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Introduction: Kidney transplant rejections are classified as active antibody
mediated rejection (AMR) and cell mediated rejection (TCMR), with AMR
primarily driven by antibodies produced by B cells, whereas TCMR is mediated
by T lymphocytes that orchestrate cellular immune responses against the graft.
Emerging evidence highlights the essential roles of innate immune cells in
rejections, especially monocytes/macrophages and natural killer (NK) cells.
However, the roles of specific innate immune cell subpopulations in kidney
allograft rejection remain incompletely understood.

Methods: We performed the spatial transcriptomics using the formalin-fixed
paraffin-embedded (FFPE) core needle biopsies from human kidney allografts.
Results: We demonstrated that non-rejection, AMR, acute TCMR and chronic
active AMR have distinct transcriptomic features. Subclusters of monocytes/
macrophages with high Fc gamma receptor IIIA (FCGR3A) expression were
identified in C4d-positive active AMR and acute TCMR, and the spatial
distribution of these cells corresponded to the characteristic histopathological
features. Key markers related to monocyte/macrophage activation and innate
alloantigen recognition were upregulated, along with metabolic pathways
associated with trained immunity in AMR and TCMR.
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Discussion: Taking together, these findings revealed that intragraft monocytes/
macrophages with high FCGR3A expression play a critical role in kidney
transplant rejections.

spatial transcriptomic, kidney allograft antibody mediated rejection, cell mediated
rejection, Fc gamma receptor IlIIA (FCGR3A), monocytes, macrophages, innate
immunity, trained immunity

1 Introduction

Allograft biopsy remains the gold standard for diagnosing
kidney transplant rejections. International standard classification
systems, Banff classification, define antibody-mediated rejection
(AMR) and cell-mediated rejection (TCMR) in kidney transplants
using specific histopathological and immunological criteria (1).
AMR is classified into active, chronic active, and chronic forms.
The diagnosis of AMR requires evidence of acute tissue injury -
such as glomerulitis and peritubular capillaritis (collectively termed
microvascular inflammation [MVI]), antibody interaction with the
endothelium (C4d staining positivity), the presence of donor-
specific antibodies (DSA), and chronic tissue injury (e.g.
transplant glomerulopathy) (1). In contrast, TCMR is classified
into acute and chronic active forms. The diagnosis and grading of
TCMR are based on the degree of interstitial inflammation and
tubulitis (1).

Mechanistically, AMR is primarily driven by antibodies
produced by B cells, whereas TCMR is mediated by T
lymphocytes that orchestrate cellular immune responses against
the graft (2, 3). Increasing evidence highlights the essential roles of
innate immune cells, especially monocytes/macrophages and
natural killer (NK) cells, in solid organ transplantation (4-9, 10).
Macrophages play pivotal roles in the innate immune response to
transplant allografts during acute rejection by producing
proinflammatory cytokines and generating reactive oxygen and
nitrogen species (ROS and RNS) (6, 11). Both donor- and
recipient-derived monocytes/macrophages activate adaptive
immune responses by functioning as antigen-presenting cells
(APC). They activate T cells through co-stimulatory signals,
leading to release of pro-inflammatory cytokines and resulting in
acute rejection (9). Macrophages are also implicated in chronic
rejection and graft failure (9, 12, 13).

Reflecting these advances, the Banff classification is continually
updated; for example, the Banff 2022 meeting introduced the entity
of DSA-negative, C4d-negative, MVI, which may involve NK cell
activation and other innate immune mechanisms (14).
Additionally, the Banff system has incorporates molecular
diagnostics, such as transcriptomic microarrays (e.g. Molecular
Microscope [MMDX]) and Banft Human Organ Transplant Gene
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(B-HOT) panel) (15-17), to improve detection and classification of
rejection beyond conventional histology. However, these techniques
have limitations: the MMDX requires fresh frozen tissues, the B-
HOT needs a high number of isolated cells - which can be
challenging to obtain from clinical core needle biopsies - and
both methods lack the ability to preserve spatial information (18).
Spatial transcriptomics can overcome these limitations, by detecting
RNA expression and mapping gene activity within a single
hematoxylin and eosin-stained (H&E) - stained section from
formalin-fixed paraffin-embedded (FFPE) tissue while preserving
spatial context, revealing the distribution of various cell types and
molecular pathways within their native microenvironments. This
spatial information is particularly valuable in complex tissues like
kidney allografts, where the location of immune cells relative to
specific kidney structures can provide important diagnostic
insights. Despite its promise, there is a paucity of research
implementing spatial transcriptomics in transplantation studies
(19-21). Furthermore, the spatial transcriptomic characteristics of
monocytes/macrophages in kidney allograft rejection have not yet
been fully investigated.

Leveraging the advantage of spatial transcriptomics, we
performed spatial transcriptomic analysis on FFPE core needle
biopsy samples from human kidney allografts representing
various rejection groups to identify distinct monocytes/
macrophages subclusters. Additionally, we conducted functional
pathway and gene network analyses to elucidate the underlying
biological, cellular, and molecular processes, with a particular focus

on innate immune mechanisms.

2 Materials and methods

2.1 Human kidney allograft core needle
biopsies case selection

We selected 8 cases based on histopathological and clinical
features (Table 1), representing 4 diagnostic groups: 1) non-
rejection conditions; 2) Active AMR; 3) Acute TCMR; 4) Chronic
active AMR. The clinical diagnosis is interpreted by our renal
pathologists based on the 2018 Banff Criteria (22).
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TABLE 1 Histopathological and clinical features of cases.

10.3389/fimmu.2025.1654741

Case # 1 2 3 4 5 () V 8
Di ti
Taghostic Non-rejection Active AMR Acute TCMR Chronic active AMR
category
Acute TCMR, . . . .
Pathologic Acute Subfle ATT C4d-positive C4d-negative Cur: de 1B Acute TCMR, Chronic active Chronic active
diagnosis CNI toxicity active AMR active AMR 8 . grade 2A AMR (Case #1) AMR (Case #2)
plasma cell rich
tl, i0, v0, g0, 10, i0, v0, g0, tl, i1, v1, g2, 0,10, v0. 22 13, i3, v0, g0, 13, i2, v1, g0, 10, i0, V0, g2, 10, i0, V0, gl,
> 1U, VU, g2, . . . .
ptc0, ci0, cto, ptc0, cio, cto, pte2, cio, cto, (2. ci0 ftO ptcO, cio, cto, pte2, cio, cto, ptcO, ci0, ct0, ptcl, ci0, cto,
Banff Scores g0, 0, i- cg0, ti0, i- g0, til, i- g t,;) . I’FT 1;0 cg0, ti3, i- g0, ti2, i- cglb, ti0, i- cg2, ti0, i-
g0, ti0, i- B
IFTAO, IFTAO, IFTAO, § V0. Cadi IFTAO, IFTAO, TFTAO, IFTAO,
pvlo, C4do pvlo, C4do pvlo, C4d3 v, pvlo, C4d1 pvlo, C4d1 pvlo, C4d2 pvlo, C4d2
Age 41 58 53 31 28 36 41 49
H - H lasti
Cause epato Diabetes Unknown YP_OP astic Unknown Unknown Unknown Unknown
of ESKD renal syndrome kidney
ser 15 19 6.1 15 18 10 136 14
(mg/dL)
DSA Positive Negative Positive Positive Positive Positive Negative Positive
Graft
i DGF DGF Normal Normal Normal Normal Normal Normal
Function
I -
sumrr::;i(;n CSA, TAC, TAC, TAC, TAC, TAC, TAC, TAC,
Isp R MMF, PRDL MME, PRDL MME, PRDL MMF, PRDL MMEF, PRDL MMEF, PRDL MMEF, PRDL MME, PRDL
egimen

CNI, acute calcineurin inhibitors; AMR, active antibody mediated rejection; ATI, toxicity acute tubular injury; Banff Score: tubulitis (t), interstitial inflammation in non-scarred areas (i), intimal
arteritis (v), glomerulitis (g), peritubular capillaritis (ptc), interstitial fibrosis (ci), tubular atrophy (ct), glomerular basement membrane double contours (cg), total inflammation (ti),
inflammation in the area of IFTA (i-IFTA), polyomavirus load (pvl); CSA, Cyclosporine A; DGF, delayed graft function; DSA, donor specific antibody; ESKD, end-stage kidney disease; IFTA,

interstitial fibrosis and tubular atrophy; MMF, mycophenolate mofetil; PRDL, prednisolone; Scr, Serum creatine; TAC, Tacrolimus; TCMR, cell mediated rejection.

2.2 Perform spatial transcriptomics using
FFPE core needle biopsies of human
kidney allografts

We performed 10x Genomic Visium spatial transcriptomics
analysis on H&E - stained sections from archived FFPE core
needle biopsies of human kidney allografts following Visium
Spatial Gene Expression for FFPE workflow (Graphic Abstract). 1)
Sample preparation and RNA quality control: section FFPE tissues
onto charged glass slides. 2) Assess RNA integrity using methods
Distribution Value 200 (DV200): DV200 represents the percentage
of RNA fragments that are longer than 200 nucleotides in a sample.
This method is particularly useful for evaluating the quality of
degraded RNA samples, such as those extracted from FFPE tissue.
Only samples with a DV200 value equal to or greater than 30% were
processed. 3) Performed standard H&E staining directly on the glass
slides. 4) Evaluated H&E staining slides to select areas of interest for
6.5 x 6.5 mm capture areas. 5) Probe Hybridization with whole
transcriptome probe panels. 6) Used the Visium CytAssist
instrument to precisely transfer bound probes onto the Visium
slide. The Visium slide contains 6.5 x 6.5 mm capture areas with
55 um barcoded squares. 7) Generated gene expression libraries
from each tissue section (library preparation). 8) Sequenced the
libraries on compatible Illumina sequencers, such as NovaSeq X
series systems. 9) Employed Space Ranger software for data
processing, applied standard quality control metrics to filter out
low-quality spots, and combined all eight samples into a unified
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dataset (23-25). 10) Utilized Loupe Browser for interactive data
exploration, integrating whole transcriptome analysis with precise
spatial information from archived FFPE samples.

2.3 Differential gene expression, cluster
identification and cell typing

All bioinformatics analysis was performed utilizing the
BioTuring Lens platform (https://bioturing.com) (26, 27). 10X
Visium spots were clustered via the Louvain method (principal
component analysis (PCA) Resolution=1). Uniform Manifold
Approximation and Projection (UMAP) visualization or t-
distributed stochastic neighbor embedding (t-SNE) dimension
reduction were generated via PCA of gene expression with no
batch correction (n_neighbors=30). Segmentation analysis was
applied to acquire 4-7 unsupervised clusters in each diagnostic
category (Supplementary Figure 1). Cell types and subtypes per
Louvain-derived cluster were predicted using the HaiTam
algorithm (https://talk2data.bioturing.com). Spots that were not
confidently characterized into a single cell type (i.e., undefined)
were omitted from the analysis. UMAP-based visualization
displayed clusters with annotated labels, which were obtained
based on histopathologic features and known marker genes
associated with kidney structures (Supplementary Figure 1) (28).
Differential expression of genes (DEG) among spots in each case
was calculated via the Venice algorithm (p<0.05) treating each spot
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as an individual sample data point. Hierarchical clustering
heatmaps of the DEGs were generated and organized via a
dendrogram of the cases and cluster plots of marker genes per
cluster. Expression of specific genes per spot was measured and
overlayed onto the UMAP or t-SNE.

2.4 Assessing concordance between FFPE
tissue transcriptomic signatures and
published RNA signatures of transplant
rejection

To evaluate the consistency between our findings and existing
research, we compared the transcriptomic signatures of AMR and
TCMR from our FFPE tissue analysis with RNA signatures derived
from frozen tissue bulk transcriptome microarrays, as reported by
Halloran et al. in 2018 and 2024. This comparison was visualized
using a Venn diagram, highlighting similarities and differences
between the two approaches.

2.5 Functional pathway and gene network
analysis

To analyze the gene networks, canonical, and bio-functional
pathways, we applied Gene Ontology (GO) Enrichment Analysis
tools to the lists of differentially expressed genes (ShinyGo v0.66,

10.3389/fimmu.2025.1654741

http://bioinformatics.sdstate.edu/go/) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (29).

3 Results

3.1 Different rejection types displayed
distinct transcriptomic signatures

To identify DEGs in each of the rejection types with respect to
non-rejection conditions, we used the Venice algorithm.
Hierarchical clustering of the DEGs revealed distinct gene
expression pattens among 8 cases (Figure 1). Similar
transcriptomic profiles patterns were observed among two cases
in the same diagnostic groups (non-rejection cases, acute TCMR
and chronic active AMR), except for the active AMR group. The
C4d-positive active AMR case demonstrated significantly different
transcriptomic signatures compared to the C4d-negative active
AMR case, despite both being positive for donor-specific
antibodies (DSA). Moreover, C4d-negative active AMR case
showed a closer pattern to chronic active AMR cases.
Furthermore, chronic active AMR cases shared some overlapping
features with acute TCMR, which is consistent with recent study
published by Shah et, al (30). These results demonstrated that the
transcriptomic signatures from FFPE core needle biopsy tissues
have the potential to aid in distinguishing between different types of
rejection and may also enable further subclassification of AMR.

i \IIHWI (

J Wﬂwn\d Hl

IH\ n \1
1

o[ il

ull ‘

Pt
Ll

il Vgl
i '\ull\" 4

1t

il ,""'M'

‘I‘\‘I"llw‘wiyu |‘ |‘n‘“u‘\" )
,\ I :

IW‘:

IIH H L
!'l‘ﬁ ! "“\‘M

ol !!‘ !

i r\“\"

”r

b
1‘ Iy FF

W\. )
Tt

| ﬁ‘ e h\

v"nH \

Myllml
I\, \INII‘ (NI AR

)

m |

l Vl’” ”\ | u,u |

d‘

1ln
|

i 0
bk I‘\IH\HHl\\IHH

ol

1

Hm “

([}
|

Wf“!'“ 'vm, Ml
W ‘fmﬂ (1 *f

|\

(T TR
1

Iy

U1 TR

Expression level
e——
0 1

Cell Types
H epithelial cell of proximal tubule

Kidney loop of Henle epithelial cell

I plasma cell

H kidney loop of Henle descending limb epithelial cell
[ tissue-resident macrophage

[l kidney loop of Henle ascending limb epithelial cell
[ epithelial cell of nephron

[ renal principal cell

@ endothelial cell

[ stromal cell

[ glomerular visceral epithelial cell

[ monocyte

[ capillary endothelial cell

[ renal intercalated cell

[ myeloid leukocyte

O umbrella cell

[ glomerular endothelial cell

[ renal beta-intercalated cell

[ CD4-positive, alpha-beta T cell

B muscle cell

Pt o

1 |
(i

e

ik
el
|

\mm '!'

CD8-positive, alpha-beta T cell
macrophage
CD8-positive, alpha-beta cytotoxic T cell

d NHI

I e
i .H-wﬂﬁ.w

____"

Active AMR
C4d-

Acute TCMR
Grade 2A

Acute TCMR  Chronic Active
Grade 1B AMR Case 2

Chronic Active
AMR Case 1

FIGURE 1
Different rejection types displayed distinct transcriptomic signatures. The h
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To evaluate the concordance between DEG derived from our
FFPE tissue transcriptomic signatures with top transcripts
associated with rejection by MMDX (16, 31), we compared two
gene sets and observed some overlapping between our FFPE tissue
transcriptomic signatures associated with active AMR and acute
TCMR, and the MMDX transcripts linked to universal rejection
(16) (Supplementary Figures 2A-C). In addition, our FFPE tissue
transcriptomic signatures associated with active AMR and acute
TCMR showed some overlapping with the top 20 transcripts
linked to AMR, TCMR, and injury- and rejection-associated
transcripts as reported by Halloran et al. in their 2024 MMDX
study (Supplementary Figures 2D-F).

Furthermore, our analysis of the top 30 transcriptomic
signatures in FFPE tissue from rejection groups (Supplementary
Table 1) revealed additional important genes that are associated
with transplant rejection. For example, in C4d-positive active AMR
case, SIO0A8 and SI100A9 were significantly upregulated. These
calcium-binding proteins, primarily expressed in monocytes, play a
crucial role in kidney transplant rejections, and high expression
levels of S100A8 and S100A9 in myeloid cells during kidney
transplant rejections have been linked to favorable outcomes (32).
In acute TCMR, the expression of FCGR3A gene, which encodes the
Fc gamma receptor IITA (FcyR IITA or CD16), was significantly
increased, with its specific role to be elaborated upon later.
Additionally, Interferon Regulatory Factor 4 (IRF4) was
significantly upregulated. Similar to IRFI, this transcription factor
is critical for immune regulation, particularly in T and B cells, and
plays a significant role in transplant rejection by regulating genes
involved in inflammation and lymphocyte activation (33). IRF4 not
only regulates adaptive immune responses but also plays a crucial
role in the function and differentiation of innate immune cells such
as monocytes and macrophages (34). For example, IRF4 negatively
modulates proinflammatory cytokine production by macrophages
following Toll-like receptor stimulation, underscoring its vital
regulatory role in innate immunity (35). Moreover, the expression
of complement component C3 was significantly increased. C3, part
of the complement system that is frequently activated in acute AMR
(33), was also significantly increased in acute TCMR.

3.2 Distinct subclusters of monocytes/
macrophages exhibiting high FCGR3A
expression were identified in acute
rejection groups

Acute rejection poses a significant threat to allograft survival. It
is crucial to identify the specific cell populations that play key roles
in various forms of acute rejection. Understanding these cellular
dynamics is essential for developing potential innovative targeted
therapies and improving long-term transplant outcomes. Therefore,
we performed a joint visualization of spots in all cases using t-SNE
dimension reduction method. The cell type composition of each
case (Figure 2A) was generated by referencing the expression
profiles of 10X Visium bins against a published meta-database of
characterized kidney cells using BioTuring. Acute TCMR cases
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demonstrated a prominent tissue-resident macrophage population
(Figure 2B). These tissue-resident macrophages (markers: CD68
and CD163) exhibited high expression of FCGR3A (Figure 2C). The
“Monocyte category” includes classical (FCGR3A- and CD14+),
intermediate monocytes (FCGR3A+ and CD14+) and non-classical
monocytes (FCGR3A+ and CD14-), while the “classical monocyte”
category specifically represents the classical monocytes (36). The
analysis revealed that the C4d-positive active AMR case showed a
significant population of non-classical and intermediate monocytes,
which was the highest among and significantly different from all
other cases (Figure 2B). This distinct subcluster of monocytes
(markers: CD14 and CD68) demonstrated a high FCGR3A
expression (Figure 2D). Spatial transcriptomics data analysis of
FCGR3A expression using UMAP visualization for each case is
shown in Supplementary Figure 3. FCGR3A is involved in cellular
cytotoxicity and is thought to play a significant role in acute
rejection (18, 37). Our findings echo those of Lamarthée et al,
who demonstrated a specific association between recipient-derived
FCGR3A+ monocytes and NK cells, and the severity of intragraft
inflammation. Their study utilized different technologies - scRNA-
seq and multiplexed immunofluorescence (MILAN) - on different
sample types (human frozen kidney biopsy tissues).

3.3 Spatial distribution of monocyte/
macrophage subclusters with high FCGR3A
expression corresponded to the
characteristic histopathological features in
acute rejection groups

To identify the spatial locations of these distinct monocyte/
macrophage subclusters, the expression of monocyte/macrophage
markers and FCGR3A was mapped onto the biopsy H&E images
using Loupe Browser (Figure 3). In C4d-positive AMR, clusters over
representative areas of peritubular capillaritis (PTCitis) and
glomerulitis showed enrichment in both monocyte/macrophage
markers and FCGR3A expression (Figures 3A, B). In acute TCMR,
both grade 1B (Figures 3C, D) and grade 2A (Figures 3E, F) cases
demonstrated enrichment of monocyte/macrophage markers and
FCGR3A expression in clusters over representative areas of tubulitis
and interstitial inflammation. Additionally, inflammatory cells in the
intimal arteritis (V1 lesion) of the acute TCMR grade 2A case
exhibited high co-expression of monocyte/macrophage markers
and FCGR3A (Figures 3E, F).

3.4 Functional pathway and gene network
analysis

To identify enriched functional pathway associated with DEG, we
performed functional pathway analysis of the DEGs using GO
enrichment analysis and KEGG analysis (29). GO analysis revealed
top perturbed GO biological process pathways enriched in all
rejection groups, with key pathways associated with metabolic
changes in trained immunity (Figures 4A-D). For instance,
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Distinct subclusters of monocytes/macrophages identified in acute rejection groups with high FCGR3A expression. The t-distributed stochastic
neighbor embedding (t-SNE) dimension reduction and cell composition of each case was shown in (A). The number of spots and percentage of
macrophages, total monocytes and classical monocytes were illustrated in (B). Prominent tissue-resident macrophage populations were identified in
acute TCMR cases, and a significant population of non-classical and intermediate monocytes (total monocytes minus classic monocytes) was
identified in C4d-positive active AMR case. UMAP analysis of acute TCMR grade 1B (blue) and grade 2A (orange) was shown in (C). The clusters are
overlaid with expression markers for monocytes (CD14 and CD68), macrophage (CD68 and CD163) and Fc gamma receptor IIA (FCGR3A). It
revealed distinct macrophage/monocytes subclusters exhibiting high expression of FCGR3A were evident. Similarly, UMAP analysis comparing C4d-
negative (blue) and C4d-positive (orange) was shown in (D). These clusters were also overlaid by monocytes and macrophage markers, as well as
FCGR3A, which revealed distinct macrophage/monocytes subclusters with high expression of FCGR3A.

carboxylic acid catabolic, amino acid and fatty acid metabolic process
pathways were upregulated in C4d-negative active AMR (Figure 4A).
Intermediates from these process can enter glycolysis and the
tricarboxylic acid (TCA) cycle, linking these pathways together
(38). In chronic active AMR, there was an increase in aerobic
glycolysis and mitochondrial oxidative metabolism (such as
oxidative phosphorylation, respiratory electron transport chain, and
Adenosine triphosphate (ATP) synthesis) (Figure 4D). In contrast to
C4d-negative active AMR and chronic active AMR, we observed
several key immune-related pathways in C4d-positive active AMR
(Figure 4B). These included pathways involved in activating and
regulating immune responses, as well as those regulating innate
immune responses and NF-kappa B signaling. These findings
parallelled our observations in acute TCMR, where we also
identified upregulation of pathways associated with mononuclear
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cells (lymphocytes and monocytes/macrophages) differentiation,
immune response-activating signaling pathways, phagocytosis, and
regulation of innate immune response (Figure 4C).

KEGG analysis supported the GO analysis findings, revealing
similar upregulation of metabolic pathways in both C4d-negative
active AMR and chronic active AMR (Figures 4E-H). Moreover,
both conditions exhibited increased ROS production. In addition to
the immune-related pathways identified in the GO analysis, KEGG
analysis uncovered upregulation of additional rejection-associated
damage and macrophage response to transplant allografts pathways
in TCMR, including ROS production, leukocyte trans-endothelial
migration and FcyR-mediated phagocytosis (Figure 4G).
Furthermore, KEGG analysis revealed upregulation of antigen
processing and presentation pathways in chronic active
AMR (Figure 4H).
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FIGURE 3

Spatial location of monocyte/macrophage subclusters with high FCGR3A expression. The expression of monocyte/macrophage markers (blue)

and FCGR3A (yellow) was mapped onto the biopsy H&E images using Loupe Browser, using Log2 as scale value. Co-expression is indicated in
green. (A, B) C4d-positive AMR: Clusters over representative areas of peritubular capillaritis (PTCitis) and glomerulitis showed enrichment in both
monocyte/macrophage markers and FCGR3A expression. (C, D) Acute TCMR, grade 1B: Enrichment of monocyte/macrophage markers and FCGR3A
expression in clusters over representative areas of tubulitis and interstitial inflammation. (E, F) Acute TCMR, grade 2A: Enrichment of monocyte/
macrophage markers and FCGR3A expression in clusters over representative areas of tubulitis and interstitial inflammation. In addition, high
co-expression of monocyte/macrophage markers and FCGR3A in inflammatory cells within the intimal arteritis (V1 lesion).
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Functional pathway and gene network analysis. (A—D) Gene Ontology (GO) Enrichment Analysis. Key pathways (highlighted with red rectangles)
associated with metabolic changes in trained immunity were upregulated in C4d-negative active AMR (A) and chronic active AMR (D). In C4d-
positive active AMR (B) and acute TCMR (C), we observed upregulation of pathways related to activation and regulation of immune response
including innate immunity. (E—=H) Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis. Key metabolic pathways (highlighted with red
rectangles) aligned with the GO analysis in both C4d-negative active AMR (E) and chronic active AMR (H). In addition to GO analysis, KEGG analysis
revealed upregulation of additional rejection-associated damage and macrophage response to transplant allografts pathways in TCMR (G). It also
highlighted antigen processing and presentation pathways in chronic active AMR (H).

3.5 Upregulation of CD47 and SIPRa in
acute rejection

Innate allorecognition, which allows innate immune cells to
discriminate between self and non-self, is one of the most
important mechanisms of innate immune activation during acute
transplant rejection (39). CD47, leukocyte immunoglobulin-like
receptor A (LILRA), and signal-regulatory protein-o. (SIPRot) are
key markers associated with monocytes/macrophage activation and
function in both transplant rejection and trained immunity within
the innate alloantigen recognition pathway (40). The LILR family
consists of 11 innate immunomodulatory receptors, primarily
expressed on lymphoid and myeloid cells. Based on their signaling
domains, LILRs are classified as either activating (LILRA) or
inhibitory (LILRB). LILRA1-2 and LILRA4-6, with the exception
of the soluble LILRA3, mediate immune activation, whereas LILRB1-
5 primarily inhibit immune responses and promote tolerance (41).
On allograft tissues, SIPRa. and MHC class I antigens are expressed
and are recognized by CD47 and LILRA that are expressed on host
monocytes, respectively. The UMAP visualization (Figures 5A-E)
and violin plots of log2 fold changes (Figures 5F-I, Supplementary
Figures 4A-D) illustrated significantly higher expression of CD47
(p<0.05) (Figures 5D, H, Supplementary Figure 4C) and notably
higher expression of SIRP¢r in C4d-positive active AMR (Figures 5E,
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I, Supplementary Figure 4D). CD47 and SIPR« expression are also
upregulated in acute TCMR cases. However, this upregulation is not
as pronounced as in the C4d-positive active AMR case. The
interaction between FCGR3A and LILRA is believed to play
important roles in monocytes/macrophage activation and function
during transplant rejection (40, 42, 43), and we observed significant
upregulation of FCGR3A in C4d-positive active AMR and acute
TCMR cases (Figures 5B, F, Supplementary Figure 4A). However, we
did not observe significant LILRAI-6 expression upregulation among
these cases (Figures 5C, G, Supplementary Figures 4B, E). Although
LILRBI-5 generally suppress immune responses and promote
tolerance, LILRB2 expression is notably increased in C4d-positive
active AMR case. This may be explained by recent findings that
LILRB2 activation is associated with macrophage recruitment and an
inflammatory macrophage phenotype, as observed in non-alcoholic
steatohepatitis (NASH) (44).

3.6 Altered metabolic genes expression
related to trained immunity
The expression of key metabolic gene markers across different

groups for trained immunity, including the key genes involved in
glycolysis and mitochondrial oxidative metabolism were depicted as
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Upregulation of CD47 and SIPRe in acute rejection. The UMAP visualization (A—E), and violin plots of log2 fold changes (F-1) illustrated that CD47
expression was significant higher (D, H) and signal-regulatory protein-o (SIPRa) expression was notably higher (E, 1) in C4d-positive active AMR case.
CD47 and SIPRo expression were also upregulated in acute TCMR cases, but not as pronounced as in the C4d-positive active AMR case. FCGR3A
was significantly upregulated in both C4d-positive active AMR and acute TCMR cases (B, F). However, we did not observe leukocyte
immunoglobulin-like receptor A (LILRA) expression upregulation among these cases (C, G).

bubble plot (Figure 6). The bubble plot also included genes that
encode metabolic intermediates, which are believed to induce
epigenetic changes, such as fumarase (FH) gene and succinate
dehydrogenase complex (SDHA/SDHB/SDHC/SDHD). This
analysis revealed distinct expression patterns between groups
experiencing rejection and those without rejection. Non-rejection
conditions, such as acute calcineurin inhibitor (CNI) toxicity and
subtle acute tubular injury (ATI), showed elevated activity in the
mTOR pathway, glycolysis, and mitochondrial oxidative
metabolism. In contrast, all rejection groups exhibited more
pronounced elevations in glycolysis and mitochondrial oxidative
metabolism activities than mTOR pathway activity. Notably, within
glycolysis-related genes, Enolase 1 (ENO1) showed a significant
increase in non-rejection conditions and C4d-negative active AMR,
while Pyruvate kinase (PKM) was significantly elevated in acute
TCMR groups and chronic active AMR. C4d-positive active AMR
displayed significant increases in both genes. Additionally, clusters
associated with acute TCMR and chronic active AMR showed
evidence of increased levels of metabolic intermediates, SDHA/
SDHB, which are thought to induce epigenetic changes.

4 Discussion

In this study, we have shown that FFPE core needle biopsy tissues
are suitable for spatial transcriptomic analysis, and can uncover the
transcriptomic signatures, signaling pathways, and spatially resolved
immune landscapes in human kidney allograft rejection. We
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demonstrated that non-rejection, active AMR, acute TCMR and
chronic active AMR have distinct transcriptomic features
(Figure 1). We identified distinct subclusters of monocytes and
macrophages with high FCGR3A expression in C4d-positive active
AMR and acute TCMR, respectively (Figure 2). The spatial
distribution of these distinct clusters corresponded to the
characteristic histopathological features of active AMR and acute
TCMR, respectively (Figure 3). Functional pathway and gene
network analysis showed upregulation of key pathways that are
associated with both metabolic changes in trained immunity and
various immune responses, particularly those involving innate
immunity (Figure 4). Moreover, key markers associated with
monocytes/macrophage activation and function in both transplant
rejection and trained immunity within the innate alloantigen
recognition pathway showed significantly increased CD47 and
notably increased SIPR¢r in the C4d-positive active AMR case,
while being less prominent in acute TCMR cases (Figure 5).
Finally, our study revealed that the metabolic markers associated
with trained innate immunity exhibited distinct expression patterns
in groups experiencing rejection compared to those without rejection
(Figure 6). These findings are summarized in Supplementary
Figure 5. This was the first report of using spatial transcriptomics
to evaluate different rejection types of FFPE core needle biopsies from
human kidney allografts. Our findings complement the transcript
signatures identified through bulk transcriptome microarrays, while
also providing additional valuable spatial information.

Bulk transcriptomic microarrays, such as MMDX, have been
applied to assist in the clinical diagnosis of rejection. However, these
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FIGURE 6

Alter gene expression of metabolic genes related to trained immunity. A dotplot analysis of metabolic genes related to trained immunity revealed
distinct patterns across non-rejection and rejection conditions. Non-rejection conditions (acute CNI toxicity and subtle ATI) showed increased activity
in MTOR, glycolysis, and mitochondrial oxidative metabolism, while all rejection groups exhibited more pronounced glycolytic and oxidative
metabolism. Notably, enolase 1 (ENO1) was elevated in non-rejection conditions and C4d-negative active AMR, while pyruvate kinase (PKM) was
significantly increased in acute TCMR and chronic active AMR (red rectangle). C4d-positive active AMR showed significant increases in both genes
(red rectangle). Acute TCMR and chronic active AMR clusters also displayed elevated levels of succinate dehydrogenase A/B (SDHA/SDHB), metabolic
intermediates associated with epigenetic changes (blue rectangle). The dotplot includes genes: 1) genes activate mTOR pathway: CLEC7A (C-type
lectin domain family 7 member A), IL1R1 (Interleukin 1 Receptor Type 1), NOD2 (Nucleotide Binding Oligomerization Domain Containing 2), IGFIR
(Insulin Like Growth Factor 1 Receptor); 2) genes activated by mTOR pathway: HIF1A (Hypoxia-Inducible Factor 1-alpha), YY1 (Yin Yang 1), PPARGCIA
(Peroxisome proliferator-activated receptor-y coactivator 1-ay); 3) glycolysis: HK1 (Hexokinase 1), GPI (Glucose-6-phosphate isomerase), PFKFB1
(6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 1), ALDOA (Aldolase A), GAPDH (Glyceraldehyde-3-phosphate dehydrogenase), PGK1
(Phosphoglycerate kinase 1), ENO1, PKM, LDHA (Lactate dehydrogenase A), G6PC (Glucose-6-phosphatase); 4) mitochondrial oxidative metabolism:
ACO1/ACO2 (Aconitase), CS (Citrate synthase), IDH1/IDH2 (Isocitrate dehydrogenase), OGDH (o.-ketoglutarate dehydrogenase), SUCLG1/SUCLG2
(Succinyl-CoA ligase), SDHA/SDHB/SDHC (Succinate dehydrogenase complex), MDH2 (Malate dehydrogenase), FH (Fumarase), PDHA1/PDHB
(Pyruvate dehydrogenase), DLD (Dihydrolipoamide dehydrogenase), DLAT (Dihydrolipoamide S-acetyltransferase), DLST (Dihydrolipoamide
S-succinyltransferase) and 5) metabolic intermediates that believed to induce epigenetic changes: FH gene and SDHA/SDHB (blue rectangle).

methods typically require relatively large tissue volumes, which are  location of these cells within the tissue, and co-expression of
challenging to obtain through core needle biopsies. Moreover, these  transcripts in the tissue geography are all lost by this bulk
techniques extract analytes from tissue and sequence them in bulk.  preparation. Single cell RNA sequencing (scRNA-seq) is a
Data regarding the type of cells expressing a given transcript, the  recently developed technology exclusively used in research to
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analyze gene expression at the individual cell level. While it offers
valuable insights into cellular heterogeneity, it has limitations: it
typically requires fresh or frozen tissue samples, necessitates a high
number of isolated cells that are hard to obtain by core needle
biopsy tissue, and loses spatial information. Our approach of using
spatial transcriptomics to evaluate rejection on archived FFPE core
needle biopsies from human allografts has the potential to bridge
the gap between histopathologic and molecular classifications. This
approach likely provides more comprehensive information while
requiring only minimal tissue input.

Despite advances in immunosuppression regimens used in solid
organ transplantation over the past decades, achieving long-term
success has been hindered by several challenges, including the need
to tailor post-transplant immunosuppression regimens to ensure
patient-specific optimization (45). Current immunosuppressive
treatment regimens only target adaptive immune cells. There is a
lack of potential biomarkers for innovative immunosuppressive
therapies. Although research in the field of innate immunity in
transplant immunology has garnered attention in recent years, there
is a limited knowledge of the specific transcript signatures associated
with innate immune cells during post-transplant events. These events
include non-rejection conditions (such as subclinical graft injury,
delayed graft function, ATI, CNI toxicity and inflammation below
diagnostic thresholds for rejection), early acute rejection, and chronic
rejection. Of particular interest are monocytes/macrophages and NK
cells, which play critical roles in the innate immune response to
transplant allografts by producing proinflammatory factors, killing
graft cells, and enhancing the adaptive immune response (4-8).
Furthermore, organ transplantation induces trained innate immunity,
contributing to allograft rejection. However, large knowledge gaps
persist regarding their molecular and cellular mechanism, duration,
adaptability and impact on adaptive immunity in human organ
transplantation. While clinical trials are ongoing, current
immunosuppressive treatment regimens still fail to leverage the
potential benefits of modulating the innate immune response. There
is an urgent need to discover potential biomarkers for future innovative
immunosuppressive therapies. Our discovery of distinct monocytes/
macrophages subclusters based on spatial transcriptomics and the
associated signaling pathways in acute rejection, can uncover
potential biomarkers, such as FCGR3A, for future novel
immunosuppressive therapy targets. Notably, polymorphisms in
FcyRIITA (158V/F) have been demonstrated to enhance NK cell
affinity for IgG and increase risk of graft failure. Furthermore, the
158 V/V genotype specifically has been linked to decreased survival
rates in renal allografts with chronic active AMR (46-50).

An unexpected but potentially important finding was that the
C4d-positive active AMR case had significantly different spatial
transcriptomic features than the C4d-negative active AMR case.
Gupta et al. found no differences in gene expression between C4d
positive and C4d negative biopsies with MVI >2 using microarrays
(51). Our results suggested that spatial transcriptomics may offer a
potential advantage over microarray analysis in identifying distinct
molecular signatures associated with different morphologic subsets
of AMR. However, we understand that our study was limited by
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having only one case each of C4d-positive and C4d-negative active
AMR. We are currently planning a study with a larger sample size to
compare these two conditions, which should yield more robust and
representative results in the future.

We acknowledge the limitations of our current study. First, the
fixed 55-um diameter map spots on the transcriptomic platform
resulted in variable cell densities associated with each barcode. This
constraint may have introduced analytical inconsistencies between
samples and potentially caused us to overlook less prominent
subclusters, such as NK cells. We cannot exclude that the
upregulated expression of FCGR3A was in part derived from NK
cells. In future experiments, this technical limitation could likely be
addressed by applying the newly developed 10x Genomics Visium
high definition (HD) or Xenium In Situ spatial transcriptomics
platforms. Secondly, our study is limited by the number of map
spots in capture areas (6 mm x 6 mm). This limitation is due to the
nature of kidney needle core biopsy tissue, which is typically small,
and the empty gaps between individual tissue cores within the
paraftin blocks. To overcome this issue in future studies, we could
use larger capture areas (1 cm x 1 cm) and carefully select cases with
multiple needle cores.

In summary, our study demonstrated that the non-rejection,
active. AMR, acute TCMR and chronic active AMR exhibited
distinct spatial transcriptomic features. Our discovery of the
unique monocyte/macrophage subclusters with high FCGR3A
expression may shed light on the mechanism underlying acute
kidney rejection and reveal potential cellular targets for innovative
immunosuppressive therapies.
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