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Advances in immunology of
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clinical impact, and
therapeutic perspectives
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Respiratory and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
Obstructive sleep apnea (OSA) drives immune dysregulation through its hallmark

stressors—intermittent hypoxia (IH) and sleep fragmentation (SF). Beyond impaired

sleep, OSA acts as a systemic inflammatory trigger that disrupts immune

homeostasis and reshapes both innate and adaptive responses. Recent evidence

shows that OSA activates hypoxia-inducible factor-1a (HIF-1a), NF-kB signaling,

and the NLRP3 inflammasome, promoting chronic inflammation and immune-cell

dysfunction. These alterations mechanistically contribute to OSA-associated

cardiovascular disease, metabolic disorders, cognitive impairment, and tumor

progression. Reframing OSA as an immune-modulating disorder highlights the

need for diagnostics and therapies guided by immunology rather than airway

management alone.
KEYWORDS
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1 Introduction

Obstructive Sleep Apnea (OSA) is a sleep disorder characterized by recurrent upper

airway obstruction, leading to apnea or hypoventilation, which leads to IH, nocturnal

awakenings, daytime sleepiness, and cognitive impairment. Approximately 936 million

people worldwide between the ages of 30 and 69 are affected by OSA, including about 176

million in China, corresponding to a prevalence rate of approximately 8.8% (1). As

metabolic syndrome rates rise, the number of individuals suffering from OSA is also rising,

making it a significant public health issue. Risk factors for OSA include obesity, age,

anatomical features (e.g., large tongue and short, thick neck), family history, and conditions

like hypertension and diabetes may increase the risk of OSA by influencing upper airway

obstruction or sleep quality. The apnea-hypopnea index (AHI) is currently the main
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654450/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654450/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654450/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654450/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654450/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1654450&domain=pdf&date_stamp=2025-10-21
mailto:yuehm@lzu.edu.cn
https://doi.org/10.3389/fimmu.2025.1654450
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1654450
https://www.frontiersin.org/journals/immunology


Dong and Yue 10.3389/fimmu.2025.1654450
indicator for assessing the severity of OSA. An AHI of 5–15 events

per hour is considered mild, 15–30 events per hour is moderate, and

≥30 severe. OSA’s pathophysiology involves IH, sleep architecture

disruption, and abnormal sympathetic nervous system activation.

This disorder not only affects sleep quality but also leads to various

systemic health issues, including cardiovascular and metabolic

conditions, neurocognitive dysfunction, and even multi-organ and

multi-system dysfunction (2–8). The complex pathophysiological

mechanisms associated with OSA are commonly linked to oxidative

stress induced by IH, ongoing inflammatory cascades, molecular-

level alterations, and increased sympathetic nervous activity (9).

Recent research has increasingly explored the intricate relationship

between OSA and the immune system, which contributes to the

elevated risk of chronic inflammation, cardiovascular diseases,

metabolic syndrome, neurocognitive disorders, and other related

conditions. The involvement of immune responses in OSA has

become more prominent. Furthermore, the bidirectional

relationship between immune dysregulation and OSA also

impacts disease progression and management.

We systematically searched the PubMed, Embase, and Web of

Science Core Collection databases for literature published between

January 1, 1990, and January 30, 2025. The search terms combined

Medical Subject Headings (MeSH) with free-text keywords,

including “Obstructive Sleep Apnea” OR “OSA,” “Intermittent

Hypoxia” OR “IH,” “Sleep Fragmentation” OR “SF,” “Immune”

OR “Inflammation” OR “Immune Dysregulation” OR “Immune

Response,” “Cardiovascular” OR “Metabolic” OR “Cognitive” OR

“Cancer” OR “Comorbidity,” and “CPAP” OR “Immunotherapy.”

We used Boolean operators (AND/OR) to combine the search

terms, for example: “Obstructive Sleep Apnea” OR OSA AND

(“Immune” OR “Inflammation” OR “Immune Dysregulation”)

AND (“Cardiovascular” OR “Metabolic” OR “Cognitive” OR

“Cancer” OR “Comorbidity”). Only peer-reviewed English-

language articles, including original research, clinical studies, and

relevant reviews, were included. Additionally, we manually searched

the reference lists of the included articles to further identify
Abbreviations: Ab, amyloid-b; AHI, apnea–hypopnea index; CCR5, C-C

chemokine receptor 5; CAFs, cancer-associated fibroblasts; CPAP, continuous

positive airway pressure; CSC, cancer stem cell; DC, dendritic cell; GH, growth

hormone; HIF-1a, hypoxia-inducible factor-1a; IH, intermittent hypoxia; IL,

interleukin; iNKT, invariant natural killer T cell; mDC, myeloid dendritic cell;

MDSC, myeloid-derived suppressor cell; MyD88, myeloid differentiation primary

response 88; NF-kB, nuclear factor kappa-B; NK, natural killer cell; NLR,

neutrophil-to-lymphocyte ratio; NLRP3, NOD-like receptor family pyrin

domain-containing 3; ODI, oxygen desaturation index; OSA, obstructive sleep

apnea; pDC, plasmacytoid dendritic cell; PD-1, programmed cell death protein-1;

PD-L1, programmed death-ligand 1; RAGE, receptor for advanced glycation end-

products; ROS, reactive oxygen species; SaO2, arterial oxygen saturation; SF, sleep

fragmentation; SWA, slow-wave activity; TAMs, tumor-associated macrophages;

Th, T helper; TLR, toll-like receptor; T90%, percentage of total sleep time with

SaO2 <90%; TNF-a, tumor necrosis factor-a; VEGF, vascular endothelial growth

factor; VWAT, visceral white adipose tissue.
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potentially relevant studies. This review aims to examine the

pathophysiological connections between OSA and immune

dysfunction, highlighting the immune system’s critical role in

OSA-related comorbidities. A better understanding of the

relationship between OSA and immune responses will help

clinicians manage patients more effectively, support the

development of new treatments, provide more comprehensive

treatment strategies for OSA patients. Figure 1 provides an overall

overview of the review ’s content, i l lustrating the key

pathophysiological connections between OSA and immune

dysfunction, as well as the role of the immune system in OSA-

related comorbidities.
2 Immune stressors induced by OSA

Immune stressors induced by OSA refer to key stimuli triggered

directly by the pathophysiological processes of OSA that activate the

immune system. These stressors drive chronic inflammation and

immune dysregulation through various molecular and cellular

mechanisms, becoming central contributors to OSA-related

comorbidities (Figure 2). The following are the major immune

stressors and their mechanisms of action:
2.1 Intermittent hypoxia

2.1.1 IH–ROS–NF-kB–NLRP3 axis
IH induced by OSA activates oxidative stress, metabolic, and

immune pathways, leading to cumulative molecular and cellular

damage, ultimately causing dysfunction and cell death (10). IH

suppresses antioxidant defenses, raises ROS, and activates pro-

inflammatory transcription factors such as NF-kB, creating a

vicious cycle in which ROS both damages macromolecules and

amplifies inflammation (11, 12). Phagocyte respiratory bursts and

mitochondria-derived injury further increase ROS, reinforcing this

feedback loop (13–15). In OSA patients, the alternating hypoxia and

reoxygenation exacerbate ROS accumulation, leading to ATP

depletion, calcium homeostasis disruption, and enhanced

synthesis of pro-inflammatory factors and nitric oxide, impairing

immune function (16). The NLRP3 inflammasome, activated by

ROS, plays a central role in this cycle by promoting iNKT -1b
maturation and triggering innate immunity (17). In severe OSA,

NLRP3 activity is elevated, correlating with the AHI and hypoxia

index. In vitro, OSA plasma enhances NLRP3 expression under

both normoxic and hypoxic conditions, while oxLDL under IH

further activates NLRP3 and IL-1b production (18, 19). Chronic IH

upregulates NLRP3, and genetic or pharmacological inhibition

reduces inflammation and oxidative stress in tissues (19–21).

NLRP3-/- mice show reduced IL-1b secretion under IH,

confirming the critical role of NLRP3 in IH-mediated

inflammation (21, 22). This establishes the IH–ROS–NF-kB–
NLRP3 axis, linking oxidative stress and inflammation in OSA-

related pathogenesis (see Section 3.7 for related phenotypes and

clinical associations).
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FIGURE 2

Immune stress response induced by OSA. Created with MedPeer (medpeer.cn). Icons adapted and used under an institutional license for academic
publication.
FIGURE 1

Overview of the pathophysiological connections between OSA and immune dysfunction. Created with MedPeer (medpeer.cn). Icons adapted and
used under an institutional license for academic publication.
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2.1.2 HIF-1a-mediated metabolic reprogramming
and immune suppression

Hypoxia-inducible factor 1 (HIF-1) is a transcription factor

made up of a and b subunits, where HIF-1b is stably expressed in

the nucleus and is not regulated by oxygen concentration, whereas

HIF-1a is found in the cytoplasm, and its stability is highly

dependent on oxygen levels. Under normoxic conditions, HIF-1a
is rapidly degraded, but under hypoxic conditions, it accumulates

and translocates to the nucleus, where it binds to HIF-1b to form a

transcriptionally active HIF-1 complex, which then initiates the

expression of downstream target genes (23). A study by Xie et al.

observed differences in the immune cell response to hypoxia in the

peripheral blood of OSA patients, with the response intensity being

positively correlated to the level of hypoxia (24). Further

mechanistic studies revealed that IH can mediate significant

immunosuppressive effects through multiple HIF-1a-dependent
signaling pathways, including inducing lactate accumulation and

metabolic pathway remodeling in the tumor immune

microenvironment (TIME), inhibiting T cell proliferation and

cytokine production, weakening T cell infiltration into tumor

tissues, while promoting the expansion of myeloid-derived

suppressor cells (MDSCs) and suppressing the antitumor

functions of CD8+ T cells and natural killer (NK) cells (25).

2.1.3 PD-1/PD-L1 checkpoint
Programmed cell death protein-1 (PD-1) and its ligand

programmed death-ligand 1(PD-L1) constitute a key inhibitory

axis that maintains T cell quiescence (26). HIF-1a can bind to

the hypoxia response element in the PD-L1 promoter and directly

regulate its transcriptional expression (27). Polasky et al. found that

PD-L1 expression on peripheral monocytes and PD-1 expression

on CD8+ T cells are significantly elevated in OSA patients (28) (see

Section 3.8 for related phenotypes and clinical associations).
2.2 Sleep fragmentation

2.2.1 Circadian rhythm/melatonin pathway
Serum melatonin levels progressively decrease with the severity

of OSA (29). Melatonin exerts its anticancer potential through

various mechanisms, including inhibiting cell proliferation,

scavenging ROS, promoting apoptosis, antagonizing estrogen

effects, and suppressing angiogenesis (30). Additionally, it

contributes to immune regulation and anti-inflammatory effects

by suppressing the NF-kB/NLRP3 inflammasome pathway and

activating T cells, B cells, and macrophages, thereby further

enhancing its antitumor effects (31).
2.2.2 Absence of slow-wave sleep → Th1/Th2
conversion

Sleep is a key regulator of endocrine, metabolic, and immune

homeostasis; its disruption accelerates the development and

progression of chronic disease (32). Regular sleep preserves

immune integrity and defenses against pathogens and

inflammation, whereas circadian misalignment or poor sleep
Frontiers in Immunology 04
quality disrupts immune balance and elevates infection and

inflammation risk (33, 34). In OSA, prolonged sleep

fragmentation (SF) weakens immune defense and amplifies

systemic inflammation; together with intermittent hypoxia (IH),

SF synergistically triggers and sustains inflammation—the core

pathological feature of OSA (35, 36). Physiologically, early-night

slow-wave sleep (SWS) features nadir cortisol and peaks in growth

hormone, prolactin, and aldosterone, a milieu that supports Th1-

type responses and antimicrobial defense (37). However, slow-wave

activity (SWA) is significantly suppressed in moderate–severe OSA

and reduced with abnormal dissipation even in mild OSA (38, 39).

Loss of SWS also raises cerebrospinal fluid b-amyloid (Ab), linking
sleep disruption to cognitive impairment (40, 41). Experimentally,

sleep deprivation shifts immunity from Th1 to Th2 dominance, and

older adults with insufficient SWS show a similar Th2 bias—

changes that compromise anti-infective and antitumor

surveillance (42–44).

2.2.3 Sympathetic nervous activation
Activation of the sympathetic nervous system can inhibit the

transcription of type I interferons (IFN-a/b) and their response

genes, thereby weakening antiviral immunity (45). b-adrenergic
receptor signaling can reduce T cell antitumor functions and has

been shown in vitro to suppress Th1 responses while promoting

Th2 responses (46). However, the causal relationship between SF-

related immune phenotypes and sympathetic nervous system

activation still requires further validation.
3 Immune cell dysregulation and
regulation in OSA (phenotypes and
evidence)

3.1 Neutrophils

The Neutrophil-to-Lymphocyte Ratio (NLR) is a key indicator

of inflammation. Studies have shown that NLR levels in OSA

patients are significantly higher than in healthy populations and

are positively correlated with OSA severity. Additionally, NLR has

been confirmed to have an independent association with coronary

artery disease (47). Notably, in OSA patients treated with

continuous positive airway pressure (CPAP), NLR values

significantly decrease (48). This may be related to the activation

and degranulation of neutrophils in the peripheral blood of OSA

patients (49). In clinical practice, the reduction in NLR and its

consistency depend on the quality of treatment: when compliance is

adequate and residual events are well controlled, the decline is more

significant and persistent. However, when compliance is poor, the

follow-up period is short, or hypoxia persists, the changes in NLR

are often not obvious. Residual heterogeneity may also stem from

differences in research design, the composition of the subject

population (especially the strong modifying effect of obesity/

visceral fat on myeloid inflammation), concurrent infection or

medication, and sampling/analysis variations, etc. Overall, the

existing evidence supports that CPAP has an anti-inflammatory
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effect in reducing NLR. Meanwhile, it is suggested that when

interpreting NLR, compliance indicators and hypoxia load

endpoints (such as T90%, the lowest SaO2, ODI) should be

combined, rather than relying solely on AHI.
3.2 Monocytes/macrophages (M1/M2
polarization)

Macrophages are widely distributed across tissues, and many

originate from peripheral blood mononuclear cells (PBMCs) that

migrate and differentiate into macrophages. Whether under

physiological homeostasis or inflammatory stimuli, PBMCs can

migrate to tissues and transform into macrophages (50). These

blood-derived precursors of macrophages—monocytes—originate

from hematopoietic stem cells during embryonic development and

from the bone marrow in adults (51). Although most tissue-resident

macrophages come from embryonic precursors, under specific

conditions, circulating monocytes can also differentiate into

tissue-resident macrophages with self-renewal capabilities (52). As

key effector cells of the immune system, macrophages are

responsible for clearing senescent cells, foreign particles,

microorganisms, and tumor cells (53). Through their ability to

phagocytose pathogens, recruit and regulate other immune cells,

macrophages not only play a central role in host defense but also

critically regulate the development of inflammation and

degenerative diseases (54).

Studies have shown that following 4 weeks of continuous IH

exposure, male mice exhibit a significant increase in pulmonary

macrophages and ROS production (55). Macrophages are classified

into two functionally distinct types: M1 (pro-inflammatory) and

M2 (anti-inflammatory/repair) types (56). OSA promotes

significant infiltration of M1 macrophages into subcutaneous

adipose tissue and their accumulation within the aortic wall in

chronic OSA mouse models, reflecting their critical role in systemic

inflammation (57, 58). Mechanistically, OSA induces upregulation

of HIF1a in atrial muscle cells through hypoxia/reoxygenation,

which in turn enhances the expression of macrophage migration

inhibitory factor (MIF). MIF binds to CD74 on macrophage

surfaces, activating the NF-kB pathway and promoting M1

polarization. Polarized M1 macrophages release inflammatory

cytokines, exacerbating atrial remodeling and increasing

susceptibility to atrial fibrillation (AF). Macrophage depletion can

reverse this process (59).
3.3 Dendritic cells (mDC/pDC)

Dendritic cells (DCs) play a crucial role in the immune system.

However, there is still controversy regarding whether there is a

reduction in DCs in OSA patients and the immune damage

associated with this reduction. A study by Calati et al. reported a

significant decrease in all DC subsets in the peripheral blood of OSA

patients, particularly myeloid dendritic cells (mDCs) and

plasmacytoid dendritic cells (pDCs). Furthermore, the reduction
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in DCs was concomitant with elevated levels of inflammatory

cytokines and negatively correlated with IL-6 expression, thereby

impairing the body’s ability to activate T cells (60). However, recent

studies show no significant differences between the OSA group and

healthy controls in the numbers of mDCs, pDCs, and the mDC/

pDC ratio. Additionally, no significant correlation was found

between the numbers of mDCs and pDCs and the AHI or the

lowest oxygen saturation levels in OSA patients (24). This

contradiction may stem from multiple factors: (i) Differences in

research design and sample size (cross-sectional vs longitudinal,

small sample single-center, and lack of parallel controls) lead to

insufficient statistical power. (ii) Population heterogeneity (age,

gender, smoking, and coexisting cardiometabolic diseases),

especially obesity/visceral fat, has a significant modifying effect on

the DC phenotype and circulation level; (iii) The methods of

quantifying disease burden are inconsistent (only using AHI,

without including indicators closer to hypoxia burden such as

T90%, the lowest SaO2 or ODI), which may underestimate the

DC changes associated with hypoxia; (iv) Treatment status and

sampling time points (whether CPAP has been used previously,

compliance, morning/evening blood collection, and circadian

rhythm) can all affect DC count and activation phenotype. (v)

Biological distribution and redistribution: Inflammation or tissue

hypoxia can promote the migration of DC from peripheral blood to

tissues (upper airway mucosa or adipose tissue), resulting in a

decrease in peripheral blood count rather than a reduction in total

volume. The above-mentioned methodological and biological

heterogeneity jointly drive the contradictory conclusions about

DC changes in the literature.
3.4 Abnormal T cell profile

OSA significantly impacts the immune system, particularly T

cell populations. gdT cells and natural killer T cells (NKT), which

link innate and adaptive immunity, show specific alterations in OSA

patients. Studies reveal a reduction in perforin-positive CD3+gdT
cells in peripheral blood, with their inhibitory effect increasing as

oxygen saturation decreases (61). Animal models demonstrate

initial activation of CD3+gdT cells in hypoxic environments,

followed by a decrease. iNKT cells are reduced in OSA patients,

with the reduction correlating with disease severity, while NKT-like

cells increase in peripheral blood (62, 63). Additionally, changes are

observed in CD4+ and CD8+ T cells, key cells of adaptive immunity.

OSA patients show increased numbers of CD4+ and CD8+ T cells,

with CD8+ T cells exhibiting an activated phenotype, especially

subsets expressing natural killer receptors CD56 and CD16, which

exhibit stronger cytotoxicity (62–64). OSA promotes a type 2

cytokine dominance in CD4+ and CD8+ T cells, enhancing their

cytotoxicity and upregulating NK receptors, CD40L, perforin, and

TNF-a (65, 66). In severe OSA, IH induces upregulation of PSGL-1

on T cells, impairing immune function and surveillance (67). CPAP

treatment reduces the activation and cytotoxicity of these cells, with

a decrease in total lymphocyte and CD4+ lymphocyte counts after 6

months, suggesting a reversal of immune activation in compliant
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patients (62, 65, 68). Studies on Th1/Th2 immune imbalance in

OSA are inconsistent, with some showing Th1 cytokine activation

and others indicating Th2 dominance linked to sleep disturbances

and elevated catecholamines (65, 69).
3.5 B cells and NK cells

Studies show that both the proportion and number of B cells are

significantly reduced in OSA patients, which is closely associated

with metabolic disorders and obesity. B cell depletion appears to

promote systemic inflammation (62). NK cells, essential for

antiviral and antitumor responses, also play a critical role in

maintaining the balance between innate and adaptive immunity

(70, 71). In non-obese OSA patients, NK cell counts and IFN-g
levels are significantly lower compared to healthy controls, while

infiltration of T cell subpopulations increases. Mechanistic studies

show that IH upregulates TGF-b1 and IL-10 in human CD14+

monocytes, indicating a phenotypic shift that inhibits NK cell

activity (72). OSA is strongly linked to immune system changes,

with T cell activation and imbalance being key factors. CPAP

t r e a tmen t shows some r e v e r s i n g e ff e c t s on t he s e

immune abnormalities.
3.6 Pattern recognition receptors
phenotypes (TLR pathway)

Toll-like receptors (TLRs), as key components of the innate

immune system, are crucial for recognizing pathogens and for

initiating and sustaining systemic inflammatory cascade.

Inhibiting TLR function can attenuate pro-inflammatory

responses. OSA patients often exhibit concurrent upregulation of

TLR4 and NF-kB, which together form the core axis of chronic IH-

induced inflammatory responses (73–77). TLR4, as a typical pattern

recognition receptor, can recognize pathogen signals or damage-

associated molecular patterns, and through the adaptor protein

MyD88, initiates a signaling cascade that rapidly activates NF-kB,
leading to the expression of diverse inflammatory mediators (78,

79). In OSA patients, TLR2/6 expression is upregulated on immune

cells, and this change correlates with the AHI. This may be

explained by increased TLR2 promoter methylation and TLR6

gene body methylation accompanied by elevated protein

expression. Chronic IH in vitro also induces upregulation of

TLR2/6. These changes can be reversed by CPAP treatment (80, 81).
3.7 NLRP3 inflammasome

In severe OSA, NLRP3 activity in monocytes is elevated and

positively correlates with the AHI and the hypoxia index. Under IH

conditions, oxLDL or patient plasma can synergistically enhance

NLRP3 activation and IL-1b production. Animal models show that

genetic or pharmacological inhibition can alleviate brain,

cardiovascular inflammation, and oxidative stress (18–22).
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3.8 Immune checkpoint (PD-1/PD-L1)

In OSA patients, PD-L1 expression on peripheral monocytes

and PD-1 expression on CD8+ T cells are elevated. The

upregulation of PD-L1 transcription is mediated by HIF-1a, as
detailed in section 2.1.3. This axis suggests a potential relevance to

immunotherapy (27, 28).

The key points are summarized in Table 1.
4 Comorbidities associated with
immune cluster changes in OSA

4.1 Cardiovascular diseases in OSA

Atherosclerosis is a chronic inflammatory condition caused by

lipid metabolism disorders and abnormal adaptive immune

responses (82). OSA triggers the following pathological cascade

through IH:

IH first activates inflammatory pathways, directly damaging the

vascular endothelium and contributing to OSA-associated

hypertension and atherosclerosis (83). At the same time,

sympathetic nervous system activation increases blood pressure

and heart rate (84), promotes the extravasation of bone marrow

progenitor cells, monocytosis, and upregulates inflammatory

factors, further exacerbating endothelial dysfunction, amplifying

systemic inflammation, and accelerating the formation and

progression of atherosclerotic plaques (85).

In OSA-related immune dysregulation, multiple cellular

pathways synergistically trigger vascular pathology: first,

exosome-mediated intercellular communication enhances

immune activation—B cells release exosomes carrying MHC-II-

peptide complexes that directly stimulate CD4+ T cells (86);

cardiovascular-associated cells, such as platelets, red blood cells,

endothelial cells, monocytes/macrophages, and smooth muscle

cells, release extracellular vesicles (EVs) that remodel macrophage

phenotypes and inflammatory secretion, playing a continuous role

in the development of atherosclerosis and hypertension (87–89).

Monocyte-macrophage system dysregulation constitutes the

core pathological basis of vascular damage, where the signaling

exchange between endothelial cells and monocytes/macrophages is

not only a key link in maintaining cardiovascular homeostasis but

also a core regulatory mechanism driving atherosclerosis (90).

Specifically, IH mediates immune imbalance through dual

pathways: 1) IH upregulates IL-6, driving macrophages to

infiltrate adipose tissue and polarize to the pro-inflammatory M1

phenotype, inducing adipose inflammation and exacerbating

insulin resistance and atherosclerosis (91); 2) IH simultaneously

enhances CCR5 expression on monocytes, increasing their

endothelial adhesion and chemotaxis to accelerate the progression

of atherosclerosis (92). Meanwhile, T cell profile imbalance further

aggravates the pathology—OSA patients show a significant increase

in Th17 cell proportions, indicating that this subset plays a

pathogenic role in inflammation-driven atherosclerosis (93).

Ultimately, exosome-mediated immune activation, monocyte-
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macrophage dysregulation, and Th17 immune skewing

collaboratively form the immunological network underlying OSA-

IH-induced vascular damage.

Additionally, OSA exacerbates vascular damage by

synergistically amplifying inflammatory signaling pathways: under

sleep deprivation and IH, TLRs on macrophages are activated,

inducing the release of pro-inflammatory cytokines and
Frontiers in Immunology 07
chemokines like TNF-a, IL-1, and IL-6, which cause endothelial

dysfunction and initiate atherosclerosis (94). Clinical histological

evidence shows that in moderate to severe OSA patients, TLR2,

TLR4, TLR9, RAGE are elevated in carotid plaques, further

emphasizing the critical role of the TLR-RAGE axis in OSA-

related plaque formation (95). At the same time, the persistent

activation of NF-kB upregulates miR-155 and miR-210, driving
TABLE 1 Immune cell dysregulation and regulation in OSA.

Immune
Types/
Targets

Major Abnormalities/
Changes

Key
Molecules or
Pathways

Functional-Clinical
Consequences

Reversibility/
Intervention
Evidence

Type of
evidence

Refclinical/
preclinical

data

Neutrophils
(NLR)

NLR↑ (positively correlated with
OSA severity);

NLR, neutrophil
activation,

degranulation and
activation increased

Promotes systemic inflammation,
increased risk of coronary artery

disease

NLR decreased
after CPAP
treatment

Clinical data (47–49)

Monocyte-
Macrophage

Macrophage count and activity
↑; M1 polarization ↑, ROS

production ↑

HIF-1a, MIF/CD74,
NF-kB

Enhanced pro-inflammatory
response, increased risk of

atherosclerosis, atrial fibrillation,
and other conditions

Macrophage
depletion/CPAP

reversible

Mouse and
rat model,
in vitro data

(55–59)

Dendritic
Cells (mDC/

pDC)

Some studies show a decrease in
total DCs; other studies found

no significant difference
IL-6

Inhibition of T cell activation,
immune damage

Mechanism and
intervention
pending

Clinical data (24, 60)

gd T cells

CD3+gdT cells are decreased in
OSA patients; in hypoxia animal
models, it first increases and

then decreases

Early immune surveillance
impairment

Data scarcity Clinical data (61)

NKT/iNKT
NKT-like cells ↑; iNKT cells ↓
and negatively correlated with

AHI
Decline in anti-tumor immunity

CPAP can
partially restore
iNKT cell count
and function

Clinical data (62, 63)

CD4+/CD8+ T
cells

Total count ↑; CD8+ activation
(CD56/CD16, Perforin, TNF-a

↑); Th1↔Th2 imbalance

PSGL-1, CD40L,
HIF-1a

Tissue damage, reduced immune
surveillance

CPAP can reduce
activation
phenotype

Clinical data (64–69)

B cells
Both the proportion and

absolute number ↓

Undetermined
(Obesity-

metabolism related)

Amplification of systemic
inflammation

Lack of
intervention

studies
Clinical data (62)

NK cells Count ↓, IFN-g ↓ TGF-b1, IL-10
Impaired antiviral/antitumor

immunity

Mechanistic
studies suggest
that inhibition is

reversible

Clinical data (49, 70–72)

TLR Pathway
TLR4/NF-kB synergistically

upregulated; TLR2/6 methylation
increased

TLR2/4/6, NF-kB,
MyD88

Chronic inflammation
CPAP can

downregulate
TLR2/6

Clinical data,
mouse and
rat model,

(73–81)

NLRP3
Inflammasome

NLRP3 activity ↑, positively
correlated with AHI, and

synergistically activated with
oxLDL

IL-1b, IL-18, ROS
Atherosclerosis, cerebral and

cardiac injury

Pharmacological
inhibition or gene
knockout can

alleviate

Clinical data,
mouse and
rat model,
in vitro data

(17–22)

PD-1/PD-L1
Peripheral PD-L1 ↑, CD8+ T
PD-1 ↑; HIF-1a directly

upregulated
HIF-1a-PD-L1

Inhibition of T cells, immune
escape, inflammation regulation

PD-1/PD-L1
inhibitors have

potential
therapeutic
efficacy

Clinical data,
mouse model,
in vitro data

(26–28)
NLR, neutrophil-to-lymphocyte ratio; MDSCs, myeloid-derived suppressor cells; DCs, dendritic cells; mDC/pDC, myeloid/plasmacytoid DC; NK, natural killer; iNKT, invariant natural killer T
cell; Th, T helper; Treg, regulatory T cell; TLR, Toll-like receptor; SF, sleep fragmentation; AHI, apnea-hypopnea index; CPAP, continuous positive airway pressure; oxLDL, oxidized low-density
lipoprotein; PSGL-1, P-selectin glycoprotein ligand-1; CD40L, CD40 ligand; TGF-b 1, transforming growth factor-beta 1; MIF, macrophage migration inhibitory factor. Evidence types —
Clinical: human studies; Preclinical: animal or in vitro studies; Both: both human and preclinical evidence.
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NLRP3 inflammasome formation and triggering inflammatory

cascades, aggravating myocardial damage and vascular

dysfunction (96).

Oxidative stress is closely associated with the loss of protective

mechanisms, with melatonin playing a protective role by reducing

oxidative stress and the generation of inflammatory factors in

immune and vascular cells, as well as inhibiting the progression

of atherosclerosis. Therefore, the decrease in melatonin levels

caused by sleep deprivation weakens its antioxidative, anti-

inflammatory, and anti-atherosclerotic effects, which may be a

potential mechanism for inducing vascular damage (97). Further

in vivo evidence shows that the diversity of macrophages in arterial

plaques is highly correlated with their continued exposure to lipids

and their oxidized derivatives (98) (Figure 3).

For clinicians, several practical insights emerge from current

evidence. First, circulating exosome profiles (particularly B-cell–

derived exosomes and EVs from vascular cells) and altered

monocyte/macrophage phenotypes may serve as candidate

biomarkers for early detection of OSA-associated atherosclerosis.

Second, elevated Th17/Treg imbalance and upregulation of

inflammatory mediators (e.g., IL-6, TNF-a, CCR5 expression)

could provide threshold indicators for initiating early anti-

inflammatory or immunomodulatory interventions. Finally,

reduced melatonin levels in OSA patients highlight the potential

value of adjunctive antioxidant strategies in mitigating

vascular injury.
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4.2 Metabolic dysfunction in OSA

OSA patients are often at increased risk for metabolic issues like

insulin resistance, type 2 diabetes, and dyslipidemia. Studies have

shown that their adipose tissue exhibits inflammatory responses

and functional impairments (99–102). It is important to emphasize

that both IH and SF can independently contribute to metabolic

disorders. Short-term exposure to IH has been found to decrease

insulin sensitivity in healthy individuals (103, 104). In mouse

models, although chronic hypoxia leads to weight gain, IH

induces weight loss; however, both exacerbate visceral white

adipose tissue (VWAT) inflammation and trigger metabolic

disorders and insulin resistance. VWAT activates macrophages

and spreads inflammatory signals through adipocyte-derived

exosomes, which are key effectors in this pathological chain (105).

Furthermore, substantial evidence from both human and rodent

models consistently suggests that IH intervention disrupts systemic

metabolic balance, but its specific mechanisms and key metabolic

organs remain unclear (106–110). This also partly explains why

OSA prevalence is higher in individuals with type 2 diabetes and

hyperlipidemia (110). Notably, macrophage-derived extracellular

vesicles (EVs) play a crucial regulatory role in innate immunity and

can mediate inflammatory responses in specific metabolic tissues

like VWAT. Under normal physiological conditions, EVs secreted

by phagocytes are the major component of circulating EVs and

carry molecular markers with protective effects against insulin
FIGURE 3

Immune-related mechanisms of atherosclerotic plaque formation induced by OSA. Created with MedPeer (medpeer.cn). Icons adapted and used
under an institutional license for academic publication.
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resistance (IR). However, when the secretory cells are exposed to the

abnormal environment caused by OSA, these protective features

change, triggering IR within VWAT. In obese individuals with

impaired metabolic function, VWAT typically shows extensive

infiltration of immune cells such as macrophages (110, 111). The

proportion and absolute number of pro-inflammatory M1

macrophages are significantly elevated, further exacerbating

adipose tissue inflammation (112). Studies also indicate that

exosomes released from adipocytes in obese individuals can

activate tissue-resident macrophages in adipose tissue and induce

them to secrete pro-inflammatory cytokines, thereby promoting

insulin resistance (113). Existing evidence suggests that metabolic

disorders and insulin resistance disrupt the balance between pro-

inflammatory and anti-inflammatory mediators in macrophages,

initiating a positive feedback loop that intensifies inflammatory

macrophage activation and ultimately further impairs adipocyte

function (110).

From a clinical perspective, several practical points should be

considered. First, circulating extracellular vesicles—particularly

macrophage- or adipocyte-derived EVs—may serve as emerging

biomarkers for early detection of insulin resistance and adipose

inflammation in OSA patients. Second, monitoring the M1/M2

macrophage ratio in visceral adipose tissue could provide a

threshold indicator of metabolic deterioration and help stratify

patients at higher risk of diabetes. Finally, recognizing OSA-

related declines in insulin sensitivity even in non-obese

individuals highlights the importance of early screening and

timely initiation of metabolic interventions in this population.
4.3 Cognitive impairment associated with
OSA

Several studies have clearly identified cognitive impairment as

one of the major complications of OSA (114), and the cognitive

decline process in OSA patients shares certain similarities with the

pathogenesis of Alzheimer’s disease (AD) (115). Notably, OSA is

more common in patients with cognitive impairment (116). In OSA

patients, peripheral inflammation can trigger central nervous

system inflammation by disrupting the blood-brain barrier or

transmitting via the vagus nerve (117). Subsequently, infiltrating

neutrophils form extracellular traps (NETs), further damaging the

blood-brain barrier and activating microglial cells, ultimately

impairing neurocognitive function (118). Additionally, IH

promotes the damage of mitochondria, the release of mtROS and

mtDNA, facilitates NLRP3 inflammasome assembly, activates

caspase-1 and IL-1b release, and accumulates pro-inflammatory

cytokines, which produce more mtROS, thereby triggering neuronal

apoptosis and impairing hippocampus-dependent learning and

memory functions (20). Another study also found that

neuroinflammation triggers autophagy-lysosomal dysfunction,

activating the NLRP3-caspase-1 inflammasome in the

hippocampus of mice and BV2 cells, closely related to neuronal

damage (119). Continuous positive airway pressure (CPAP), the

primary treatment for OSA, can rapidly improve blood oxygen
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saturation and cognitive function (120). After short-term CPAP

treatment, functional MRI showed improvements in memory and

attention in OSA patients, associated with changes in the cerebellar

cortex and bilateral hippocampus (121, 122). Therefore, existing

data suggest that by improving oxygen saturation and regulating

hippocampal function, CPAP treatment can effectively alleviate

cognitive impairment in OSA patients. Therefore, Peripheral

inflammatory markers (e.g., NETs, NLRP3 activation products)

may serve as candidate biomarkers for early cognitive decline in

OSA. Monitoring hippocampal function via imaging could guide

timely interventions. Early initiation of CPAP remains the most

effective strategy to prevent or reverse neurocognitive impairment.
4.4 Cancer immune editing in OSA

Recent studies suggest that OSA may contribute to the

development and progression of various solid tumors through

mechanisms like IH, oxidative stress, immune dysregulation, and

remode l ing of the inflammatory microenvironment .

Epidemiological data indicate a significantly higher risk of

colorectal cancer in OSA patients: a prospective study in Korea

found that the detection rate of high-grade colorectal tumors in

OSA patients was 3.03 times that of the control group, even after

adjusting for age, gender, BMI, and smoking (123). A cohort study

in Taiwan also showed that the risk in this population was 1.8 times

higher than in non-OSA individuals (124). Common risk factors for

both OSA and cancer, such as obesity and chronic inflammation,

further strengthen the potential link between the two (125). Meta-

analyses have confirmed that OSA is significantly linked to the

incidence of prostate, breast, lung, and colorectal cancer (126, 127).

Focusing on lung cancer, several studies have shown that OSA

patients experience a higher occurrence of lung cancer during

follow-up, with severe OSA significantly increases the mortality

risk in late-stage patients (128, 129). Kendzerska et al. confirmed

that OSA-related hypoxia indicators (such as AHI and average

SaO2) are independent risk factors for lung cancer (130), while Seijo

and Justeau found that T90% is a stronger predictor than AHI (HR

= 2.14, 95% CI 1.01-4.54) (131, 132). Notably, the prevalence of

OSA is also higher in lung cancer patients (133, 134), although some

studies have reported that OSA may be negatively correlated with

lung cancer in certain populations (135, 136). This suggests that the

effect may be influenced by confounding factors such as age, sex,

tumor type, and follow-up duration.

In terms of mechanism, animal experiments have found that IH

stimulates tumor growth in non-small cell lung cancer (NSCLC)

mouse models (137), but evidence on whether OSA affects lung

cancer prognosis is insufficient (138). The synergistic impact of IH

and SF may accelerate the occurrence and progression of lung

cancer and promote treatment resistance through pathways like

oxidative stress, chronic inflammation, immune dysfunction, and

neuroendocrine disruption (139, 140). However, there is currently a

lack of animal models that can accurately simulate both the IH and

SF states in OSA patients, and the standards for IH exposure and SF

quantification methods are not unified, limiting further research
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into the mechanisms. Research has demonstrated that chronic

inflammation is strongly linked to the development of various

cancers, with the immune system playing a crucial role in tumor

angiogenesis, invasion, and metastasis. Regulatory T cells (Tregs),

MDSCs, and tumor-associated macrophages (TAMs) can promote

tumor progression. The repeated IH and tissue hypoxia caused by

OSA can create a pro-cancerous environment by stabilizing HIF,

promoting tumor angiogenesis and proliferation, disrupting

immune surveillance, and enhancing immune escape. Clinical

studies have found that pro-tumor gene expression is upregulated

in peripheral white blood cells of OSA patients, which can be

partially reversed after CPAP treatment (141).

In cancers associated with OSA, the PD-1/PD-L1 pathway is

critically involved in facilitating immune evasion by tumors. In both

clinical OSA cases and animal models, there is an upregulation of

PD-1/PD-L1 expression, along with CD8+ T cell dysfunction and a

higher proportion of MDSCs (142). A mouse model of OSA

combined with NSCLC created by Huang et al. confirmed that

PD-L1 expression is closely related to the intensity of IH, and tumor

burden increases in a PD-L1-dependent manner (143). Further

studies show that IH can drive PD-L1 overexpression through the

upregulation of HIF-1a (144, 145); IH increases HIF-1a and PD-L1

in tumor cells, weakening cytotoxic T cells and increasing TAMs,

thus accelerating tumor progression (146). Additionally, exosomes

released by lung cancer cells have been found to upregulate PD-L1

expression on TAMs (147). Clinical studies show that the levels of

soluble PD-L1 (sPD-L1) in the serum of severe OSA patients are

significantly elevated (148). Since elevated PD-L1 levels are closely

linked to enhanced immune evasion by tumors, targeting the PD-1/

PD-L1 axis may represent a promising treatment strategy for

individuals with lung cancer who also suffer from OSA.

IH promotes the polarization of TAMs towards the M2 subtype,

which is known to support tumor progression and facilitate cancer

cell invasion. Animal experiments have confirmed that IH

accelerates lung cancer progression, and cyclooxygenase-2 (COX-

2) inhibitors can block M2 polarization of TAMs, delaying tumor

deterioration (149–151). At the same time, IH induces tumor cells

to secrete interleukin-10 (IL-10), which in turn facilitates the

polarization of TAMs towards the M2 phenotype (152), and also

promotes the enrichment of immunosuppressive cell populations,

including MDSCs, granulocytes, and Tregs, together creating a pro-

tumor immune-suppressive microenvironment (153).

Transforming growth factor-beta (TGF-b), a core regulator of

the tumor immune microenvironment, can regulate tumor

proliferation, invasion, and microenvironment remodeling (154).

Studies have shown that in untreated OSA patients, monocytes

release TGF-b to suppress NK cell function (which can be restored

with CPAP treatment) (72), and IH can activate the TGF-b pathway
to promote lung cancer cell migration and activation of cancer-

associated fibroblasts (CAFs) (155). In an OSA combined NSCLC

model created by Akbarpour et al., IH and SF significantly

weakened the tumor-killing effect of cytotoxic T lymphocytes

(CTLs), promoting cancer stem cell (CSC) immune evasion and

maintaining self-renewal (156).
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iNKT, important anti-tumor immune cells, are impaired in

both number and function in severe OSA patients, and CPAP

treatment can partially restore their function (63, 114), suggesting

that iNKT dysfunction may also participate in the immune escape

mechanism of OSA-related tumors. Zhang et al. found that IH can

increase tumor volume and weight, while upregulating the

expression of vascular endothelial growth factor (VEGF) and

endothelin-1, enhancing angiogenesis (157). Kang et al. provided

further evidence that in a lung adenocarcinoma mouse model

exposed to IH, VEGF levels were significantly elevated, and its

regulation was mediated primarily by nuclear factor erythroid 2-

related factor 2 (Nrf2) and b-catenin, rather than HIF-1a (158).

Additionally, in the IH combined with non-small cell lung cancer

(NSCLC) model, the expression of ATAD2 (ATPase family protein)

was significantly increased. Knockdown of ATAD2 inhibited lung

cancer cell invasion and migration, reduced mtROS production,

and decreased both the quantity and functional capacity of CSCs,

suggesting that IH accelerates lung cancer progression by activating

the HIF-1a/ATAD2 axis, regulating mtROS and CSC

interactions (159).

Current research confirms that IH can trigger secondary

inflammation, oxidative stress-induced cellular injury, immune

system impairment, and alterations in tumor-related genes.

Concurrently, IH elevates the expression of key signaling

molecules, including PD-L1 and VEGF. It also promotes the

expansion and specialization of TAMs, CSCs, and vascular

endothelial cells. Furthermore, IH mediates intercellular

communication via exosome signaling. Collectively, these

mechanisms facilitate tumor cell proliferation, increase

invasiveness, stimulate neovascularization, and accelerate

malignant progression. However, there are still limitations in

current research: first, there is currently no universally accepted

animal model that can simultaneously simulate the core features of

IH and SF, and studies on SF are relatively insufficient; second, the

majority of in vivo and in vitro studies primarily concentrate on the

roles of IH in enhancing tumor cell growth and invasiveness,

without in-depth analysis of its effects on distant metastasis, and

lack verification of the carcinogenic potential of IH; third, cancer

development involves multiple mechanisms including redox

imbalance, persistent inflammatory responses, immune evasion,

and disturbances in neuroendocrine regulation, and there is still a

lack of systematic research integrating these key mechanisms

(Figure 4). We believe that serum soluble PD-L1 and VEGF may

serve as candidate biomarkers for OSA-related tumor progression.

Monitoring Treg/MDSC/TAM profiles could help identify patients

at higher oncologic risk. Early CPAP intervention and potential PD-

1/PD-L1–targeted therapies may mitigate cancer immune escape

in OSA.
4.5 Autoimmune diseases in OSA

Th17 cells, as a critical effector population mediating cellular

immunity, are essential in the development of autoimmune and
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allergic conditions, whereas Tregs function to preserve immune

system tolerance, preventing organ-specific autoimmunity,

allergies, and transplant rejection. The dynamic balance between

these two cell types is a core mechanism regulating immune

homeostasis and modulating inflammation. Research has revealed

that in OSA patients, cytokines promoting Th17 differentiation,

such as IL-6 and IL-17, are markedly increased, while TGF-b1 levels
are decreased, creating an inflammatory cytokine-dominated

immune microenvironment, thus disrupting the Th17/Treg

balance (160, 161). Domestic studies have also found that the

Th17/Treg ratio in individuals with OSA is significantly higher

than in healthy individuals, and this ratio shows a positive

association with both the severity of OSA and C-reactive protein

levels (162), suggesting that it may be involved in the autoimmune

pathological process related to OSA. Furthermore, some researchers

have proposed that OSA may act as one of the triggers of

autoimmune responses: repeated IH can cause cellular damage,

leading to hyperuricemia and affecting the maturation and antigen-

presenting function of dendritic cells. When sodium urate crystals

accumulate to a certain extent, they can activate T cell responses,

disrupting immune tolerance and promoting the initiation and

advancement of autoimmune disorders (163). Based on existing

evidence, the Th17/Treg ratio may represent a candidate biomarker

for assessing OSA-related autoimmune risk. Elevated IL-6 and IL-
Frontiers in Immunology 11
17, together with reduced TGF-b1, could serve as potential

thresholds for early immunomodulatory intervention. In addition,

monitoring uric acid levels may help identify patients at risk of

autoimmunity triggered by OSA.
5 Discussion and future perspectives

This review comprehensively highlights the significant

influence of OSA on immune function and explains its

pathological connections with multiple comorbidities across

molecular, cellular, and organ systems. Overall, repeated IH and

SF constitute the two core immune stressors of OSA. The former

amplifies oxidative stress and inflammatory responses through the

ROS-HIF-1-NF-kB-NLRP3 axis, while the latter further weakens

immune homeostasis via multiple pathways, including circadian

disruption, loss of slow-wave sleep, excessive sympathetic

activation, and Th1/Th2 switching. Together, these factors

synergistically drive the shared immune foundation for

atherosclerosis, insulin resistance, neurodegenerative changes,

and tumorigenesis.

At the cellular level, MDSC expansion, M1 macrophage

polarization, variable dendritic cell function, and gdT/iNKT

defects form the innate-adaptive immune network. Notably, T cell
FIGURE 4

Immune stress response induced by OSA and its role in tumor evolution. This schematic illustrates the temporal sequence of tumor progression
under OSA-induced immune stressors. Initiation: Intermittent hypoxia stabilizes HIF-1a, acting as the triggering molecular event. Promotion: HIF-1a
signaling upregulates PD-L1 expression and drives TAMs toward M2 polarization, establishing an immunosuppressive microenvironment.
Progression: VEGF-mediated angiogenesis, together with sustained immune evasion, facilitates tumor invasion and metastasis. Together, these steps
outline the continuum from OSA-driven immune dysregulation to cancer progression. Created with MedPeer (medpeer.cn). Icons adapted and used
under an institutional license for academic publication.
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profile dysregulation deserves attention: (1) CD8+ cytotoxic T cells

become excessively activated due to upregulation of NK receptors

and perforin/TNF-a, exacerbating tissue damage; (2) CD4+ subsets

exhibit plasticity in Th1↔Th2 oscillation, suggesting susceptibility

to regulation by metabolic and neuroendocrine backgrounds; (3)

The elevated Th17/Treg ratio is highly correlated with autoimmune

and vascular wall inflammation. Meanwhile, HIF-1a enhances the

expression of the PD-1/PD-L1 pathway under OSA conditions,

resulting in T cell dysfunction and facilitating tumor evasion from

immune surveillance.

Clinical evidence indicates that CPAP can partially reverse early

immune activation: it reduces NLR, restores gdT/iNKT function,

inhibits CD8+ NK-like phenotypes, and downregulates PD-L1.

However, efficacy is highly dependent on treatment adherence

and duration, with limited improvement in established immune

memory or organ damage. Notably, Beyond CPAP, several

alternative and adjunctive interventions may mitigate OSA-

related immune dysregulation through distinct biological

mechanisms. Hypoglossal nerve stimulation (HNS) and other

upper-airway neuromodulation techniques enhance airway

patency and sleep architecture, thereby alleviating IH and SF. By

reducing hypoxic burden, these approaches are expected to

suppress HIF-1a stabilization, ROS generation, and downstream

activation of the NF-kB/NLRP3 pathway, resulting in lowered

systemic inflammatory markers (e.g., NLR, IL-6) and partial

restoration of T-cell and NK cell function. Targeted anti-

inflammatory strategies—such as inhibitors of upstream

mediators (e.g., NLRP3 or IL-1b), ROS scavengers, melatonin

supplementation, and, in selected oncologic settings, modulation

of the PD-1/PD-L1 immune checkpoint axis—represent

mechanism-based approaches to interrupt IH-driven

inflammation. However, clinical data in OSA populations remain

limited, and the systemic safety profile, including infection risk,

warrants careful evaluation. Lifestyle interventions and structured

exercise programs (with or without weight loss) reduce visceral

adiposity, downregulate pro-inflammatory cytokines, enhance

insulin sensitivity, and promote anti-inflammatory myeloid cell

phenotypes, thereby addressing a key modifiable factor in OSA-

related immune abnormalities. Finally, combination strategies—

such as device-based therapies integrated with anti-inflammatory or

metabolic treatments—may offer enhanced benefit for patients with

persistent immune activation despite adequate airway management.

Well-designed randomized controlled trials incorporating

predefined immunologic endpoints and standardized adherence

metrics are essential to elucidate the magnitude, durability, and

clinical significance of immunomodulation achieved through

these interventions.

In conclusion, OSA is not only a sleep-disordered breathing

condition but also a “systemic immune disease.” Decoding its

immune code, precisely blocking key pathways, and synergizing

with traditional therapies may become a key breakthrough in
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reducing multi-organ damage and mortality burden in

OSA patients.
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Fernández-Navarro I, Casitas R, et al. Monocytes inhibit NK activity via TGF-b in
patients with obstructive sleep apnoea. Eur Respir J. (2017) 49:1602456. doi: 10.1183/
13993003.02456-2016

73. Yuan X, Deng Y, Guo X, Shang J, Zhu D, Liu H. Atorvastatin attenuates
myocardial remodeling induced by chronic intermittent hypoxia in rats: partly
involvement of TLR-4/MYD88 pathway. Biochem Biophys Res Commun. (2014)
446:292–7. doi: 10.1016/j.bbrc.2014.02.091

74. Lin ZP, Lin HL, Yu XP, Zheng YJ, Cheng SY. TLR4 mediates inflammation and
hepatic fibrosis induced by chronic intermittent hypoxia in rats. Mol Med Rep. (2020)
22:651–60. doi: 10.3892/mmr.2020.11134

75. Deng Y, Yuan X, Guo XL, Zhu D, Pan YY, Liu HG. Efficacy of atorvastatin on
hippocampal neuronal damage caused by chronic intermittent hypoxia: Involving
TLR4 and its downstream signaling pathway. Respir Physiol Neurobiol. (2015) 218:57–
63. doi: 10.1016/j.resp.2015.07.006

76. Song D, Fang G, Mao SZ, Ye X, Liu G, Miller EJ, et al. Selective inhibition of
endothelial NF-kB signaling attenuates chronic intermittent hypoxia-induced
atherosclerosis in mice. Atherosclerosis. (2018) 270:68–75. doi: 10.1016/
j.atherosclerosis.2018.01.027

77. Akinnusi M, Jaoude P, Kufel T, El-Solh AA. Toll-like receptor activity in patients
with obstructive sleep apnea. Sleep Breathing = Schlaf Atmung. (2013) 17:1009–16.
doi: 10.1007/s11325-012-0791-2

78. Kuzmich NN, Sivak KV, Chubarev VN, Porozov YB, Savateeva-Lyubimova TN,
Peri F. TLR4 signaling pathway modulators as potential therapeutics in inflammation
and sepsis. Vaccines. (2017) 5. doi: 10.3390/vaccines5040034

79. Sun SC. The non-canonical NF-kB pathway in immunity and inflammation. Nat
Rev Immunol. (2017) 17:545–58. doi: 10.1038/nri.2017.52

80. Chen YC, Su MC, Liou CW, Liu SF, Chen CJ, Lin HC, et al. Co-upregulation of
Toll-like receptors 2 and 6 on peripheral blood cells in patients with obstructive sleep
apnea. Sleep Breathing = Schlaf Atmung. (2015) 19:873–82. doi: 10.1007/s11325-014-
1116-4

81. Huang KT, Chen YC, Tseng CC, Chang HC, Su MC, Wang TY, et al. Aberrant
DNA methylation of the toll-like receptors 2 and 6 genes in patients with obstructive
sleep apnea. PloS One. (2020) 15:e0228958. doi: 10.1371/journal.pone.0228958

82. Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic
options. Nat Med. (2011) 17:1410–22. doi: 10.1038/nm.2538

83. Yan YR, Zhang L, Lin YN, Sun XW, Ding YJ, Li N, et al. Chronic intermittent
hypoxia-induced mitochondrial dysfunction mediates endothelial injury via the
TXNIP/NLRP3/IL-1b signaling pathway. Free Radical Biol Med. (2021) 165:401–10.
doi: 10.1016/j.freeradbiomed.2021.01.053

84. Anothaisintawee T, Reutrakul S, Van Cauter E, Thakkinstian A. Sleep
disturbances compared to traditional risk factors for diabetes development:
Systematic review and meta-analysis. Sleep Med Rev. (2016) 30:11–24. doi: 10.1016/
j.smrv.2015.10.002

85. Kadoya M, Koyama H. Sleep, autonomic nervous function and atherosclerosis.
Int J Mol Sci. (2019) 20. doi: 10.3390/ijms20040794
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