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Background: Lymph node metastasis serves as a crucial prognostic risk factor for
patients with cervical cancer. Accurate prediction of lymph node metastasis is
important in guiding treatment selection. Therefore, our primary objective is the
development and validation of machine learning models for predicting lymph
node metastasis; the secondary objective is to utilize the sequencing data to
provide biological plausibility.

Methods: This study retrospectively included 292 cervical cancer patients and
prospectively recruited 54 cervical cancer patients. Univariate and multivariate
analysis were conducted to explore the risk factors associated with lymph node
metastasis. Subsequently, cellular-level validation was performed using single
cell RNA-sequencing data. The prognostic value of the risk factor was assessed
through bulk RNA-sequencing analysis. Finally, patients were divided into train
and retrospective test sets in a 7:3 ratio to develop five machine learning models,
while using the prospective test set to validate the models. Additionally, the
Shapley Additive Explanation method was employed to enhance the
interpretability of the models’ decision processes.

Results: Federation of Gynecology and Obstetrics stage (2018), squamous cell
carcinoma antigen, monocyte count and platelet count were found to be
significantly correlated with lymph node metastasis. Meanwhile, monocyte
count was a significant risk factor (OR=2.28, p < 0.05). Single cell RNA-
sequencing analysis revealed an increase in monocytes at IlIC1 stage
compared to IB and IIB stages. Monocytes were significantly associated with
prognosis and lymph node metastasis in the bulk RNA-sequencing. Finally, we
developed and validated five machine learning models for predicting lymph node
metastasis. The NNET model stood for its ability to predict lymph node
metastasis (train set AUC: 0.86; retrospective test set AUC: 0.79; prospective
test set: 0.76). In the interpretability of machine learning models, Shapley Additive
Explanation values demonstrated the concrete contribution of each feature
within the NNET model.
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Conclusions: This study investigated the notable association between monocyte
count and lymph node metastasis, highlighting the importance of monocytes in
cervical cancer via bulk RNA-sequencing and single cell RNA-sequencing
analysis. The developed interpretable machine learning models effectively aid
clinicians in decision-making processes. Additionally, the Shapley Additive
Explanation method improved the applicability of these machine learning
models in real world.

cervical cancer, lymph node metastasis, monocyte, machine learning, SHAP value

1 Introduction

Cervical cancer (CC) ranks as the fourth most prevalent cancer
among women worldwide (1). In China, CC stands as a prevalent
malignancy within the female reproductive system, ranking sixth in
terms of incidence and seventh in mortality (2). According to some
studies, the 5-year survival rate for patients diagnosed with early-
stage CC without lymph node metastasis (LNM) ranges between
85-90%, contrasting with rates of only 50-55% for patients with
LNM (3, 4). Therefore, LNM is one of the most important
prognostic factors in patients with CC (5). Additionally,
according to the 2018 International Federation of Gynecology
and Obstetrics (FIGO) (2018) staging system for CC, patients
with LNM were classified as IIIC stage and required concurrent
chemoradiotherapy (CCRT), regardless of tumor size or
parametrial infiltration (6, 7). Therefore, accurate diagnosis of
LNM is crucial for improving prognosis and reducing mortality.

Traditionally, magnetic resonance imaging (MRI) and
computed tomography (CT) are employed as diagnostic tools in
the evaluation of CC (8). CT or MRI primarily identified LNM
based on lymph node size; nevertheless, their sensitivity is limited,
ranging only from 38% to 56% (9). Positron emission tomography/
computed tomography (PET/CT) scan is more sensitive than CT or
MRI alone; but the cost is relatively high and radiation exposure
occurs (10). Currently, research on predicting LNM in CC primarily
involves constructing radiomics models using medical imaging (11,
12). However, the construction of radiomics models requires
manual delineation of regions of interest to extract radiomic
features, resulting in poor reproducibility and posing challenges
for real-world clinical applications (13).

In recent years, a growing body of research has revealed the
correlation between chronic systemic inflammatory response and
the progression and prognosis of tumors (14, 15). Peripheral blood
parameters have been demonstrated to be associated with systemic
inflammatory responses, and some peripheral blood parameters
such as monocyte count (MO#), lymphocyte count (LY#), and
lymphocyte monocyte ratio (LMR) have been found to be
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associated with cancer prognosis (16-18). In comparison to
medical imaging, clinical features and peripheral blood
parameters are more readily accessible in clinical practice and are
cost-effective. Hence, peripheral blood parameters may provide new
pathways for predicting LNM.

The primary aim of this study is to develop and validate various
machine learning (ML) models using peripheral blood parameters
to achieve accurate prediction of LNM risk in CC patients. The
secondary objective is to provide biological plausibility for the
peripheral blood parameters using single-cell RNA sequencing
(scRNA-seq) data and bulk-RNA-sequencing (bulk-RNA-seq)
data. Furthermore, the utilization of Shapley Additive Explanation
(SHAP) values, an interpretable artificial intelligence (AI)
technique, to explain the features in the models.

2 Methods
2.1 Clinical database

The data of all CC patients were obtained from the First
Affiliated Hospital of Sun Yat-sen University. The retrospective
dataset was built between January 2020 and December 2024. The
prospective validation dataset was constructed between January
2025 and June 2025.The study adhered to the Helsinki ethical
statement standards and was approved by the Ethics Review
Committee of the First Affiliated Hospital of Sun Yat-sen
University [approval number: (2023)141]. All participants agreed
to the study and signed the informed consent forms.

The inclusion criteria were as follows: (1) patients aged > 18
years; (2) patients who underwent radical hysterectomy with pelvic
lymphadenectomy with pathologically confirmed CC. Exclusion
criteria were as follows: (1) MRI and/or CT and/or PET/CT
reveal LNM in the patient; (2) patients with combined other
malignancies; (3) The clinical data is incomplete; (4)
neuroendocrine carcinoma and other rare pathological types. The
inclusion and exclusion criteria for cases are illustrated in
Supplementary Figure 1.
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2.2 Single cell RNA-sequencing database

ScRNA-seq data (GSE171894) were obtained from the GEO
website (https://www.ncbinlm.nih.gov/geo/). Three samples were
chosen, corresponding to FIGO IB, IIB, and
IIIClstages, respectively.

2.3 TCGA database

The TCGA data portal (https://portal.gdc.cancer.gov/) was used
to obtain RNA gene expression data and corresponding clinical
information for cervical squamous cell carcinoma and endocervical
adenocarcinoma patients. We matched 304 samples retrieved from
the TCGA database with their corresponding clinical data, ensuring
that the samples had an overall survival (OS) period of more than 0
days, complete clinical stage, and age information. Ultimately, 235
samples were included for analysis.

2.4 Clinical data collection

The clinical data, lymph node status, and preoperative
hematological information of all patients were retrospectively
collected. Clinical information included age, FIGO (2018) stage,
menstrual history and history of neoadjuvant chemotherapy (Neo-
chemotherapy). The hematological data were collected, and
included carbohydrate antigen 125 (CA125), carbohydrate
antigen 19-9 (CA19-9), squamous cell carcinoma antigen (SCCA),
neutrophil percentage (NEUT%), lymphocyte percentage (LY%),
monocyte percentage (MO%), neutrophil count (NEUT#), LY#,
MO# and platelet count (PLT#). Furthermore, inflammation-
related indicators were calculated, and included the neutrophil
lymphocyte ratio (NLR), LMR, neutrophil platelet ratio (NPR),
the systemic immune-inflammation index (SII; SII=PLT# x
NEUT#/LY#), systemic inflammatory response Index (SIRIL
SIRI=NEUT# x MO#/LY#) and pan-immune-inflammation value
(PIV; PIV=NEUT# x PLT# x MO#/LY#). The receiver operating
characteristic (ROC) curve was constructed to determine the cut-off
values of the hematological data for predicting the presence
of LNM.

2.5 ScRNA-seq and bulk-RNA-seq data
processing

The Seurat R package (version 4.4.0) was employed to analyze
the scRNA-seq data. Standard scRNA-seq filtering excludes low-
quality cells with less than 200 or over 7, 500 expressed genes, or
unique molecular identifiers (UMIs) originating from the
mitochondrial genome exceeding 20%, or UMIs from the
erythrocyte genome surpassing 5%. Cells were normalized and
scaled with the default parameters and their highly variable
features were determined using FindVariableFeatures function.
PCA analysis was then performed with the identified variable
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features. Dimension reduction and clustering were conducted
using FindNeighbors and FindClusters functions, respectively.
Finally, Uniform Manifold Approximation and Projection
(UMAP) were performed for visualization. Cell types were
annotated to known biological types with canonical marker genes.
Based on the top differentially expressed genes (DEGs) of each cell
type in scRNA-seq, single sample gene set enrichment analysis
(ssGSEA) was performed for all cell types in the bulk-RNA-
seq data.

The CIBERSORT R package was used to investigate the
proportions of immune cells in diverse TCGA samples, and cox
regression was utilized to evaluate the prognostic significance of
distinct immune cell types for CC patients. Furthermore, we also
compared the differential expression of monocyte-related genes
between samples with and without LNM.

2.6 Feature selection

To address the issue of multicollinearity among variables in the
study, we utilized Variance Inflation Factor (VIF) to assess the
various clinical variables. We employed the method of feature
elimination with cross-validation (RFECV) for feature selection.
RFECYV iteratively eliminates features considered least important
and employs cross-validation to assess the performance of the
selected feature subsets at each iteration, thereby determining the
optimal number of features. The key benefit of RFECV lies in
mitigating the subjectivity associated with feature selection and
improving the accuracy and generalization ability of the model.

2.7 Model development and evaluation

We constructed and tested five ML models: logistic regression
(LR), random forest (RF), naive bayes (NB), decision tree (DT), and
neural network (NNET). The patients were separated into a train set
and a retrospective test set (ratio 7: 3) and performed the tenfold cross-
validation to train models. In the train, retrospective test and
prospective test sets, the area under the receiver operating
characteristic curve (AUC), accuracy, sensitivity, specificity and
Brier score, were estimated. Utilizing the De-long test to compare
whether there is the significant difference in AUC among the various
ML models. Compare the improvement in predictive effect between
the ML models using the Net Reclassification Index (NRI) and the
integrated discrimination improvement (IDI). Calibration curves were
utilized to illustrate the correspondence between the predicted
probabilities and the actual outcomes. Decision curve analysis
(DCA) was utilized to assess the net benefit of the models.

2.8 Interpretability analysis of model and
web-based application
To mitigate the mistrust associated with ML algorithms due to

their “black box” nature, we applied SHAP values to interpret our
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ML models. SHAP theory, which is rooted in cooperative game
theory, offers a robust and highly interpretable framework that
quantifies the specific influence and relative importance of each
feature on the model’s predictive outcomes.

The optimal predictive model was deployed on the ShinyApps
website (https://www.shinyapps.io/), where we established an
accessible online computational platform. This web-based
application enables real-time LNM prediction for CC patients,
thus facilitating the application of the model in the real world.

2.9 Statistical analysis

Categorical variables were represented as frequencies and
percentages. The comparison of categorical data between groups
was conducted using the x> test or Fisher’s exact test. We used
univariate and multivariate logistic regression analysis to identify
risk factors and calculate their odd ratios (ORs) and 95% confidence
intervals (CIs). Utilizing the R package “caret” to construct various
ML models. All statistical analysis was performed with R, version
4.2.2 software (R Project for Statistical Computing). A two-tailed p-
value < 0.05 was considered statistically significant.

3 Results
3.1 Baseline characteristics

We retrospective reviewed 333 cases of patients with CC who
underwent radical hysterectomy and pelvic lymphadenectomy.
Among them, 21 patients were diagnosed with LNM on
preoperative imaging studies, 17 patients had neuroendocrine
carcinoma and other rare pathological types, 2 patients had
concomitant other malignant tumors, and one patient had
missing preoperative clinical data, all of whom were excluded.
Ultimately, 292 patients met the eligibility criteria and were
included in the train set (n=204) and the retrospective test set
(n=88). We prospectively recruited 64 CC patients, where 6
individuals were identified with LNM through preoperative
imaging studies, and 4 patients exhibited neuroendocrine
carcinoma and other rare pathological types. Ultimately, 54 CC
patients were selected as the prospective test set. The characteristics
of the train, retrospective test and prospective test sets are shown in
Table 1. The incidence of LNM in the train set, retrospective test
and prospective test sets is 23.53%, 17.05% and 11.11%, respectively
(p=0.093). The distribution of age, FIGO (2018) stage, and other
characteristics showed no significant differences among
different datasets.

3.2 Univariate and multivariate analysis for
LNM

We investigated the independent risk factors for LNM among
all patients with CC (Table 2). The univariate analysis indicated that
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FIGO (2018) stage, SCCA, MO%, MO#, PLT# and LMR were all
linked to LNM (p < 0.05). Meanwhile, the multivariate analysis
validated FIGO (2018) stage, SCCA, MO# and PLT# as
independent factors associated with LNM (p < 0.05). Within the
hematological data, MO# emerged as an independent risk factor for
predicting LNM, boasting the highest OR value (OR=2.28).

Meanwhile, in order to quantify the potential additional value of
MO#, we constructed two logistic regression models to predict
LNM: modell(FIGO+SCCA+PLT#) and model2(FIGO+SCCA
+PLT#+MO#). By comparing the AUC of the two models
(modell vs. model2=0.68 vs. 0.74; p < 0.05), we observed a
significant enhancement in the predictive capability of model2
(Supplementary Table 1). Subsequently, our aim was to offer the
potential biological plausibility of MO# through multi-
omics analysis.

3.3 ScRNA-seq analysis: monocytes show
an increase in CC patients with LNM

The scRNA-seq analysis was conducted on three samples
(FIGO IB/IIB/IIIC stage) derived from the scRNA-seq dataset
GSE171894. A total of 11,011cells were obtained after stringent
filtering. These cells were further classified into 12 different clusters
(Figure 1A). The annotation results were derived from cell marker
genes, and the heatmap displayed the marker genes (Figures 1B, C).
In the Figure 1C, these 12 cell clusters were assigned to six different
cell types, including epithelial cells (marked with EPCAM and
KRTI18), T cells (marked with CD3D and CD3E), NK cells
((marked with GNLY and NKG7), Monocytes (marked with
FCNI and CDI4), B cells (marked with CD79A) and smooth
muscle cells (marked with ACTA2). Figure 1D illustrated an
increase in monocytes in the sample corresponding to IIICI stage
compared to those from IB and IIB stages. Meanwhile at the Bulk-
RNA-seq level, there was a slight increase in the proportion of
monocytes in patients with LNM; although it did not reach
statistical significance (Figure 1E).

3.4 TCGA analysis: monocytes are a risk
factor that influences the prognosis of CC
patients

In the TCGA database, we utilized the R software CIBERSORT
to calculate the proportions of 22 distinct immune cell types.
Univariate and multivariate Cox regression analyses were
conducted to explore the potential prognostic value of 22
immune cell subtypes and clinical features. In the Table 3, the
results revealed monocytes and resting mast cells were significantly
correlated with OS (p < 0.05). Meanwhile, considering that the
Hazard Ratio (HR) for monocyte exceeded 1, it consequently
emerged as a significant risk factor for prognosis.

Subsequently, ROC curves were used to evaluate the prognostic
capability of monocytes and resting mast cells. The TCGA dataset
was divided into training and testing cohorts in a 5:5 ratio. In the
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TABLE 1 Characteristics of the train and test sets.

Variables Train set (N=204) Retrospective test set (N=88) Prospective test set (N=54) P value
Age, N (%): 0.441
<35 years 16 (7.84%) 11 (12.50%) 5 (9.26%)
>35 years 188 (92.16%) 77 (87.50%) 49 (90.74%)
Menstrual history, N (%): 0.475
No 124 (60.78%) 48 (54.55%) 29 (53.70%)
Yes 80 (39.22%) 40 (45.45%) 25 (46.30%)
Neo-treatment, N (%): 0.056
No 172 (84.31%) 70 (79.55%) 51 (94.44%)
Yes 32 (15.69%) 18 (20.45%) 3 (5.56%)
FIGO (2018), n (%)
IB1 27(13.24%) 9(10.23%) 8(14.81%) 0.783
1B2 71(34.80%) 31(35.23%) 23(42.59%)
1B3 19(9.31%) 11(12.50%) 7(12.96%)
A1 49(24.02%) 18(20.45%) 9(16.67%)
11A2 30(14.71%) 13(14.77%) 4(7.41%)
1IB 8(3.92%) 6(6.82%) 3(5.56%)
Type, N (%): 0.072
Adenocarcinoma 39 (19.12%) 11 (12.50%) 17 (31.48%)
Squamous cell carcinoma 159 (77.94%) 73 (82.95%) 35 (64.81%)
Adenosquamous carcinoma 6 (2.94%) 4 (4.55%) 2 (3.70%)
CA125, N (%): 0.194
<35 U/mL 184 (90.20%) 83 (94.32%) 46 (85.19%)
>35 U/mL 20 (9.80%) 5 (5.68%) 8 (14.81%)
CA199, N (%): 0.324
<35 U/mL 189 (92.65%) 84 (95.45%) 48 (88.89%)
>35 U/mL 15 (7.35%) 4 (4.55%) 6 (11.11%)
SCCA, N (%): 0.649
<15 ug/L 117 (57.35%) 46 (52.27%) 32 (59.26%)
>1.5 ug/L 87 (42.65%) 42 (47.73%) 22 (40.74%)
NEUT%, N (%): 0.501
<0.56 67 (32.84%) 35 (39.77%) 20 (37.04%)
>0.56 137 (67.16%) 53 (60.23%) 34 (62.96%)
LY%, N (%): 0.979
<0.33 130 (63.73%) 55 (62.50%) 34 (62.96%)
>0.33 74 (36.27%) 33 (37.50%) 20 (37.04%)
MO%, N (%): 0.852
<0.06 45 (22.06%) 19 (21.59%) 10 (18.52%)
>0.06 159 (77.94%) 69 (78.41%) 44 (81.48%)
(Continued)
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TABLE 1 Continued
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Variables Train set (N=204) Retrospective test set (N=88) Prospective test set (N=54) P value

NEUT#, N (%): 0291
<3.61x10A9/L 91 (44.61%) 48 (54.55%) 25 (46.30%)
>3.61x1009/L, 113 (55.39%) 40 (45.45%) 29 (53.70%)

LY# N (%): 0.888
<1.95x10A9/L 110 (53.92%) 49 (55.68%) 31 (57.41%)
>1.95x10A9/L 94 (46.08%) 39 (44.32%) 23 (42.59%)

MO#, N (%): 0395
<0.46x1079/L 90 (44.12%) 46 (52.27%) 27 (50.00%)
>0.46x1079/L, 114 (55.88%) 42 (47.73%) 27 (50.00%)

PLT, N (%): 0413
<258.50x10A9/L 117 (57.35%) 54 (61.36%) 27 (50.00%)
>258.50x10A9/L 87 (42.65%) 34 (38.64%) 27 (50.00%)

NLR, N (%): 0.807
<227 140 (68.63%) 57 (64.77%) 36 (66.67%)
>227 64 (31.37%) 31 (35.23%) 18 (33.33%)

LMR, N (%): 0.143
<6.23 178 (87.25%) 83 (94.32%) 50 (92.59%)
>6.23 26 (12.75%) 5 (5.68%) 4(7.41%)

NPR, N (%): 0.899
<14.86 103 (50.49%) 44 (50.00%) 29 (53.70%)
>14.86 101 (49.51%) 44 (50.00%) 25 (46.30%)

SIRL, N (%): 0.459
<0.62 55 (26.96%) 18 (20.45%) 15 (27.78%)
>0.62 149 (73.04%) 70 (79.55%) 39 (72.22%)

SIL N (%): 0.918
<506.65 111 (54.41%) 46 (52.27%) 30 (55.56%)
>506.65 93 (45.59%) 42 (47.73%) 24 (44.44%)

PIV, N (%): 0.775
<400.36 162 (79.41%) 73 (82.95%) 43 (79.63%)
>400.36 42 (20.59%) 15 (17.05%) 11 (20.37%)

LNM, N (%): 0.093

No 156 (76.47%) 73 (82.95%) 48 (88.89%)

Yes 48 (23.53%) 15 (17.05%) 6 (11.11%)

training cohort, it was observed that the prognostic model
demonstrated an AUC of 0.77, 0.85, and 0.75 at 1-, 2-, and 3-year
intervals, respectively (Figure 2A). In the testing cohort, the
prognostic model displayed an AUC of 0.70, 0.63, and 0.57 at 1-,
2-, and 3-year intervals, respectively (Figure 2B). Additionally,
patients were categorized into high/low risk groups according to
their risk scores, and subsequently underwent Kaplan-Meier
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survival analysis. In both the training and testing cohorts, we
observed that patients classified as high-risk exhibited shorter OS
(Figures 2C, D). In addition, we further explored the differences in
the expression of significantly expressed genes of monocytes
(IGSF6, OLRI and CDI1C) between patients with or without
LNM. We found that the expressions of IGSF6, OLR1 and CD1C
increased in CC patients with LNM (Figure 2E).
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TABLE 2 Univariate and multivariate logistic regression analysis of LNM.

Univariate analysis

10.3389/fimmu.

Multivariate analysis

2025.1654332

Variables
OR (95%Cl) P value OR (95%Cl) P value
Age 0.078
<35 years Ref
>35 years 3.74(1.07-23.64)
Menstrual history 0.797
No Ref
Yes 0.93(0.52-1.63)
Neo-treatment 0.766
No Ref
Yes 0.89(0.40-1.84)
FIGO (2018)
1B1 Ref Ref
B2 2.70(0.71-17.80) 0.204 2.02(0.50-13.71) 0.381
1B3 9.84(2.34-68.08) 0.005 9.66(2.12-70.15) 0.008
IIA1 8.31(2.24-54.12) 0.006 6.93(1.73-46.89) 0.016
1IA2 6.58(1.63-44.48) 0.019 5.19(1.21-36.31) 0.047
1IB 2.83(0.31-25.84) 0.323 3.1(0.33-29.74) 0.297
Type
Adenocarcinoma Ref
Squamous cell 1.35(0.64-3.12) 0.454
carcinoma
Adenosquamous 0.51(0.03-3.12) 0.542
carcinoma
CA125 0.190
<35 U/mL Ref
>35 U/mL 1.81(0.71-4.31)
CA199 0.954
<35 U/mL Ref
>35 U/mL 0.97(0.27-2.78)
SCCA 0.002 0.041
<1.5ug/L Ref Ref
>1.5 ug/L 2.51(1.42-4.50) 1.97(1.03-3.81)
NEUT% 0.235
<0.56 Ref
>0.56 0.71(0.40-1.26)
LY% 0.249
<0.33 Ref
>0.33 1.4(0.79-2.46)
MO% 0.010 0.425
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TABLE 2 Continued

Univariate analysis Multivariate analysis
variables OR (95%Cl) P value OR (95%Cl) P value
<0.06 Ref Ref
>0.06 3.22(1.42-8.70) 1.52(0.57-4.59)
NEUT# 0.254
<3.61x10A9/L Ref
>3.61x10A9/L 0.72(0.41-1.26)
LY# 0.181
<1.95x10A9/L Ref
>1.95x10A9/L 0.68(0.38-1.19)
MO# 0.019 0.023
<0.46x1079/L Ref Ref
>0.46x10A9/L 2.02(1.14-3.67) 2.28(1.14-4.71)
PLT# 0.042 0.007
<258.50x10A9/L Ref Ref
>258.50x10A9/L 0.54(0.29-0.97) 0.39(0.19-76)
NLR 0.290
<227 Ref
>2.27 0.72(0.38-1.31)
LMR 0.030 0.132
<6.23 Ref Ref
>6.23 0.11(0.01-0.52) 0.19(0.01-1.13)
NPR 0.181
<14.86 Ref
>14.86 1.47(0.84-2.59)
SIRT 0.063
<0.62 Ref
>0.62 2.01(1.00-4.41)
SII 0.65 0.145
<506.65 Ref
>506.65 0.65(0.37-1.15)
PIV 0.240
<400.36 Ref
>400.36 0.63(0.27-1.31)
3.5 Feature selection multicollinearity (VIF < 3.62). Next, we employed RFECV strategy

to determine the optimal feature subset for each ML model. This

When multicollinearity is present among variables, it can resultin ~ method utilized ten-fold cross-validation based on five ML classifiers,

instability in regression outcomes, thereby diminishing predictive  using the accuracy as the evaluation criterion to automatically select

capability. In the Supplementary Table 2, we calculated the VIF  the optimal number offeatures. Supplementary Figures 2-3 presented
among the variables and found no significant signs of  the results of the RFECV method for feature selection.
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FIGURE 1

&

Single-cell landscape of CC. (A, B) The cells were clustered into 12 clusters and annotated into 6 kinds of cell types. (C) Heatmap showing
expression levels of specific markers in each cell cluster. (D) UMAP plot colored by cell of FIGO stage: IB stage (red), IIB stage (green), and IlIC1 stage
(bule). (E) SsGSEA analysis was performed for all cell types through the bulk-RNA-seq data.

3.6 Prediction performance of different ML
models

To ensure the stability and reliability of our ML models, ten-
fold cross-validation was conducted on the training set for tuning,
ultimately generating the optimal model. Of the ML models used to
predict LNM in the train set, NNET model exhibited the highest
AUC (0.86, 95% CI: 0.81-0.92), followed by LR model with an AUC
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of 0.79 (Figure 3A; Table 4). In the retrospective test set and
prospective test set, the NNET model also achieved a higher AUC
value of 0.79/0.76 (Figures 3B, C; Table 4). Meanwhile, the results of
the De Long test indicated that the AUC of the NNET model
demonstrated a statistically significant difference compared to all
other models in the train set (p < 0.05) (Supplementary Table 6).
Next, in terms of calibration, the NNET model also exhibited
superior performance when comparing the calibration curves and
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https://doi.org/10.3389/fimmu.2025.1654332
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Shen et al.

10.3389/fimmu.2025.1654332

TABLE 3 Univariate and multivariate Cox regression analysis for predicting OS.

Univariate analysis

Characteristics

Multivariate analysis

HR (95% CI) P value HR (95% ClI) P value

B.cells.naive 1.04 (0.79-1.38) 0.772
B.cells.memory 0.68 (0.34-1.39) 0.293
Plasma.cells 0.90 (0.65-1.24) 0.507

T.cells.CD8 0.64 (0.42-0.98) <0.05 0.78 (0.45-1.35) 0.379
T.cells.CD4.Naive NA NA
T.cells.CD4.memory. resting 1.15 (0.85-1.57) 0.369
T.cells.CD4.memory. activated 0.80 (0.54-1.16) 0.237
T.cells.follicular.helper 0.82 (0.59-1.13) 0.226
T.cells.regulatory.. Tregs. 0.96 (0.71-1.29) 0.774
T.cells.gamma.delta 0.58 (0.30-1.15) 0.121
NK cells.resting 0.85 (0.48-1.51) 0.575
NK.cells.activated 0.70 (0.40-1.23) 0.219

Monocytes 1.49 (1.09-2.05) <0.05 1.72 (1.25-2.37) <0.05

Macrophages.M0 1.61 (1.21-2.14) <0.05 1.18 (0.74-1.90) 0.489
Macrophages.M1 0.94 (0.67-1.32) 0.737
Macrophages.M2 1.39 (0.96-2.03) 0.085

Dendritic.cells.resting 0.59 (0.36-0.96) <0.05 0.75 (0.48-1.17) 0.203
Dendritic.cells.activated 1.35 (0.87-2.09) 0.179

Mast.cells.resting 0.52 (0.34-0.81) <0.05 0.59 (0.37-0.93) <0.05
Mast.cells.activated 2.26 (1.54-3.31) 0.282
Eosinophils 1.18 (0.75-1.85) 0.467
Neutrophils 1.09 (0.79-1.51) 0.604
Age 1.02 (0.99-1.04) 0.190

Stage 1.55 (1.14-2.11) <0.05 1.32 (0.95-1.83) 0.098

Brier scores (Figures 3D-F; Supplementary Table 4). Furthermore,
through the comparison of the NRI and IDI between the NNET
model and the four other ML models, we found that the
reclassification and discriminatory ability of the NNET model
improved across the train set, retrospective test and prospective
test set (Supplementary Table 7).

3.7 Interpretability analysis based on SHAP

SHAP values indicate the contributions of individual variables
to the predictive classification model results, aiding in interpreting
the influence and importance of each feature in the model’s
decision-making process. Therefore, we calculated SHAP value of
NNET model to interpret and visualize prediction results. Figure 4A
illustrated a bar graph displaying feature importance scores derived
from SHAP values. This visualization demonstrated that the FIGO

Frontiers in Immunology

(2018) stage exerted the most significant influence on the model
predictions, followed by PLT, LMR, SCCA and MO%. At the same
time, in the Figure 4B, each point on the graph represents the SHAP
value for an individual sample, where points closer to purple
indicate higher values, whereas those closer to yellow signify
lower values. So, the Figure 4B visually illustrated the direction
and strength of the influence of each feature on the model
prediction. Notably, advanced FIGO (2018) stage, high SCCA
level, high MO% level, and increased age significantly elevated the
risk of LNM. In addition, one of the 292 patients in our database
were selected randomly for result exhibition (Figure 4C). According
to the algorithm, the specific value of each feature in the NNET
model is transformed into a probability and superimposed to form
the overall probability of LNM. Based on the model prediction, the
probability of LNM for this patient was estimated to be 0.576.
Supplementary Figure 5 illustrated the impact of these top 5
variables on the NNET model predictions.
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Prognostic value of monocytes in the TCGA database. (A) ROC curves of the prognostic model based on monocytes and resting mast cells in the
training cohort. The AUC values at 1,2 and 3 years were 0.77, 0.85, and 0.75 respectively. (B) ROC curves of the prognostic model in the testing
cohort. The AUC values at 1,2 and 3 years were 0.70, 0.63, and 0.57 respectively. (C, D) Survival analysis in training and testing cohort. Patients
classified as high-risk exhibited shorter OS. (E) Box diagram showed the difference of monocyte-related genes expression between patients with and

without LNM.

3.8 Online web assessment tool for LNM in
CC

The incorporation of the NNET model into a publicly accessible
web-based calculator (https://cclnmpredictor.shinyapps.io/
shinyapp/) enabled clinicians to evaluate the risk of LNM in real-
time (Figure 5).

Frontiers in Immunology

4 Discussion

In this study, we have identified FIGO (2018) stage, SCCA,
MO#, and PLT# as significant variables for predicting LNM in CC
through univariate and multivariate analysis. Meanwhile, scRNA-
seq analysis revealed an increased population of monocytes in IIIC1
stage compared to IB and IIB stages. In the bulk RNA-seq,
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FIGURE 3

Performance of the five ML models in predicting LNM in patients with CC. (A-C): ROC curves of train, retrospective test and prospective test sets.
(D-F): Calibration curves for five ML models across train, retrospective test and prospective test sets.

monocytes showed significant correlation with LNM and the
prognosis of CC. Moreover, a survival prediction model
constructed based on monocytes and resting mast cells
demonstrated moderate predictive accuracy, and Individuals at
low-risk exhibit extended OS. Lastly, we have developed and
validated five ML models for predicting LNM. Research indicated
that the NNET model displayed excellent performance in predicting
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LNM metastasis (train set AUC: 0.86; retrospective test set AUC:
0.79; prospective test set: 0.76). The ML model could assist
clinicians in adjusting the clinical staging of radiologically
negative patients, thereby guiding clinical decisions, such as
determining the necessity for additional neoadjuvant therapy.
Chronic inflammation is intricately linked to the initiation,
proliferation, invasion, metastasis, and apoptosis (18). With the
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TABLE 4 Prediction efficacy of five ML models in train and test sets.

10.3389/fimmu.2025.1654332

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)
NB 0.79 (0.72-0.86) 0.77 (0.65-0.89) 0.71 (0.63-0.78) 0.72 (0.66-0.78)
DT 0.70 (0.63-0.78) 0.48 (0.34-0.62) 0.93 (0.89-0.97) 0.82 (0.77-0.88)
RF 0.77 (0.70-0.85) 0.60 (0.47-0.74) 0.94 (0.91-0.98) 0.83 (0.79-0.89)

NNET 0.86 (0.81-0.92) 0.79 (0.68-0.91) 0.79 (0.72-0.85) 0.79 (0.73-0.85)
LR 0.79 (0.72-0.86) 0.71 (0.58-0.84) 0.71 (0.63-0.78) 0.71 (0.64-0.77)

Retrospective test Set

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)
NB 0.70 (0.53-0.86) 0.60 (0.35-0.85) 0.81 (0.71-0.90) 0.77 (0.69-0.86)
DT 0.65 (0.51-0.78) 0.40 (0.15-0.65) 0.89 (0.82-0.96) 0.81 (0.72-0.89)
RF 0.63 (0.49-0.77) 0.47 (0.21-0.72) 0.79 (0.70-0.89) 0.78 (0.70-0.87)

NNET 0.79 (0.67-0.92) 0.93 (0.81-1.00) 0.66 (0.55-0.77) 0.70 (0.61-0.80)
LR 0.76 (0.61-0.91) 0.67 (0.43-0.91) 0.82 (0.73-0.91) 0.80 (0.71-0.88)

Prospective test set

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)
NB 0.52 (0.28-0.77) 0.83 (0.54-1.00) 0.46 (0.32-0.60) 0.50 (0.37-0.63)
DT 0.60 (0.39-0.82) 0.33 (0.04-0.71) 0.88 (0.78-0.97) 0.81 (0.71-0.92)
RF 0.56 (0.35-0.78) 0.33 (0.04-0.71) 0.79 (0.68-0.91) 0.74 (0.62-0.86)

NNET 0.76 (0.54-0.98) 0.83 (0.54-1.00) 0.69 (0.56-0.82) 0.70 (0.58-0.83)
LR 0.71 (0.49- 0.93) 0.83 (0.54-1.00) 0.63 (0.49-0.76) 0.65 (0.52-0.78)

advancement of research, an increasing number of studies validated
that the prognosis of cancer patients hinged not only on tumor-
related factors but also on the systemic inflammatory response of
the individuals (19). Peripheral blood cells reflect the inflammatory
status of patients, and numerous studies have showed that
peripheral blood monocytes serve as independent prognostic
factors for various cancer patients (20-22). Our study also has
revealed that peripheral blood monocytes are significant risk factors
in LNM (OR=2.28). Simultaneously, monocytes are also associated
with the bad prognosis of CC. In addition, immune cells infiltrating
within tumor tissue are extravasated from peripheral blood (23).
The results of our scRNA-seq also mirror these findings, with an
increase in the number of monocytes observed in IIIC1 stage
samples compared to IB/IIB stage samples, corroborating our
clinical dataset.

Peripheral blood monocytes play an important role in tumors,
yet the mechanisms underlying their involvement remain unclear.
Currently, the prevailing hypothesis posits a close association
between peripheral blood monocytes and tumor-associated
macrophages (TAMs) within the tumor microenvironment.
CD14'CD16" monocytes exhibit Tie 2 expression, representing
an angiopoietin receptor (Tie 2/Tek) present in the human
peripheral blood monocytes with notable tumor-promoting and
proangiogenic properties (24). Ang 2, a ligand of Tie 2, is primarily

Frontiers in Immunology

identified within cancer cells, and may induce transmigration of
Tie2/CD14"CD16" monocytes into the tumor tissues (25, 26).
Following recruitment to the tumor microenvironment from the
peripheral blood, monocytes undergo differentiation into TAMs
under the influence of cytokines and chemokines produced by
tumor cells (27). TAM, originating from peripheral blood
monocytes, possess angiogenic characteristics that promote tumor
growth and metastasis, alongside participating in the inhibition of
anti-tumor immune responses (20, 28).

The LNM prediction model introduced in this study showed
exceptional effectiveness and exhibited promising clinical
applicability. A meta-analysis of 23 studies unveiled that AI
models developed using medical images achieved an AUC of 0.76,
contrasting with radiologists who achieved a lower AUC of 0.65
(29). Meanwhile, The ML model constructed using MRI radiomic
features and clinical characteristics obtained an AUC of 0.745 (30).
In contrast to radiomics-based models and radiologists, the ML
model we constructed using clinical features and hematological data
exhibits superior efficacy (AUC=0.79). Moreover, the model’s
notable clinical applicability arises from its dependence on easily
accessible patient data like FIGO (2018) stage and hematological
data, making it readily applicable in real world. Our model serves as
a fundamental tool for clinicians to make personalized clinical
decisions. According to clinical guidelines, CC patients identified
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FIGURE 4
The NNET model's interpretation. (A): SHAP value ranking of the variables in the model. (B): SHAP honeycomb diagram of the NNET model. (C): The
interpretation of the NNET model prediction result for a single sample.

with LNM during preoperative assessment are categorized as IIIC
stage, for which CCRT is the standard treatment over radical
hysterectomy. Accurate preoperative assessment of lymph node
status will significantly minimize unnecessary interventions for CC
patients and optimize treatment selection.

In contrast to prior studies primarily focused on predictive
performance, our research employed SHAP values to enhance the

Frontiers in Immunology 14

interpretability of model predictions. With the continual
advancement of science and technology, Al has been extensively
implemented in the field of healthcare (31). Nevertheless, this
transformation has also ushered in certain challenges, given that
AI models operate as black boxes, rendering the interpretability of
their prediction processes nearly inscrutable (32). In our study, we
employed SHAP values to enhance the interpretability of ML
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models. The SHAP method utilizes game-theoretic techniques to
assign significance to individual input features, facilitating a more
profound understanding of model behavior (33). In general, SHAP
values guarantee the accuracy and interpretability of our ML model,
making it appropriate for practical clinical implementation.

Our study had some limitations. Firstly, the analysis was
conducted at a single center, and larger external validation cohort
is imperatively warranted. Secondly, we elaborated on the
significance of monocytes by using publicly available bulk RNA-
seq and scRNA-seq data. However, only three samples were used to
perform the scRNA-seq analysis, which is insufficient to support the
observation of increased monocytes in the IIIC1 stage. To
strengthen our findings, additional sequencing data related to CC
will be necessary to provide more robust evidence. Next, the impact
of spectral bias has not been adequately considered when
developing the ML models; therefore, future validation across
diverse patient populations is essential to enhance its clinical
applicability. Furthermore, our study did not extensively
investigate the relationship between peripheral blood monocytes
and monocytes within tumor tissue. Finally, hematological data
associated with CC, including carcinoembryonic antigen and
Human epididymis protein 4, were excluded from the analysis
due to substantial missing data.

5 Conclusions

This study demonstrated a significant association between MO#
and LNM in CC, assessing the potential value of monocytes in CC
through a comprehensive evaluation using bulk RNA-seq and
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Prediction Result

This patient has a high risk of lymph node metastasis!
Predicted probability: 84.23 %

scRNA-seq. Meanwhile, by incorporating clinical characteristics
and hematological data, five ML models were constructed to
predict LNM, with the NNET model exhibiting the strongest
predictive performance, offering decision support for clinicians.
Additionally, the SHAP method was utilized to elucidate the
decision-making process of the ML models, thereby enhancing
their applicability in real world.
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Glossary
CcC

LNM

FIGO

CCRT

MRI

CT

PET/CT

MO#

LY#

LMR

ML

SHAP
scRNA-seq
Bulk-RNA-seq
Al

oS
Neo-chemotherapy
CA125
CA19-9

SCCA
NEUT%

LY%

MO%

NEUT#

PLT#

Cervical cancer

Lymph node metastasis
International Federation of Gynecology and Obstetrics
Concurrent chemoradiotherapy
Magnetic resonance imaging
Computed tomography

Positron emission tomography/computed tomography
Monocyte count

Lymphocyte count

Lymphocyte monocyte ratio
Machine learning

Shapley Additive Explanation
Single cell RNA-sequencing
Bulk-RNA-sequencing

Artificial intelligence

Overall survival

Neoadjuvant chemotherapy
Carbohydrate antigen 125
Carbohydrate antigen 19-9
Squamous cell carcinoma antigen
Neutrophil percentage
Lymphocyte percentage
monocyte percentage

Neutrophil count

Platelet count NLR, neutrophil lymphocyte ratio
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NPR
SII
SIRI
PIV
ROC
UMIs
UMAP
DEGs
ssGSEA
VIF
RFECV
LR

RF

NB

DT
NNET
AUC
NRI
IDI
DCA
ORs
Cls
HR

TAMs

10.3389/fimmu.2025.1654332

neutrophil platelet ratio

Systemic immune-inflammation index
Systemic inflammatory response Index
Pan-immune-inflammation value

Receiver operating characteristic

Unique molecular identifiers

Uniform Manifold Approximation and Projection
Differentially expressed genes

Single sample gene set enrichment analysis
Variance Inflation Factor

Feature elimination with cross-validation
Logistic regression

Random forest

Naive bayes

Decision tree

Neural network

The area under the receiver operating characteristic curve

Net Reclassification Improvement
Integrated Discrimination Improvement
Decision curve analysis

Odd ratios

Confidence intervals

Hazard Ratio

Tumor-associated macrophages.
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