-none strategies across a range of threshold
probabilities in both validation cohorts (Figures 5C, D). Calibration
plots demonstrated close agreement between predicted and
observed survival, confirming the model’s stability (Figures 5E, F).
The C-index of the nomogram was 0.71.

For the clinical-radiomics nomogram, the AUC-ROC for
predicting 1-, 2-, and 3-year OS were 0.791, 0.846, and 0.840 in
the internal validation cohort (Figure 6A), and 0.863, 0.830, and
0.734 in the external validation cohort (Figure 6B). DCA showed
net benefit over treat-all/none strategies across thresholds
(Figures 6B, E), and calibration plots confirmed close agreement
between predicted and observed survival (Figures 6C, F). The C-
index of the nomogram was 0.892. And the briefer scores of the two
models are shown in Table 3.

Discussion

To our knowledge, this is the first clinical-radiomic prognostic
risk model of survival to chemoradiotherapy in patients with
inoperable PC, which may be a new prognostic imaging
biomarker for PC. PC has the highest mortality rate among all
malignant tumors worldwide (19). Despite significant advances in
medical technology, the prognosis of PC has improved significantly
(20). However, the overall prognosis for patients diagnosed with PC
continues to be unfavorable, representing a significant threat to
their survival (21, 22). We combined clinical and radiomics
features, optimizing the screening and combination of radiomics
parameters related to the prognosis of PC using a variety of machine
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TABLE 1 Patient baseline data analysis table.

10.3389/fimmu.2025.1655803

o Internal External . .
Variables Tralnlrlg Eouel validation validation P  W-value AT Normality
(n=187) (n=85) (n=70) p-value

Age (mean + SD) 61.4 +10.5 62.3 +11.6 62.1 +12.1 0.791 0.993 0.127 Normal
Sex 0.9

Female 80 (42.8%) 38 (44.7%) 32 (45.7%)

Male 107 (57.2%) 47 (55.3%) 38 (54.3%)
BMI (mean + SD) 220+ 37 222 +37 219 +37 0.807 0.996 0.434 Normal
Diabetesmellitus 0.161

No 147 (78.6%) 75 (88.2%) 56 (80.0%)

Yes 40 (21.4%) 10 (11.8%) 14 (20.0%)
Hypertension 0.999

No 136 (72.7%) 62 (72.9%) 51 (72.9%)

Yes 51 (27.3%) 23 (27.1%) 19 (27.1%)
Jaundice 0.394

No 145 (77.5%) 72 (84.7%) 56 (80.0%)

Yes 42 (22.5%) 13 (15.3%) 14 (20.0%)
Abdominal pain 0.313

No 113 (60.4%) 44 (51.8%) 37 (52.9%)

Yes 74 (39.6%) 41 (48.2%) 33 (47.1%)
Stage 0.936

I 18 (9.63%) 6 (7.06%) 6 (8.57%)

11 21 (11.2%) 7 (8.24%) 6 (8.57%)

11T 47 (25.1%) 26 (30.6%) 19 (27.1%)

v 101 (54.0%) 46 (54.1%) 39 (55.7%)
T 0.935

1 8 (4.28%) 2 (2.35%) 2 (2.86%)

2 40 (21.4%) 18 (21.2%) 13 (18.6%)

3 33 (17.6%) 11 (12.9%) 10 (14.3%)

4 82 (43.9%) 43 (50.6%) 35 (50.0%)

X 24 (12.8%) 11 (12.9%) 10 (14.3%)
N 0.983

0 86 (46.0%) 36 (42.4%) 31 (44.3%)

1 61 (32.6%) 31 (36.5%) 24 (34.3%)

2 14 (7.49%) 7 (8.24%) 7 (10.0%)

X 26 (13.9%) 11 (12.9%) 8 (11.4%)
M 0.969

0 86 (46.0%) 39 (45.9%) 31 (44.3%)

1 101 (54.0%) 46 (54.1%) 39 (55.7%)
Liverm 0.516

(Continued)
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TABLE 1 Continued

Internal

10.3389/fimmu.2025.1655803

External

. Training cohort o o Shapiro-wilk .
Variables (n—g:]L87) validation validation P  W-value p?value Normality
(n=85) (n=70)

No 129 (69.0%) 53 (62.4%) 45 (64.3%)

Yes 58 (31.0%) 32 (37.6%) 25 (35.7%)
Lungm 0.092

No 176 (94.1%) 77 (90.6%) 60 (85.7%)

Yes 11 (5.88%) 8 (9.41%) 10 (14.3%)
Otherm 0.933

No 132 (70.6%) 60 (70.6%) 51 (72.9%)

Yes 55 (29.4%) 25 (29.4%) 19 (27.1%)
Size (M, IQR) 3.8 (3.0 - 5.0) 42(33-5.1) 3.5 (2.9 - 5.1) 0.396 0.927 < 0.001 Non-normal
White blood cell (M,
1GR) 56 (44 - 7.1) 5.7 (44 - 7.0) 57 (4.6 - 7.2) 0.963 0.693 <0.001 Non-normal
Lymphocyte (M, IQR) 14 (1.1-1.7) 1.3 (1.0 - 1.6) 1.3 (1.0 - 1.6) 0.368 0.801 < 0.001 Non-normal
Neutrophil (M, IQR) 34 (24-49) 3.8 (2.6 - 5.0) 3.6 (2.7 - 5.1) 0.949 0.604 <0.001 Non-normal
Neutrophil-lymph

eutrophil-ymphocyte 2.5 (16 - 3.8) 3.0 (19 - 4.3) 3.0 (18 - 4.5) 0.92 0.642 <0.001 Non-normal
ratio (M, IQR)
Hemoglobin (mean +
D) 1220 + 174 1210 + 174 122.0 + 18.1 0.741 0.997 0.6741 Normal
Blood platelet (M, IQR) 217.0 (160.5 - 271.5) 236.0 (171.0 - 302.0) 219.5 (160.8 - 284.8)  0.733 0.924 <0.001 Non-normal
Total bilirubin (M, IQR) 11.9 (8.0 - 23.2) 10.7 (7.2 - 20.2) 93 (6.7 - 13.7) 0.516 0.472 <0.001 Non-normal
Alanine
aminotransferase (M, 25.1 (15.4 - 68.3) 22.6 (14.3 - 53.3) 20.3 (12.2 - 47.8) 0.142 0.527 < 0.001 Non-normal
IQR)
Aspartate t: i

spartate fransaminase 253 (17.9 - 46.2) 243 (17.1 - 445) 23.1 (161 - 37.8) 0477 0.596 <0.001 Non-normal
(M, IQR)
Albumin (mean + SD) 419+53 413+ 48 421465 0.623 0.935 <0.001 Non-normal
CA199 (M, IQR) 167.6 (38.6 - 701.5) 294 (53.3 - 1212.0) 276 (39.6 - 1313.3) 0.441 0.531 <0.001 Non-normal

learning methods, which improved the accuracy of the prediction
results. Additionally, a significant machine learning radiomics
prognostic model was developed to predict the OS to
chemoradiotherapy in patients diagnosed with inoperable PC.
Chemoradiotherapy improves the prognosis of patients
diagnosed with inoperable PC (23). Therefore, predicting the
efficacy of chemoradiotherapy has become a top priority. Previous
studies have demonstrated that factors such as patients’ age, tumor
differentiation, tumor size, serum alkaline phosphatase, albumin
level, and CA 19-9 can serve as independent predictors of PC
prognosis (24). Several predictive models have been developed for
PC. A retrospective study leveraging both the Surveillance,
Epidemiology, and End Results(SEER) database and a Chinese
cohort developed a prognostic nomogram for PC based on
clinical characteristics. This nomogram demonstrated AUC for 1-
, 3-, and 5-year survival rates of 0.71, 0.82, and 0.81, respectively
(25). Based on an analysis of clinical parameters and DNA
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methylation risk scores, Deng et al. established and validated a
nomogram with 1-, 2-, and 3-year AUCs of 0.899, 0.765, and 0.766,
respectively (26). Our findings that the 1-, 2-, and 3-year AUCs of
the clinical model constructed to predict inoperable PC survival
were 0.577, 0.721, and 0.730, respectively. Although the predictive
power of clinical models is acceptable, these indicators cannot
identify patients with a high probability of recurrence or a poor
prognosis after treatment through subtle heterogeneous changes
within tumors (27, 28).

However, few studies have used machine learning for prognostic
analysis of PC. Some researchers have constructed a prognostic model
to evaluate the prognosis the outcomes of patients with PC liver
metastases who are undergoing chemoimmunotherapy based on
magnetic resonance features and clinical data. The nomogram
generated from this model achieved an AUC of 0.770 for predicting
1-year OS (29). Although this analysis demonstrated the usefulness of
clinical and other models in the diagnosis of PC, it did not explore the
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Machine learning model evaluation and correlation curve analysis: The consistency index (C index) for different machine learning models.
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ability of radiomics to predict prognosis. A recent retrospective case-
control research using radiomics data from CT scans to evaluate PC
health indicated the merits of radiomics. However, this study did not
combine survival benefit outcomes (30).

In this study, we tested a wide range of machine learning
algorithms to construct radiomics-based prognostic models for
hepatocellular carcinoma. The rationale for employing multiple
algorithms lies in the distinct strengths and limitations of each
approach (31). For example, Cox-based models offer strong
interpretability and clinical relevance but may oversimplify
complex nonlinear relationships. Tree-based ensemble methods,
such as random survival forests, are capable of capturing high-order
interactions and nonlinear effects, yet may lack transparency.
Gradient boosting algorithms, such as XGBoost and LightGBM,
often demonstrate superior predictive accuracy and robustness in
high-dimensional data but require careful tuning to avoid
overfitting. Similarly, support vector machines (SVM) and neural
network-based models can handle complex feature spaces but may
be less intuitive for clinical translation. By systematically comparing
these algorithms across training, internal, and external validation
cohorts using the concordance index, we ensured that the final
selected model achieved both optimal performance and
generalizability. This comparative approach not only highlights
the variability in algorithmic performance but also strengthens
confidence in the robustness of the chosen model. Ultimately, the

Frontiers in Immunology

use of diverse machine learning strategies allowed us to balance
predictive accuracy with interpretability, ensuring the proposed
radiomics score is both scientifically sound and clinically
applicable. And we employed both stepwise Cox and RSF to build
and evaluate prognostic models for PC. Stepwise Cox was chosen
for its strong clinical interpretability and ability to identify key
prognostic variables while maintaining a parsimonious model
structure. In contrast, RSF offers distinct advantages in capturing
complex, nonlinear relationships and interactions among variables
without relying on the proportional hazards assumption (32). By
combining these two approaches, we were able to leverage the
complementary strengths of interpretability and predictive
accuracy. This dual strategy not only provides robust survival
prediction but also ensures that the results remain clinically
meaningful and applicable to individualized treatment planning.
Patients with carcinoma of pancreatic head undergoing radical
resection were analyzed with respect to the ability of radiomics and
clinical data to predict OS, demonstrating that CT scans revealed
shorter disease-free survival for portal vein-stage hypodense PC
(33). Study has used purely clinical variables to establish clinical
nomograms for pancreatic cancer or other types of cancer. For
example, there are studies that focus on clinical data from patients
with pancreatic cancer, using clinical variables (such as tumor stage,
CA19-9 levels, albumin levels, etc.) to predict patients ‘OS. These
studies have generally shown that pure clinical nomograms can
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TABLE 2 Univariate and multivariate Cox regression models for overall survival.

Univariate analysis

Characteristic

Multivariate analysis

95% Cl P value 95% Cl P value

Age 1.03 1.01-1.06 0.004 1.03 1.01-1.06 0.014
BMI 0.94 0.88-1.00 0.045 0.97 0.91-1.04 0.398
Sex

Female 1.000

Male 0.60 0.38-0.94 0.027 0.69 0.43-1.10 0.117
T

1 1.000

2 3.02 0.69-13.16 0.142 4.09 0.88-19.03 0.073

3 2.75 0.62-12.21 0.184 1.65 0.36-7.57 0.521

4 3.42 0.82-14.29 0.091 1.50 0.32-7.06 0.607

x 5.18 1.12-23.85 0.035 3.82 0.74-19.78 0.111
N

0 1.000

1 1.16 0.70-1.92 0.558

2 0.98 0.35-2.77 0.975

X 1.95 0.98-3.88 0.056
Lymphocyte 112 0.84-1.50 0.426
Neutrophil 0.97 0.89-1.05 0.420
CA199 1.00 1.00-1.00 0.071
Stage

1 1.000

2 1.05 0.37-3.01 0.925 2.00 0.59-6.76 0.266

3 1.93 0.82-4.52 0.132 4.18 1.26-13.88 0.019

4 234 1.04-5.23 0.039 4.04 1.44-11.37 0.008
Size 112 1.01-1.24 0.029 1.16 1.02-1.32 0.020
Albumin 0.92 0.88-0.96 0.001 0.91 0.87-0.96 0.001

The bold values indicate statistical significance with P < 0.05.

provide some predictive power, but their predictive accuracy is
often limited by clinical variables (34). Parr et al. performed a
retrospective study involving 74 patients with marginally resectable
PC who received stereotactic RT. They compared the performances
of clinical, radiomic, and combination models in predicting
outcomes. The mean AUC of the three models were 0.66, 0.78,
and 0.77, respectively. Their findings indicated that the radiomics
feature-based model could better predict the OS and recurrence rate
of PC than the clinical feature-based model (35). This study aligns
with ours in indicating the ability of single and combined models to
provide critical information about pancreatic tissues. In this study,
the C-index of the clinical model was 0.71, while the C-index of the
combined model increased to 0.892, indicating a significant
improvement in the accuracy of the combined model in

Frontiers in Immunology

predicting OS. This result suggests that the combined model can
better integrate clinical variables and radiologic characteristics,
thereby providing more accurate prognostic assessment. Although
these predictive models can assess patient survival, their predictive
performance remains suboptimal. In our study, the 1-, 2-, and 3-
year AUCs of the clinical-radiomics model were 0.791, 0.846, and
0.847, respectively. Our newly constructed joint model had better
predictive performance for prognosis than the models in other
studies. In addition, using Cox regression models for variable
screening (such as LASSO) is also an effective method to suppress
overfitting. It reduces the complexity of the model by selecting
variables and avoids overfitting problems. Future research can
further verify the application effect of this model in different
populations and clinical settings by increasing the sample size
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FIGURE 4

Construction of a clinical nomogram (A) and a clinical-radiomics nomogram (B) for predicting the prognosis of pancreatic cancer based on clinical

characteristics in the training cohort.

and conducting more extensive external validation. It can effectively
reduce the possibility of over-fitting and improve the stability of
the model.

The clinical-radiomics nomogram exhibited a higher C-index
and AUC-ROC compared with the clinical nomogram. This
indicates that the combined model had stronger predictive
stability and validity than the single models, and the clinical
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radiomics combined model had a better prognosis in this study.
This may be due to the ability of imaging features to capture
microcarcinomas that are not visible to the naked eye and tumor
cells that are missing from the margins of the target. The radiomics
model in this study predicted a lower proportion of cancer mortality
in low-risk patients than in high-risk patients, which was difficult to
predict using clinical laboratory data.
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Clinical model evaluation and analysis of correlation curves; (A) ROC curve of nomogram model with AUC of internal validation cohort; (B) ROC
curve of nomogram model with AUC of external validation cohort; (C)Nomogram model clinical decision curve (DCA) of internal validation cohort;
(D) Nomogram model clinical decision curve (DCA) of external validation cohort; (E) Calibration curves of internal validation cohort; (F) Calibration

curves of external validation cohort.

The joint nomogram constructed in this study has the capacity to
accurately predict the prognostic status of PC by integrating factors,
such as physiological indicators, medical history, biochemical
indicators, tumor stage, and imaging characteristics. Clinicians
can perform a preliminary assessment of the patient’s prognosis
before treatment based on predicted results of the nomogram,

Frontiers in Immunology

11

provide patients with more accurate disease information and
treatment recommendations, and enhance their confidence and
compliance with the treatment plan. Thus, a more personalized
treatment plan can be developed, which can effectively enhance
both the survival rate and the quality of life of patients. Radiomic
characteristics have great potential in revealing the tumor

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1655803
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al. 10.3389/fimmu.2025.1655803
A Internal validation cohort B External validation cohort
1.00 [ T 1.00 ;]— -
075 0.75
2 2z
2 2
‘—é 050 ; 0.50
] 8
025 AUC at 1 year =0.791 0.25- AUC at 1 year = 0.863
AUC at 2 years = 0.846 AUC at 2 years = 0.830
AUC at 3 years = 0.847 AUC at 3 years = 0.734
0.00 0.00
0.00 025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
1-Specificity 1-Specificity
C Internal validation cohort D External validation cohort
06
0.50
~ Nomo-12 ~ Nomo-12
: == Nomo-24 % Nomo-24
2 ~ Nomo-~ 203 ~ Nomo-36
3 = - :""2 * 3 - A-12
% - AI-24 B o AI-24
z - AI-36 z - AlI-36
— None — None
0.00 0.0
N
-0.25 \ -03 .
025 0.50 0.75 1.00 0.00 025 0.50 0.75 1.00
Risk Threshold Risk Threshold
E Internal validation cohort F External validation cohort
L ) - /
$ / 8
i ¢ i
4‘ — / e
AR S-S - -
00 02 0 06 08 o 00 02 04 06 08 10
Nomogram-predicted OS (%) Nomogram-predicted OS (%)
Clinical-radionics model
FIGURE 6

Joint clinic-radionics model evaluation and correlation curve analysis; (A) ROC curve of nomogram model with AUC of internal validation cohort;
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(F) Calibration curves of external validation cohort.

microenvironment, cellular heterogeneity, and tumor invasiveness.

Combining these biological characteristics with clinical prognostic

variables can help us understand tumor behavior more

comprehensively and further enhance the clinical application

Frontiers in Immunology

value of prognostic models. In addition, with the continuous

development of artificial intelligence and machine learning

technology, the application of radiology will play an increasingly

important role in cancer diagnosis, staging and treatment decisions.
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TABLE 3 The brifer scores of the two models.

l-year 2-year 3-year
Internal
. . 0.208 0.183 0.18
verification set
Clinical model
external
) . 0.142 0.173 0.225
verification set
Internal
fcati 0.158 0.14 0.139
Radiology combined verification set
clinical model
external
X X 0.125 0.147 0.179
verification set

Radiomics data has the potential to facilitate a more profound
comprehension of tumor behavior, thereby enabling the creation of
enhanced predictive models (36). In this study, a combined clinical
radiomics prediction model was compared with a traditional clinical
prediction model in order to evaluate their abilities to predict PC
prognosis. This study has several advantages. Due to the large sample
size and internal and external validation, our study ensured credibility
and authenticity. However, this study has some limitations. Firstly, the
use of retrospective data may have introduced data bias. Secondly,
because this study included only Chinese patients, the generalizability of
the results to other countries is limited. However, despite these issues,
the machine learning-based prognostic models were specifically
developed to predict the survival prognostic survival in patients with
inoperable PC. All parameters necessary for this model were derived
from routine clinical practice and are readily applicable by clinicians to
inform comprehensive treatment plans for patients with inoperable PC.
This enables early intervention to prevent and address potential adverse
clinical events.

Conclusion

The clinical-radiomics nomogram demonstrated superior
predictive performance for OS compared to the clinical
nomogram in inoperable PC patients undergoing CCRT.
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