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Mesenchymal Stromal Cells (MSCs) are increasingly recognized as promising

candidates for treating Systemic Lupus Erythematosus (SLE) due to their

immunomodulatory and regenerative properties. However, their therapeutic

efficacy remains inconsistent, largely due to the heterogeneity of MSC origins,

culture conditions, cell quality, host immune interactions, and the influence of

immunosuppressive treatments. Artificial Intelligence (AI) offers powerful tools to

address these challenges by optimising MSC modification and application. This

review explores how AI can identify optimal genetic and epigenetic targets,

predict MSC behaviour under different environmental and priming conditions,

and design personalise therapies tailored to individual patients. Moreover, AI

enables the analysis of extensive datasets to refine dosing strategies and

improve the integration of MSC therapy with immunosuppressants. By

enhancing the precision, consistency, and personalisation of MSC-based

interventions, AI has the potential to significantly improve therapeutic outcomes

in SLE, advancing the field toward more effective and patient-centred

autoimmune disease management.
KEYWORDS
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Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune

disorder that affects the body multi-systematically, with varying

clinical manifestations depending on the patient (1). The global

prevalence of SLE is estimated to affect approximately 3.17 million

adults worldwide and has been increasing over time (2). Common

visual clinical representation involves musculoskeletal and

dermatological manifestations, which include fever, joint pains,

and the hallmark “malar rash” that appears across the cheeks and

nasal bridge (3). The severity of symptoms evolves with time,

showing manifestations affecting functionality in multiple organs

such as renal, neurological, pulmonary, gastrointestinal,

cardiovascular, and more (3). SLE places a significant burden on

patients’ quality of life, affecting both physical and mental health

(4). The multisystemic involvement showcases the importance of

SLE, as it poses significant risks for both morbidity and mortality,

being up to 5 times more likely to die compared to the general

population (5).

SLE is most prevalent in women aged between adolescence and

menopause, with a female predominance of 9:1 (6–8). The

heightened susceptibility in women is driven by a multitude of

factors, including sex hormones (such as oestrogen and prolactin),

which promote autoimmunity and trigger B cell activation and

secretion of autoantibodies (9). Oestrogen (especially 17b-
oestradiol (E2/oestrogen)) react with many immune cell types

such as macrophages, mast cells, dendritic cells (DCs), T cells and

B cells by reacting with either oestrogen receptor a (ERa) or Erb
expressed by these cells. Rapid responses are then initiated as part of

lipid signalling rafts. Oestrogen also promotes the activation,

survival, hypermutation, and class switch recombination in B

cells, which causes higher antibody/autoantibody responses in

females (9). Additionally, the higher prevalence of SLE in women

has been linked to genetic factors related to the X chromosome.

Specific X-linked genes such as TLR7, IRAK2 and MECP2 further

support the role of the X chromosome in SLE susceptibility (10).

Some X-linked genes, like TLR7, can escape X-inactivation (XCI) in

certain immune cells, leading to biallelic gene expression that

further contributes to disease susceptibility (11).
Immune dysregulation in SLE

The pathogenesis of SLE involves the dysregulation of both

innate and adaptive immune responses, leading to pathogenic

autoantibodies production, B cell hyperactivation, cytokine

imbalance, and ultimately tissue and organ damage (6). One key

initiating event is the defective clearance of apoptotic cells, caused

by impaired phagocytosis or complement deficiencies. This results

in the accumulation of apoptotic debris and exposure of nuclear

self- antigens such as double-stranded DNA (dsDNA) to the

immune system (12). Autoreactive B cells recognise these nuclear

antigens and, with the help of autoreactive T helper cells, undergo

clonal expansion and differentiate into plasma cells, that secrete
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high-affinity autoantibodies. These antibodies form immune

complexes (ICs) that deposit in various tissues, including the

kidneys, joints, skin, and brain. Once deposited, ICs activate

complement and engage Fcg receptors, triggering recruitment of

neutrophils, macrophages, and dendritic cells (DCs) (6).

Plasmacytoid dendritic cells (pDCs) subsequently produce large

amounts of type I interferons, especially IFN-a, which amplify B

and T cell activation in a self-perpetuating cycle.

Innate immune cells further contribute to this dysregulation.

Neutrophils and DCs detect apoptotic debris and ICs via Toll-like

receptors (TLRs), initiating inflammatory cascades characterised by

type I interferon release (13, 14). IFN-a plays a pivotal role by

breaking immune tolerance: it activates antigen-presenting cells,

enhances MHC class I and II expression, and upregulates co-

stimulatory molecules (CD80, CD86, and CD40), thereby

promoting autoreactive T-cell activation (12, 15, 16). IFN-a also

induces NETosis in neutrophils, releasing neutrophil extracellular

traps (NETs) that expose further autoantigens, perpetuating the

autoimmune cycle (17).

Beyond antigen presentation, IFN-a fosters a pro-inflammatory

environment by stimulating cytokine production. IL-12 promotes

Th1 differentiation, while IL-6 and IL-23 drive Th17 differentiation

(18). The resulting Th1 and Th17 cells secrete IFN-g and IL-17,

amplifying inflammation, whereas regulatory T cell (Tregs)

function is impaired through downregulation of FOXP3,

weakening immune suppression (19).

On the adaptive side, B cells are hyperactivated via B-cell

receptor (BCR) signalling and interactions with T follicular helper

(Tfh) cells, producing autoantibodies against dsDNA and other

nuclear antigens (20). These autoantibodies form pathogenic ICs

that deposit in tissues, activating complement and driving chronic

inflammation and organ damage (21). As disease progresses, a

network of pro-inflammatory cytokines, including IL-1, IL-6,

TNF-a, and IL-17, reinforces persistent immune activation and

tissue damage.
Genetic and environmental factors
contributing to SLE

The exact cause of SLE remains unclear, but both genetic

predisposition and environmental triggers are recognised as

critical contributors to its pathogenesis. Among genetic factors,

strong associations have been identified with the MHC, particularly

the MHC class II region. Variants in genes regulating immune

responses like C1q, C2, C4, Fcg receptors, and signalling molecules

involved in type I interferon pathways, have also been linked to

increased susceptibility. Furthermore, the markedly higher

prevalence of SLE in women suggests a role for X chromosome-

linked genetic factors and hormonal influences, especially

oestrogen, in disease susceptibility (10).

Environmental factors play an equally important role in

triggering disease onset or flares in genetically predisposed

individuals. Viral infections, particularly Epstein-Barr Virus
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(EBV), have been implicated through mechanisms such as

molecular mimicry, where viral proteins resemble host antigens,

leading to a breakdown of immune tolerance and autoimmunity

(22). Ultraviolet (UV) radiation, especially UV-B rays, exacerbates

disease activity by inducing keratinocyte apoptosis and exposing

nuclear autoantigens, often resulting in cutaneous manifestations

such as malar rash. Drugs such as hydralazine, procainamide, and

isoniazid are well documented causes of drug-induced lupus, which

shares clinical features with idiopathic SLE but usually resolves

upon drug withdrawals (8, 23).

Other contributing factors include smoking, which enhances

oxidative stress and immune activation, and hormonal influences,

where oestrogen promotes B-cell hyperactivity and autoantibody

production, further explaining the female predominance of SLE. In

addition, dysbiosis of the gut microbiome has emerged as a

potential environmental factor, with alterations in microbial

composi t ion shown to influence immune regulat ion

and autoimmunity.

Together, the interplay of genetic predisposition, hormonal

influences, and environmental triggers such as infections, UV

radiation, and drugs creates a multifactorial foundation for SLE

development and progression.
Frontiers in Immunology 03
Limitations of existing treatments for
SLE

Current treatments of SLE involve the use of general

immunosuppressants and inhibitors that are designed to affect

different pathways involved in SLE pathogenesis to reduce

inflammation by inhibiting the pro-inflammatory cytokine

signalling, TLR activation, and T-cell proliferation (24). However,

these treatments come with serious side effects, which are recorded

in Tables 1A, B. Apart from the side effects, the failure of existing

treatment is also caused by significant drug resistance to

therapeutics over time. SLE patients tend to develop resistance

against medications such as corticosteroids (42).

Conventional drugs form the backbone of SLE management

and remain widely used due to their accessibility and broad

immunosuppressive effects. However, while they are effective in

controlling SLE, they lack specificity, and cause toxicity

accumulation, resulting in adverse side effects like bone marrow

suppression, gonadal toxicity, organ damage and teratogenicity.

This significantly limits long-term use. Biologics and targeted

inhibitors selectively block key immune pathways, potentially

halting symptoms that result from the dysregulation of the
TABLE 1A Conventional immunosuppressants and corticosteroids used in SLE.

Immunosuppressant/
Corticosteroid

therapy
Mechanism of action Side effects References

Azathioprine (AZA)
A purine analog that turns into active metabolites to
block purine synthesis and stop DNA replication,
leading to immunosuppressive effects.

Nausea, fever, fatigue, arthralgias/myalgia, rash, bone
marrow suppression

(25)

Cyclosporine (CsA) Suppress cell-mediated immune reaction while
inhibiting synthesis of interleukins (IL).

Hypertension, arrhythmia, convulsions, renal issues,
dyslipidemia, malignant lymphomas

(26)

Cyclophosphamide (CYC)
Antimitotic, antineoplastic, and immunosuppressive
effects selective to T cells. Lowers the secretion of IL-
12 and increases secretion of IL-4 and IL-10.

Gonadal and bladder toxicity, vomiting, nausea, alopecia,
haemorrhagic cystitis.

(27)

Voclosporin
Calcineurin inhibitor to manage lupus nephritis.
Inhibit production of IL-2 and prevent proliferation
of effector T cells.

Acute and chronic nephrotoxicity, reduced glomerular
filtration rate, hypertension, neurotoxicity, liver injury with
jaundice.

(28)

Tacrolimus
Inhibits the proliferation of T cells via the calcineurin
inhibitor.

Hypertension, arrhythmias, headaches, insomnia, angina
pectoris, acne vulgaris, alopecia, rash, weight gain, nausea,
vomiting, diarrhoea.

(29)

Methotrexate

Reduces the activation of T-cells, diminishes B-cell
responses, promotes the activation of CD95-positive
T cells, and interferes with the interaction of
interleukin b1.

Nausea, vomiting, loss of appetite, mucosal ulcers
hepatotoxicity, and potential of teratogenesis in females of
the child-bearing group.

(30)

Mycophenolate mofetil (MMF)
Lowers antibody synthesis and limits the expansion
of both T and B lymphocyte populations.

Nausea, diarrhoea, leukopenia, urinary tract infection, renal
flare, urticaria and myopathy

(31)

Hydroxychloroquine (HCQ)
Inhibit toll-like receptors (TLRs), enzymes, NK cells,
and cytokine release. Involvement in T cell
polarisation and apoptosis.

Cardiomyopathy, dizziness, fatigue, cytopenia,
hyperpigmentation

(32)

Glucocorticoids (GCs)

Inhibits B and T cells and phagocytes. Activates the
cytosolic GC receptor (cGCR) that suppresses pro-
inflammatory cytokines and upregulates anti-
inflammatory cytokines.

Ecchymosis, cutaneous thinning and atrophy, acneiform
eruptions, mild hirsutism, facial erythema, striae, increased
body weight, delayed wound healing, hair thinning, and
perioral dermatitis.

(33, 34)
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specific pathway. This offers more precise treatment, and improved

disease control. However, these treatments often resulted in adverse

events, such as infection, infusion reactions, as well as

cardiovascular and metabolic risks. They are also only controlling

the disease without curing it , which underscores the

therapeutic gap.

The limitations of these existing treatments have prompted the

exploration of novel treatment strategies to improve the disease

management and long-term outcomes. Current research is focused

on a variety of approaches, ranging from immunotherapies to

advanced cell-based therapies, such as hematopoietic stem cells

(HSCs), MSCs, CAR T cells. Increasing attention has also been

directed toward MSC-derived extracellular vesicle (EV) therapy,

including molecular modifications of EVs to selectively upregulate

or downregulate microRNAs implicated in SLE pathways. These

emerging strategies hold promise as more effective treatments with

reduced clinical side effects compared to conventional options.

Immunotherapies under investigation include antibody-based

therapies such as B cell-targeted agents, CD40-CD40L interaction-

targeted inhibitors, CD38-targeted therapies, and cytokine-targeted

interventions (43, 44). While many of these approaches show

potential, the heterogeneity of SLE continues to pose significant

challenges in developing broadly effective treatments (44).

Beyond antibody- and cytokine-based strategies, cell-based

therapies are gaining momentum in SLE treatment .

Hematopoietic stem cell transplantation (HSCT) can improve

immune tolerance by eliminating autoreactive CD27+ memory

cells and restructuring adaptive immunity (45). However, HSCT

is generally reserved for patients with severe therapy resistant SLE

due to its high risk of transplant-related mortality, infections, and

adverse effects such as allergies, bone pain and heart failure (46).

CAR T cell-therapy, which involves genetic modification of T

cells to target pathogenic B-cells, has also shown promise.

Nevertheless, it faces significant challenges, including high

treatment costs and the risk of severe adverse events such as

cy tok ine re l e a se syndrome (CRS) , hemophagocy t i c

lymphohistiocytosis/macrophage activation syndrome (HLH/

MAS), and immune effector cell-associated neurotoxicity
Frontiers in Immunology 04
syndrome (ICANS) (47, 48). Moreover, current CAR-T

technologies are typically designed to target specific antigens or

pathways, which may not fully capture the complexity of SLE

pathogenesis (1, 49).

In parallel, MSC-derived EVs are emerging as a promising

therapeutic avenue, with growing evidence supporting their

immunomodulatory and regenerative potential in SLE (50). Given

that this area has been comprehensively reviewed elsewhere (50), it

will not be elaborated further here.
Mesenchymal stromal cells and their
therapeutic relevance in SLE

MSCs are multipotent cells of perivascular origin with

regenerative and immunomodulatory potential, making them

attractive candidates for novel therapies in SLE. This disease is

characterized by immune dysregulation and progressive organ

damage, where MSCs can offer a means to recalibrate the

immune system. Through the release of anti-inflammatory

cytokines and immunoregulatory molecules, MSCs can suppress

hyperactive immune responses and mitigate tissue injury. Their

dual regenerative and immunosuppressive capabilities highlight

their promise as a long-term therapeutic strategy.

MSCs are defined by expression of cellular markers such as

CD73, CD105, and CD90 (50), while lacking hematopoietic

markers like CD14, CD34, and CD45 (51). Additional markers,

including CD10, CD13, CD44, and CD146 (51) may vary with

tissue origin. However, MSC populations are inherently

heterogeneous, with behaviour influenced by on the surrounding

microenvironment (52). This variability contributes to inconsistent

therapeutic outcomes in clinical applications. AI-driven single-cell

profiling and predictive modelling can help classify functional MSC

subpopulations, standardize quality, and predict therapeutic

potency across diverse patient contexts.

A defining characteristic of MSCs is their tri-lineage

differentiation potential, enabling them to form bone, cartilage,

and adipose tissues. Beyond musculoskeletal repair, their paracrine
TABLE 1B Biologics and targeted small-molecular inhibitors for SLE.

Biologic/Small
molecular inhibitor

therapy
Mechanism of action Side effects References

Belimumab
Inhibits B lymphocyte stimulator protein and
downregulates B cell activity.

Infection, infusion reactions, hypersensitivity,
headache, nausea and fatigue.

(35)

Antifrolumab
Inhibits the formation of IFN complexes and gene
transcription.

Cough, trouble breathing, cold symptoms (36)

Rituximab
Affects the functionality of B cells and decreases plasma
cell production

Allergies caused by infusion reactions, infections, skin
rash, alopecia, respiratory and cardiovascular effects

(37)

Janus Kinases inhibitors
Suppresses cytokine production that is involved in Th1,
Th2, Th17 and Th22 providing anti-inflammatory effects

Upper respiratory infections, headaches, nausea, acne,
urinary tract infections, gastrointestinal

(38)

Bruton’s tyrosine kinase
inhibitors

Hinders the activity of BTK protein that is involved in B
cells maturation and activation.

Haemorrhage, hypertension, pneumonia, infection,
contusion, nausea, fatigue, arthralgia

(39)

Proteasome inhibitors Depletes plasma cells and inhibits type-1 IFN activity Infections, hypogammaglobulinemia (40, 41)
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effects contribute to cardiac and immune tissue recovery (50, 52,

53). Among adult MSCs, Wharton’s Jelly-MSCs (WJ-MSCs)

demonstrate higher bone marrow-derived MSCs, which remain

the most widely tested in clinical trials (51). In addition to

differentiation, MSCs exhibit self-renewal, long-term proliferation,

and extensive paracrine signalling. These properties are central not

only to tissue regeneration but also to the immunoregulation

required for SLE therapy. Here, AI-guided modelling of

differentiation pathways and culture conditions can optimise

expansion protocols, predict senescence, and enhance

reproducibility for clinical-grade MSC production (50, 51).
Toward optimized MSC-based therapy for
SLE

The therapeutic potential of MSCs lies in their ability to both

restore tissue integrity and rebalance immune homeostasis.

However, variability in MSC sources, culture conditions, and

patient responses remains a barrier to clinical success. By

integrating AI-based analytics with molecular and clinical

datasets, researchers can identify optimal MSC phenotypes,

predict immunomodulatory performance, and personalize

treatment strategies for SLE patients. This convergence of cell

biology and computational intelligence represents the next

frontier in developing consistent, safe, and effective MSC-

based therapies.
Therapeutic potential of MSCs in
autoimmune diseases

Immune evasion and homing ability

MSCs mainly regulate immune responses through multiple

mechanisms They promote Th2 differentiation, increase IL-10

secretion, and inhibit pro-inflammatory cytokines such as TNF-a
and IFN-g (51). Additionally, MSCs also suppress dendritic cell

maturation, B cell proliferation, and autoantibody production,

thereby re-balancing immune function (45, 54). Their

immunosuppressive properties is enhanced in inflammatory

environments rich in IFN-g, TNF-a, IL-1a or IL-1b, where they

modulate macrophages and neutrophils (55), suppress lymphocyte

activity (56), and release prostaglandin E2 (PGE2) to reprogram

macrophages toward an anti-inflammatory phenotype (57).

Immunoregulation occurs primarily via indoleamine 2, 3-

dioxygenase (IDO) in humans and nitric oxide (NO) in mice.

Inflammatory cytokines attract immune cells and MSCs to the

active sites where IDO or NO are expressed (55).

Their low immunogenicity is mainly due to the absence of MHC

class II and co-stimulatory molecules (B7-1, B7–2 and CD40),

enabling their use as allogeneic therapies (45, 58). Importantly, they

display strong homing ability, migrating to damaged or inflamed

tissues, where they recruit regulatory T cells (Tregs) and promote

angiogenesis, enhancing both immune control and tissue
Frontiers in Immunology 05
regeneration (50, 52). These combined properties position MSCs as

promising candidates for addressing the chronic inflammation and

organ damage central to SLE pathogenesis.
Implications for SLE therapy

The broad regenerative and immunoregulatory profile of MSCs

underscores their potential as an innovative treatment option for

autoimmune diseases. For SLE, MSCs offer a dual advantage:

controlling the hyperactive immune system while simultaneously

repairing damaged tissues. By harnessing these properties, and

further refining their application through artificial intelligence to

predict potency, personalise dosing, and optimise delivery, MSCs

could redefine therapeutic strategies for lupus and related

autoimmune disorders.
Application of MSCs in SLE therapy

Preclinical and clinical evidence

MSC therapy, alone or in combination with hematopoietic stem

cell (HSC) transplantation, has shown encouraging outcomes in

both animal models and human patients of SLE. In murine models,

these treatments have demonstrated significant improvements,

including elevated IL-4 concentrations, improved kidney and liver

function, and reduced osteoporosis. Additionally, they also lower

levels of anti-ds-DNA antibodies and antinuclear antibodies

(ANA) (45).

Therapeutic benefits extend to the reduction of plasma cells,

proinflammatory cytokines, and overall disease severity. In lupus

nephritis, MSC treatment has been associated with decreased

glomerulonephritis, reduced renal protein excretion, lower serum

creatinine and albumin levels, improved glomerular filtration rate

(GFR), and a significant reduction of anti-dsDNA antibodies (45,

59). Beyond renal manifestations, haematological complications

such as leukocytopenia, thrombocytopenia, and anaemia also

demonstrate improvement following MSC therapy, largely

through the expansion of Tregs.

Together, these findings underscore the potential of MSC- and

HSC-based interventions to not only suppress autoimmunity but

also restore immune homeostasis and organ function in SLE.

To provide an overview of recent MSCs clinical trials in SLE we

summarised key study features, endpoints, and safety findings

(Table 2). This comparative synthesis highlights both the promise

and the variability of MSC interventions. Although there are

variabilities in the treatment of some autoimmune diseases with

some showing no significant efficacy, SAEs are largely controlled with

no direct fatality linked. This shows immense promise, particularly

on the unharvested potential of MSCs in the treatment of SLE. There

is a total of 4 latest clinical trials with regards to MSCs treatment for

SLE. Three clinical trials recorded reduction in SLEDAI score while

one recorded no efficacy. In terms of safety, three studies recorded

good tolerance to the treatment of MSCs.
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Source-dependent mechanisms

Distinct immunomodulatory pathways have been reported for

different MSC sources. For treatment of SLE patients using

umbilical cord-derived MSCs (UC-MSC), there is upregulation of

FLT3L levels, improvement in the number and function of

tolerogenic DCs, and a restored balance between Tregs and Th17

cells (62). High levels of TGF-b have also been detected in patients.

Moreover, the expression of miR-181a in T cells has been

upregulated, further contributing to the immunomodulatory

effects of UC-MSC that was recorded in an another ex-vivo

mechanistic study (64). In contrast, an ex vivo mechanistic study

using bone marrow-derived MSCs (BM-MSCs) has shown

suppression of the MEK/ERK signalling pathway and inhibition

of peripheral blood mononuclear cell (PBMC) activation.

Downregulation of genes such as CD70, ITGAL, selectin-L, and

IL-15 has also been observed, further illustrating the therapeutic

potential of BM-MSCs in SLE (45).

In SLE, autologous and allogeneic MSCs differ across several

key dimensions. Autologous MSCs often show high variability in

potency, influenced by patient age, disease activity, prior therapy,

and the expansion process (47, 65). Their function may also be

compromised by the inflammatory and epigenetic changes in the

lupus microenvironment (66, 67). In contrast, allogeneic MSCs,

derived from healthy donors, benefit from standardized

manufacturing, reduced variability, and are less affected by

disease-related priming, which contributes to more consistent

outcomes in clinical settings (47, 48).

From a practical standpoint, autologous MSCs require

harvesting and culture, delaying treatment (53), while allogeneic

products are available off-the-shelf, enabling rapid use in acute cases

(53). Immunogenicity is minimal for autologous cells, though

functional deficits limit their benefit (54). Allogeneic MSCs carry

a low risk of immune reaction due to their immune-privileged

nature, though monitoring remains important with repeated dosing

(68). Overall, evidence suggests that while autologous MSCs may be

suitable in select cases where patient-specific engineering is feasible

(69), allogeneic MSCs are generally favoured for SLE due to their
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reliability, availability, and superior performance in active

disease (69).
Innovation in SLE therapy

Treatment with MSCs has led to improved survival rates in both

SLE mice models and human SLE patients, alongside enhancements

in renal and liver function (45, 54, 70). A notable decrease in the

number of Th17 cells and an increase in Tregs have been observed

in both cases. Furthermore, genetically modified MSCs that

overexpress IL-37 demonstrate superior immunosuppressive

properties compared to standard MSCs or IL-37, suggesting that

genetically modified MSCs are more effective in managing SLE.
Problems associated with the use of
MSCs in SLE treatment

Culture and environment-dependence

The therapeutic potential of MSCs in SLE is strongly influenced

by their culture conditions and microenvironment. MSC behaviour

is highly plastic, with factors such as substrate stiffness, curvature,

biochemical agents, and epigenetic regulation shaping their

differentiation and immunomodulatory capacity (52).
Substrate and materials properties

MSCs cultured on stiffer substrates display enhanced actin-

myosin contractility, driving differentiation toward rigid tissue

lineages, while softer surfaces help preserve their regenerative and

immunomodulatory properties (52). For SLE applications,

inappropriate culture conditions may compromise their

immunosuppressive functions. Cells cultured in concave

environments demonstrate increased motility and reduced stress

fibre formation, while those grown on rigid convex surfaces (with a
TABLE 2 MSC Clinical Trials in the treatment of SLE.

Disease Study (id/year)
MSC
source

Route n Key outcomes Safety Ref

SLE
NCT01741857
(Multicenter), (2014)

Allogeneic
UC-MSCs

IV, 2 doses 40
MCR 33%, improved renal indices, ↓ Lowered
SLEDAI scores, steroid taper

Infections, 3 deaths (disease-
related); no infusion toxicity

(60)

SLE
NCT00698191
(2010), Phase I

Allogeneic
BM-MSCs

IV, single
dose

15
↓ Lowered SLEDAI scores, ↓ decreased
proteinuria, ↑ increased Treg populations

No treatment-related SAE (61)

SLE
NCT01741857 /
2016–2019

UC-MSCs
Intravenous
infusion

21
MCR 32.5% and PCR 27.5% over 12 months
SLEDAI scores decreased

Well-tolerated, no serious side
effects

(62)

Lupus
nephritis

NCT01539902
(2017), Phase II

Allogeneic
UC-MSCs

IV, 4 doses 18 No efficacy vs placebo; early futility
2 SAEs in MSC arm (pneumonia,
abscess)

(63)
frontier
ACR20, American College of Rheumatology 20% improvement criteria; AD-MSCs, adipose-derived mesenchymal stem cells; AE, adverse event; BM-MSCs, bone marrow-derived mesenchymal
stem cells; CDAI, Crohn’s Disease Activity Index; EDSS, Expanded Disability Status Scale; IV, intravenous; IT, intrathecal; MCR, major clinical response; PCR, partial clinical response; MSC,
mesenchymal stem cell; QoL, quality of life; RA, rheumatoid arthritis; SAE, serious adverse event; SLE, systemic lupus erythematosus; SLEDAI, Systemic Lupus Erythematosus Disease Activity
Index; SPMS, secondary progressive multiple sclerosis; SSc, systemic sclerosis; TEAE, treatment-emergent adverse event; Treg, regulatory T cell; UC-MSCs, umbilical cord-derived mesenchymal
stem cells.
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radius of about 500 microns) exhibit flattened nuclei and elongated

cell axes, predisposing them toward osteogenic consistency in SLE

patients (52). Such unintended lineage priming may reduce

therapeutic consistency in SLE patients.
External agents and biochemical
factors

Additives such as ascorbic acid, b-glycerophosphate, vitamin

D3, and bone morphogenetic proteins (BMPs) can bias MSCs

toward osteogenic differentiation (52). Without careful control,

such stimuli may interfere with their capacity to regulate immune

responses central to SLE treatment. Epigenetic regulation is critical

in determining MSC fate and therapeutic behaviour. Priming

strategies, such as pre-exposure to immunomodulatory cytokines

(e.g., IL-37), have been shown to enhance MSC efficacy in

autoimmune models, including SLE (65, 69). However, the

stochastic nature of MSC clonal expansion, exosome production,

and variable gene expression adds unpredictability to their

therapeutic outcomes.

Interestingly, allogeneic MSCs often outperform autologous

cells in SLE patients, showing greater ability to suppress immune

hyperactivation and ameliorate disease symptoms (47). This

suggests that intrinsic defects in patient-derived MSCs may limit

their therapeutic value unless corrected through careful priming

or modification.

Overall, these challenges highlight the need for optimised

culture systems, controlled priming protocols, and possibly AI-

driven predictive modelling to ensure MSCs consistently deliver

immunosuppressive and regenerative benefits in SLE therapy.
Variability in clinical outcomes

While MSC treatments for SLE have shown effectiveness in

some studies, they remain ineffective in others. In some cases, no

significant improvements were observed in proteinuria, serum

albumin, complement levels, Systemic Lupus Erythematosus

Disease Activity Index (SLEDAI) score, or renal function when

compared to placebo groups in randomised controlled trials (70).

Several factors may contribute to these inconsistent outcomes,

including the secretion of IL-6, susceptibility to ageing, the

unclear aetiology and pathogenesis of SLE, and the complex

microenvironment of SLE patients (59).
Standardisation issues in MSC preparation
and SLE aetiology

A major obstacle is the lack of standardised protocols for MSC

isolation, expansion, and administration. Differences in production

methods, often proprietary or undisclosed, make it difficult to

compare studies and interpret outcomes reliably (66). SLE

presents generalised symptoms but can vary significantly from
Frontiers in Immunology 07
patient to patient, making it challenging to identify a uniform

treatment. While MSC therapies hold promise, they have yet to offer

a complete cure for SLE (59).
The potential of MSC modifications
for SLE therapy

As discussed above, variability in MSC potency, sensitivity to

the disease microenvironment, and lack of standardisation limit

their therapeutic impact in SLE. To overcome these barriers, a range

of strategies has been developed to enhance MSC function

and consistency.
Approaches to modification

Several approaches for MSC modification are available

(Table 3). Generally, these modifications fall into four categories:

3-dimensional culture of MSCs, priming or pre-treatment of MSCs

with various biologics, genetic modification/engineering of MSCs,

and the combination therapy of MSCs with immunosuppressants.

The detailed breakdown of MSC modifications can be seen in

Supplementary Table 1, with references.
Limitations of MSC modifications

Gene modification of MSCs
Genetic modification of MSCs has been explored across

multiple disease models, demonstrating the feasibility of

enhancing therapeutic traits. While various methods are available

for genetic modification, increasing attention has been given to

CRISPR technology due to its ease of use, speed, and effectiveness

compared to other techniques (76). An increasing number of
TABLE 3 Overview of MSC modification strategies for enhancing
therapeutic potential.

Modification
strategy

Key mechanism
Representative

outcomes

3D culture
Spheroid growth
enhances cell–cell
communication (69)

↑ Increased efficacy in tissue
repair and metabolic disease
models

Priming
(cytokines,
biologics, miRNA)

Enhances
immunomodulatory and
migratory capacity (65,
67)

Improved antibody inhibition
(SLE), ↑ migration, tissue
regeneration

Genetic
engineering

Overexpression of
survival/migration genes
(e.g., CCR1, CXCR4, IL-
37) (68, 71, 72)

↑ Increased MSC lifespan,
migration, cytokine secretion,
improved outcomes in SLE,
osteoarthritis

Combination with
drugs

Co-administration with
steroids or
immunosuppressants
(73–75)

Prolonged MSC survival,
reduced senescence, superior
efficacy vs single therapy
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CRISPR-modified MSCs have progressed to clinical trials (77).

Supplementary Table 2 highlights the breakdown of different

approaches used for the genetic modification of MSCs, while

Table 4 below outlines specific methods involving CRISPR/Cas9,

along with the modified genes, key findings, and the type of stem

cell modified. The application of CRISPR/Cas9 technology has been

widely explored across studies using human induced pluripotent

stem cells (iPSCs) and embryonic stem cells (ESCs), where genes

like SOX2, PAX6, OTX2, and AGO2 were knocked out to examine

their roles in developmental processes. These studies demonstrated

the feasibility of inducing gene knockouts at any stage of cell

differentiation. To simplify, Table 4 below highlights a simplified

breakdown of the various genetic modifications, as well as

parameters of consideration.
Opportunities for MSC CRISPR/Cas9
modification in SLE therapy

As indicated in Table 5, recent applications of CRISPR/Cas9

across diverse stem cell types highlight the effectiveness of genetic

modification in probing developmental mechanisms and modelling

disease. For example, targeted knockouts in mammary stem cells

and ESCs have clarified pathways regulating tissue differentiation

and congenital disorders, while precise mutations in hematopoietic

stem cells and iPSCs have revealed therapeutic avenues for blood,

neurological, dermatological, and cardiac conditions. Collectively,

these studies demonstrate that CRISPR/Cas9 enables both

functional dissection of complex biology and the development of

translational strategies. Building on this success, similar approaches

could be applied to MSCs, where precise gene modification may

enhance immunoregulatory properties and overcome current

barriers in treating SLE.
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Risks and limitations of CRISPR/Cas9

Although CRISPR/Cas9 is widely used for gene editing due to

its effectiveness, it carries certain risks. One of the major concerns is

off-target effects, which can disrupt the function of essential genes,

leading to unintended consequences. Additionally, incomplete

editing remains an issue, resulting in partial modifications that

can compromise the therapeutic potential of the treatment and

cause unpredictable outcomes. When CRISPR/Cas9 induces a

double-strand break (DSB) in the DNA, the repair process can

lead to insertions or deletions, potentially increasing the risk of

oncogenesis. Moreover, the introduction of the Cas9 protein and

guide RNA can provoke an immune response in the host organism.

These risks associated with gene-editing tools are concerning,

highlighting the need for improved strategies to mitigate these

challenges. Despite advances, existing MSC-based therapies still

face limitations such as heterogeneity, lack of standardisation, and

variable clinical outcomes. To address these challenges, we have

conducted a focused narrative review to synthesise advances in

artificial intelligence (AI) to improve MSC modification for

potential therapeutic use in SLE. Literature was identified through

PubMed, Scopus and Web of Science searches using a combination

of the terms “artificial intelligence”, “machine learning”, “deep

learning” , “neural network” , “predict ive model l ing” ,

“mesenchymal stem cells”, “systemic lupus erythematosus”,”

lupus”, and” cell therapy”. Only English-language articles

were included.
Artificial intelligence

Artificial Intelligence (AI) has emerged as a transformative tool

in biomedical research, revolutionising how problems are
TABLE 4 Comparative overview of gene-editing nuclease platforms and delivery systems for stem cell modification.

Decision
point

Option Advantages Limitations / risks Best suited for…

Nuclease
platform

CRISPR/
Cas9

Rapid design, multiplex editing, broad
targetability (76).

Off-target edits, DSB toxicity, possible
immune response to Cas9 (78).

Multiplex edits; exploratory targets; AI-
guided gRNA design (77).

TALENs High specificity, good for difficult loci (79).
Complex design, target site constraints
(79).

Single precise edits where off-target
minimisation is critical (79).

ZFNs Mature, validated in some contexts (80).
Design complexity, sequence constraints,
off-target risk (80).

Use where validated ZFN assets exist
(80).

Delivery
system

Lentiviral /
Retroviral

Stable long-term expression, efficient in
dividing/non-dividing cells (80, 81).

Insertional mutagenesis risk, payload size
limits (82, 83).

Durable cytokine/chemokine
overexpression (e.g., IL-37) (79, 84).

Adenoviral Large payload, high efficiency (85, 86).
Transient expression, immunogenicity
(87).

Short-term functional boosts or
priming (85, 86).

Plasmid Low immunogenicity, suitable for RNP (88). Lower efficiency, transient effect (89).
Transient modulation without
integration (88).
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9), TALENs (Transcription Activator-Like Effector Nucleases), and ZFNs (Zinc Finger
Nucleases) are outlined with their advantages, limitations such as off-target edits or double-strand break (DSB) toxicity, and contexts of optimal use. Delivery strategies include lentiviral and
retroviral vectors, adenoviral vectors, and plasmid-based ribonucleoproteins (RNPs). Additional considerations such as AI (Artificial Intelligence)-guided guide RNA (gRNA) design and
immunogenicity risks are noted. References correspond to supporting evidence for each approach.
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approached and solved. AI refers to systems capable of performing a

wide variety of tasks typically done by humans, simulating human

cognitive abilities while operating autonomously (110). AI

technologies include machine learning, natural language

processing, and deep learning, which enable the system to learn

from existing data, make decisions, and improve outputs over time

without explicit programming (111)At the core of AI is machine

learning, which involves analysing large datasets, recognising

patterns, and producing predictions and decisions. Machine

learning is further categorised into supervised and unsupervised

learning. Supervised learning involves training algorithms on

labelled data, while unsupervised learning detects hidden patterns

in data without specific instructions or human involvement (112).

Another branch, reinforcement learning, enables AI systems to

learn through trial and error, generating actions based on feedback

(113, 114). Deep learning, a subset of machine learning, uses

artificial neural networks with multiple layers to model complex,

non-linear relationships in data (115). Neural networks mimic the

human brain, with layers of “neurons” processing data inputs (116).

Deep neural networks (DNNs) are particularly powerful, as they

employ many hidden layers to learn hierarchical representations of

data. Initial layers learn basic features, while subsequent layers
Frontiers in Immunology 09
combine them to identify more abstract concepts, enabling deep

learning models to achieve unprecedented accuracy (116). Deep

learning is renowned for handling vast, complex datasets and

detecting patterns across millions of data points without manual

feature engineering (117, 118). One of its key advantages is its

ability to continuously learn and evolve with the input of more data.

The system can automatically adjust and improve based on new

inputs, making it highly adaptable and effective over time (119).
Role of AI in SLE treatment

SLE is a complex autoimmune disorder with heterogeneous

symptoms and manifestations that affect multiple organs (3). AI can

help in understanding and managing the complexity of the disease

by analysing a large group of multi-modal datasets, including

clinical, genetic and biomarker information, to identify patterns

and correlations (120). The heterogeneous nature of SLE means the

treatment options vary among patients (121). AI can significantly

tailor personalised treatment plans based on individual patient

profiles, leveraging diverse datasets for precise treatment selection,

improving efficacy and reducing the risk of adverse effects (122).
TABLE 5 Modulation and methodology of CRISPR/Cas9 modification of stem cells.

Genes modified
Stem cell
type

Modulation and
method of CRISPR/
Cas9

Findings References

SOX2, PAX6, OTX2, AGO2
Human iPSC,
ESC

Knockout, electroporation
Multiple genes can be targeted for inducible knockout
Inducible gene knockout can occur in all cells at any
differentiation stage

(102)

IDO Human MSCs
Knockout, plasmid
transfection

MSCs alter immune regulatory function against RSV by IDO
MSCs affect immune cell proliferation

(103)

Ptpn22, MII3
Mammary stem
cell organoid

Knockout, doxycycline-
inducible lentiviral vector

Disruption of mammary gland differentiation
Increased stem cell activity
Activating the HIF pathway

(104)

HES1, ARX, GLIS3, MNX1,
NGN3, PDX1, RFX6, PTF1A

Human ESC
Knockout, Doxycycline
inducible Cas9

Supports systematic genome editing application for the
understanding of mechanisms underlying congenital disorders
PNDM and RFX6 affected pancreatic progenitors’ formation,
and their further differentiation into functional endocrine cells
Haplo-insufficient requirement for PDX1 in pancreatic
endocrine differentiation

(105)

GFI1B
Hematopoietic
stem cells

Point mutation
Increased megakaryocyte differentiation and platelet
production

(106)

PTPS, DHPR Human iPSC
Point mutation,
electroporated Cas9
expression vector

Decreased tyrosine hydroxylase protein and extracellular
dopamine levels

(107)

COL7A1 Human iPSC
Frameshift mutation,
electroporated plasmid

Feasible in the development of autologous therapies for RDEB
Efficient differentiation of iPSCs to somatic cells by CRISPR/
Cas9

(108)

SLCO1A2, SLCO1B3 Human iPSC
Knockdown, Lentivirus
expressing Cas9-sgRNA

Uncovered and validated a role for cell surface transporters
SLCO1A2 and SLCO1B3 in doxorubicin-induced
cardiotoxicity
Decreased cell death in iPSC-derived cardiomyocytes

(109)
iPSC, induced pluripotent stem cells; sgRNA, single-guide ribonucleic acid; RDEB, Recessive dystrophic epidermolysis bullosa; ESC, embryonic stem cells; HIF, hypoxia-inducible factor; RSV,
respiratory syncytial virus; IDO, indoleamine-2,3-dioxygenase.
CRISPR/Cas9 enables precise and versatile gene editing across multiple stem cell types. Applications span from understanding disease mechanisms to enhancing therapeutic functions,
illustrating its translational potential for MSC-based therapies.
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Several studies have demonstrated the potential of AI in the

diagnosis and treatment of SLE (Table 6).

Several studies have used Random Forest, which is an AI model

that constructs multiple decision trees to improve prediction

accuracy and handle high-dimensional data (123). Studies use this

predictive model to identify individuals at risk of SLE development

using genetic data and clinical features, environmental factors and

family history that are fed into the algorithm. The data includes the

dependent variable, which is SLE development, along with

independent variables such as genetic markers, family history,

and environmental factors (90). RF has also been used in

predicting outcomes of lupus nephritis (LN) based on clinical

variables, treatment histories, and lab results, with dependent

variables being lupus nephritis outcomes (renal function

progression) and independent variables such as age, treatment

type, duration, and lab results (91). It also predicts the early flare

of lupus (124) and stratifies the risk of renal flare (95). Apart from
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RF, the use of Gradient Boosting Machines (XGBoost) was recorded

in studies predicting the 1-year outcomes of lupus nephritis (LN)

based on EHR data, clinical metrics, laboratory data, and treatment

data. The dependent variable is based on the 1-year lupus nephritis

outcome (positive/negative), while the independent variable is the

demographic data, treatment type, and lab results. XGBoost is used

to boost algorithms that build models sequentially to improve

accuracy by correcting prior errors (94). Although powerful, tree-

based methods may be difficult to interpret, sensitive to class

imbalance and at risk of overfitting if not carefully tuned (125, 126).

To overcome the risk of overfitting, LASSO regression applies a

penalty to reduce overfitting and retain only the most significant

prediction. In SLE, it has been used to stratify renal flare risk using

biomarkers, clinical variables, and patient history as the dependent

variable while biomarker, age and treatment type as the

independent variable (95). While these models are transparent

and effective in small datasets with many variables, they may
TABLE 6 Applications of machine learning models in systemic lupus erythematosus (SLE). Different ML models in SLE research are summarised, listing
down their input, output and key findings.

ML model Study / application
Input data

(independent
variables)

Output (dependent variable) Key findings / uses

Random Forest
(RF)

SLE risk prediction
Genetic markers, family history,
environmental factors, clinical
features

SLE development
Identifies individuals at
risk of SLE development
(90)

LN prognosis
Age, treatment type, duration,
lab results, treatment histories

LN outcomes (renal function progression)
Predicts LN outcomes
(91)

Flare prediction Clinical/lab data Risk of lupus and renal flare
Predicts lupus and renal
flares (7, 92, 93)

Gradient Boosting
Machines
(XGBoost)

LN 1-year outcome prediction
Demographics, treatment type,
lab results, EHR data, clinical
metrics

1-year LN outcome (positive/negative)
Improves prediction by
sequential boosting (94)

LASSO Regression Renal flare risk stratification
Biomarkers, age, treatment type,
patient history

Renal flare risk
Prevents overfitting,
selects significant
predictors (95)

Artificial Neural
Networks (ANNs)

Allograft survival
Demographics, history of
transplant, treatment response

3-year allograft survival
Predicts kidney transplant
outcomes in SLE patients
(96)

Hospital readmission
EHR data (treatment history,
demographics, disease severity,
comorbidities)

Hospital readmissions

Predicts hospital
readmissions and captures
long-term dependencies in
sequential data (97)

Long Short-Term
Memory (LSTM)

Hospital readmission (time-series)
Time-series EHR data (treatment
history, outcomes)

Hospital readmission
Captures long-term
dependencies in sequential
data (97)

K-means
Clustering

Disease activity grouping
Genetic markers, biomarkers,
clinical signs

Risk of disease activity
Groups patients by disease
activity risk (98)

Sparse PLSDA Disease activity classification
Clinical data, biomarkers, patient
history

High vs low disease activity
Classifies patients by
disease activity (99)

Recurrent Neural
Networks (RNNs)

Chronic damage prediction
Longitudinal clinical data, lab
results, patient history

Chronic damage progression
Predicts long-term chronic
damage in SLE (100)

Support Vector
Machines (SVMs)

Disease control factors
Demographics, disease severity,
treatment regimens

Comprehensive disease control
Identifies factors
influencing disease control
(101)
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discard relevant but weaker predictors that can be unstable across

validation folds (127). Studies have also shown the use of artificial

neural networks (ANNs) that mimic brain-like processing with

layers of neurons to forecast outcomes based on patterns in data.

Several studies have been recorded using Artificial Neural Networks

(ANNs) successfully.

A study by Tang, Poynton (96) predicted the survival rate of a 3-

year allograft in kidney transplant recipients. The predictive

modelling used data mining methods, such as classification trees,

logistic regression, and artificial neural networks, to analyse the data

of recipients with SLE and kidney-related complications. The data

used for ANNs is patient demographics, clinical parameters, and

transplant history, with allograft survival (3 years) being the

dependent variable and demographics, history of transplant, and

treatment response acting as independent variables (96). ANNs

were also used in predicting hospital readmissions of SLE patients.

ANNs processed EHR data that includes patient history, treatment,

and clinical outcomes, with hospital readmissions as the dependent

variable and treatment history, demographics, disease severity, and

comorbidities as independent variables (97). Long Short-Term

Memory (LSTM) was also used to predict hospital readmission by

retaining long-term dependencies in data that are critical for time-

series predictions (97). Despite their significant value, deep learning

models require large, well-curated datasets and are prone to

overfitting in small study groups (128).

K-means Cluster Analysis is another significant AI model that

uses clustering techniques to group similar cases for pattern

identification. A study by Toro-Dominguez, Martorell-Marugan

(98) identified the risk of disease activity using data obtained from

genetic data, clinical records, and biomarkers. The key dependent

variables are the level of disease activity risk, while the independent

variables are genetic markers, biomarkers, and clinical signs that are

fed into the AI model. One of the limitations is that it requires

longitudinal gene expression from multiple time points per patient,

limiting its clinical applicability to classify new patients (98). Similar

studies were done using Sparse Partial Least Squares Discriminant

Analysis (PLSDA),which combines dimensionality reduction with

discriminant analysis to classify high disease activity based on

clinical and biomarker data and patient history (99).

Apart from that, Recurrent Neural Networks (RNNs) were used

to predict chronic damage in SLE. RNNs use feedback loops to

process sequential data and predict long-term chronic damage. The

data that was used for the AI model includes longitudinal clinical

data, lab tests, and patient history. The dependent variable is the

progression of chronic damage over time, while the independent

variables are the disease activity, lab results, and treatment history

(100). Other AI models involved in SLE prognosis include support

vector machines (SVM) that were used to identify relevant factors

influencing lupus that provide a comprehensive disease control

achievement. The data include patient demographics, clinical

outcomes, and treatment regimens, based on dependent variables

(comprehensive disease control) and independent variables (age,

severity of disease, and treatment regimens). SVM finds the optimal

hyperplane to classify data and identify key factors influencing

disease control (101). SVMs are usually effective in medium-sized
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datasets. SVMs are sensitive to parameter selection, class imbalance

and are generally difficult to interpret beyond linear models (129).

Below, we present Table 5, simplifying the above corpus for

easy readability.

The success of these AI models in predicting SLE prognosis and

treatment highly depends on robust data pre-processing techniques,

given the complex, high-dimensional and multi-modal nature of

SLE datasets. Data cleaning is an important step in data pre-

processing as it removes or corrects errors, missing values and

inconsistencies, ensuring the integrity of the datasets. For instance,

certain clinical data may contain missing patient records and

inconsistent lab results that need to the addressed. Thus,

imputation methods are used to fill in missing values, especially

in large datasets that are incomplete. Common imputation methods

include median imputation, data removal and multiple imputation

using chained equations (130). Moreover, data normalisation is

done in AI models, particularly RF or SVM, to prevent bias by

variables with larger numerical ranges. Data normalisation ensures

variables measured on different scales are transformed into a

consistent range (131). Apart from that, machine learning utilises

feature selection, which plays a significant role in reducing

dimensionality, allowing AI models to focus on the most relevant

variables. This approach enables AI models to improve

performance by concentrating on the most relevant variables.

Common methods include feature elimination (RFE) and

principal component analysis (PCA), which help in reducing

noise and highlighting key predictors of SLE progression or

treatment response (132). Data augmentation is also used to

enhance model generalisation by artificially increasing the

datasets through techniques like bootstrapping or introducing

slight variations in data, especially in small sample sizes in SLE

datasets. Splitting the data into training, validation and test sets can

ensure unbiased AI model performance and generalise well in new

data (132). These data pre-processing steps can help AI models

effectively handle SLE’s complexity.

The advances in AI applied to SLE integrate complex datasets

ranging from genetic and biomarker profiles to predicting disease

risk, stratifying patients and forecasting outcomes. Importantly,

many of these approaches converge on immune pathway activation

and patient heterogeneity, which are also a central part of the

response to cell-based therapies. The ability of AI to uncover

mechanistic insights into patient-specific patterns provides a

foundation for extending its use in MSC therapy, where

optimising immunomodulatory function and tailoring

interventions to individual disease states remain key challenges.
Role of AI in MSC modification

AI is revolutionising the field of MSCs modification by

providing innovative solutions to enhance the precision,

efficiency, and scalability of genetic and cellular alterations. MSCs

are widely studied for their potential in regenerative medicine and

autoimmune disease therapies due to their immunomodulatory and

differentiation capabilities. However, the optimisation of MSCs for
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654117
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rajeev Kumar et al. 10.3389/fimmu.2025.1654117
specific therapeutic outcomes presents numerous challenges,

including off-target effects in gene editing, predicting cell

behaviour, and personalising treatments (78, 133). AI, particularly

through machine learning (ML) and deep learning (DL), is

increasingly being applied to address these challenges, offering

powerful tools for accelerating MSC modification and improving

therapeutic outcomes that can be observed in Figure 1. A summary

of ML and DL tools used in MSC modification can be observed

in Table 7.
Predictive modelling

AI-driven predictive models have proven to be highly effective

in predicting outcomes in stem cell therapies. The study by Shouval,

Labopin (144) proved the use of alternating decision tree (ADT)

machine learning algorithms to a large cohort of patients
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undergoing allogeneic HSCT. The ADT model integrated clinical

variables such as disease stage, donor type, cytomegalovirus

serostatus and performance scores to predict 100-day overall

mortality with higher accuracy than conventional EBMT scoring.

The algorithm was not only predictive but also interpretable,

enabling individualised probabilistic risk estimates through a

user-friendly online interface. A similar predictive system has

been developed for MSC therapies. For example, a neural network

model was developed to predict the therapeutic efficacy of MSC

transplantation in cartilage repair based on existing results in

animal and human clinical trials. The model incorporated key

factors such as implantation cell number, defect area, defect depth

and patient body weight and was able to impute missing data while

estimating prediction. Importantly, it provided clinicians with

individualised predictions of therapeutic outcomes and

recommended treatment parameters such as optimal implantation

dose for effective repair. This AI-based model demonstrates how
FIGURE 1

Schematic diagram of the studies on the role of AI in MSC Modification. The schematic figure summarises different roles of AI in the modifications of
MSCs, such as gene editing, cell function and quality, predictive modelling and colony formation and differentiation. (Created using “Biorender.com”).
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predictive modelling can guide personalised MSC therapies, assist

in clinical decision-making and be adapted for broader

applications (134).
Colony formation and differentiation

Apart from predictive modelling, AI has been used to

automatically detect induced pluripotent stem cell (iPSC) colony

formation and differentiation by monitoring stem cell cultures more

accurately. A study by Fan, Zhang (135) developed a non-invasive

machine-learning model using CNN as a classifier to detect iPSC

colonies more accurately than traditional methods. while Kavitha,

Kurita (136) also developed a V-CNN machine-learning model that

accurately detected high-quality iPSC colonies. Deep learning

neural networks have also proven to be highly accurate in

identifying early stem cell differentiation. A study by Waisman,

La Greca (137) used convolutional neural networks (CNNs) to

distinguish pluripotent cells from differentiating cells with 99%

accuracy. These studies demonstrate how AI integrates data
Frontiers in Immunology 13
acquisition (time-lapse imaging of culture), modelling (CNN-

based classification), and feedback (real-time colony quality

assessment) to support cell culture decision making. Translating

this workflow to MSC cultures, AI could enable real-time

monitoring of cell state transitions, ensuring cells retain their

therapeutic phenotype and inform time interventions such as

media replacement, supplementation or reprogramming (145). A

similar study used a similar deep learning model to predict the stage

of differentiation of iPSCs that were undergoing differentiation

towards hepatocytes based on morphological features of cell

cultures (138).
Cell function and quality

Apart from early detection of cellular differentiation, AI can be

adapted with non-invasive techniques to predict cell function and

quality during MSC-based therapies. MSCs are known for their

heterogeneity in functions and lack appropriate standardisation

methods of MSC lines. A study by Schaub, Hotaling (139)
TABLE 7 ML and DL applications in fine-tuning MSC modification.

Task ML/DL model Input data Output Key findings

Predict 100-day mortality
after HSCT

Alternating Decision Tree
(ADT)

Clinical variables: disease stage,
donor type, CMV serostatus,
performance score

100-day mortality
Outperformed EBMT score;
interpretable predictions; personalised
risk estimation (126)

Predict MSC
transplantation efficacy in
cartilage repair

Neural Network
Cell number, defect area, defect
depth, patient body weight

Therapeutic efficacy,
optimal implantation dose

Imputed missing data, guided
personalised dose recommendations
(134)

Detect iPSC colony
formation

CNN Time-lapse culture images Colony detection
Higher accuracy than traditional
methods (135)

Detect high-quality iPSC
colonies

V-CNN Stem cell culture images
Colony quality
classification

Accurately identified high-quality
colonies (136)

Distinguish between
pluripotent vs
differentiating stem cells

CNN Microscopy images Differentiation stage 99% classification accuracy (137)

Predict iPSC-to-hepatocyte
differentiation stage

CNN Morphological features Differentiation stage
Enabled real-time monitoring of
differentiation (138).

Predict the function of
RPE cells from iPSCs

Deep Neural Learning Quantitative microscopy images Functional quality
Rapid, non-invasive functionality
prediction (139)

Screen MSC functionality End-to-end DL Live-cell microscopy Functional classification
Ensured therapeutic quality before
transplantation (140)

Convert microscopy
images to protein-level
data

DL analysis Light microscopy images Protein quantification
Enabled assessment of MSC
heterogeneity (141)

Predict MSC senescence
markers

DL
Phase-contrast microscopy →

immunofluorescence prediction
Senescent vs non-
senescent classification

Accurately monitored senescence in real
time (142)

Classify senescence states Cascade R-CNN Multicellular microscopy images
Senescence state
classification

Automated single-cell detection and
senescence classification (143)

Predict on-/off-target
effects in CRISPR

ML/DL predictive models
gRNA features, sequence data,
experimental conditions

On-target vs off-target
predictions

Improved CRISPR specificity, optimised
gRNA/Cas9 design (133–135, 144)

Enhance
immunomodulatory effects
of MSCs

ML/DL predictive models,
i.e. DEEP-CRISPR/
CRISPR-ML

MSC genome
↑ Migration, survival,
proliferation, ↓ T-cell
differentiation

AI-guided CRISPR editing enhanced
MSC therapeutic traits (136, 137)
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demonstrated that deep learning models could predict the function

of retinal pigment epithelial cells derived from iPSCs using

quantitative microscopy by analysing cell images to assess MSC

functionality, providing a rapid and reliable method to ensure the

therapeutic quality of cells before transplantation. A similar study

developed an end-to-end DL framework to screen the functionality

of MSC cell lines based on images obtained from a live-cell

microscope (140). Another study recorded the use of AI to

convert transmitted light microscopy images of the protein levels

of MSCs into measurements that can be quantified to characterise

the heterogeneous MSCs (141). The heterogeneity of MSCs also

affects the rate of senescence of MSCs. A study by Weber, Lee (142)

developed an AI model that predicts the immunofluorescence

images of senescence markers in MSCs that are obtained from

phase contrast images. The AI model successfully differentiated

the senescent and non-senescent population of MSCs, which can

further improve the therapeutic potential of MSCs. Complementing

this, a separate study introduced a morphology-based Cascade

R-CNN algorithm that automatically detects single cells of

varying shapes within multicellular images and classifies their

senescence state (143). These methods illustrate how image-based

deep learning can be integrated into the MSC processing pipeline

for real-time senescence monitoring.
Gene editing

Gene editing is a powerful tool that allows precise insertion,

removal and deletion of genes in a DNA sequence (92). The most

advanced gene-editing technologies include the zinc-finger

nucleases (ZFNs), transcription activator-like effector nucleases

(TALENs), and CRISPR-Cas-associated nucleases (CRISPR/Cas9)

(93). Among these 3 gene-editing technologies, CRISPR/Cas9 is the

most used gene-editing technology that is easy to use and more

effective comparatively (76). CRISPR technology has shown an

upward trend and positive progress, producing numerous clinical

trials (77). Gene editing can be used to treat multiple human

diseases, especially those caused by genetic mutations. CRISPR

can knock down defective genes and replace these genes in the

cells with new genes in diseases such as sickle cell anaemia and

thalassemia. Furthermore, CRISPR can target genes responsible for

metabolic syndrome, neurodegenerative diseases and cancer. Lastly,

the successful use of CRISPR has been recorded in treating immune

system diseases such as acquired immunodeficiency syndrome

AIDS caused by human immunodeficiency virus (HIV) by

creating resistant cells to infections (77, 146). The notable

outcomes of CRISPR/Cas9 in other diseases have paved the way

for its potential use in SLE. A study by Harris, Koelsch (147) used

CRISPR-Cas9 to knock down CXorf21 genes that are involved in

the X chromosome in SLE disease. The knockdown of this gene led

to the reduction of TNF-a and IL-6 expression.

Although gene editing technologies have shown potential for

future treatment, the risks of these technologies are very much

apparent. The risk of off-target effects is high due to the potential of

Cas9 to bind and cleave unintended genomic binding sites that lead
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to undesirable gene functions (148). To overcome this risk, AI can

be integrated into the CRISPR/Cas9 to regulate and refine

numerous gRNA features that are identified to affect the binding

and cleaving efficiency of gRNA that produces off-target effects. AI

using predictive algorithms can predict various on-target and off-

target effects of CRISPR gRNAs in silico thus, improving its

specificity (149). The gRNA is highly affected by many factors,

such as cellular environment, gRNA, sequence of target and

experimental condition (150). Machine learning models can

include all these data from various factors to successfully predict

the on-target and off-target effects. Machine and deep learning-

based algorithms have been successfully used in CRISPR

technologies to predict on-target efficacy (47, 150).

Optimising gene editing technologies using AI can significantly

improve its potential to be developed as personalised medicine. AI

can predict treatment responses of patients depending on their

genetic profiles and health history. CRISPR can modify genes

depending on the profile of individual genes (151). The notable

potential of integrating AI in CRISPR poses benefits in optimising

gRNA designs, Cas9 variant selection and the prediction of

potential off-target sequences (152).

The integration of AI and CRISPR addresses the limitations of

CRISPR technology while creating a safer alternative in the world of

genome editing. The potential of gene editing technologies has

paved the way for improving MSCs by gene modifications. CRISPR

can improve MSCs by editing certain genes to express enhanced

immunomodulatory effects via the effect of IFN-r priming (153).

Apart from enhancing the immunomodulatory effect, CRISPR/

Cas9 can manipulate genes that are related to migration, survival,

proliferation and triggering either anti-inflammatory or pro-

inflammatory responses while reducing the differentiation of T

cells (153, 154). These findings suggest the possible improvement

of CRISPR editing of MSCs using AI to ensure desired outcomes in

MSC modifications.
Biosafety and bio efficacy risk &
personalised treatment

The use of MSC therapies poses serious biosafety risks due to

their risk of differentiating aberrantly and the potential adaptation

to the microenvironment, possibly aggravating any existing

condition. AI has the potential to assess the biosafety and bio-

efficacy of MSC therapies, ensuring that modifications made to

MSCs do not lead to unintended side effects such as tumorigenesis

and teratogenesis (47).
AI-guided MSC engineering- current
efforts and potential improvements

Incorporating AI into MSC research can help identify optimal

modification techniques while optimising the microenvironment

for the development of stem cells without compromising cellular

integrity. AI also plays a role in drug screening and treatment
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personalisation. AI models ‘predict’ via noticing patterns, therefore

multi-omic datasets (transcriptomic, proteomic and epigenetic

profiles) can be added for AI to form meaningful analyses,

uncovering subtle determinants of MSC fate and functionality

that are obscure through conventional means (155). This

integration could potentially serve as regulatory checkpoints that

dictate MSC differentiation, proliferation and immunomodulatory

potential, which can inform the design of targeted interventions for

disease-specific applications.

AI can also predict MSC responses to different therapeutic

compounds and gene editing techniques (156). For example,

applied machine learning has analysed the effects of drugs on

iPSC-derived cardiomyocytes, which achieved a classification

accuracy of 79%. This model can be adapted to MSC-based

therapies to predict the responses of cells to various drugs or

gene-editing techniques (157). Similar approaches could in theory

be adapted following the 4 classifications above, reducing time and

effort taken on in vitro and in vivo testing.

Beyond drug response prediction, AI has also been applied to

modelling immune pathway activation, which might hold promise

in informing MSC engineering. Previous efforts been successfully

done in the profiling of sepsis immunity using supervised learning

algorithms such as Gradient Boosting Trees (158). Another proof of

concept was done by Yifeng Tang et al., whose group successfully

applied quantitative structure–activity relationship (QSAR) models

to identify innate immunomodulators. Signalling cascades that are

most relevant for enhancing or suppressing specific immune

responses can be identified, which would largely guide the

rational design of MSC modifications. Pathways that serve as

negative feedback loops for aberrant inflammation for example

can be upregulated, which would serve fastidiously in stamping out

the problem.

The advent of machine learning models can pioneer the

personalisation of MSC-based therapies, tailoring treatment

regimens to the individual’s cellular microenvironment and genetic

profiling for better outcomes. These noteworthy outcomes of AI in

MSCmodification can be potentially applied to further improveMSC

treatment in SLE. Tailoring treatments could potentially be done at a

holistic and in-detail manner, maximising efficacy while minimising

risks such as flare-ups or tumorigenesis. This invokes a paradigm

shift toward precision cellular medicine, which holds great potential

in the transformation of MSC therapies from experimental

interventions into safe, standardised and patient-centric treatments.
The future potential of AI-guided
modification of MSC in the therapy of
SLE

The modification of MSCs has emerged as a promising

approach in regenerative medicine, yet the outcomes of these

modifications vary significantly across different methods. This

inconsistency is largely due to the intricate interplay between

MSCs and the imposed modifications, which can alter the

autocrine and paracrine signalling mechanisms within the culture.
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Traditionally, researchers have relied on fundamental principles of

immunology and molecular biology to guide these modifications,

often making educated guesses that, while effective in a general

context, still leave considerable room for optimisation.

This is where AI, particularly deep learning, offers exciting

potential. By analysing vast datasets of past successes and failures,

AI can provide data-driven predictions or even perform zero-shot

learning, inferring optimal modification strategies for MSCs. As AI

systems continuously improve, they can suggest increasingly effective

approaches tailored to specific conditions, such as SLE. Over time,

these models will become more refined, offering more precise and

cost-effective solutions, while also reducing the time and resources

needed to develop individualized treatment plans. This integration of

AI holds the promise of revolutionizing MSC modification strategies

for the treatment of SLE, driving both deeper scientific understanding

and clinical breakthroughs (Figure 2).
Identifying key pathways and gene
modules for targeting

Machine learning has significantly proven to predict SLE

disease activity based on gene expression data to overcome the

issue of heterogeneity among patients. AI models like generalised

linear models (GLM), k-nearest neighbours (KNN) and RF

classifiers were trained on SLE patient gene expression data from

multiple SLE datasets to identify important genes involved in SLE

disease activity. These gene expression profiles must be understood

as they provide a potential for therapeutics in SLE (159). Critical

genes associated with SLE activity that are identified through

machine learning can serve as targets for gene editing

technologies. For example, a study used BioGPS, STRING

database, Protein-Protein Interaction (PPI) and KEGG

enrichment analysis to identify potential therapeutic genes for the

treatment of SLE. MSCs can be modified specifically to carry these

therapeutic genes that can be expressed, increasing their efficacy in

treating SLE (160). Moreover, overexpressing certain enzymes in

MSC-derived extracellular vesicles could enhance their therapeutic

potential for SLE patients (161). miRNAs in MSC-derived

extracellular vesicles (EVs) could be an effective tool for both the

identification of key pathways and gene modules that mediate the

pathogenesis of SLE. AI can be used to understand the different

miRNAs, such as miR-146a-5p, miR-19b, and miR-20a, that are

required to be overexpressed or inhibited in MSC-derived EVs for

improved therapeutic potential in SLE patients (162, 163). The use

of AI to identify these miRNAs could revolutionise the discovery of

more therapeutic miRNAs and understand their effects and

outcomes in SLE patients before treatment.

Understanding gene expression profiles identified by machine

learning of SLE patients potentially allows for the priming of MSCs

to enhance their therapeutic efficacy. By upregulating genes

involved in immune modulation, MSCs can be tailored to better

meet the therapeutic needs of SLE patients. For example, priming

MSCs with IFN-g has been shown to increase the expression of class

II HLA molecules, contributing to immune system homeostasis
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(164). Moreover, machine learning classifiers can assess the efficacy

of primed MSCs by analysing their post-priming gene expression

profiles. By comparing these profiles to established markers of MSC

efficacy, machine learning models can predict the potential of

primed MSCs to modulate SLE activity effectively.
Improving MSC therapy precision
through predictive models

A Swedish study (165) obtained genotype data from SLE patients

(1160 people) and healthy controls (2711 people) using the Illumina

Immunochip. After quality control, 134523 SNPs that are either

located in or are close to 125000 genes related to the immune

system are selected for further analysis. The random forest model is

chosen to first classify individuals as either SLE patients or healthy

individuals, with its performance evaluated using the Area Under

Curve metric (AUC), which ranges from 0 to 1, with 0.5 indicating a

random prediction and 1 representing a perfect prediction. The model

scored 0.78 in SLE prediction, which was better than the logistic model

(p-value 0.0028, DeLong’s test), which only scored 0.74. AUC also

reached 0.91 for the random forest model in the detection of nephritis

within SLE patients, compared to the logistics model which only

scored 0.70. The ability of random forest models to predict SLE
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through AUC suggests that predictive biomarkers derived from

genotype or gene expression data are accurate and feasible. This

information could lead to patient stratification based on genetic and

gene expression profiles that could optimise MSC therapy, tailoring

treatment to those most likely to benefit. The predictive biomarkers

can potentially create a biomarker-guided selection of MSC

(e.g., based on secretome profiles or expression of specific

immunomodulatory genes) that can enhance therapeutic efficacy.

After successful prediction, the study proceeded to use AI to

identify risk genes for SLE by quantifying how strongly a gene

region contributes to SLE risk based on SNP genotype data. 40 top

genes associated with SLE were identified, and from within 25

known SLE-associated genes were validated, and novel candidate

genes (i.e. ZNF804A, ANK3 and MANF) were identified. 12 of the

top 40 genes were associated with other autoimmune diseases.

Within the 40 genes, 15 have differential expression between B

cells and T cells (enrichment in B cells), and 30 were expressed in B

or T cells. 6 were regulated by cis-regulatory SNPs. These risk genes

showed enrichment for allele-specific expression and cell-type-

specific regulation, supporting functional relevance in SLE

pathogenesis. This study proved the potential of AI in identifying

differentially expressed genes in B and T cells, and cis-regulatory

SNPs linked to immune cell-specific activity in SLE. This

information could potentially lead to the engineering of MSCs to
FIGURE 2

Visual Representation of Conceptual Idea Involving the Use of AI in Improving MSCs Modifications. The idea includes deriving input data such as
disease activity score, age, gender, ethnicity, hormone, lifestyles, genetic markers, gene expression and cytokine markers, as well as CBS, creatinine,
anti-dsDNA and complement levels that will be analysed using an AI model. The MSC modification is tailored accordingly based on the specific data
of the patient that was obtained for personalised medicine. (Created using “BioRender.com”).
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express factors that specifically modulate B and T cell activity and

target cytokine signalling pathways that are identified as critical in

SLE pathogenesis.
Targeting immune cell populations

In another study by Kegerreis, Catalina (159), SLE disease

activity is predicted using gene expression data from Gene

Expression Omnibus (GEO), taking into consideration active and

inactive SLE (SLEDAI ≥ 6 for active,<6 for inactive). The data

selected consists of purified cell populations (CD4, CD14, CD19,

CD33 and LDG) and whole blood (WB) samples. R statistical

package is used for Quality Control, normalisation and filtering

on the raw microarray data, and then LIMMA R packaged is used to

perform Differential Expression analysis (DE). Weighted Gene Co-

expression Network Analysis (WGCNA) is then used to identify

gene modules in purified cell populations. Gene Set Variation

Analysis was then conducted to test the enrichment of cell-

specific gene modules in WB datasets. 3 classifiers are trained and

validated through 10-fold cross-validation and study-based cross-

validation, with them bringing Elastic Generalised Linear Model, k-

Nearest Neighbours and Random Forest.

The clustering of patients based on DE genes fails to reliably

separate active from inactive disease states, and although several

gene modules correlate with SLEDAI, they cannot fully distinguish

active and inactive patients in individual analysis. Random Forest

achieved 83% accuracy using raw gene expression data and

identified critical genes and modules to SLE pathogenesis, which

include interferon-related pathways and monocyte-derived

modules, both positively and negatively associated. The use of AI

to identify the gene modules associated with the leukocyte

population monocyte-derived modules, interferon-related

pathways) could assist in the engineering of MSCs to target

immune cell populations. For instance, MScs could be modified

to reduce the activity of monocytes, which play a significant role in

autoimmune response in SLE. MSCs could also be modified to

regulate B and T cells that reduce autoantibody production and T

cell activation. Thus, improving patients’ clinical outcomes.

The noteworthy evidence of the use of AI in SLE represents a

significant advancement, as it enables the analysis of large and

complex datasets to identify critical insights. These insights can be

leveraged to modify MSCs, tailoring their therapeutic properties to

align with the specific needs of individual patients. By integrating

Al-driven data analysis with MSC therapy, a more personalised and

effective treatment approach for SLE can be achieved, ensuring the

therapy is optimised based on patient-specific genetic and

molecular profiles identified through AI.
Challenges and ethical considerations

The use of gene-editing approaches, which although powerful,

remain imperfect. Off-target editing or insertional mutagenesis have

yet to be completely resolved. For mitigation, orthogonal detection
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platforms, such as GUIDE-seq and CIRCLE-seq should be utilised,

accompanied by stringent release criteria as suggested by FDA and

EMA as part of Advanced Therapy Medicinal Products oversight,

with the related guidelines cited here (166–168). A lot of the clinical

trials also demonstrated donor-specific HLA antibodies following

allogenic MSC infusion (author’s observation). This presents a

problem that limits translation, immunogenicity. Although so far,

no adverse events have been observed due to such immunogenicity,

such phenomenon warrants caution. Care should be taken to follow

the EMA guidelines for cell- based therapies, placing emphasis on

standardised immuno-monitoring as well as using early-passage/

hypoimmunogenic engineered MSCs to prevent adverse events.

Donor-related variability further increases the risk of such

therapeutic option. As illustrated by heterogeneity in HPL

expansion media, donor age and tissue source substantially

influence MSC potency and reproducibility (169). Implementation

of potency assays that are based on defined mechanisms of action,

such as immunomodulation via IDO activity, or the expression of

specific surface markers, are increasingly recognised as essential for

lot release under ATMP guidance (170, 171). MSC procurement

should also be done responsibly and ethically, covering all bases such

as informed consent, fair compensation and transparent donor

communication, to avoid repeating historical injustices such as the

Henrietta Lacks case.

AI holds significant promise in enhancing the modification and

personalisation of MSCs for SLE, yet its application is a double-

edged sword. One significant challenge is the availability and quality

of data. The functionality of AI highly depends on large, high-

quality datasets, but, MSC research is often inconsistent, yielding

incomplete data from different labs and clinical trials (author’s

observation). The lack of quality data leads to the inaccuracy of AI

models to make predictions and reliable conclusions regarding

MSC behaviour, treatment outcomes and optimal conditions

(172). It is important to ensure there is a large, open-source and

standardised database to improve the quality of AI-driven insights

(173). Furthermore, SLE is a highly heterogeneous disease with

varying clinical representation based on patient genetics, ethnicity,

sex, immune response and disease progress (174). AI models must

account for this complexity to predict the modifications of MSCs in

different patients. This limits the ability of AI to provide universally

applicable solutions, thus increasing the difficulty in personalising

MSC treatments for individual patients.

Apart from SLE, MSCs are highly heterogeneous with their

behaviour influenced by numerous factors such as tissue origin,

donor variability, culture conditions and disease environment (175–

177). The complex biology of MSCs makes it difficult for AI models

to predict MSC behaviour and their therapeutic effects accurately in

diseases like SLE, where the immune system is a major component.

The complexity of MSCs and SLE can be understood if AI models

are developed to integrate multi-omics data (genomics, proteomics

and metabolomics) to account for this complexity (178, 179). The

integration of AI with biological systems is also a significant

challenge. AI can predict optimal gene modifications, but

validating these predictions in biological systems requires

extensive experimentation due to the intricacies of biological
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validation. The FDA and MHRA have issued Good Machine

Learning Practice (GMLP) principles that urge model calibration,

external validation and transparent reporting.

Apart from challenges, the use of AI comes with the issue of

patient data privacy. AI systems largely rely on datasets that include

sensitive patient information such as genetic data and medical

history (180). This information is considered confidential.

Ensuring the confidentiality of this data while sharing it for AI

model training poses significant ethical concerns (180). Strict laws

must be developed to protect patient privacy and ensure compliance

with regulatory requirements regarding data privacy (181).

Frameworks such as the EU AI act and WHO guidance on AI

ethics serve as good advice to secure data governance, federated

learning and also strict regulatory compliance to maintain and

safeguard confidentiality.

Furthermore, AI models can inherit biases from the data on

which they are trained. If the training data predominantly

represents certain demographics (ethnic or gender biases), AI

may produce fewer effective treatments for underrepresented

populations (182). This indirectly will worsen health disparities in

SLE, which disproportionately affect women and certain ethnic

groups (182). AI must be designed to reduce these biases to ensure

fairness in MSC treatment. Moreover, it is of utmost importance

that the patients are fully informed about the use of AI in

developing their MSC-based treatment. Patients should

understand the role of AI and its potential risks and uncertainties

associated with AI decisions to maintain trust in AI-based medical

innovations (183).

Accountability and liability are important ethical considerations

for the use of AI in MSC modifications. It is important to establish

accountability frameworks to manage risk associated with AI in

medical research, especially in treatment involving modification of

MSCs in complex diseases like SLE (184). The area of using AI to

modify MSCs for the treatment of SLE is relatively new thus, long-

term safety and ethical use of modified MSCs should be carefully

considered. The long-term effects of genetically modified MSCs are

still not fully understood. AI may optimise gene-editing techniques,

but permanently altering cells for therapeutic purposes, especially in

autoimmune diseases like SLE comes with ethical implications

(185). Robust safety protocols must be established, and long-term

monitoring must be done to ensure the modified MSCs do not cause

tumorigenicity or immune dysregulation.

Finally, regulatory and real-world design considerations would

determine whether AI-enhanced MSC therapy achieves safe

translation. The updated International Council for Harmonisation

E6 (R3) clinical trial guidance emphasises adaptive design,

independent monitoring and harmonised data collection to

support reproducibility across sites (186). EMA reflections on

ATMP stress the importance of long term follow up to monitor

tumorigenicity, immune dysregulation and other delayed effects

(166). Vigilance should extend beyond conventional endpoints,

encompassing algorithmic oversight to track when and how AI-

driven recommendations deviate from expectations. Black-box and

limited white-box access should also be given to regulatory bodies to

further audit the data.
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Future directions and innovations

The application of AI to enhance MSC therapy for SLE offers

promise to revolutionise both the development and clinical

applications of MSC and the future of MSC, as well as their

offshoot modifications to treat SLE. As mentioned above, AI can

be a powerful tool to optimise MSC modification, culture, and

application, thereby reducing costs, improving therapeutic efficacy,

and personalising treatments to individual patients. A few

directions are listed below for further reference.
Combining different methods of MSC
modification

SLE is a complex disease, being an intermeshing of various

individual segregated conditions stemming from the aberrancy of

inflammation (1). Therefore, the eventual successful treatment of

SLE would probably lie in the integration of various modification

techniques. AI can streamline this process by predicting how

different modifications (e.g., culture conditions, cytokines, small

molecules, or gene-editing tools) will influence the phenotype and

behaviour of MSCs (97). AI algorithms can also anticipate how

CRISPR-induced gene modifications will affect MSCs, minimising

off-target effects, and thus improving the precision of gene editing

(148). Similarly, AI can be used to predict how new biologics or

drug compounds will alter MSC function, allowing for the creation

of more potent and stable therapeutic cells tailored to SLE

patients (119).
Optimising MSC culture methods to lower
costs

A major hurdle in MSC therapy is the high cost of cell culture,

either by wasting culture medium in 2D cultures or needing a high-cost

setup in 3D cultures or large-scale bioreactor conditions (187). AI-

driven models can help refine culture conditions by predicting which

nutrients, growth factors, and environmental conditions will support

the optimal growth and differentiation of MSCs. These models can

potentially help identify specific nutrient combinations and conditions

that would best encourageMSC differentiation into desired phenotypes,

such as those with enhanced immunomodulatory or anti-inflammatory

properties, or even into specific cell types such as nerve or sciatic cells

(52). Additionally, AI can predict the longevity of MSCs in culture and

provide solutions for extending their viability without compromising

quality, thus reducing overall production costs (156).
Precision medicine for SLE patients

AI analyses copious amounts of data, forming correlations and

associations within the data and infers changes within the general

picture if specific factors change (110, 114). Being a predictive

model, it can ‘divinate’ the outcome of taking a specific action.
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Therefore, it has the potential to revolutionise precision medicine in

SLE by analysing patient-specific data (genomic, proteomic, and

clinical data) to customise MSC treatments (97). AI models can

predict how individual patients will respond to different MSC

modifications, helping to create personalised therapies that take

their unique immune system profiles and disease characteristics

into consideration. Moreover, AI could be utilised to optimise

medication doses for SLE patients depending on their patient-

specific history, such as metabolism, pharmacogenetics and

treatment history (188). By integrating patient-specific data, AI

could also potentially forecast the most effective MSC intervention

strategies, including the optimal dosage, timing, and possible

combination of MSC modifications, enhancing the likelihood of

successful treatment outcomes.
Predicting patient prognosis and treatment
success

AI could also be potentially utilised to predict the prognosis of

SLE patients and the potential success of MSC-based interventions.

By analysing historical data on patient outcomes, AI could identify

correlations and associations that suggest which patients are most

likely to benefit from MSC therapy (114). This can guide more

timely and targeted interventions, improving overall patient care.

Other interventions can also be suggested in the event of low

efficacy of the present MSC treatment, such as the focus on

specific immunosuppressants that cause fewer side effects to the

patient (122).
Predicting the tolerability of
immunosuppressants

Immunosuppressants are often essential for treating SLE, but

their interactions with MSCs and individual patient biology need to

be carefully managed. AI can predict the tolerability of these drugs

in both patients and modified MSCs by analysing patient-specific

immune profiles (genomics, proteomics and clinical data) and MSC

characteristics (189–191). This approach would allow for better

decision-making when choosing immunosuppressive treatments

that complement MSC therapy, thereby reducing the risk of

adverse reactions and improving overall treatment efficacy.
Discovering novel biologics for MSC
modification

AI can be instrumental in identifying new biologics to modify

MSCs for SLE treatment. By screening large datasets (especially on

gene expression profiling, gene expression network and interaction

of biologics with MSC), AI can predict how novel compounds will

enhance MSC properties, such as their immunosuppressive or

regenerative capabilities (192, 193). This could accelerate the
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discovery of innovative biologics that are more effective than

current options, leading to the development of next-generation

MSC therapies. It is also possible that animal biologics could be

more effective in modifying MSCs to better suit SLE treatment, and

this can only be known by training AI with a proteomics model of

known biologics used to modify MSCs.
Vaccine against Epstein-Barr Virus

The Epstein-Barr Virus (EBV), a member of the herpesvirus

family, has been strongly implicated in the pathogenesis of SLE

through molecular mimicry, whereby viral antigens resemble host

proteins, leading to misdirected immune responses that exacerbate

autoimmunity. Numerous studies have demonstrated a strong

correlation between EBV infection and SLE, with elevated anti-

EBV antibody levels consistently observed in SLE patients

compared to healthy controls (22). These findings suggest that

prior exposure to EBV may increase the risk of developing SLE,

particularly in genetically predisposed individuals (22).

Given this association, the development of an effective EBV

vaccine holds significant potential for preventing or mitigating SLE

by reducing primary EBV infection or subsequent viral reactivation

in high risk populations. Advances in mRNA vaccine platforms,

supported by AI and machine learning, are accelerating this effort.

AI-driven models can optimise antigen delivery and machine

learning, and dosing strategies, while minimising toxicity and

enhancing durable activation against EBV (49).

A safe and effective EBV vaccine could reduce autoimmune

responses triggered by viral reactivation, thereby lowering disease risk

in genetically predisposed individuals. Encouragingly, clinical trials for

EBV vaccines are already underway (248), marking a critical step

toward preventive strategies that may also benefit patients at risk of

EBV-associated autoimmune diseases such as SLE.
Conclusion

Incorporating AI into MSC research and therapy development

for SLE holds transformative potential for disease therapy. AI’s

ability to optimise MSC modification, predict patient responses and

integrate traditional treatments pave way for more cost-effective,

personalised and successful interventions. These advancements

might potentially find their way to permanently cure SLE, instead

of controlled remission. If such an idea were to be pursued,

worldwide collaboration would be necessary, as SLE is a highly

complex disease; thus, an enormous dataset would likely

be required.

On a basis of cooperative worldwide collaboration, several

concrete steps can make this reality. Firstly, establishing a

prospective registry of MSC lots that links donor, disease and

culture variables with clinical outcomes, creating a shared data

infrastructure. Advanced imaging of MSC morphology can be

incorporated, relating it to function. With interpretation via
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1654117
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rajeev Kumar et al. 10.3389/fimmu.2025.1654117
machine learning approaches, potency signatures could be

established before infusion. This gives confidence that the MSCs

used are high potency.

Secondly, flare-prediction models should embed PROMs and

wearable data into flare-prediction models. This enables therapy to

adapt to the patient, rather than the reverse. Fusing subjective

reports of fatigue, pain and function with continuous physiological

readouts (i.e. heart rate variability/sleep cycles) allow AI systems to

detect early warning signs of flares, which allows tailored and

timely interventions.

Thirdly, AI should be trained on MSC modification data to

compare priming approaches and gene edits structurally. By

training optimisation algorithms on large in-vitro datasets, the

field could prioritise modifications that reliably enhance

immunoregulation while minimising safety risks, accelerating the

design of next-generation MSCs. Clinical evaluation should also

move toward small, adaptive trials that test dose and patient-

matching strategies. Rather than relying solely on large, fixed

protocols, Bayesian or response-adaptive designs would allow

dosing schedules and subgroup inclusion to evolve in real time

based on emerging outcomes, shortening the path to clinically

actionable insights.

Finally, these efforts must be anchored by harmonised quality-

control benchmarks. Standardised criteria for MSC identity,

potency, and genomic integrity, augmented by AI-based analytics,

would make results across centres and trials comparable, strengthen

regulatory confidence, and provide a common language for the

field. Together, these steps delineate a pragmatic agenda for

advancing MSC therapy in SLE. By uniting registry science,

patient-centred metrics, AI-driven optimisation, adaptive clinical

design, and harmonised quality standards, the field can move

beyond proof-of-concept to reproducible, personalised, and

ethically responsible care. The opportunity now is not simply to

test MSCs, but to build the translational ecosystem that will allow

them to fulfil their promise for patients with SLE. It is our most

sincere hope that this idea can one day be a reality in the medical

setting, not just for SLE but for other incurable diseases such as

cancer and HIV.
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