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Objective: This study was designed to explore the value of machine

learning-based radiology in predicting overall survival (OS) among patients with

inoperable pancreatic cancer (PC) who are undergoing concurrent

chemoradiotherapy (CCRT).

Methods: This multicenter study enrolled 342 patients with inoperable PC. Firstly,

radiomic features were pre-screened by univariate Cox regression and

subsequently used to develop 101 machine-learning–based imaging models.

An optimized selection algorithm was applied to these models to derive each

patient’s radiomic signature (Rad-score). Secondly, key clinical predictors of OS

were identified via LASSO–Cox regression and incorporated into clinical

nomogram. Finally, the Rad-score was combined with the independent clinical

risk factors to construct clinical–radiomics nomogram.

Results: LASSO–Cox regression identified age, clinical stage, tumor size, and

albumin level as independent prognostic factors for OS. Based on these four

variables, we constructed a clinical nomogram in the training cohort, which

achieved a C-index of 0.71. In the internal validation cohort, the areas under the

receiver operating characteristic curve (AUC-ROC) for predicting 1-, 2-, and 3-

year OS were 0.577, 0.721, and 0.730, respectively; in the external validation

cohort, the corresponding AUC-ROCs were 0.841, 0.757, and 0.598.

Subsequently, each patient’s Rad-score was integrated with these clinical

predictors to develop a clinical–radiomics nomogram, which demonstrated a
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C-index of 0.892. The AUC-ROCs for predicting 1-, 2-, and 3-year OS were

0.791, 0.846, and 0.840 in the internal validation cohort, and 0.863, 0.830, and

0.734 in the external validation cohort.

Conclusion: The clinical–radiomics nomogram demonstrated superior

predictive performance for OS compared to the clinical nomogram in

inoperable PC patients undergoing CCRT.
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Introduction

Pancreatic cancer (PC) is one of the most prevalent

malignancies and constitutes a leading cause of cancer-related

mortality, thereby representing a significant threat to human

health (1). When permitted, surgical resection is the primary

treatment modality for primary pancreatic tumors. However, the

majority of PC patients present with advanced-stage disease at

diagnosis, and only a minority are eligible for curative resection (2).

This leads to an extremely poor prognosis for patients with PC, with

a 5-year survival rate of < 5% following diagnosis (3). Continued

treatment of PC is important at this time, because the progression of

primary tumors leads to morbidity and mortality through invasion

of nearby organs and blood vessels. This process is identified as the

leading cause of mortality in at least 30% of patients with PC (4, 5).

Concurrent chemoradiotherapy (CCRT) provides an option for

local disease control (6).

Over the past few decades, there has been a gradual

improvement in the clinical outcomes of patients with PC have

gradually, largely attributable to the widespread adoption and

standardization of radiotherapy, as well as advances in

multimodal treatment strategies (7). Prior research have indicated

that patients with locally advanced PC who undergo CCRT achieve

a significantly higher 1-year survival rate than those treated with

chemotherapy alone (8). Additionally, the overall survival (OS) of

patients treated with radiotherapy (RT) in combination with

gemcitabine increased from 9.2 to 11.1 months compared with

that of patients receiving gemcitabine alone (9). Furthermore, dose-

response analysis revealed that patients receiving an RT

prescription dose of 61 Gy achieved significantly better outcomes

than those receiving <61 Gy, with 1-year OS rates of 74.7% versus

60.6%, and 1-year progression-free survival rates of 46.2% versus

30.9%, respectively (10). CCRT improves the prognosis of patients

with advanced PC. However, several problems associated with

CCRT still remain, such as a high risk of recurrence rate, high

mortality rate, and unsatisfactory accuracy of prognosis prediction.

These limitations are further compounded by the inability to

rapidly and dynamically monitor the tumor properties and

changes, as well as unsatisfactory treatment outcomes (11).

Therefore, improved efficacy prediction models are required.
02
These current situations show that, in the era of personalized and

precision medicine, using more powerful auxiliary models to

further optimize the clinical workflow of PC is greatly significance.

A recent proposal has introduced a deep learning methods for

synthetic medical image generation, with the objective of enhancing

the efficiency of convolutional neural networks in cancer image

classification (12). Traditional diagnostic functions of medical

imaging can be taken one step forward with the introduction of

radiology (13). Radiomics converts medical images into high-

throughput, mineable data and automatically extracts quantitative

features to augment the estimation of clinical indicators in various

malignancies (14). Radiomic analysis is emerging as a promising

strategy for predicting cancer risk and cancer recurrence (15, 16).

This technology enables the revelation of unique insights into

tumor behavior through the integration of multimodal data with

clinical, pathological, and genomic information, facilitating the

decoding of diverse tissue biology (17, 18). However, limited

research has been conducted on risk prediction after

chemoradiotherapy for advanced inoperable PC.

Accordingly, our study aimed to apply machine learning

strategies to identify a new prognostic model and explore its

potential for predicting the efficacy of chemoradiotherapy in

patients with unresectable PC, with the goal of minimizing

diagnostic errors and improving patient treatment. Personalized

prec i s ion has cons iderab le potent ia l for improv ing

medical procedures.
Methods

Patient selection

The study cohort included patients from two hospitals between

2018 and 2024. The first dataset was obtained from Shandong

Province Cancer Hospital (Hospital 1) and divided into training

(n=187, 70%) and internal verification (n=85, 30%) datasets. The

second dataset was obtained from Chongqing City People’s

Hospital (Hospital 2) and served as an external verification set

(n=70) (Figure 1). The study was approved by the Ethical Review

Commit tees of Shandong Province Cancer Hospi ta l
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(SDTHEC2024007030) and Chongqing City People’s Hospital (KY

S2024-030-01). All patients gave informed consent.

The inclusion criteria were as follows: a) pathologically diagnosed

unresectable PC; b) receiving RT combined with chemotherapy; c)

Eastern Cooperative Oncology Group performance status score 0–1; d)

at least one target lesion measurable by The Response Evaluation

Criteria In Solid Tumors (RECIST). Patients exhibiting the following

characteristics were excluded: a) previous antitumor therapy; b) dual

primary malignancies; or c) incomplete data.
Treatment and follow-up

All patients received concurrent chemoradiotherapy. Target

volumes and critical organs were delineated by at least two senior

physicians and medical physicists on contrast-enhanced CT

simulation images, with reference to other imaging data such as

contrast-enhanced pancreatic MRI. CT scans were performed in the
Frontiers in Immunology 03
venous phase (60–70 seconds after contrast injection), and the slice

thickness was ≤3 mm. Radiotherapy was delivered using volumetric

modulated arc therapy (VMAT) and intensity modulated radiation

therapy (IMRT). The gross tumor volume (GTV) included

radiologically visible pancreatic tumors and metastatic lymph

nodes on CT/MRI. The clinical target volume (CTV)

encompassed the primary lesion, lymph nodes and perineural

invasion sites within approximately 5–10 mm around the

pancreatic vasculature, along with lymphatic drainage areas. The

planning target volume (PTV) was defined as a 5–10 mm expansion

of the CTV. The dose constraints for organs at risk (OARs) followed

the RTOG guidelines: Duodenum Dmax ≤55 Gy, V50 ≤10 cm³;

Stomach: Dmax ≤55 Gy, V45 ≤75 cm³; Small bowel: Dmax ≤55 Gy,

V50 ≤10 cm³; Liver: Dmean ≤25 Gy; Kidneys: Dmean ≤18 Gy, V20

≤32%; Spinal cord: D1 (dose to 1% volume) ≤45 Gy.

Subsequent patients were generally subjected to regular follow-

ups every 3 months during the first year to undergo computed

tomography/magnetic resonance imaging (CT/MRI) scans to
FIGURE 1

Patient selection flowchart.
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monitor the effects of RT. Follow-ups were conducted every 6 months

in the second year and then annually. Tumor remission was

measured using imaging studies in accordance with the RECIST

V.1.1 The primary clinical endpoint was OS, defined as the time from

the date of initial radiation therapy until mortality or last follow-up.
Radiomics feature extraction and model
construction

A comprehensive set of 1130 radiomic features were extracted from

the gross tumor volume in the contrast-enhanced CT scan of each

patient with PC using 3D-slicer software. The regions of interest (ROIs)

were selected from the primary tumor sites, and the ROI was drawn

strictly within the tumor boundaries (Figure 2). First, a univariate Cox

regression model was used in the training set to select the optimized

feature imaging parameters. A total of 272 patients were randomly

divided into a training cohort (n = 187) and an internal validation

cohort (n = 85) at a 7:3 ratio. In the training cohort, univariate Cox

regression was applied to identify optimized imaging features associated

with survival. These selected features were subsequently incorporated

into the development of 101 different machine-learning radiomics

models. These models were constructed by combining 12 different

algorithms: StepCox[forward], Ridge, Enet, Random Survival Forest

(RSF), StepCox[both], StepCox[backward], CoxBoost, LASSO, Gradient

Boosting Machine, plsRcox, SuperPC, and Support Vector Machine.

The concordance index (C-index) of each model was calculated in the

training, internal validation, and external validation cohorts (n = 70,

Chongqing General Hospital). The model with the highest C-index in

the training cohort was chosen as the final model, and the

corresponding radiomics score (Rad-score) was calculated for each

patient based on this model. The codes used in this study are shown

in Supplementary Data Sheet 1.
Frontiers in Immunology 04
Nomogram construction

In the training cohort, Least Absolute Shrinkage and Selection

Operator (LASSO) regression was applied to screen prognostic

factors associated with OS. The factors selected by LASSO were

then entered into univariate and multivariate Cox proportional-

hazards models to identify independent predictors of OS, which

were used to construct Nomogram 1 (clinical nomogram). Next,

each patient’s Rad-score was combined with the independent

clinical predictors to build Nomogram 2 (clinical–radiomics

nomogram). Finally, in both the internal and external validation

cohorts, we evaluated the predictive performance of these two

models by plotting receiver operating characteristic (ROC) curves,

calibration curves, and decision curve analysis (DCA) curves. The

online dynamic nomogram uses DynNom (v5.1), shiny (v. 1.11.1),

rms (v. 8.0 - 0), survivminer (v. 0.5.0), survival (v3.8 - 3), and an

rsconnect (v1.5.1). The website platform is hosted using https://

docs.posit.co/shinyapps.io/.
Statistical analysis

For categorical variables, the chi-square test was used for

assessment. For continuous baseline variables, the Shapiro–Wilk

test was first applied to examine the normality of data distribution.

compared using one-way analysis of variance (ANOVA), whereas

non-normally using the Kruskal–Wallis test. Additionally, the

Kaplan-Meier method was employed to estimate the survival rate,

with the log-rank test subsequently utilized to compare survival

curves. All analyses were conducted using R software version 3.3.2.

A two-sided P value of less than 0.05 was considered to indicate

statistically significant.
FIGURE 2

Radiomics pipeline for predicting OS in patients with pancreatic cancer.
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Result

Patient characteristics

This study included a total of 342 patients with PC. The analysis

of baseline characteristics is shown in Table 1. No significant

baseline differences were observed among the training set (n =

187), internal validation group (n = 85), and external validation

group (n = 70).
OS

In the training set, internal validation group, and external

validation groups, the median OS was 20.3, 22.2, and 21.5

months respectively, while the 3-year survival rates were 36.9%,

30.4%, and 28.7%, respectively (P = 0.9, Supplementary Figure 1).
Radiomics models

Nine risk indicators were screened from 1,130 data using single-

factor Cox. The selected characteristics were as follows:
Fron
wavelet.LHL.firstorder.Range

wavelet.LHL.glszm.SizeZoneNonUniformityNormalized

wavelet.HLH.glszm.GrayLevelNonUniformity

wavelet.HHH.gldm.LowGrayLevelEmphasis

wavelet.HHH.glrlm.LowGrayLevelRunEmphasis

wavelet.HHH.glrlm.ShortRunLowGrayLevelEmphasis

wavelet.HHH.glszm.GrayLevelNonUniformity

wavelet.HHH.glszm.SmallAreaEmphasis

wavelet.HHH.glszm.ZoneEntropy
Based on these nine risk indicators, 101 machine learning

models were constructed by combining 12 models: StepCox

[forward], Ridge, Enet, random survival forest (RSF), StepCox

[both], StepCox[backward], CoxBoost, LASSO, gradient boosting

machine, plsRcox, SuperPC, and survival support vector machine

(Figure 3). The results revealed that StepCox[forward]+ RSF had

the highest C-index of 0.89 (Supplementary Figure 2). The Rad-

score for each patient was determined by means of calculation using

the model. As shown in Supplementary Figure 3, three sets of

survival curves are presented based on the cutoff value of the

median risk score. These results indicate that the image model

demonstrates a satisfactory predictive capacity.
Clinical prognostic factor selection: LASSO
+ Cox

In the training set, LASSO regression selected the following 11

variables associated with OS: Age, body mass index (BMI), sex, T

stage, N stage, lymphocyte count, neutrophil count, CA19–9 level,
tiers in Immunology 05
clinical stage, tumor size, and serum albumin (Supplementary

Figures 4A, B). Subsequently, the 11 prognostic factors were

entered into univariate and multivariate Cox regression analyses,

which confirmed that age, clinical stage, tumor size, and albumin

level were independent prognostic factors (Table 2).
Clinical nomogram and clinical–radiomics
nomogram

In the training cohort, a clinical nomogram was first developed

based on independent clinical prognostic factors identified by

multivariate Cox analysis (Figure 4A). Subsequently, each

patient’s radiomics signature (Rad-score) was integrated with

these independent clinical predictors to construct a clinical–

radiomics nomogram (Figure 4B). At the same time, we have

developed online dynamic nomograms for real-time use by

clinicians. One of them is an online nomogram for clinical model

(https://yanzeli95.shinyapps.io/DynNomapp_no_risk_score/). The

other is an online nomogram for clinical-radiomics model

(https://yanzeli95.shinyapps.io/DynNomapp_risk_score/).

For the clinical nomogram, the area under the ROC curves

(AUC-ROC) for predicting 1-, 2-, and 3-year OS were 0.577, 0.721,

and 0.730 in the internal validation cohort (Figure 5A), and 0.841,

0.757, and 0.598 in the external validation cohort (Figure 5B). DCA

showed that the clinical nomogram provided greater net benefit

than treat-all or treat-none strategies across a range of threshold

probabilities in both validation cohorts (Figures 5C, D). Calibration

plots demonstrated close agreement between predicted and

observed survival, confirming the model’s stability (Figures 5E, F).

The C-index of the nomogram was 0.71.

For the clinical-radiomics nomogram, the AUC-ROC for

predicting 1-, 2-, and 3-year OS were 0.791, 0.846, and 0.840 in

the internal validation cohort (Figure 6A), and 0.863, 0.830, and

0.734 in the external validation cohort (Figure 6B). DCA showed

net benefit over treat-all/none strategies across thresholds

(Figures 6B, E), and calibration plots confirmed close agreement

between predicted and observed survival (Figures 6C, F). The C-

index of the nomogram was 0.892. And the briefer scores of the two

models are shown in Table 3.
Discussion

To our knowledge, this is the first clinical-radiomic prognostic

risk model of survival to chemoradiotherapy in patients with

inoperable PC, which may be a new prognostic imaging

biomarker for PC. PC has the highest mortality rate among all

malignant tumors worldwide (19). Despite significant advances in

medical technology, the prognosis of PC has improved significantly

(20). However, the overall prognosis for patients diagnosed with PC

continues to be unfavorable, representing a significant threat to

their survival (21, 22). We combined clinical and radiomics

features, optimizing the screening and combination of radiomics

parameters related to the prognosis of PC using a variety of machine
frontiersin.org
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TABLE 1 Patient baseline data analysis table.

Variables
Training cohort

(n=187)

Internal
validation
(n=85)

External
validation
(n=70)

P W-value
Shapiro-wilk

p-value
Normality

Age (mean ± SD) 61.4 ± 10.5 62.3 ± 11.6 62.1 ± 12.1 0.791 0.993 0.127 Normal

Sex 0.9

Female 80 (42.8%) 38 (44.7%) 32 (45.7%)

Male 107 (57.2%) 47 (55.3%) 38 (54.3%)

BMI (mean ± SD) 22.0 ± 3.7 22.2 ± 3.7 21.9 ± 3.7 0.807 0.996 0.434 Normal

Diabetesmellitus 0.161

No 147 (78.6%) 75 (88.2%) 56 (80.0%)

Yes 40 (21.4%) 10 (11.8%) 14 (20.0%)

Hypertension 0.999

No 136 (72.7%) 62 (72.9%) 51 (72.9%)

Yes 51 (27.3%) 23 (27.1%) 19 (27.1%)

Jaundice 0.394

No 145 (77.5%) 72 (84.7%) 56 (80.0%)

Yes 42 (22.5%) 13 (15.3%) 14 (20.0%)

Abdominal pain 0.313

No 113 (60.4%) 44 (51.8%) 37 (52.9%)

Yes 74 (39.6%) 41 (48.2%) 33 (47.1%)

Stage 0.936

I 18 (9.63%) 6 (7.06%) 6 (8.57%)

II 21 (11.2%) 7 (8.24%) 6 (8.57%)

III 47 (25.1%) 26 (30.6%) 19 (27.1%)

IV 101 (54.0%) 46 (54.1%) 39 (55.7%)

T 0.935

1 8 (4.28%) 2 (2.35%) 2 (2.86%)

2 40 (21.4%) 18 (21.2%) 13 (18.6%)

3 33 (17.6%) 11 (12.9%) 10 (14.3%)

4 82 (43.9%) 43 (50.6%) 35 (50.0%)

x 24 (12.8%) 11 (12.9%) 10 (14.3%)

N 0.983

0 86 (46.0%) 36 (42.4%) 31 (44.3%)

1 61 (32.6%) 31 (36.5%) 24 (34.3%)

2 14 (7.49%) 7 (8.24%) 7 (10.0%)

x 26 (13.9%) 11 (12.9%) 8 (11.4%)

M 0.969

0 86 (46.0%) 39 (45.9%) 31 (44.3%)

1 101 (54.0%) 46 (54.1%) 39 (55.7%)

Liverm 0.516

(Continued)
F
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learning methods, which improved the accuracy of the prediction

results. Additionally, a significant machine learning radiomics

prognostic model was developed to predict the OS to

chemoradiotherapy in patients diagnosed with inoperable PC.

Chemoradiotherapy improves the prognosis of patients

diagnosed with inoperable PC (23). Therefore, predicting the

efficacy of chemoradiotherapy has become a top priority. Previous

studies have demonstrated that factors such as patients’ age, tumor

differentiation, tumor size, serum alkaline phosphatase, albumin

level, and CA 19–9 can serve as independent predictors of PC

prognosis (24). Several predictive models have been developed for

PC. A retrospective study leveraging both the Surveillance,

Epidemiology, and End Results(SEER) database and a Chinese

cohort developed a prognostic nomogram for PC based on

clinical characteristics. This nomogram demonstrated AUC for 1-

, 3-, and 5-year survival rates of 0.71, 0.82, and 0.81, respectively

(25). Based on an analysis of clinical parameters and DNA
Frontiers in Immunology 07
methylation risk scores, Deng et al. established and validated a

nomogram with 1-, 2-, and 3-year AUCs of 0.899, 0.765, and 0.766,

respectively (26). Our findings that the 1-, 2-, and 3-year AUCs of

the clinical model constructed to predict inoperable PC survival

were 0.577, 0.721, and 0.730, respectively. Although the predictive

power of clinical models is acceptable, these indicators cannot

identify patients with a high probability of recurrence or a poor

prognosis after treatment through subtle heterogeneous changes

within tumors (27, 28).

However, few studies have used machine learning for prognostic

analysis of PC. Some researchers have constructed a prognostic model

to evaluate the prognosis the outcomes of patients with PC liver

metastases who are undergoing chemoimmunotherapy based on

magnetic resonance features and clinical data. The nomogram

generated from this model achieved an AUC of 0.770 for predicting

1-year OS (29). Although this analysis demonstrated the usefulness of

clinical and other models in the diagnosis of PC, it did not explore the
TABLE 1 Continued

Variables
Training cohort

(n=187)

Internal
validation
(n=85)

External
validation
(n=70)

P W-value
Shapiro-wilk

p-value
Normality

No 129 (69.0%) 53 (62.4%) 45 (64.3%)

Yes 58 (31.0%) 32 (37.6%) 25 (35.7%)

Lungm 0.092

No 176 (94.1%) 77 (90.6%) 60 (85.7%)

Yes 11 (5.88%) 8 (9.41%) 10 (14.3%)

Otherm 0.933

No 132 (70.6%) 60 (70.6%) 51 (72.9%)

Yes 55 (29.4%) 25 (29.4%) 19 (27.1%)

Size (M, IQR) 3.8 (3.0 - 5.0) 4.2 (3.3 - 5.1) 3.5 (2.9 - 5.1) 0.396 0.927 < 0.001 Non-normal

White blood cell (M,
IQR)

5.6 (4.4 - 7.1) 5.7 (4.4 - 7.0) 5.7 (4.6 - 7.2) 0.963 0.693 < 0.001 Non-normal

Lymphocyte (M, IQR) 1.4 (1.1 - 1.7) 1.3 (1.0 - 1.6) 1.3 (1.0 - 1.6) 0.368 0.801 < 0.001 Non-normal

Neutrophil (M, IQR) 3.4 (2.4 - 4.9) 3.8 (2.6 - 5.0) 3.6 (2.7 - 5.1) 0.949 0.604 < 0.001 Non-normal

Neutrophil–lymphocyte
ratio (M, IQR)

2.5 (1.6 - 3.8) 3.0 (1.9 - 4.3) 3.0 (1.8 - 4.5) 0.92 0.642 < 0.001 Non-normal

Hemoglobin (mean ±
SD)

122.0 ± 17.4 121.0 ± 17.4 122.0 ± 18.1 0.741 0.997 0.6741 Normal

Blood platelet (M, IQR) 217.0 (160.5 - 271.5) 236.0 (171.0 - 302.0) 219.5 (160.8 - 284.8) 0.733 0.924 < 0.001 Non-normal

Total bilirubin (M, IQR) 11.9 (8.0 - 23.2) 10.7 (7.2 - 20.2) 9.3 (6.7 - 13.7) 0.516 0.472 < 0.001 Non-normal

Alanine
aminotransferase (M,
IQR)

25.1 (15.4 - 68.3) 22.6 (14.3 - 53.3) 20.3 (12.2 - 47.8) 0.142 0.527 < 0.001 Non-normal

Aspartate transaminase
(M, IQR)

25.3 (17.9 - 46.2) 24.3 (17.1 - 44.5) 23.1 (16.1 - 37.8) 0.477 0.596 < 0.001 Non-normal

Albumin (mean ± SD) 41.9 ± 5.3 41.3 ± 4.8 42.1 ± 6.5 0.623 0.935 < 0.001 Non-normal

CA199 (M, IQR) 167.6 (38.6 - 701.5) 294 (53.3 - 1212.0) 276 (39.6 - 1313.3) 0.441 0.531 < 0.001 Non-normal
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ability of radiomics to predict prognosis. A recent retrospective case-

control research using radiomics data from CT scans to evaluate PC

health indicated the merits of radiomics. However, this study did not

combine survival benefit outcomes (30).

In this study, we tested a wide range of machine learning

algorithms to construct radiomics-based prognostic models for

hepatocellular carcinoma. The rationale for employing multiple

algorithms lies in the distinct strengths and limitations of each

approach (31). For example, Cox-based models offer strong

interpretability and clinical relevance but may oversimplify

complex nonlinear relationships. Tree-based ensemble methods,

such as random survival forests, are capable of capturing high-order

interactions and nonlinear effects, yet may lack transparency.

Gradient boosting algorithms, such as XGBoost and LightGBM,

often demonstrate superior predictive accuracy and robustness in

high-dimensional data but require careful tuning to avoid

overfitting. Similarly, support vector machines (SVM) and neural

network–based models can handle complex feature spaces but may

be less intuitive for clinical translation. By systematically comparing

these algorithms across training, internal, and external validation

cohorts using the concordance index, we ensured that the final

selected model achieved both optimal performance and

generalizability. This comparative approach not only highlights

the variability in algorithmic performance but also strengthens

confidence in the robustness of the chosen model. Ultimately, the
Frontiers in Immunology 08
use of diverse machine learning strategies allowed us to balance

predictive accuracy with interpretability, ensuring the proposed

radiomics score is both scientifically sound and clinically

applicable. And we employed both stepwise Cox and RSF to build

and evaluate prognostic models for PC. Stepwise Cox was chosen

for its strong clinical interpretability and ability to identify key

prognostic variables while maintaining a parsimonious model

structure. In contrast, RSF offers distinct advantages in capturing

complex, nonlinear relationships and interactions among variables

without relying on the proportional hazards assumption (32). By

combining these two approaches, we were able to leverage the

complementary strengths of interpretability and predictive

accuracy. This dual strategy not only provides robust survival

prediction but also ensures that the results remain clinically

meaningful and applicable to individualized treatment planning.

Patients with carcinoma of pancreatic head undergoing radical

resection were analyzed with respect to the ability of radiomics and

clinical data to predict OS, demonstrating that CT scans revealed

shorter disease-free survival for portal vein-stage hypodense PC

(33). Study has used purely clinical variables to establish clinical

nomograms for pancreatic cancer or other types of cancer. For

example, there are studies that focus on clinical data from patients

with pancreatic cancer, using clinical variables (such as tumor stage,

CA19–9 levels, albumin levels, etc.) to predict patients ‘OS. These

studies have generally shown that pure clinical nomograms can
FIGURE 3

Machine learning model evaluation and correlation curve analysis: The consistency index (C index) for different machine learning models.
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provide some predictive power, but their predictive accuracy is

often limited by clinical variables (34). Parr et al. performed a

retrospective study involving 74 patients with marginally resectable

PC who received stereotactic RT. They compared the performances

of clinical, radiomic, and combination models in predicting

outcomes. The mean AUC of the three models were 0.66, 0.78,

and 0.77, respectively. Their findings indicated that the radiomics

feature-based model could better predict the OS and recurrence rate

of PC than the clinical feature-based model (35). This study aligns

with ours in indicating the ability of single and combined models to

provide critical information about pancreatic tissues. In this study,

the C-index of the clinical model was 0.71, while the C-index of the

combined model increased to 0.892, indicating a significant

improvement in the accuracy of the combined model in
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predicting OS. This result suggests that the combined model can

better integrate clinical variables and radiologic characteristics,

thereby providing more accurate prognostic assessment. Although

these predictive models can assess patient survival, their predictive

performance remains suboptimal. In our study, the 1-, 2-, and 3-

year AUCs of the clinical-radiomics model were 0.791, 0.846, and

0.847, respectively. Our newly constructed joint model had better

predictive performance for prognosis than the models in other

studies. In addition, using Cox regression models for variable

screening (such as LASSO) is also an effective method to suppress

overfitting. It reduces the complexity of the model by selecting

variables and avoids overfitting problems. Future research can

further verify the application effect of this model in different

populations and clinical settings by increasing the sample size
TABLE 2 Univariate and multivariate Cox regression models for overall survival.

Characteristic
Univariate analysis Multivariate analysis

HR 95% CI P value HR 95% CI P value

Age 1.03 1.01-1.06 0.004 1.03 1.01-1.06 0.014

BMI 0.94 0.88-1.00 0.045 0.97 0.91-1.04 0.398

Sex

Female 1.000

Male 0.60 0.38-0.94 0.027 0.69 0.43-1.10 0.117

T

1 1.000

2 3.02 0.69-13.16 0.142 4.09 0.88-19.03 0.073

3 2.75 0.62-12.21 0.184 1.65 0.36-7.57 0.521

4 3.42 0.82-14.29 0.091 1.50 0.32-7.06 0.607

x 5.18 1.12-23.85 0.035 3.82 0.74-19.78 0.111

N

0 1.000

1 1.16 0.70-1.92 0.558

2 0.98 0.35-2.77 0.975

x 1.95 0.98-3.88 0.056

Lymphocyte 1.12 0.84-1.50 0.426

Neutrophil 0.97 0.89-1.05 0.420

CA199 1.00 1.00-1.00 0.071

Stage

1 1.000

2 1.05 0.37-3.01 0.925 2.00 0.59-6.76 0.266

3 1.93 0.82-4.52 0.132 4.18 1.26-13.88 0.019

4 2.34 1.04-5.23 0.039 4.04 1.44-11.37 0.008

Size 1.12 1.01-1.24 0.029 1.16 1.02-1.32 0.020

Albumin 0.92 0.88-0.96 0.001 0.91 0.87-0.96 0.001
The bold values indicate statistical significance with P < 0.05.
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and conducting more extensive external validation. It can effectively

reduce the possibility of over-fitting and improve the stability of

the model.

The clinical–radiomics nomogram exhibited a higher C-index

and AUC–ROC compared with the clinical nomogram. This

indicates that the combined model had stronger predictive

stability and validity than the single models, and the clinical
Frontiers in Immunology 10
radiomics combined model had a better prognosis in this study.

This may be due to the ability of imaging features to capture

microcarcinomas that are not visible to the naked eye and tumor

cells that are missing from the margins of the target. The radiomics

model in this study predicted a lower proportion of cancer mortality

in low-risk patients than in high-risk patients, which was difficult to

predict using clinical laboratory data.
frontiersin.o
FIGURE 4

Construction of a clinical nomogram (A) and a clinical–radiomics nomogram (B) for predicting the prognosis of pancreatic cancer based on clinical
characteristics in the training cohort.
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The joint nomogram constructed in this study has the capacity to

accurately predict the prognostic status of PC by integrating factors,

such as physiological indicators, medical history, biochemical

indicators, tumor stage, and imaging characteristics. Clinicians

can perform a preliminary assessment of the patient’s prognosis

before treatment based on predicted results of the nomogram,
Frontiers in Immunology 11
provide patients with more accurate disease information and

treatment recommendations, and enhance their confidence and

compliance with the treatment plan. Thus, a more personalized

treatment plan can be developed, which can effectively enhance

both the survival rate and the quality of life of patients. Radiomic

characteristics have great potential in revealing the tumor
FIGURE 5

Clinical model evaluation and analysis of correlation curves; (A) ROC curve of nomogram model with AUC of internal validation cohort; (B) ROC
curve of nomogram model with AUC of external validation cohort; (C)Nomogram model clinical decision curve (DCA) of internal validation cohort;
(D) Nomogram model clinical decision curve (DCA) of external validation cohort; (E) Calibration curves of internal validation cohort; (F) Calibration
curves of external validation cohort.
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microenvironment, cellular heterogeneity, and tumor invasiveness.

Combining these biological characteristics with clinical prognostic

variables can help us understand tumor behavior more

comprehensively and further enhance the clinical application
Frontiers in Immunology 12
value of prognostic models. In addition, with the continuous

development of artificial intelligence and machine learning

technology, the application of radiology will play an increasingly

important role in cancer diagnosis, staging and treatment decisions.
FIGURE 6

Joint clinic-radionics model evaluation and correlation curve analysis; (A) ROC curve of nomogram model with AUC of internal validation cohort;
(B) ROC curve of nomogram model with AUC of external validation cohort; (C) Nomogram model clinical decision curve (DCA) of internal validation
cohort; (D) Nomogram model clinical decision curve (DCA) of external validation cohort; (E) Calibration curves of internal validation cohort;
(F) Calibration curves of external validation cohort.
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Radiomics data has the potential to facilitate a more profound

comprehension of tumor behavior, thereby enabling the creation of

enhanced predictive models (36). In this study, a combined clinical

radiomics prediction model was compared with a traditional clinical

prediction model in order to evaluate their abilities to predict PC

prognosis. This study has several advantages. Due to the large sample

size and internal and external validation, our study ensured credibility

and authenticity. However, this study has some limitations. Firstly, the

use of retrospective data may have introduced data bias. Secondly,

because this study included only Chinese patients, the generalizability of

the results to other countries is limited. However, despite these issues,

the machine learning-based prognostic models were specifically

developed to predict the survival prognostic survival in patients with

inoperable PC. All parameters necessary for this model were derived

from routine clinical practice and are readily applicable by clinicians to

inform comprehensive treatment plans for patients with inoperable PC.

This enables early intervention to prevent and address potential adverse

clinical events.
Conclusion

The clinical–radiomics nomogram demonstrated superior

predictive performance for OS compared to the clinical

nomogram in inoperable PC patients undergoing CCRT.
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