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Predicting preoperative lymph
node status in patients with
cervical cancer: development
of interpretable machine
learning model and support
for the biological plausibility
Hui Shen †, Yuting Jiang †, Lihe Zhang †, Qiao Zheng, Han Bai,
Lihong Wu, Liu Du* and Hongning Xie*

Department of Ultrasonic Medicine, Fetal Medical Centre, the First Affiliated Hospital of Sun Yat-Sen
University, Guangzhou, Guangdong, China
Background: Lymph nodemetastasis serves as a crucial prognostic risk factor for

patients with cervical cancer. Accurate prediction of lymph node metastasis is

important in guiding treatment selection. Therefore, our primary objective is the

development and validation of machine learning models for predicting lymph

node metastasis; the secondary objective is to utilize the sequencing data to

provide biological plausibility.

Methods: This study retrospectively included 292 cervical cancer patients and

prospectively recruited 54 cervical cancer patients. Univariate and multivariate

analysis were conducted to explore the risk factors associated with lymph node

metastasis. Subsequently, cellular-level validation was performed using single

cell RNA-sequencing data. The prognostic value of the risk factor was assessed

through bulk RNA-sequencing analysis. Finally, patients were divided into train

and retrospective test sets in a 7:3 ratio to develop five machine learning models,

while using the prospective test set to validate the models. Additionally, the

Shapley Additive Explanation method was employed to enhance the

interpretability of the models’ decision processes.

Results: Federation of Gynecology and Obstetrics stage (2018), squamous cell

carcinoma antigen, monocyte count and platelet count were found to be

significantly correlated with lymph node metastasis. Meanwhile, monocyte

count was a significant risk factor (OR=2.28, p < 0.05). Single cell RNA-

sequencing analysis revealed an increase in monocytes at IIIC1 stage

compared to IB and IIB stages. Monocytes were significantly associated with

prognosis and lymph node metastasis in the bulk RNA-sequencing. Finally, we

developed and validated five machine learning models for predicting lymph node

metastasis. The NNET model stood for its ability to predict lymph node

metastasis (train set AUC: 0.86; retrospective test set AUC: 0.79; prospective

test set: 0.76). In the interpretability of machine learningmodels, Shapley Additive

Explanation values demonstrated the concrete contribution of each feature

within the NNET model.
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Conclusions: This study investigated the notable association between monocyte

count and lymph node metastasis, highlighting the importance of monocytes in

cervical cancer via bulk RNA-sequencing and single cell RNA-sequencing

analysis. The developed interpretable machine learning models effectively aid

clinicians in decision-making processes. Additionally, the Shapley Additive

Explanation method improved the applicability of these machine learning

models in real world.
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1 Introduction
Cervical cancer (CC) ranks as the fourth most prevalent cancer

among women worldwide (1). In China, CC stands as a prevalent

malignancy within the female reproductive system, ranking sixth in

terms of incidence and seventh in mortality (2). According to some

studies, the 5-year survival rate for patients diagnosed with early-

stage CC without lymph node metastasis (LNM) ranges between

85-90%, contrasting with rates of only 50-55% for patients with

LNM (3, 4). Therefore, LNM is one of the most important

prognostic factors in patients with CC (5). Additionally,

according to the 2018 International Federation of Gynecology

and Obstetrics (FIGO) (2018) staging system for CC, patients

with LNM were classified as IIIC stage and required concurrent

chemoradiotherapy (CCRT), regardless of tumor size or

parametrial infiltration (6, 7). Therefore, accurate diagnosis of

LNM is crucial for improving prognosis and reducing mortality.

Traditionally, magnetic resonance imaging (MRI) and

computed tomography (CT) are employed as diagnostic tools in

the evaluation of CC (8). CT or MRI primarily identified LNM

based on lymph node size; nevertheless, their sensitivity is limited,

ranging only from 38% to 56% (9). Positron emission tomography/

computed tomography (PET/CT) scan is more sensitive than CT or

MRI alone; but the cost is relatively high and radiation exposure

occurs (10). Currently, research on predicting LNM in CC primarily

involves constructing radiomics models using medical imaging (11,

12). However, the construction of radiomics models requires

manual delineation of regions of interest to extract radiomic

features, resulting in poor reproducibility and posing challenges

for real-world clinical applications (13).

In recent years, a growing body of research has revealed the

correlation between chronic systemic inflammatory response and

the progression and prognosis of tumors (14, 15). Peripheral blood

parameters have been demonstrated to be associated with systemic

inflammatory responses, and some peripheral blood parameters

such as monocyte count (MO#), lymphocyte count (LY#), and

lymphocyte monocyte ratio (LMR) have been found to be
02
associated with cancer prognosis (16–18). In comparison to

medical imaging, clinical features and peripheral blood

parameters are more readily accessible in clinical practice and are

cost-effective. Hence, peripheral blood parameters may provide new

pathways for predicting LNM.

The primary aim of this study is to develop and validate various

machine learning (ML) models using peripheral blood parameters

to achieve accurate prediction of LNM risk in CC patients. The

secondary objective is to provide biological plausibility for the

peripheral blood parameters using single-cell RNA sequencing

(scRNA-seq) data and bulk-RNA-sequencing (bulk-RNA-seq)

data. Furthermore, the utilization of Shapley Additive Explanation

(SHAP) values, an interpretable artificial intelligence (AI)

technique, to explain the features in the models.
2 Methods

2.1 Clinical database

The data of all CC patients were obtained from the First

Affiliated Hospital of Sun Yat-sen University. The retrospective

dataset was built between January 2020 and December 2024. The

prospective validation dataset was constructed between January

2025 and June 2025.The study adhered to the Helsinki ethical

statement standards and was approved by the Ethics Review

Committee of the First Affiliated Hospital of Sun Yat-sen

University [approval number: (2023)141]. All participants agreed

to the study and signed the informed consent forms.

The inclusion criteria were as follows: (1) patients aged ≥ 18

years; (2) patients who underwent radical hysterectomy with pelvic

lymphadenectomy with pathologically confirmed CC. Exclusion

criteria were as follows: (1) MRI and/or CT and/or PET/CT

reveal LNM in the patient; (2) patients with combined other

malignancies; (3) The clinical data is incomplete; (4)

neuroendocrine carcinoma and other rare pathological types. The

inclusion and exclusion criteria for cases are illustrated in

Supplementary Figure 1.
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2.2 Single cell RNA-sequencing database

ScRNA-seq data (GSE171894) were obtained from the GEO

website (https://www.ncbi.nlm.nih.gov/geo/). Three samples were

c h o s e n , c o r r e s p o n d i n g t o F I GO I B , I I B , a n d

IIIC1stages, respectively.
2.3 TCGA database

The TCGA data portal (https://portal.gdc.cancer.gov/) was used

to obtain RNA gene expression data and corresponding clinical

information for cervical squamous cell carcinoma and endocervical

adenocarcinoma patients. We matched 304 samples retrieved from

the TCGA database with their corresponding clinical data, ensuring

that the samples had an overall survival (OS) period of more than 0

days, complete clinical stage, and age information. Ultimately, 235

samples were included for analysis.
2.4 Clinical data collection

The clinical data, lymph node status, and preoperative

hematological information of all patients were retrospectively

collected. Clinical information included age, FIGO (2018) stage,

menstrual history and history of neoadjuvant chemotherapy (Neo-

chemotherapy). The hematological data were collected, and

included carbohydrate antigen 125 (CA125), carbohydrate

antigen 19-9 (CA19-9), squamous cell carcinoma antigen (SCCA),

neutrophil percentage (NEUT%), lymphocyte percentage (LY%),

monocyte percentage (MO%), neutrophil count (NEUT#), LY#,

MO# and platelet count (PLT#). Furthermore, inflammation-

related indicators were calculated, and included the neutrophil

lymphocyte ratio (NLR), LMR, neutrophil platelet ratio (NPR),

the systemic immune-inflammation index (SII; SII=PLT# ×

NEUT#/LY#), systemic inflammatory response Index (SIRI;

SIRI=NEUT# × MO#/LY#) and pan-immune-inflammation value

(PIV; PIV=NEUT# × PLT# × MO#/LY#). The receiver operating

characteristic (ROC) curve was constructed to determine the cut-off

values of the hematological data for predicting the presence

of LNM.
2.5 ScRNA-seq and bulk-RNA-seq data
processing

The Seurat R package (version 4.4.0) was employed to analyze

the scRNA-seq data. Standard scRNA-seq filtering excludes low-

quality cells with less than 200 or over 7, 500 expressed genes, or

unique molecular identifiers (UMIs) originating from the

mitochondrial genome exceeding 20%, or UMIs from the

erythrocyte genome surpassing 5%. Cells were normalized and

scaled with the default parameters and their highly variable

features were determined using FindVariableFeatures function.

PCA analysis was then performed with the identified variable
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features. Dimension reduction and clustering were conducted

using FindNeighbors and FindClusters functions, respectively.

Finally, Uniform Manifold Approximation and Projection

(UMAP) were performed for visualization. Cell types were

annotated to known biological types with canonical marker genes.

Based on the top differentially expressed genes (DEGs) of each cell

type in scRNA-seq, single sample gene set enrichment analysis

(ssGSEA) was performed for all cell types in the bulk-RNA-

seq data.

The CIBERSORT R package was used to investigate the

proportions of immune cells in diverse TCGA samples, and cox

regression was utilized to evaluate the prognostic significance of

distinct immune cell types for CC patients. Furthermore, we also

compared the differential expression of monocyte-related genes

between samples with and without LNM.
2.6 Feature selection

To address the issue of multicollinearity among variables in the

study, we utilized Variance Inflation Factor (VIF) to assess the

various clinical variables. We employed the method of feature

elimination with cross‐validation (RFECV) for feature selection.

RFECV iteratively eliminates features considered least important

and employs cross-validation to assess the performance of the

selected feature subsets at each iteration, thereby determining the

optimal number of features. The key benefit of RFECV lies in

mitigating the subjectivity associated with feature selection and

improving the accuracy and generalization ability of the model.
2.7 Model development and evaluation

We constructed and tested five ML models: logistic regression

(LR), random forest (RF), naive bayes (NB), decision tree (DT), and

neural network (NNET). The patients were separated into a train set

and a retrospective test set (ratio 7: 3) and performed the tenfold cross‐

validation to train models. In the train, retrospective test and

prospective test sets, the area under the receiver operating

characteristic curve (AUC), accuracy, sensitivity, specificity and

Brier score, were estimated. Utilizing the De-long test to compare

whether there is the significant difference in AUC among the various

ML models. Compare the improvement in predictive effect between

the ML models using the Net Reclassification Index (NRI) and the

integrated discrimination improvement (IDI). Calibration curves were

utilized to illustrate the correspondence between the predicted

probabilities and the actual outcomes. Decision curve analysis

(DCA) was utilized to assess the net benefit of the models.
2.8 Interpretability analysis of model and
web-based application

To mitigate the mistrust associated with ML algorithms due to

their “black box” nature, we applied SHAP values to interpret our
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ML models. SHAP theory, which is rooted in cooperative game

theory, offers a robust and highly interpretable framework that

quantifies the specific influence and relative importance of each

feature on the model’s predictive outcomes.

The optimal predictive model was deployed on the ShinyApps

website (https://www.shinyapps.io/), where we established an

accessible online computational platform. This web-based

application enables real-time LNM prediction for CC patients,

thus facilitating the application of the model in the real world.
2.9 Statistical analysis

Categorical variables were represented as frequencies and

percentages. The comparison of categorical data between groups

was conducted using the c² test or Fisher’s exact test. We used

univariate and multivariate logistic regression analysis to identify

risk factors and calculate their odd ratios (ORs) and 95% confidence

intervals (CIs). Utilizing the R package “caret” to construct various

ML models. All statistical analysis was performed with R, version

4.2.2 software (R Project for Statistical Computing). A two-tailed p-

value < 0.05 was considered statistically significant.
3 Results

3.1 Baseline characteristics

We retrospective reviewed 333 cases of patients with CC who

underwent radical hysterectomy and pelvic lymphadenectomy.

Among them, 21 patients were diagnosed with LNM on

preoperative imaging studies, 17 patients had neuroendocrine

carcinoma and other rare pathological types, 2 patients had

concomitant other malignant tumors, and one patient had

missing preoperative clinical data, all of whom were excluded.

Ultimately, 292 patients met the eligibility criteria and were

included in the train set (n=204) and the retrospective test set

(n=88). We prospectively recruited 64 CC patients, where 6

individuals were identified with LNM through preoperative

imaging studies, and 4 patients exhibited neuroendocrine

carcinoma and other rare pathological types. Ultimately, 54 CC

patients were selected as the prospective test set. The characteristics

of the train, retrospective test and prospective test sets are shown in

Table 1. The incidence of LNM in the train set, retrospective test

and prospective test sets is 23.53%, 17.05% and 11.11%, respectively

(p=0.093). The distribution of age, FIGO (2018) stage, and other

characteristics showed no significant differences among

different datasets.
3.2 Univariate and multivariate analysis for
LNM

We investigated the independent risk factors for LNM among

all patients with CC (Table 2). The univariate analysis indicated that
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FIGO (2018) stage, SCCA, MO%, MO#, PLT# and LMR were all

linked to LNM (p < 0.05). Meanwhile, the multivariate analysis

validated FIGO (2018) stage, SCCA, MO# and PLT# as

independent factors associated with LNM (p < 0.05). Within the

hematological data, MO# emerged as an independent risk factor for

predicting LNM, boasting the highest OR value (OR=2.28).

Meanwhile, in order to quantify the potential additional value of

MO#, we constructed two logistic regression models to predict

LNM: model1(FIGO+SCCA+PLT#) and model2(FIGO+SCCA

+PLT#+MO#). By comparing the AUC of the two models

(model1 vs. model2=0.68 vs. 0.74; p < 0.05), we observed a

significant enhancement in the predictive capability of model2

(Supplementary Table 1). Subsequently, our aim was to offer the

potential biological plausibility of MO# through multi-

omics analysis.
3.3 ScRNA-seq analysis: monocytes show
an increase in CC patients with LNM

The scRNA-seq analysis was conducted on three samples

(FIGO IB/IIB/IIIC stage) derived from the scRNA-seq dataset

GSE171894. A total of 11,011cells were obtained after stringent

filtering. These cells were further classified into 12 different clusters

(Figure 1A). The annotation results were derived from cell marker

genes, and the heatmap displayed the marker genes (Figures 1B, C).

In the Figure 1C, these 12 cell clusters were assigned to six different

cell types, including epithelial cells (marked with EPCAM and

KRT18), T cells (marked with CD3D and CD3E), NK cells

((marked with GNLY and NKG7), Monocytes (marked with

FCN1 and CD14), B cells (marked with CD79A) and smooth

muscle cells (marked with ACTA2). Figure 1D illustrated an

increase in monocytes in the sample corresponding to IIIC1 stage

compared to those from IB and IIB stages. Meanwhile at the Bulk-

RNA-seq level, there was a slight increase in the proportion of

monocytes in patients with LNM; although it did not reach

statistical significance (Figure 1E).
3.4 TCGA analysis: monocytes are a risk
factor that influences the prognosis of CC
patients

In the TCGA database, we utilized the R software CIBERSORT

to calculate the proportions of 22 distinct immune cell types.

Univariate and multivariate Cox regression analyses were

conducted to explore the potential prognostic value of 22

immune cell subtypes and clinical features. In the Table 3, the

results revealed monocytes and resting mast cells were significantly

correlated with OS (p < 0.05). Meanwhile, considering that the

Hazard Ratio (HR) for monocyte exceeded 1, it consequently

emerged as a significant risk factor for prognosis.

Subsequently, ROC curves were used to evaluate the prognostic

capability of monocytes and resting mast cells. The TCGA dataset

was divided into training and testing cohorts in a 5:5 ratio. In the
frontiersin.org
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TABLE 1 Characteristics of the train and test sets.

Variables Train set (N=204) Retrospective test set (N=88) Prospective test set (N=54) P value

Age, N (%): 0.441

≤35 years 16 (7.84%) 11 (12.50%) 5 (9.26%)

>35 years 188 (92.16%) 77 (87.50%) 49 (90.74%)

Menstrual history, N (%): 0.475

No 124 (60.78%) 48 (54.55%) 29 (53.70%)

Yes 80 (39.22%) 40 (45.45%) 25 (46.30%)

Neo-treatment, N (%): 0.056

No 172 (84.31%) 70 (79.55%) 51 (94.44%)

Yes 32 (15.69%) 18 (20.45%) 3 (5.56%)

FIGO (2018), n (%)

IB1 27(13.24%) 9(10.23%) 8(14.81%) 0.783

IB2 71(34.80%) 31(35.23%) 23(42.59%)

IB3 19(9.31%) 11(12.50%) 7(12.96%)

IIA1 49(24.02%) 18(20.45%) 9(16.67%)

IIA2 30(14.71%) 13(14.77%) 4(7.41%)

IIB 8(3.92%) 6(6.82%) 3(5.56%)

Type, N (%): 0.072

Adenocarcinoma 39 (19.12%) 11 (12.50%) 17 (31.48%)

Squamous cell carcinoma 159 (77.94%) 73 (82.95%) 35 (64.81%)

Adenosquamous carcinoma 6 (2.94%) 4 (4.55%) 2 (3.70%)

CA125, N (%): 0.194

≤35 U/mL 184 (90.20%) 83 (94.32%) 46 (85.19%)

>35 U/mL 20 (9.80%) 5 (5.68%) 8 (14.81%)

CA199, N (%): 0.324

≤35 U/mL 189 (92.65%) 84 (95.45%) 48 (88.89%)

>35 U/mL 15 (7.35%) 4 (4.55%) 6 (11.11%)

SCCA, N (%): 0.649

≤1.5 ug/L 117 (57.35%) 46 (52.27%) 32 (59.26%)

>1.5 ug/L 87 (42.65%) 42 (47.73%) 22 (40.74%)

NEUT%, N (%): 0.501

≤0.56 67 (32.84%) 35 (39.77%) 20 (37.04%)

>0.56 137 (67.16%) 53 (60.23%) 34 (62.96%)

LY%, N (%): 0.979

≤0.33 130 (63.73%) 55 (62.50%) 34 (62.96%)

>0.33 74 (36.27%) 33 (37.50%) 20 (37.04%)

MO%, N (%): 0.852

≤0.06 45 (22.06%) 19 (21.59%) 10 (18.52%)

>0.06 159 (77.94%) 69 (78.41%) 44 (81.48%)

(Continued)
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training cohort, it was observed that the prognostic model

demonstrated an AUC of 0.77, 0.85, and 0.75 at 1-, 2-, and 3-year

intervals, respectively (Figure 2A). In the testing cohort, the

prognostic model displayed an AUC of 0.70, 0.63, and 0.57 at 1-,

2-, and 3-year intervals, respectively (Figure 2B). Additionally,

patients were categorized into high/low risk groups according to

their risk scores, and subsequently underwent Kaplan-Meier
Frontiers in Immunology 06
survival analysis. In both the training and testing cohorts, we

observed that patients classified as high-risk exhibited shorter OS

(Figures 2C, D). In addition, we further explored the differences in

the expression of significantly expressed genes of monocytes

(IGSF6, OLR1 and CD1C) between patients with or without

LNM. We found that the expressions of IGSF6, OLR1 and CD1C

increased in CC patients with LNM (Figure 2E).
TABLE 1 Continued

Variables Train set (N=204) Retrospective test set (N=88) Prospective test set (N=54) P value

NEUT#, N (%): 0.291

≤3.61×10^9/L 91 (44.61%) 48 (54.55%) 25 (46.30%)

>3.61×10^9/L 113 (55.39%) 40 (45.45%) 29 (53.70%)

LY#, N (%): 0.888

≤1.95×10^9/L 110 (53.92%) 49 (55.68%) 31 (57.41%)

>1.95×10^9/L 94 (46.08%) 39 (44.32%) 23 (42.59%)

MO#, N (%): 0.395

≤0.46×10^9/L 90 (44.12%) 46 (52.27%) 27 (50.00%)

>0.46×10^9/L 114 (55.88%) 42 (47.73%) 27 (50.00%)

PLT, N (%): 0.413

≤258.50×10^9/L 117 (57.35%) 54 (61.36%) 27 (50.00%)

>258.50×10^9/L 87 (42.65%) 34 (38.64%) 27 (50.00%)

NLR, N (%): 0.807

≤2.27 140 (68.63%) 57 (64.77%) 36 (66.67%)

>2.27 64 (31.37%) 31 (35.23%) 18 (33.33%)

LMR, N (%): 0.143

≤6.23 178 (87.25%) 83 (94.32%) 50 (92.59%)

>6.23 26 (12.75%) 5 (5.68%) 4 (7.41%)

NPR, N (%): 0.899

≤14.86 103 (50.49%) 44 (50.00%) 29 (53.70%)

>14.86 101 (49.51%) 44 (50.00%) 25 (46.30%)

SIRI, N (%): 0.459

≤0.62 55 (26.96%) 18 (20.45%) 15 (27.78%)

>0.62 149 (73.04%) 70 (79.55%) 39 (72.22%)

SII, N (%): 0.918

≤506.65 111 (54.41%) 46 (52.27%) 30 (55.56%)

>506.65 93 (45.59%) 42 (47.73%) 24 (44.44%)

PIV, N (%): 0.775

≤400.36 162 (79.41%) 73 (82.95%) 43 (79.63%)

>400.36 42 (20.59%) 15 (17.05%) 11 (20.37%)

LNM, N (%): 0.093

No 156 (76.47%) 73 (82.95%) 48 (88.89%)

Yes 48 (23.53%) 15 (17.05%) 6 (11.11%)
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TABLE 2 Univariate and multivariate logistic regression analysis of LNM.

Variables
Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P value

Age 0.078

≤35 years Ref

>35 years 3.74(1.07-23.64)

Menstrual history 0.797

No Ref

Yes 0.93(0.52-1.63)

Neo-treatment 0.766

No Ref

Yes 0.89(0.40-1.84)

FIGO (2018)

IB1 Ref Ref

IB2 2.70(0.71-17.80) 0.204 2.02(0.50-13.71) 0.381

IB3 9.84(2.34-68.08) 0.005 9.66(2.12-70.15) 0.008

IIA1 8.31(2.24-54.12) 0.006 6.93(1.73-46.89) 0.016

IIA2 6.58(1.63-44.48) 0.019 5.19(1.21-36.31) 0.047

IIB 2.83(0.31-25.84) 0.323 3.1(0.33-29.74) 0.297

Type

Adenocarcinoma Ref

Squamous cell
carcinoma

1.35(0.64-3.12) 0.454

Adenosquamous
carcinoma

0.51(0.03-3.12) 0.542

CA125 0.190

≤35 U/mL Ref

>35 U/mL 1.81(0.71-4.31)

CA199 0.954

≤35 U/mL Ref

>35 U/mL 0.97(0.27-2.78)

SCCA 0.002 0.041

≤1.5 ug/L Ref Ref

>1.5 ug/L 2.51(1.42-4.50) 1.97(1.03-3.81)

NEUT% 0.235

≤0.56 Ref

>0.56 0.71(0.40-1.26)

LY% 0.249

≤0.33 Ref

>0.33 1.4(0.79-2.46)

MO% 0.010 0.425

(Continued)
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3.5 Feature selection

Whenmulticollinearity is present among variables, it can result in

instability in regression outcomes, thereby diminishing predictive

capability. In the Supplementary Table 2, we calculated the VIF

among the variables and found no significant signs of
Frontiers in Immunology 08
multicollinearity (VIF ≤ 3.62). Next, we employed RFECV strategy

to determine the optimal feature subset for each ML model. This

method utilized ten‐fold cross‐validation based on five ML classifiers,

using the accuracy as the evaluation criterion to automatically select

the optimal number of features. Supplementary Figures 2–3 presented

the results of the RFECV method for feature selection.
TABLE 2 Continued

Variables
Univariate analysis Multivariate analysis

OR (95%CI) P value OR (95%CI) P value

≤0.06 Ref Ref

>0.06 3.22(1.42-8.70) 1.52(0.57-4.59)

NEUT# 0.254

≤3.61×10^9/L Ref

>3.61×10^9/L 0.72(0.41-1.26)

LY# 0.181

≤1.95×10^9/L Ref

>1.95×10^9/L 0.68(0.38-1.19)

MO# 0.019 0.023

≤0.46×10^9/L Ref Ref

>0.46×10^9/L 2.02(1.14-3.67) 2.28(1.14-4.71)

PLT# 0.042 0.007

≤258.50×10^9/L Ref Ref

>258.50×10^9/L 0.54(0.29-0.97) 0.39(0.19-76)

NLR 0.290

≤2.27 Ref

>2.27 0.72(0.38-1.31)

LMR 0.030 0.132

≤6.23 Ref Ref

>6.23 0.11(0.01-0.52) 0.19(0.01-1.13)

NPR 0.181

≤14.86 Ref

>14.86 1.47(0.84-2.59)

SIRI 0.063

≤0.62 Ref

>0.62 2.01(1.00-4.41)

SII 0.65 0.145

≤506.65 Ref

>506.65 0.65(0.37-1.15)

PIV 0.240

≤400.36 Ref

>400.36 0.63(0.27-1.31)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654332
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1654332
3.6 Prediction performance of different ML
models

To ensure the stability and reliability of our ML models, ten-

fold cross-validation was conducted on the training set for tuning,

ultimately generating the optimal model. Of the ML models used to

predict LNM in the train set, NNET model exhibited the highest

AUC (0.86, 95% CI: 0.81-0.92), followed by LR model with an AUC
Frontiers in Immunology 09
of 0.79 (Figure 3A; Table 4). In the retrospective test set and

prospective test set, the NNET model also achieved a higher AUC

value of 0.79/0.76 (Figures 3B, C; Table 4). Meanwhile, the results of

the De Long test indicated that the AUC of the NNET model

demonstrated a statistically significant difference compared to all

other models in the train set (p < 0.05) (Supplementary Table 6).

Next, in terms of calibration, the NNET model also exhibited

superior performance when comparing the calibration curves and
FIGURE 1

Single-cell landscape of CC. (A, B) The cells were clustered into 12 clusters and annotated into 6 kinds of cell types. (C) Heatmap showing
expression levels of specific markers in each cell cluster. (D) UMAP plot colored by cell of FIGO stage: IB stage (red), IIB stage (green), and IIIC1 stage
(bule). (E) SsGSEA analysis was performed for all cell types through the bulk-RNA-seq data.
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Brier scores (Figures 3D-F; Supplementary Table 4). Furthermore,

through the comparison of the NRI and IDI between the NNET

model and the four other ML models, we found that the

reclassification and discriminatory ability of the NNET model

improved across the train set, retrospective test and prospective

test set (Supplementary Table 7).
3.7 Interpretability analysis based on SHAP

SHAP values indicate the contributions of individual variables

to the predictive classification model results, aiding in interpreting

the influence and importance of each feature in the model’s

decision-making process. Therefore, we calculated SHAP value of

NNETmodel to interpret and visualize prediction results. Figure 4A

illustrated a bar graph displaying feature importance scores derived

from SHAP values. This visualization demonstrated that the FIGO
Frontiers in Immunology 10
(2018) stage exerted the most significant influence on the model

predictions, followed by PLT, LMR, SCCA and MO%. At the same

time, in the Figure 4B, each point on the graph represents the SHAP

value for an individual sample, where points closer to purple

indicate higher values, whereas those closer to yellow signify

lower values. So, the Figure 4B visually illustrated the direction

and strength of the influence of each feature on the model

prediction. Notably, advanced FIGO (2018) stage, high SCCA

level, high MO% level, and increased age significantly elevated the

risk of LNM. In addition, one of the 292 patients in our database

were selected randomly for result exhibition (Figure 4C). According

to the algorithm, the specific value of each feature in the NNET

model is transformed into a probability and superimposed to form

the overall probability of LNM. Based on the model prediction, the

probability of LNM for this patient was estimated to be 0.576.

Supplementary Figure 5 illustrated the impact of these top 5

variables on the NNET model predictions.
TABLE 3 Univariate and multivariate Cox regression analysis for predicting OS.

Characteristics
Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

B.cells.naive 1.04 (0.79-1.38) 0.772

B.cells.memory 0.68 (0.34-1.39) 0.293

Plasma.cells 0.90 (0.65-1.24) 0.507

T.cells.CD8 0.64 (0.42-0.98) <0.05 0.78 (0.45-1.35) 0.379

T.cells.CD4.Naive NA NA

T.cells.CD4.memory. resting 1.15 (0.85-1.57) 0.369

T.cells.CD4.memory. activated 0.80 (0.54-1.16) 0.237

T.cells.follicular.helper 0.82 (0.59-1.13) 0.226

T.cells.regulatory..Tregs. 0.96 (0.71-1.29) 0.774

T.cells.gamma.delta 0.58 (0.30-1.15) 0.121

NK.cells.resting 0.85 (0.48-1.51) 0.575

NK.cells.activated 0.70 (0.40-1.23) 0.219

Monocytes 1.49 (1.09-2.05) <0.05 1.72 (1.25-2.37) <0.05

Macrophages.M0 1.61 (1.21-2.14) <0.05 1.18 (0.74-1.90) 0.489

Macrophages.M1 0.94 (0.67-1.32) 0.737

Macrophages.M2 1.39 (0.96-2.03) 0.085

Dendritic.cells.resting 0.59 (0.36-0.96) <0.05 0.75 (0.48-1.17) 0.203

Dendritic.cells.activated 1.35 (0.87-2.09) 0.179

Mast.cells.resting 0.52 (0.34-0.81) <0.05 0.59 (0.37-0.93) <0.05

Mast.cells.activated 2.26 (1.54-3.31) 0.282

Eosinophils 1.18 (0.75-1.85) 0.467

Neutrophils 1.09 (0.79-1.51) 0.604

Age 1.02 (0.99-1.04) 0.190

Stage 1.55 (1.14-2.11) <0.05 1.32 (0.95-1.83) 0.098
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3.8 Online web assessment tool for LNM in
CC

The incorporation of the NNETmodel into a publicly accessible

web-based calculator (https://cclnmpredictor.shinyapps.io/

shinyapp/) enabled clinicians to evaluate the risk of LNM in real-

time (Figure 5).
Frontiers in Immunology 11
4 Discussion

In this study, we have identified FIGO (2018) stage, SCCA,

MO#, and PLT# as significant variables for predicting LNM in CC

through univariate and multivariate analysis. Meanwhile, scRNA-

seq analysis revealed an increased population of monocytes in IIIC1

stage compared to IB and IIB stages. In the bulk RNA-seq,
FIGURE 2

Prognostic value of monocytes in the TCGA database. (A) ROC curves of the prognostic model based on monocytes and resting mast cells in the
training cohort. The AUC values at 1,2 and 3 years were 0.77, 0.85, and 0.75 respectively. (B) ROC curves of the prognostic model in the testing
cohort. The AUC values at 1,2 and 3 years were 0.70, 0.63, and 0.57 respectively. (C, D) Survival analysis in training and testing cohort. Patients
classified as high-risk exhibited shorter OS. (E) Box diagram showed the difference of monocyte-related genes expression between patients with and
without LNM.
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monocytes showed significant correlation with LNM and the

prognosis of CC. Moreover, a survival prediction model

constructed based on monocytes and resting mast cells

demonstrated moderate predictive accuracy, and Individuals at

low-risk exhibit extended OS. Lastly, we have developed and

validated five ML models for predicting LNM. Research indicated

that the NNETmodel displayed excellent performance in predicting
Frontiers in Immunology 12
LNM metastasis (train set AUC: 0.86; retrospective test set AUC:

0.79; prospective test set: 0.76). The ML model could assist

clinicians in adjusting the clinical staging of radiologically

negative patients, thereby guiding clinical decisions, such as

determining the necessity for additional neoadjuvant therapy.

Chronic inflammation is intricately linked to the initiation,

proliferation, invasion, metastasis, and apoptosis (18). With the
FIGURE 3

Performance of the five ML models in predicting LNM in patients with CC. (A-C): ROC curves of train, retrospective test and prospective test sets.
(D-F): Calibration curves for five ML models across train, retrospective test and prospective test sets.
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advancement of research, an increasing number of studies validated

that the prognosis of cancer patients hinged not only on tumor-

related factors but also on the systemic inflammatory response of

the individuals (19). Peripheral blood cells reflect the inflammatory

status of patients, and numerous studies have showed that

peripheral blood monocytes serve as independent prognostic

factors for various cancer patients (20–22). Our study also has

revealed that peripheral blood monocytes are significant risk factors

in LNM (OR=2.28). Simultaneously, monocytes are also associated

with the bad prognosis of CC. In addition, immune cells infiltrating

within tumor tissue are extravasated from peripheral blood (23).

The results of our scRNA-seq also mirror these findings, with an

increase in the number of monocytes observed in IIIC1 stage

samples compared to IB/IIB stage samples, corroborating our

clinical dataset.

Peripheral blood monocytes play an important role in tumors,

yet the mechanisms underlying their involvement remain unclear.

Currently, the prevailing hypothesis posits a close association

between peripheral blood monocytes and tumor-associated

macrophages (TAMs) within the tumor microenvironment.

CD14+CD16+ monocytes exhibit Tie 2 expression, representing

an angiopoietin receptor (Tie 2/Tek) present in the human

peripheral blood monocytes with notable tumor-promoting and

proangiogenic properties (24). Ang 2, a ligand of Tie 2, is primarily
Frontiers in Immunology 13
identified within cancer cells, and may induce transmigration of

Tie2/CD14+CD16+ monocytes into the tumor tissues (25, 26).

Following recruitment to the tumor microenvironment from the

peripheral blood, monocytes undergo differentiation into TAMs

under the influence of cytokines and chemokines produced by

tumor cells (27). TAM, originating from peripheral blood

monocytes, possess angiogenic characteristics that promote tumor

growth and metastasis, alongside participating in the inhibition of

anti-tumor immune responses (20, 28).

The LNM prediction model introduced in this study showed

exceptional effectiveness and exhibited promising clinical

applicability. A meta-analysis of 23 studies unveiled that AI

models developed using medical images achieved an AUC of 0.76,

contrasting with radiologists who achieved a lower AUC of 0.65

(29). Meanwhile, The ML model constructed using MRI radiomic

features and clinical characteristics obtained an AUC of 0.745 (30).

In contrast to radiomics-based models and radiologists, the ML

model we constructed using clinical features and hematological data

exhibits superior efficacy (AUC=0.79). Moreover, the model’s

notable clinical applicability arises from its dependence on easily

accessible patient data like FIGO (2018) stage and hematological

data, making it readily applicable in real world. Our model serves as

a fundamental tool for clinicians to make personalized clinical

decisions. According to clinical guidelines, CC patients identified
TABLE 4 Prediction efficacy of five ML models in train and test sets.

Train set

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

NB 0.79 (0.72-0.86) 0.77 (0.65-0.89) 0.71 (0.63-0.78) 0.72 (0.66-0.78)

DT 0.70 (0.63-0.78) 0.48 (0.34-0.62) 0.93 (0.89-0.97) 0.82 (0.77-0.88)

RF 0.77 (0.70-0.85) 0.60 (0.47-0.74) 0.94 (0.91-0.98) 0.83 (0.79-0.89)

NNET 0.86 (0.81-0.92) 0.79 (0.68-0.91) 0.79 (0.72-0.85) 0.79 (0.73-0.85)

LR 0.79 (0.72-0.86) 0.71 (0.58-0.84) 0.71 (0.63-0.78) 0.71 (0.64-0.77)

Retrospective test Set

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

NB 0.70 (0.53-0.86) 0.60 (0.35-0.85) 0.81 (0.71-0.90) 0.77 (0.69-0.86)

DT 0.65 (0.51-0.78) 0.40 (0.15-0.65) 0.89 (0.82-0.96) 0.81 (0.72-0.89)

RF 0.63 (0.49-0.77) 0.47 (0.21-0.72) 0.79 (0.70-0.89) 0.78 (0.70-0.87)

NNET 0.79 (0.67-0.92) 0.93 (0.81-1.00) 0.66 (0.55-0.77) 0.70 (0.61-0.80)

LR 0.76 (0.61-0.91) 0.67 (0.43-0.91) 0.82 (0.73-0.91) 0.80 (0.71-0.88)

Prospective test set

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

NB 0.52 (0.28-0.77) 0.83 (0.54-1.00) 0.46 (0.32-0.60) 0.50 (0.37-0.63)

DT 0.60 (0.39-0.82) 0.33 (0.04-0.71) 0.88 (0.78-0.97) 0.81 (0.71-0.92)

RF 0.56 (0.35-0.78) 0.33 (0.04-0.71) 0.79 (0.68-0.91) 0.74 (0.62-0.86)

NNET 0.76 (0.54-0.98) 0.83 (0.54-1.00) 0.69 (0.56-0.82) 0.70 (0.58-0.83)

LR 0.71 (0.49- 0.93) 0.83 (0.54-1.00) 0.63 (0.49-0.76) 0.65 (0.52-0.78)
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with LNM during preoperative assessment are categorized as IIIC

stage, for which CCRT is the standard treatment over radical

hysterectomy. Accurate preoperative assessment of lymph node

status will significantly minimize unnecessary interventions for CC

patients and optimize treatment selection.

In contrast to prior studies primarily focused on predictive

performance, our research employed SHAP values to enhance the
Frontiers in Immunology 14
interpretability of model predictions. With the continual

advancement of science and technology, AI has been extensively

implemented in the field of healthcare (31). Nevertheless, this

transformation has also ushered in certain challenges, given that

AI models operate as black boxes, rendering the interpretability of

their prediction processes nearly inscrutable (32). In our study, we

employed SHAP values to enhance the interpretability of ML
FIGURE 4

The NNET model's interpretation. (A): SHAP value ranking of the variables in the model. (B): SHAP honeycomb diagram of the NNET model. (C): The
interpretation of the NNET model prediction result for a single sample.
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models. The SHAP method utilizes game-theoretic techniques to

assign significance to individual input features, facilitating a more

profound understanding of model behavior (33). In general, SHAP

values guarantee the accuracy and interpretability of our ML model,

making it appropriate for practical clinical implementation.

Our study had some limitations. Firstly, the analysis was

conducted at a single center, and larger external validation cohort

is imperatively warranted. Secondly, we elaborated on the

significance of monocytes by using publicly available bulk RNA-

seq and scRNA-seq data. However, only three samples were used to

perform the scRNA-seq analysis, which is insufficient to support the

observation of increased monocytes in the IIIC1 stage. To

strengthen our findings, additional sequencing data related to CC

will be necessary to provide more robust evidence. Next, the impact

of spectral bias has not been adequately considered when

developing the ML models; therefore, future validation across

diverse patient populations is essential to enhance its clinical

applicability. Furthermore, our study did not extensively

investigate the relationship between peripheral blood monocytes

and monocytes within tumor tissue. Finally, hematological data

associated with CC, including carcinoembryonic antigen and

Human epididymis protein 4, were excluded from the analysis

due to substantial missing data.
5 Conclusions

This study demonstrated a significant association between MO#

and LNM in CC, assessing the potential value of monocytes in CC

through a comprehensive evaluation using bulk RNA-seq and
Frontiers in Immunology 15
scRNA-seq. Meanwhile, by incorporating clinical characteristics

and hematological data, five ML models were constructed to

predict LNM, with the NNET model exhibiting the strongest

predictive performance, offering decision support for clinicians.

Additionally, the SHAP method was utilized to elucidate the

decision-making process of the ML models, thereby enhancing

their applicability in real world.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by the Ethics

Review Committee of the First Affiliated Hospital of Sun Yat-sen

University. The studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

HS: Conceptualization, Writing – review & editing,

Methodology, Software, Validation, Writing – original draft. YJ:
FIGURE 5

The online web-based application for predicting LNM in CC.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654332
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1654332
Validation, Conceptualization, Writing – review & editing,

Software, Writing – original draft, Methodology. LZ: Writing –

review & editing, Validation, Methodology, Software,

Conceptualization, Writing – original draft. QZ: Writing –

original draft, Formal analysis, Data curation. HB: Writing –

original draft, Investigation, Data curation, Validation. LW:

Investigation, Writing – original draft, Validation, Data curation.

LD: Writing – review & editing, Funding acquisition,

Conceptualization, Supervision, Resources, Project administration.

HX: Supervision, Writing – review & editing, Conceptualization,

Funding acquisition, Project administration, Resources.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. Funding by the National

Scientific Foundation Committee of China (82171938, 82202156).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Immunology 16
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible.

If you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654332/

full#supplementary-material
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2018) 68:394–424. doi: 10.3322/caac.21492

2. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and
United States, 2022: profiles, trends, and determinants. Chin Med J. (2022) 135:584–90.
doi: 10.1097/CM9.0000000000002108

3. Kilic C, Kimyon Comert G, Cakir C, Yuksel D, Codal B, Kilic F, et al. Recurrence
pattern and prognostic factors for survival in cervical cancer with lymph node
metastasis. J Obstet Gynaecol Res. (2021) 47:2175–84. doi: 10.1111/jog.14762

4. Gien LT, Covens A. Lymph node assessment in cervical cancer: prognostic and
therapeutic implications. J Surg Oncol. (2009) 99:242–7. doi: 10.1002/jso.21199

5. Wenzel HHB, Olthof EP, Bekkers RLM, Boere IA, Lemmens V, Nijman HW, et al.
Primary or adjuvant chemoradiotherapy for cervical cancer with intraoperative lymph
node metastasis-A review. Cancer Treat Rev. (2022) 102:102311. doi: 10.1016/
j.ctrv.2021.102311

6. Matsuo K, Machida H, Mandelbaum RS, Konishi I, Mikami M. Validation of the
2018 FIGO cervical cancer staging system. Gynecol Oncol. (2019) 152:87–93.
doi: 10.1016/j.ygyno.2018.10.026

7. Di Donna MC, Cucinella G, Giallombardo V, Sozzi G, Bizzarri N, Scambia G,
et al. Urinary, gastrointestinal, and sexual dysfunctions after chemotherapy,
radiotherapy, radical surgery or multimodal treatment in women with locally
advanced cervical cancer: A multicenter retrospective study. Cancers. (2023) 15.
doi: 10.3390/cancers15245734

8. Lee SI, Atri M. 2018 FIGO staging system for uterine cervical cancer: enter cross-
sectional imaging. Radiology. (2019) 292:15–24. doi: 10.1148/radiol.2019190088

9. Choi HJ, Ju W, Myung SK, Kim Y. Diagnostic performance of computer
tomography, magnetic resonance imaging, and positron emission tomography or
positron emission tomography/computer tomography for detection of metastatic
lymph nodes in patients with cervical cancer: meta-analysis. Cancer sci. (2010)
101:1471–9. doi: 10.1111/j.1349-7006.2010.01532.x

10. Liu S, Feng Z, Zhang J, Ge H, Wu X, Song S. A novel 2-deoxy-2-
fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed
tomography (PET/CT)-based nomogram to predict lymph node metastasis in early
stage uterine cervical squamous cell cancer. Quant Imaging Med Surg. (2021) 11:240–8.
doi: 10.21037/qims-20-348
11. Yang X, Wang Y, Zhang J, Yang J, Xu F, Liu Y, et al. A novel ultrasound-based
radiomics model for the preoperative prediction of lymph node metastasis in cervical
c a n c e r . Ul t r a s o und Med B i o l . ( 2 0 2 4 ) 5 0 : 1 7 9 3–9 . do i : 1 0 . 1 0 16 /
j.ultrasmedbio.2024.07.013

12. Meng X, Song S, Li K, Duan Y, Zhong J, Wang J, et al. Application of CT in
predicting lymph node metastasis in cervical cancer and construction of a preoperative
nomogram. Sci Rep. (2025) 15:11674. doi: 10.1038/s41598-025-94999-8

13. Fiset S, Welch ML, Weiss J, Pintilie M, Conway JL, Milosevic M, et al.
Repeatability and reproducibility of MRI-based radiomic features in cervical cancer.
Radiother Oncol. (2019) 135:107–14. doi: 10.1016/j.radonc.2019.03.001

14. Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced
cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer.
(2013) 13:759–71. doi: 10.1038/nrc3611

15. Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and inflammation: new
insights into breast cancer development and progression. Am Soc Clin Oncol Educ
Book. (2013) 33):46–51. doi: 10.14694/EdBook_AM.2013.33.46

16. Jiang L, Jiang S, Situ D, Lin Y, Yang H, Li Y, et al. Prognostic value of monocyte
and neutrophils to lymphocytes ratio in patients with metastatic soft tissue sarcoma.
Oncotarget. (2015) 6:9542–50. doi: 10.18632/oncotarget.3283

17. Jiang L, Zhao Z, Jiang S, Lin Y, Yang H, Xie Z, et al. Immunological markers
predict the prognosis of patients with squamous non-small cell lung cancer.
Immunologic Res. (2015) 62:316–24. doi: 10.1007/s12026-015-8662-0

18. Coussens LM, Werb Z. Inflammation and cancer. Nature. (2002) 420:860–7.
doi: 10.1038/nature01322

19. Roxburgh CS, McMillan DC. Role of systemic inflammatory response in
predicting survival in patients with primary operable cancer. Future Oncol. (2010)
6:149–63. doi: 10.2217/fon.09.136

20. Subimerb C, Pinlaor S, Lulitanond V, Khuntikeo N, Okada S, McGrath MS, et al.
Circulating CD14(+) CD16(+) monocyte levels predict tissue invasive character of
cholangiocarcinoma. Clin Exp Immunol. (2010) 161:471–9. doi: 10.1111/j.1365-
2249.2010.04200.x

21. Sasaki A, Iwashita Y, Shibata K, Matsumoto T, Ohta M, Kitano S. Prognostic
value of preoperative peripheral blood monocyte count in patients with hepatocellular
carcinoma. Surgery. (2006) 139:755–64. doi: 10.1016/j.surg.2005.10.009
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654332/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654332/full#supplementary-material
https://doi.org/10.3322/caac.21492
https://doi.org/10.1097/CM9.0000000000002108
https://doi.org/10.1111/jog.14762
https://doi.org/10.1002/jso.21199
https://doi.org/10.1016/j.ctrv.2021.102311
https://doi.org/10.1016/j.ctrv.2021.102311
https://doi.org/10.1016/j.ygyno.2018.10.026
https://doi.org/10.3390/cancers15245734
https://doi.org/10.1148/radiol.2019190088
https://doi.org/10.1111/j.1349-7006.2010.01532.x
https://doi.org/10.21037/qims-20-348
https://doi.org/10.1016/j.ultrasmedbio.2024.07.013
https://doi.org/10.1016/j.ultrasmedbio.2024.07.013
https://doi.org/10.1038/s41598-025-94999-8
https://doi.org/10.1016/j.radonc.2019.03.001
https://doi.org/10.1038/nrc3611
https://doi.org/10.14694/EdBook_AM.2013.33.46
https://doi.org/10.18632/oncotarget.3283
https://doi.org/10.1007/s12026-015-8662-0
https://doi.org/10.1038/nature01322
https://doi.org/10.2217/fon.09.136
https://doi.org/10.1111/j.1365-2249.2010.04200.x
https://doi.org/10.1111/j.1365-2249.2010.04200.x
https://doi.org/10.1016/j.surg.2005.10.009
https://doi.org/10.3389/fimmu.2025.1654332
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1654332
22. Sasaki A, Kai S, Endo Y, Iwaki K, Uchida H, Tominaga M, et al. Prognostic value
of preoperative peripheral blood monocyte count in patients with colorectal liver
metastasis after liver resection. J Gastrointest Surg. (2007) 11:596–602. doi: 10.1007/
s11605-007-0140-0

23. Zhang W, Ling Y, Li Z, Peng X, Ren Y. Peripheral and tumor-infiltrating
immune cells are correlated with patient outcomes in ovarian cancer. Cancer Med.
(2023) 12:10045–61. doi: 10.1002/cam4.5590

24. De Palma M, Venneri MA, Galli R, Sergi Sergi L, Politi LS, Sampaolesi M, et al.
Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor
vessel formation and a mesenchymal population of pericyte progenitors. Cancer Cell.
(2005) 8:211–26. doi: 10.1016/j.ccr.2005.08.002

25. Venneri MA, De Palma M, Ponzoni M, Pucci F, Scielzo C, Zonari E, et al.
Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human
peripheral blood and cancer. Blood. (2007) 109:5276–85. doi: 10.1182/blood-2006-
10-053504

26. Murdoch C, Tazzyman S, Webster S, Lewis CE. Expression of Tie-2 by human
monocytes and their responses to angiopoietin-2. J Immunol. (2007) 178:7405–11.
doi: 10.4049/jimmunol.178.11.7405

27. Shen SL, Fu SJ, Huang XQ, Chen B, Kuang M, Li SQ, et al. Elevated
preoperative peripheral blood monocyte count predicts poor prognosis for
Frontiers in Immunology 17
hepatocellular carcinoma after curative resection. BMC Cancer. (2014) 14:744.
doi: 10.1186/1471-2407-14-744

28. Li Z, Xu Z, Huang Y, Zhao R, Cui Y, Zhou Y, et al. The predictive value and the
correlation of peripheral absolute monocyte count, tumor-associated macrophage and
microvessel density in patients with colon cancer. Medicine. (2018) 97(21):e10759.
doi: 10.1097/MD.0000000000010759

29. Jiang CQ, Li XJ, Zhou ZY, Xin Q, Yu L. Imaging based artificial intelligence for
predicting lymph node metastasis in cervical cancer patients: a systematic review and
meta-analysis. Front Oncol. (2025) 15:1532698. doi: 10.3389/fonc.2025.1532698

30. Liu S, Zhou Y, Wang C, Shen J, Zheng Y. Prediction of lymph node status in
patients with early-stage cervical cancer based on radiomic features of magnetic
resonance imaging (MRI) images. BMC Med Imaging. (2023) 23:101. doi: 10.1186/
s12880-023-01059-6

31. Kann BH, Hosny A, Aerts H. Artificial intelligence for clinical oncology. Cancer
Cell. (2021) 39:916–27. doi: 10.1016/j.ccell.2021.04.002

32. Medicine T. Opening the black box of machine learning. Lancet Respir Med.
(2018) 6:801. doi: 10.1016/S2213-2600(18)30425-9

33. Li M, Sun H, Huang Y, Chen H. Shapley value: from cooperative game to
explainable artificial intelligence. Autonomous Intelligent Systems. (2024) 4:2.
doi: 10.1007/s43684-023-00060-8
frontiersin.org

https://doi.org/10.1007/s11605-007-0140-0
https://doi.org/10.1007/s11605-007-0140-0
https://doi.org/10.1002/cam4.5590
https://doi.org/10.1016/j.ccr.2005.08.002
https://doi.org/10.1182/blood-2006-10-053504
https://doi.org/10.1182/blood-2006-10-053504
https://doi.org/10.4049/jimmunol.178.11.7405
https://doi.org/10.1186/1471-2407-14-744
https://doi.org/10.1097/MD.0000000000010759
https://doi.org/10.3389/fonc.2025.1532698
https://doi.org/10.1186/s12880-023-01059-6
https://doi.org/10.1186/s12880-023-01059-6
https://doi.org/10.1016/j.ccell.2021.04.002
https://doi.org/10.1016/S2213-2600(18)30425-9
https://doi.org/10.1007/s43684-023-00060-8
https://doi.org/10.3389/fimmu.2025.1654332
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2025.1654332
Glossary

CC Cervical cancer
Frontiers in Immunol
LNM Lymph node metastasis
FIGO International Federation of Gynecology and Obstetrics
CCRT Concurrent chemoradiotherapy
MRI Magnetic resonance imaging
CT Computed tomography
PET/CT Positron emission tomography/computed tomography
MO# Monocyte count
LY# Lymphocyte count
LMR Lymphocyte monocyte ratio
ML Machine learning
SHAP Shapley Additive Explanation
scRNA-seq Single cell RNA-sequencing
Bulk-RNA-seq Bulk-RNA-sequencing
AI Artificial intelligence
OS Overall survival
Neo-chemotherapy Neoadjuvant chemotherapy
CA125 Carbohydrate antigen 125
CA19-9 Carbohydrate antigen 19-9
SCCA Squamous cell carcinoma antigen
NEUT% Neutrophil percentage
LY% Lymphocyte percentage
MO% monocyte percentage
NEUT# Neutrophil count
PLT# Platelet count NLR, neutrophil lymphocyte ratio
ogy 18
NPR neutrophil platelet ratio
SII Systemic immune-inflammation index
SIRI Systemic inflammatory response Index
PIV Pan-immune-inflammation value
ROC Receiver operating characteristic
UMIs Unique molecular identifiers
UMAP Uniform Manifold Approximation and Projection
DEGs Differentially expressed genes
ssGSEA Single sample gene set enrichment analysis
VIF Variance Inflation Factor
RFECV Feature elimination with cross‐validation
LR Logistic regression
RF Random forest
NB Naive bayes
DT Decision tree
NNET Neural network
AUC The area under the receiver operating characteristic curve
NRI Net Reclassification Improvement
IDI Integrated Discrimination Improvement
DCA Decision curve analysis
ORs Odd ratios
CIs Confidence intervals
HR Hazard Ratio
TAMs Tumor-associated macrophages.
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