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Mesenchymal Stromal Cells (MSCs) are increasingly recognized as promising
candidates for treating Systemic Lupus Erythematosus (SLE) due to their
immunomodulatory and regenerative properties. However, their therapeutic
efficacy remains inconsistent, largely due to the heterogeneity of MSC origins,
culture conditions, cell quality, host immune interactions, and the influence of
immunosuppressive treatments. Artificial Intelligence (Al) offers powerful tools to
address these challenges by optimising MSC modification and application. This
review explores how Al can identify optimal genetic and epigenetic targets,
predict MSC behaviour under different environmental and priming conditions,
and design personalise therapies tailored to individual patients. Moreover, Al
enables the analysis of extensive datasets to refine dosing strategies and
improve the integration of MSC therapy with immunosuppressants. By
enhancing the precision, consistency, and personalisation of MSC-based
interventions, Al has the potential to significantly improve therapeutic outcomes
in SLE, advancing the field toward more effective and patient-centred
autoimmune disease management.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic autoimmune
disorder that affects the body multi-systematically, with varying
clinical manifestations depending on the patient (1). The global
prevalence of SLE is estimated to affect approximately 3.17 million
adults worldwide and has been increasing over time (2). Common
visual clinical representation involves musculoskeletal and
dermatological manifestations, which include fever, joint pains,
and the hallmark “malar rash” that appears across the cheeks and
nasal bridge (3). The severity of symptoms evolves with time,
showing manifestations affecting functionality in multiple organs
such as renal, neurological, pulmonary, gastrointestinal,
cardiovascular, and more (3). SLE places a significant burden on
patients’ quality of life, affecting both physical and mental health
(4). The multisystemic involvement showcases the importance of
SLE, as it poses significant risks for both morbidity and mortality,
being up to 5 times more likely to die compared to the general
population (5).

SLE is most prevalent in women aged between adolescence and
menopause, with a female predominance of 9:1 (6-8). The
heightened susceptibility in women is driven by a multitude of
factors, including sex hormones (such as oestrogen and prolactin),
which promote autoimmunity and trigger B cell activation and
secretion of autoantibodies (9). Oestrogen (especially 17f3-
oestradiol (E2/oestrogen)) react with many immune cell types
such as macrophages, mast cells, dendritic cells (DCs), T cells and
B cells by reacting with either oestrogen receptor o (ERa) or Erf3
expressed by these cells. Rapid responses are then initiated as part of
lipid signalling rafts. Oestrogen also promotes the activation,
survival, hypermutation, and class switch recombination in B
cells, which causes higher antibody/autoantibody responses in
females (9). Additionally, the higher prevalence of SLE in women
has been linked to genetic factors related to the X chromosome.
Specific X-linked genes such as TLR7, IRAK2 and MECP?2 further
support the role of the X chromosome in SLE susceptibility (10).
Some X-linked genes, like TLR7, can escape X-inactivation (XCI) in
certain immune cells, leading to biallelic gene expression that
further contributes to disease susceptibility (11).

Immune dysregulation in SLE

The pathogenesis of SLE involves the dysregulation of both
innate and adaptive immune responses, leading to pathogenic
autoantibodies production, B cell hyperactivation, cytokine
imbalance, and ultimately tissue and organ damage (6). One key
initiating event is the defective clearance of apoptotic cells, caused
by impaired phagocytosis or complement deficiencies. This results
in the accumulation of apoptotic debris and exposure of nuclear
self- antigens such as double-stranded DNA (dsDNA) to the
immune system (12). Autoreactive B cells recognise these nuclear
antigens and, with the help of autoreactive T helper cells, undergo
clonal expansion and differentiate into plasma cells, that secrete
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high-affinity autoantibodies. These antibodies form immune
complexes (ICs) that deposit in various tissues, including the
kidneys, joints, skin, and brain. Once deposited, ICs activate
complement and engage Fcy receptors, triggering recruitment of
neutrophils, macrophages, and dendritic cells (DCs) (6).
Plasmacytoid dendritic cells (pDCs) subsequently produce large
amounts of type I interferons, especially IFN-o, which amplify B
and T cell activation in a self-perpetuating cycle.

Innate immune cells further contribute to this dysregulation.
Neutrophils and DCs detect apoptotic debris and ICs via Toll-like
receptors (TLRs), initiating inflammatory cascades characterised by
type I interferon release (13, 14). IFN-o plays a pivotal role by
breaking immune tolerance: it activates antigen-presenting cells,
enhances MHC class I and II expression, and upregulates co-
stimulatory molecules (CD80, CD86, and CD40), thereby
promoting autoreactive T-cell activation (12, 15, 16). IFN-o also
induces NETosis in neutrophils, releasing neutrophil extracellular
traps (NETs) that expose further autoantigens, perpetuating the
autoimmune cycle (17).

Beyond antigen presentation, IFN-a. fosters a pro-inflammatory
environment by stimulating cytokine production. IL-12 promotes
Th1 differentiation, while IL-6 and IL-23 drive Th17 differentiation
(18). The resulting Thl and Th17 cells secrete IFN-y and IL-17,
amplifying inflammation, whereas regulatory T cell (Tregs)
function is impaired through downregulation of FOXP3,
weakening immune suppression (19).

On the adaptive side, B cells are hyperactivated via B-cell
receptor (BCR) signalling and interactions with T follicular helper
(Tth) cells, producing autoantibodies against dsSDNA and other
nuclear antigens (20). These autoantibodies form pathogenic ICs
that deposit in tissues, activating complement and driving chronic
inflammation and organ damage (21). As disease progresses, a
network of pro-inflammatory cytokines, including IL-1, IL-6,
TNF-0, and IL-17, reinforces persistent immune activation and
tissue damage.

Genetic and environmental factors
contributing to SLE

The exact cause of SLE remains unclear, but both genetic
predisposition and environmental triggers are recognised as
critical contributors to its pathogenesis. Among genetic factors,
strong associations have been identified with the MHC, particularly
the MHC class II region. Variants in genes regulating immune
responses like Clq, C2, C4, Fcy receptors, and signalling molecules
involved in type I interferon pathways, have also been linked to
increased susceptibility. Furthermore, the markedly higher
prevalence of SLE in women suggests a role for X chromosome-
linked genetic factors and hormonal influences, especially
oestrogen, in disease susceptibility (10).

Environmental factors play an equally important role in
triggering disease onset or flares in genetically predisposed
individuals. Viral infections, particularly Epstein-Barr Virus
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(EBV), have been implicated through mechanisms such as
molecular mimicry, where viral proteins resemble host antigens,
leading to a breakdown of immune tolerance and autoimmunity
(22). Ultraviolet (UV) radiation, especially UV-B rays, exacerbates
disease activity by inducing keratinocyte apoptosis and exposing
nuclear autoantigens, often resulting in cutaneous manifestations
such as malar rash. Drugs such as hydralazine, procainamide, and
isoniazid are well documented causes of drug-induced lupus, which
shares clinical features with idiopathic SLE but usually resolves
upon drug withdrawals (8, 23).

Other contributing factors include smoking, which enhances
oxidative stress and immune activation, and hormonal influences,
where oestrogen promotes B-cell hyperactivity and autoantibody
production, further explaining the female predominance of SLE. In
addition, dysbiosis of the gut microbiome has emerged as a
potential environmental factor, with alterations in microbial
composition shown to influence immune regulation
and autoimmunity.

Together, the interplay of genetic predisposition, hormonal
influences, and environmental triggers such as infections, UV
radiation, and drugs creates a multifactorial foundation for SLE
development and progression.

10.3389/fimmu.2025.1654117

Limitations of existing treatments for
SLE

Current treatments of SLE involve the use of general
immunosuppressants and inhibitors that are designed to affect
different pathways involved in SLE pathogenesis to reduce
inflammation by inhibiting the pro-inflammatory cytokine
signalling, TLR activation, and T-cell proliferation (24). However,
these treatments come with serious side effects, which are recorded
in Tables 1A, B. Apart from the side effects, the failure of existing
treatment is also caused by significant drug resistance to
therapeutics over time. SLE patients tend to develop resistance
against medications such as corticosteroids (42).

Conventional drugs form the backbone of SLE management
and remain widely used due to their accessibility and broad
immunosuppressive effects. However, while they are effective in
controlling SLE, they lack specificity, and cause toxicity
accumulation, resulting in adverse side effects like bone marrow
suppression, gonadal toxicity, organ damage and teratogenicity.
This significantly limits long-term use. Biologics and targeted
inhibitors selectively block key immune pathways, potentially
halting symptoms that result from the dysregulation of the

TABLE 1A Conventional immunosuppressants and corticosteroids used in SLE.

Immunosuppressant/
Corticosteroid Mechanism of action Side effects References
therapy
A puri log that t into acti tabolites t
L purine fma 08 tha Rk urns mnto active me ? O,l esto Nausea, fever, fatigue, arthralgias/myalgia, rash, bone
Azathioprine (AZA) block purine synthesis and stop DNA replication, . (25)
. . . marrow suppression
leading to immunosuppressive effects.
Cyclosporine (CsA) Suppress cell-mediated immune reaction while Hyl,vlelttensi?n, arr-hythmia, convulsions, renal issues, (26)
inhibiting synthesis of interleukins (IL). dyslipidemia, malignant lymphomas
Antimitotic, antineoplastic, and immunosuppressive .. . .
Gonadal and bladder t g ting, , al s
Cyclophosphamide (CYC) effects selective to T cells. Lowers the secretion of IL- ona an' & 'e'r oxicity, vomiting, nausea, alopecia 27)
X R haemorrhagic cystitis.
12 and increases secretion of IL-4 and IL-10.
Calcineurin inhibitor to manage lupus nephritis. Acute and chronic nephrotoxicity, reduced glomerular
Voclosporin Inhibit production of IL-2 and prevent proliferation filtration rate, hypertension, neurotoxicity, liver injury with | (28)
of effector T cells. jaundice.
Hypertension, arrh ias, headaches, i
i Inhibits the proliferation of T cells via the calcineurin ype 'ensmn ar @mlas 'ea aches H?somm'a angina
Tacrolimus o pectoris, acne vulgaris, alopecia, rash, weight gain, nausea, (29)
inhibitor. . .
vomiting, diarrhoea.
Reduces the activation of T-cells, diminishes B-cell . .
. o Nausea, vomiting, loss of appetite, mucosal ulcers
responses, promotes the activation of CD95-posmve - . L.
Methotrexate K . i K hepatotoxicity, and potential of teratogenesis in females of (30)
T cells, and interferes with the interaction of . )
. . the child-bearing group.
interleukin B1.
Mycophenolate mofetil (MMF) Lowers antibody synthesis and limits' the expansion Nausea, fiiar'rhoea, leukopenia, urinary tract infection, renal G1)
of both T and B lymphocyte populations. flare, urticaria and myopathy
Inhibit toll-like receptors (TLRs), enzymes, NK cells, Cardi thy. dizzi fati .
ardiomyopathy, dizziness, fatigue, cytopenia,
Hydroxychloroquine (HCQ) and cytokine release. Involvement in T cell R Yop Y gue, cytop (32)
. . hyperpigmentation
polarisation and apoptosis.
Inhibits B and T cells and phagocytes. Activates the Ecchymosis, cutaneous thinning and atrophy, acneiform
Glucocorticoids (GCs) .cytosolic GC recept(‘)r (cGCR) that suppress‘es pro- eruptioné, mild hirsutism, facial efythe@a, stAriaeA, increased (33, 34)
inflammatory cytokines and upregulates anti- body weight, delayed wound healing, hair thinning, and
inflammatory cytokines. perioral dermatitis.
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TABLE 1B Biologics and targeted small-molecular inhibitors for SLE.

Biologic/Small

molecular inhibitor Mechanism of action

therapy

10.3389/fimmu.2025.1654117

Side effects References

Inhibits B lymphocyte stimulator protein and

Infection, infusion reactions, hypersensitivity,

Belimumab 35
et & downregulates B cell activity. headache, nausea and fatigue. (33)

Inhibits the f tion of IFN 1 d

Antifrolumab b . -e ormation 0 complexes and gene Cough, trouble breathing, cold symptoms (36)
transcription.

Rituximab Affects the functionality of B cells and decreases plasma Allergies caused by infusion reactions, infections, skin G7)
cell production rash, alopecia, respiratory and cardiovascular effects

Janus Kinases inhibitors Suppresses cytokine produ.ct'ion tha't 'is involved in Thl, UPper respirafory i.nfections, l'%eadac?hes, nausea, acne, 38)
Th2, Th17 and Th22 providing anti-inflammatory effects urinary tract infections, gastrointestinal

Bruton’s tyrosine kinase Hinders the activity of BTK protein that is involved in B Haemorrhage, hypertension, pneumonia, infection, 39)

inhibitors cells maturation and activation. contusion, nausea, fatigue, arthralgia

Proteasome inhibitors Depletes plasma cells and inhibits type-1 IFN activity Infections, hypogammaglobulinemia (40, 41)

specific pathway. This offers more precise treatment, and improved
disease control. However, these treatments often resulted in adverse
events, such as infection, infusion reactions, as well as
cardiovascular and metabolic risks. They are also only controlling
the disease without curing it, which underscores the
therapeutic gap.

The limitations of these existing treatments have prompted the
exploration of novel treatment strategies to improve the disease
management and long-term outcomes. Current research is focused
on a variety of approaches, ranging from immunotherapies to
advanced cell-based therapies, such as hematopoietic stem cells
(HSCs), MSCs, CAR T cells. Increasing attention has also been
directed toward MSC-derived extracellular vesicle (EV) therapy,
including molecular modifications of EV's to selectively upregulate
or downregulate microRNAs implicated in SLE pathways. These
emerging strategies hold promise as more effective treatments with
reduced clinical side effects compared to conventional options.

Immunotherapies under investigation include antibody-based
therapies such as B cell-targeted agents, CD40-CD40L interaction-
targeted inhibitors, CD38-targeted therapies, and cytokine-targeted
interventions (43, 44). While many of these approaches show
potential, the heterogeneity of SLE continues to pose significant
challenges in developing broadly effective treatments (44).

Beyond antibody- and cytokine-based strategies, cell-based
therapies are gaining momentum in SLE treatment.
Hematopoietic stem cell transplantation (HSCT) can improve
immune tolerance by eliminating autoreactive CD27+ memory
cells and restructuring adaptive immunity (45). However, HSCT
is generally reserved for patients with severe therapy resistant SLE
due to its high risk of transplant-related mortality, infections, and
adverse effects such as allergies, bone pain and heart failure (46).

CAR T cell-therapy, which involves genetic modification of T
cells to target pathogenic B-cells, has also shown promise.
Nevertheless, it faces significant challenges, including high
treatment costs and the risk of severe adverse events such as
cytokine release syndrome (CRS), hemophagocytic
lymphohistiocytosis/macrophage activation syndrome (HLH/
MAS), and immune effector cell-associated neurotoxicity
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syndrome (ICANS) (47, 48). Moreover, current CAR-T
technologies are typically designed to target specific antigens or
pathways, which may not fully capture the complexity of SLE
pathogenesis (1, 49).

In parallel, MSC-derived EVs are emerging as a promising
therapeutic avenue, with growing evidence supporting their
immunomodulatory and regenerative potential in SLE (50). Given
that this area has been comprehensively reviewed elsewhere (50), it
will not be elaborated further here.

Mesenchymal stromal cells and their
therapeutic relevance in SLE

MSCs are multipotent cells of perivascular origin with
regenerative and immunomodulatory potential, making them
attractive candidates for novel therapies in SLE. This disease is
characterized by immune dysregulation and progressive organ
damage, where MSCs can offer a means to recalibrate the
immune system. Through the release of anti-inflammatory
cytokines and immunoregulatory molecules, MSCs can suppress
hyperactive immune responses and mitigate tissue injury. Their
dual regenerative and immunosuppressive capabilities highlight
their promise as a long-term therapeutic strategy.

MSCs are defined by expression of cellular markers such as
CD73, CD105, and CD90 (50), while lacking hematopoietic
markers like CD14, CD34, and CD45 (51). Additional markers,
including CD10, CD13, CD44, and CD146 (51) may vary with
tissue origin. However, MSC populations are inherently
heterogeneous, with behaviour influenced by on the surrounding
microenvironment (52). This variability contributes to inconsistent
therapeutic outcomes in clinical applications. Al-driven single-cell
profiling and predictive modelling can help classify functional MSC
subpopulations, standardize quality, and predict therapeutic
potency across diverse patient contexts.

A defining characteristic of MSCs is their tri-lineage
differentiation potential, enabling them to form bone, cartilage,
and adipose tissues. Beyond musculoskeletal repair, their paracrine
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effects contribute to cardiac and immune tissue recovery (50, 52,
53). Among adult MSCs, Wharton’s Jelly-MSCs (WJ-MSCs)
demonstrate higher bone marrow-derived MSCs, which remain
the most widely tested in clinical trials (51). In addition to
differentiation, MSCs exhibit self-renewal, long-term proliferation,
and extensive paracrine signalling. These properties are central not
only to tissue regeneration but also to the immunoregulation
required for SLE therapy. Here, Al-guided modelling of
differentiation pathways and culture conditions can optimise
expansion protocols, predict senescence, and enhance
reproducibility for clinical-grade MSC production (50, 51).

Toward optimized MSC-based therapy for
SLE

The therapeutic potential of MSCs lies in their ability to both
restore tissue integrity and rebalance immune homeostasis.
However, variability in MSC sources, culture conditions, and
patient responses remains a barrier to clinical success. By
integrating Al-based analytics with molecular and clinical
datasets, researchers can identify optimal MSC phenotypes,
predict immunomodulatory performance, and personalize
treatment strategies for SLE patients. This convergence of cell
biology and computational intelligence represents the next
frontier in developing consistent, safe, and effective MSC-
based therapies.

Therapeutic potential of MSCs in
autoimmune diseases

Immune evasion and homing ability

MSCs mainly regulate immune responses through multiple
mechanisms They promote Th2 differentiation, increase IL-10
secretion, and inhibit pro-inflammatory cytokines such as TNF-o
and IFN-y (51). Additionally, MSCs also suppress dendritic cell
maturation, B cell proliferation, and autoantibody production,
thereby re-balancing immune function (45, 54). Their
immunosuppressive properties is enhanced in inflammatory
environments rich in IFN-y, TNF-o, IL-1o or IL-1P, where they
modulate macrophages and neutrophils (55), suppress lymphocyte
activity (56), and release prostaglandin E2 (PGE2) to reprogram
macrophages toward an anti-inflammatory phenotype (57).
Immunoregulation occurs primarily via indoleamine 2, 3-
dioxygenase (IDO) in humans and nitric oxide (NO) in mice.
Inflammatory cytokines attract immune cells and MSCs to the
active sites where IDO or NO are expressed (55).

Their low immunogenicity is mainly due to the absence of MHC
class II and co-stimulatory molecules (B7-1, B7-2 and CD40),
enabling their use as allogeneic therapies (45, 58). Importantly, they
display strong homing ability, migrating to damaged or inflamed
tissues, where they recruit regulatory T cells (Tregs) and promote
angiogenesis, enhancing both immune control and tissue
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regeneration (50, 52). These combined properties position MSCs as
promising candidates for addressing the chronic inflammation and
organ damage central to SLE pathogenesis.

Implications for SLE therapy

The broad regenerative and immunoregulatory profile of MSCs
underscores their potential as an innovative treatment option for
autoimmune diseases. For SLE, MSCs offer a dual advantage:
controlling the hyperactive immune system while simultaneously
repairing damaged tissues. By harnessing these properties, and
further refining their application through artificial intelligence to
predict potency, personalise dosing, and optimise delivery, MSCs
could redefine therapeutic strategies for lupus and related
autoimmune disorders.

Application of MSCs in SLE therapy
Preclinical and clinical evidence

MSC therapy, alone or in combination with hematopoietic stem
cell (HSC) transplantation, has shown encouraging outcomes in
both animal models and human patients of SLE. In murine models,
these treatments have demonstrated significant improvements,
including elevated IL-4 concentrations, improved kidney and liver
function, and reduced osteoporosis. Additionally, they also lower
levels of anti-ds-DNA antibodies and antinuclear antibodies
(ANA) (45).

Therapeutic benefits extend to the reduction of plasma cells,
proinflammatory cytokines, and overall disease severity. In lupus
nephritis, MSC treatment has been associated with decreased
glomerulonephritis, reduced renal protein excretion, lower serum
creatinine and albumin levels, improved glomerular filtration rate
(GFR), and a significant reduction of anti-dsDNA antibodies (45,
59). Beyond renal manifestations, haematological complications
such as leukocytopenia, thrombocytopenia, and anaemia also
demonstrate improvement following MSC therapy, largely
through the expansion of Tregs.

Together, these findings underscore the potential of MSC- and
HSC-based interventions to not only suppress autoimmunity but
also restore immune homeostasis and organ function in SLE.

To provide an overview of recent MSCs clinical trials in SLE we
summarised key study features, endpoints, and safety findings
(Table 2). This comparative synthesis highlights both the promise
and the variability of MSC interventions. Although there are
variabilities in the treatment of some autoimmune diseases with
some showing no significant efficacy, SAEs are largely controlled with
no direct fatality linked. This shows immense promise, particularly
on the unharvested potential of MSCs in the treatment of SLE. There
is a total of 4 latest clinical trials with regards to MSCs treatment for
SLE. Three clinical trials recorded reduction in SLEDAI score while
one recorded no efficacy. In terms of safety, three studies recorded
good tolerance to the treatment of MSCs.
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TABLE 2 MSC Clinical Trials in the treatment of SLE.

10.3389/fimmu.2025.1654117

: . MSC
Disease Study (id/year) Key outcomes
source
T01741 All i M %, i I indices, | L Infections, hs (di -

SLE NC O 741857 ogeneic IV, 2 doses 10 CR 33%. 1mproved. renal indices, | Lowered nfections 3. deat' s (dls(f,a.se (60)
(Multicenter), (2014) =~ UC-MSCs SLEDAI scores, steroid taper related); no infusion toxicity
NCT00698191 Allogeneic IV, single | Lowered SLEDALI scores, | decreased

SLE 15 . i R No treatment-related SAE (61)
(2010), Phase I BM-MSCs dose proteinuria, 1 increased Treg populations

SLE NCT01741857 / UC-MSCs ‘Intra?fenous . MCR 32.5% and PCR 27.5% over 12 months Well-tolerated, no serious side ©2)
2016-2019 infusion SLEDALI scores decreased effects

Lupus NCT01539902 Allogeneic . 2 SAEs in MSC arm (pneumonia,

1V, 4 d 18 | No effi lacebo; early futilit 63

nephritis | (2017), Phase II UC-MSCs oses © etficacy vs placebo; early tutiity abscess) (63)

ACR20, American College of Rheumatology 20% improvement criteria; AD-MSCs, adipose-derived mesenchymal stem cells; AE, adverse event; BM-MSCs, bone marrow-derived mesenchymal
stem cells; CDAI, Crohn’s Disease Activity Index; EDSS, Expanded Disability Status Scale; IV, intravenous; IT, intrathecal; MCR, major clinical response; PCR, partial clinical response; MSC,

mesenchymal stem cell; QoL, quality of life; RA, rheumatoid arthritis; SAE, serious adverse event; SLE, systemic lupus erythematosus; SLEDAI, Systemic Lupus Erythematosus Disease Activity
Index; SPMS, secondary progressive multiple sclerosis; SSc, systemic sclerosis; TEAE, treatment-emergent adverse event; Treg, regulatory T cell; UC-MSCs, umbilical cord-derived mesenchymal

stem cells.

Source-dependent mechanisms

Distinct immunomodulatory pathways have been reported for
different MSC sources. For treatment of SLE patients using
umbilical cord-derived MSCs (UC-MSC), there is upregulation of
FLT3L levels, improvement in the number and function of
tolerogenic DCs, and a restored balance between Tregs and Th17
cells (62). High levels of TGF-b have also been detected in patients.
Moreover, the expression of miR-181a in T cells has been
upregulated, further contributing to the immunomodulatory
effects of UC-MSC that was recorded in an another ex-vivo
mechanistic study (64). In contrast, an ex vivo mechanistic study
using bone marrow-derived MSCs (BM-MSCs) has shown
suppression of the MEK/ERK signalling pathway and inhibition
of peripheral blood mononuclear cell (PBMC) activation.
Downregulation of genes such as CD70, ITGAL, selectin-L, and
IL-15 has also been observed, further illustrating the therapeutic
potential of BM-MSCs in SLE (45).

In SLE, autologous and allogeneic MSCs differ across several
key dimensions. Autologous MSCs often show high variability in
potency, influenced by patient age, disease activity, prior therapy,
and the expansion process (47, 65). Their function may also be
compromised by the inflammatory and epigenetic changes in the
lupus microenvironment (66, 67). In contrast, allogeneic MSCs,
derived from healthy donors, benefit from standardized
manufacturing, reduced variability, and are less affected by
disease-related priming, which contributes to more consistent
outcomes in clinical settings (47, 48).

From a practical standpoint, autologous MSCs require
harvesting and culture, delaying treatment (53), while allogeneic
products are available off-the-shelf, enabling rapid use in acute cases
(53). Immunogenicity is minimal for autologous cells, though
functional deficits limit their benefit (54). Allogeneic MSCs carry
a low risk of immune reaction due to their immune-privileged
nature, though monitoring remains important with repeated dosing
(68). Overall, evidence suggests that while autologous MSCs may be
suitable in select cases where patient-specific engineering is feasible
(69), allogeneic MSCs are generally favoured for SLE due to their
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reliability, availability, and superior performance in active
disease (69).

Innovation in SLE therapy

Treatment with MSCs has led to improved survival rates in both
SLE mice models and human SLE patients, alongside enhancements
in renal and liver function (45, 54, 70). A notable decrease in the
number of Th17 cells and an increase in Tregs have been observed
in both cases. Furthermore, genetically modified MSCs that
overexpress IL-37 demonstrate superior immunosuppressive
properties compared to standard MSCs or IL-37, suggesting that
genetically modified MSCs are more effective in managing SLE.

Problems associated with the use of
MSCs in SLE treatment

Culture and environment-dependence

The therapeutic potential of MSCs in SLE is strongly influenced
by their culture conditions and microenvironment. MSC behaviour
is highly plastic, with factors such as substrate stiffness, curvature,
biochemical agents, and epigenetic regulation shaping their
differentiation and immunomodulatory capacity (52).

Substrate and materials properties

MSCs cultured on stiffer substrates display enhanced actin-
myosin contractility, driving differentiation toward rigid tissue
lineages, while softer surfaces help preserve their regenerative and
immunomodulatory properties (52). For SLE applications,
inappropriate culture conditions may compromise their
immunosuppressive functions. Cells cultured in concave
environments demonstrate increased motility and reduced stress
fibre formation, while those grown on rigid convex surfaces (with a
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radius of about 500 microns) exhibit flattened nuclei and elongated
cell axes, predisposing them toward osteogenic consistency in SLE
patients (52). Such unintended lineage priming may reduce
therapeutic consistency in SLE patients.

External agents and biochemical
factors

Additives such as ascorbic acid, B-glycerophosphate, vitamin
D3, and bone morphogenetic proteins (BMPs) can bias MSCs
toward osteogenic differentiation (52). Without careful control,
such stimuli may interfere with their capacity to regulate immune
responses central to SLE treatment. Epigenetic regulation is critical
in determining MSC fate and therapeutic behaviour. Priming
strategies, such as pre-exposure to immunomodulatory cytokines
(e.g., IL-37), have been shown to enhance MSC efficacy in
autoimmune models, including SLE (65, 69). However, the
stochastic nature of MSC clonal expansion, exosome production,
and variable gene expression adds unpredictability to their
therapeutic outcomes.

Interestingly, allogeneic MSCs often outperform autologous
cells in SLE patients, showing greater ability to suppress immune
hyperactivation and ameliorate disease symptoms (47). This
suggests that intrinsic defects in patient-derived MSCs may limit
their therapeutic value unless corrected through careful priming
or modification.

Overall, these challenges highlight the need for optimised
culture systems, controlled priming protocols, and possibly AI-
driven predictive modelling to ensure MSCs consistently deliver
immunosuppressive and regenerative benefits in SLE therapy.

Variability in clinical outcomes

While MSC treatments for SLE have shown effectiveness in
some studies, they remain ineffective in others. In some cases, no
significant improvements were observed in proteinuria, serum
albumin, complement levels, Systemic Lupus Erythematosus
Disease Activity Index (SLEDAI) score, or renal function when
compared to placebo groups in randomised controlled trials (70).
Several factors may contribute to these inconsistent outcomes,
including the secretion of IL-6, susceptibility to ageing, the
unclear aetiology and pathogenesis of SLE, and the complex
microenvironment of SLE patients (59).

Standardisation issues in MSC preparation
and SLE aetiology

A major obstacle is the lack of standardised protocols for MSC
isolation, expansion, and administration. Differences in production
methods, often proprietary or undisclosed, make it difficult to
compare studies and interpret outcomes reliably (66). SLE
presents generalised symptoms but can vary significantly from
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patient to patient, making it challenging to identify a uniform
treatment. While MSC therapies hold promise, they have yet to offer
a complete cure for SLE (59).

The potential of MSC modifications
for SLE therapy

As discussed above, variability in MSC potency, sensitivity to
the disease microenvironment, and lack of standardisation limit
their therapeutic impact in SLE. To overcome these barriers, a range
of strategies has been developed to enhance MSC function
and consistency.

Approaches to modification

Several approaches for MSC modification are available
(Table 3). Generally, these modifications fall into four categories:
3-dimensional culture of MSCs, priming or pre-treatment of MSCs
with various biologics, genetic modification/engineering of MSCs,
and the combination therapy of MSCs with immunosuppressants.
The detailed breakdown of MSC modifications can be seen in
Supplementary Table 1, with references.

Limitations of MSC modifications

Gene modification of MSCs

Genetic modification of MSCs has been explored across
multiple disease models, demonstrating the feasibility of
enhancing therapeutic traits. While various methods are available
for genetic modification, increasing attention has been given to
CRISPR technology due to its ease of use, speed, and effectiveness
compared to other techniques (76). An increasing number of

TABLE 3 Overview of MSC modification strategies for enhancing
therapeutic potential.

Modification . Representative
Key mechanism
strategy outcomes
Spheroid growth 1 Increased efficacy in tissue
3D culture enhances cell-cell repair and metabolic disease
communication (69) models
Enh:
Priming . nhances Improved antibody inhibition
. immunomodulatory and . .
(cytokines, (SLE), 1 migration, tissue

migratory capacity (65,

biologics, miRNA
iologics, mi! ) 67)

regeneration
Overexpression of 1 Increased MSC lifespan,
migration, cytokine secretion,
improved outcomes in SLE,

Genetic survival/migration genes
(e.g., CCR1, CXCR4, IL-

37) (68,71, 72)

engineering
osteoarthritis

Co-administration with .
L . . Prolonged MSC survival,
Combination with steroids or .
. reduced senescence, superior
drugs immunosuppressants

73-75) efficacy vs single therapy
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CRISPR-modified MSCs have progressed to clinical trials (77).
Supplementary Table 2 highlights the breakdown of different
approaches used for the genetic modification of MSCs, while
Table 4 below outlines specific methods involving CRISPR/Cas9,
along with the modified genes, key findings, and the type of stem
cell modified. The application of CRISPR/Cas9 technology has been
widely explored across studies using human induced pluripotent
stem cells (iPSCs) and embryonic stem cells (ESCs), where genes
like SOX2, PAX6, OTX2, and AGO2 were knocked out to examine
their roles in developmental processes. These studies demonstrated
the feasibility of inducing gene knockouts at any stage of cell
differentiation. To simplify, Table 4 below highlights a simplified
breakdown of the various genetic modifications, as well as
parameters of consideration.

Opportunities for MSC CRISPR/Cas9
modification in SLE therapy

As indicated in Table 5, recent applications of CRISPR/Cas9
across diverse stem cell types highlight the effectiveness of genetic
modification in probing developmental mechanisms and modelling
disease. For example, targeted knockouts in mammary stem cells
and ESCs have clarified pathways regulating tissue differentiation
and congenital disorders, while precise mutations in hematopoietic
stem cells and iPSCs have revealed therapeutic avenues for blood,
neurological, dermatological, and cardiac conditions. Collectively,
these studies demonstrate that CRISPR/Cas9 enables both
functional dissection of complex biology and the development of
translational strategies. Building on this success, similar approaches
could be applied to MSCs, where precise gene modification may
enhance immunoregulatory properties and overcome current
barriers in treating SLE.

10.3389/fimmu.2025.1654117

Risks and limitations of CRISPR/Cas9

Although CRISPR/Cas9 is widely used for gene editing due to
its effectiveness, it carries certain risks. One of the major concerns is
off-target effects, which can disrupt the function of essential genes,
leading to unintended consequences. Additionally, incomplete
editing remains an issue, resulting in partial modifications that
can compromise the therapeutic potential of the treatment and
cause unpredictable outcomes. When CRISPR/Cas9 induces a
double-strand break (DSB) in the DNA, the repair process can
lead to insertions or deletions, potentially increasing the risk of
oncogenesis. Moreover, the introduction of the Cas9 protein and
guide RNA can provoke an immune response in the host organism.
These risks associated with gene-editing tools are concerning,
highlighting the need for improved strategies to mitigate these
challenges. Despite advances, existing MSC-based therapies still
face limitations such as heterogeneity, lack of standardisation, and
variable clinical outcomes. To address these challenges, we have
conducted a focused narrative review to synthesise advances in
artificial intelligence (AI) to improve MSC modification for
potential therapeutic use in SLE. Literature was identified through
PubMed, Scopus and Web of Science searches using a combination
of the terms “artificial intelligence”, “machine learning”, “deep
learning”, “neural network”, “predictive modelling”,
“mesenchymal stem cells”, “systemic lupus erythematosus”,”
lupus”, and” cell therapy”. Only English-language articles
were included.

Artificial intelligence

Artificial Intelligence (AI) has emerged as a transformative tool
in biomedical research, revolutionising how problems are

TABLE 4 Comparative overview of gene-editing nuclease platforms and delivery systems for stem cell modification.

Decision
) Advantages

point

Nuclease CRISPR/ Rapid design, multiplex editing, broad

platform Cas9 targetability (76).
TALENs High specificity, good for difficult loci (79).
ZFNs Mature, validated in some contexts (80).

Delivery Lentiviral / Stable long-term expression, efficient in

system Retroviral dividing/non-dividing cells (80, 81).
Adenoviral Large payload, high efficiency (85, 86).
Plasmid Low immunogenicity, suitable for RNP (88).

Limitations / risks

Off-target edits, DSB toxicity, possible
immune response to Cas9 (78).

Complex design, target site constraints
(79).

Design complexity, sequence constraints,
off-target risk (80).

Insertional mutagenesis risk, payload size
limits (82, 83).

Transient expression, immunogenicity
(87).

Lower efficiency, transient effect (89).

Best suited for...

Multiplex edits; exploratory targets; Al-
guided gRNA design (77).

Single precise edits where off-target
minimisation is critical (79).

Use where validated ZFN assets exist
(80).

Durable cytokine/chemokine
overexpression (e.g., IL-37) (79, 84).

Short-term functional boosts or
priming (85, 86).

Transient modulation without
integration (88).

CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9), TALENs (Transcription Activator-Like Effector Nucleases), and ZFNs (Zinc Finger
Nucleases) are outlined with their advantages, limitations such as off-target edits or double-strand break (DSB) toxicity, and contexts of optimal use. Delivery strategies include lentiviral and
retroviral vectors, adenoviral vectors, and plasmid-based ribonucleoproteins (RNPs). Additional considerations such as AI (Artificial Intelligence)-guided guide RNA (gRNA) design and
immunogenicity risks are noted. References correspond to supporting evidence for each approach.
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TABLE 5 Modulation and methodology of CRISPR/Cas9 modification of stem cells.

Modulation and

o Stem cell o
Genes modified type method of CRISPR/  Findings References
y Cas9
Human iPSC. Multiple genes can be targeted for inducible knockout
an iPSC,
SOX2, PAX6, OTX2, AGO2 ESC Knockout, electroporation Inducible gene knockout can occur in all cells at any (102)
differentiation stage
Knockout, plasmi M lter i I functi inst R ID
DO Human MSCs noc ou't plasmid SCs alter 1Tnmune regul ator?l un.ctlon against RSV by IDO (103)
transfection MSCs affect immune cell proliferation
Di ion of 1 ifferentiati
Mammary stem  Knockout, doxycycline- isruption of mamma'ry' gland differentiation
Ptpn22, MII3 X i K o Increased stem cell activity (104)
cell organoid inducible lentiviral vector L
Activating the HIF pathway
Supports systematic genome editing application for the
understanding of mechanisms underlying congenital disorders
HES1, ARX, GLIS3, MNX1, H ESC Knockout, Doxycycline PNDM and REX6 affected pancreatic progenitors’ formation, (105)
NGN3, PDX1, REX6, PTF1A uman inducible Cas9 and their further differentiation into functional endocrine cells
Haplo-insufficient requirement for PDX1 in pancreatic
endocrine differentiation
GFI1B Hematopoietic Point mutation Increasgd megakaryocyte differentiation and platelet (106)
stem cells production
Point mutation,
D d ine hydroxyl tein and extracellul
PTPS, DHPR Human iPSC electroporated Cas9 ecrea%e tyrosine hydroxylase protein and extraceliutar (107)
. dopamine levels
expression vector
Erameshift mutation Feasible in the development of autologous therapies for RDEB
COL7A1 Human iPSC . Efficient differentiation of iPSCs to somatic cells by CRISPR/ (108)
electroporated plasmid
Cas9
Uncovered and validated a role for cell surface transporters
SLCO1A2, SLCO1B3 Human iPSC Knockdown, Lentivirus SLCO1A2 and SLCO1B3 in doxorubicin-induced (109)

expressing Cas9-sgRNA

cardiotoxicity
Decreased cell death in iPSC-derived cardiomyocytes

iPSC, induced pluripotent stem cells; sgRNA, single-guide ribonucleic acid; RDEB, Recessive dystrophic epidermolysis bullosa; ESC, embryonic stem cells; HIF, hypoxia-inducible factor; RSV,

respiratory syncytial virus; IDO, indoleamine-2,3-dioxygenase.

CRISPR/Cas9 enables precise and versatile gene editing across multiple stem cell types. Applications span from understanding disease mechanisms to enhancing therapeutic functions,

illustrating its translational potential for MSC-based therapies.

approached and solved. Al refers to systems capable of performing a
wide variety of tasks typically done by humans, simulating human
cognitive abilities while operating autonomously (110). AI
technologies include machine learning, natural language
processing, and deep learning, which enable the system to learn
from existing data, make decisions, and improve outputs over time
without explicit programming (111)At the core of Al is machine
learning, which involves analysing large datasets, recognising
patterns, and producing predictions and decisions. Machine
learning is further categorised into supervised and unsupervised
learning. Supervised learning involves training algorithms on
labelled data, while unsupervised learning detects hidden patterns
in data without specific instructions or human involvement (112).
Another branch, reinforcement learning, enables AI systems to
learn through trial and error, generating actions based on feedback
(113, 114). Deep learning, a subset of machine learning, uses
artificial neural networks with multiple layers to model complex,
non-linear relationships in data (115). Neural networks mimic the
human brain, with layers of “neurons” processing data inputs (116).
Deep neural networks (DNNs) are particularly powerful, as they
employ many hidden layers to learn hierarchical representations of
data. Initial layers learn basic features, while subsequent layers

Frontiers in Immunology

combine them to identify more abstract concepts, enabling deep
learning models to achieve unprecedented accuracy (116). Deep
learning is renowned for handling vast, complex datasets and
detecting patterns across millions of data points without manual
feature engineering (117, 118). One of its key advantages is its
ability to continuously learn and evolve with the input of more data.
The system can automatically adjust and improve based on new
inputs, making it highly adaptable and effective over time (119).

Role of Al in SLE treatment

SLE is a complex autoimmune disorder with heterogeneous
symptoms and manifestations that affect multiple organs (3). Al can
help in understanding and managing the complexity of the disease
by analysing a large group of multi-modal datasets, including
clinical, genetic and biomarker information, to identify patterns
and correlations (120). The heterogeneous nature of SLE means the
treatment options vary among patients (121). Al can significantly
tailor personalised treatment plans based on individual patient
profiles, leveraging diverse datasets for precise treatment selection,
improving efficacy and reducing the risk of adverse effects (122).
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Several studies have demonstrated the potential of AI in the
diagnosis and treatment of SLE (Table 6).

Several studies have used Random Forest, which is an AI model
that constructs multiple decision trees to improve prediction
accuracy and handle high-dimensional data (123). Studies use this
predictive model to identify individuals at risk of SLE development
using genetic data and clinical features, environmental factors and
family history that are fed into the algorithm. The data includes the
dependent variable, which is SLE development, along with
independent variables such as genetic markers, family history,
and environmental factors (90). RF has also been used in
predicting outcomes of lupus nephritis (LN) based on clinical
variables, treatment histories, and lab results, with dependent
variables being lupus nephritis outcomes (renal function
progression) and independent variables such as age, treatment
type, duration, and lab results (91). It also predicts the early flare
of lupus (124) and stratifies the risk of renal flare (95). Apart from

10.3389/fimmu.2025.1654117

RF, the use of Gradient Boosting Machines (XGBoost) was recorded
in studies predicting the 1-year outcomes of lupus nephritis (LN)
based on EHR data, clinical metrics, laboratory data, and treatment
data. The dependent variable is based on the 1-year lupus nephritis
outcome (positive/negative), while the independent variable is the
demographic data, treatment type, and lab results. XGBoost is used
to boost algorithms that build models sequentially to improve
accuracy by correcting prior errors (94). Although powerful, tree-
based methods may be difficult to interpret, sensitive to class
imbalance and at risk of overfitting if not carefully tuned (125, 126).

To overcome the risk of overfitting, LASSO regression applies a
penalty to reduce overfitting and retain only the most significant
prediction. In SLE, it has been used to stratify renal flare risk using
biomarkers, clinical variables, and patient history as the dependent
variable while biomarker, age and treatment type as the
independent variable (95). While these models are transparent
and effective in small datasets with many variables, they may

TABLE 6 Applications of machine learning models in systemic lupus erythematosus (SLE). Different ML models in SLE research are summarised, listing

down their input, output and key findings.

Input data

ML model

Study / application

(independent

variables)

Output (dependent variable) = Key findings / uses

SLE risk prediction
features
Random Forest

(RF) LN prognosis

Genetic markers, family history,
environmental factors, clinical

Age, treatment type, duration,
lab results, treatment histories

Identifies individuals at
risk of SLE development
(90)

SLE development

Predicts LN outcomes

LN outcomes (renal function progression) ©1)

Flare prediction Clinical/lab data

Gradient Boosting
Machines
(XGBoost)

LN 1-year outcome prediction
metrics

LASSO Regression | Renal flare risk stratification

patient history

Allograft survival

Artificial Neural

Demographics, treatment type,
lab results, EHR data, clinical

Biomarkers, age, treatment type,

Demographics, history of
transplant, treatment response

Predicts lupus and renal

Risk of lupus and renal flare flares (7, 92, 93)

Improves prediction by

1-year LN outcome (positive/negative) sequential boosting (94)

Prevents overfitting,
selects significant
predictors (95)

Renal flare risk

Predicts kidney transplant
3-year allograft survival outcomes in SLE patients

(96)

Networks (ANNs)

Hospital readmission
comorbidities)

Long Short-Term

Memory (LSTM) Hospital readmission (time-series)

history, outcomes)

EHR data (treatment history,
demographics, disease severity,

Time-series EHR data (treatment

Predicts hospital

. o readmissions and captures

Hospital readmissions P. .
long-term dependencies in

sequential data (97)

Captures long-term
dependencies in sequential
data (97)

Hospital readmission

K-means
Clustering

Disease activity grouping

Genetic markers, biomarkers,
clinical signs

Risk of disease activity

Groups patients by disease
activity risk (98)

Sparse PLSDA

Recurrent Neural
Networks (RNNs)

Support Vector
Machines (SVMs)

Disease activity classification

Chronic damage prediction

Disease control factors

Frontiers in Immunology

Clinical data, biomarkers, patient
history

Longitudinal clinical data, lab
results, patient history

Demographics, disease severity,
treatment regimens

10

High vs low disease activity

Chronic damage progression

Comprehensive disease control

Classifies patients by
disease activity (99)

Predicts long-term chronic
damage in SLE (100)

Identifies factors
influencing disease control
(101)
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discard relevant but weaker predictors that can be unstable across
validation folds (127). Studies have also shown the use of artificial
neural networks (ANNs) that mimic brain-like processing with
layers of neurons to forecast outcomes based on patterns in data.
Several studies have been recorded using Artificial Neural Networks
(ANNS) successfully.

A study by Tang, Poynton (96) predicted the survival rate of a 3-
year allograft in kidney transplant recipients. The predictive
modelling used data mining methods, such as classification trees,
logistic regression, and artificial neural networks, to analyse the data
of recipients with SLE and kidney-related complications. The data
used for ANNs is patient demographics, clinical parameters, and
transplant history, with allograft survival (3 years) being the
dependent variable and demographics, history of transplant, and
treatment response acting as independent variables (96). ANNs
were also used in predicting hospital readmissions of SLE patients.
ANNS processed EHR data that includes patient history, treatment,
and clinical outcomes, with hospital readmissions as the dependent
variable and treatment history, demographics, disease severity, and
comorbidities as independent variables (97). Long Short-Term
Memory (LSTM) was also used to predict hospital readmission by
retaining long-term dependencies in data that are critical for time-
series predictions (97). Despite their significant value, deep learning
models require large, well-curated datasets and are prone to
overfitting in small study groups (128).

K-means Cluster Analysis is another significant AI model that
uses clustering techniques to group similar cases for pattern
identification. A study by Toro-Dominguez, Martorell-Marugan
(98) identified the risk of disease activity using data obtained from
genetic data, clinical records, and biomarkers. The key dependent
variables are the level of disease activity risk, while the independent
variables are genetic markers, biomarkers, and clinical signs that are
fed into the AI model. One of the limitations is that it requires
longitudinal gene expression from multiple time points per patient,
limiting its clinical applicability to classify new patients (98). Similar
studies were done using Sparse Partial Least Squares Discriminant
Analysis (PLSDA),which combines dimensionality reduction with
discriminant analysis to classify high disease activity based on
clinical and biomarker data and patient history (99).

Apart from that, Recurrent Neural Networks (RNNs) were used
to predict chronic damage in SLE. RNNs use feedback loops to
process sequential data and predict long-term chronic damage. The
data that was used for the AI model includes longitudinal clinical
data, lab tests, and patient history. The dependent variable is the
progression of chronic damage over time, while the independent
variables are the disease activity, lab results, and treatment history
(100). Other AI models involved in SLE prognosis include support
vector machines (SVM) that were used to identify relevant factors
influencing lupus that provide a comprehensive disease control
achievement. The data include patient demographics, clinical
outcomes, and treatment regimens, based on dependent variables
(comprehensive disease control) and independent variables (age,
severity of disease, and treatment regimens). SVM finds the optimal
hyperplane to classify data and identify key factors influencing
disease control (101). SVMs are usually effective in medium-sized
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datasets. SVMs are sensitive to parameter selection, class imbalance
and are generally difficult to interpret beyond linear models (129).
Below, we present Table 5, simplifying the above corpus for
easy readability.

The success of these AI models in predicting SLE prognosis and
treatment highly depends on robust data pre-processing techniques,
given the complex, high-dimensional and multi-modal nature of
SLE datasets. Data cleaning is an important step in data pre-
processing as it removes or corrects errors, missing values and
inconsistencies, ensuring the integrity of the datasets. For instance,
certain clinical data may contain missing patient records and
inconsistent lab results that need to the addressed. Thus,
imputation methods are used to fill in missing values, especially
in large datasets that are incomplete. Common imputation methods
include median imputation, data removal and multiple imputation
using chained equations (130). Moreover, data normalisation is
done in AI models, particularly RF or SVM, to prevent bias by
variables with larger numerical ranges. Data normalisation ensures
variables measured on different scales are transformed into a
consistent range (131). Apart from that, machine learning utilises
feature selection, which plays a significant role in reducing
dimensionality, allowing AI models to focus on the most relevant
variables. This approach enables AI models to improve
performance by concentrating on the most relevant variables.
Common methods include feature elimination (RFE) and
principal component analysis (PCA), which help in reducing
noise and highlighting key predictors of SLE progression or
treatment response (132). Data augmentation is also used to
enhance model generalisation by artificially increasing the
datasets through techniques like bootstrapping or introducing
slight variations in data, especially in small sample sizes in SLE
datasets. Splitting the data into training, validation and test sets can
ensure unbiased AT model performance and generalise well in new
data (132). These data pre-processing steps can help AI models
effectively handle SLE’s complexity.

The advances in AI applied to SLE integrate complex datasets
ranging from genetic and biomarker profiles to predicting disease
risk, stratifying patients and forecasting outcomes. Importantly,
many of these approaches converge on immune pathway activation
and patient heterogeneity, which are also a central part of the
response to cell-based therapies. The ability of AI to uncover
mechanistic insights into patient-specific patterns provides a
foundation for extending its use in MSC therapy, where
optimising immunomodulatory function and tailoring
interventions to individual disease states remain key challenges.

Role of Al in MSC modification

Al is revolutionising the field of MSCs modification by
providing innovative solutions to enhance the precision,
efficiency, and scalability of genetic and cellular alterations. MSCs
are widely studied for their potential in regenerative medicine and
autoimmune disease therapies due to their immunomodulatory and
differentiation capabilities. However, the optimisation of MSCs for
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specific therapeutic outcomes presents numerous challenges,
including off-target effects in gene editing, predicting cell
behaviour, and personalising treatments (78, 133). Al, particularly
through machine learning (ML) and deep learning (DL), is
increasingly being applied to address these challenges, offering
powerful tools for accelerating MSC modification and improving
therapeutic outcomes that can be observed in Figure 1. A summary
of ML and DL tools used in MSC modification can be observed
in Table 7.

Predictive modelling

Al-driven predictive models have proven to be highly effective
in predicting outcomes in stem cell therapies. The study by Shouval,
Labopin (144) proved the use of alternating decision tree (ADT)
machine learning algorithms to a large cohort of patients

Predictive Modeling

@@

Predict transplant
Machine Learning

related mortality in
Input Data @

HSCT patient
Neural Network

Predlct
therapeutic
efficacy of MSC
transplantation

10.3389/fimmu.2025.1654117

undergoing allogeneic HSCT. The ADT model integrated clinical
variables such as disease stage, donor type, cytomegalovirus
serostatus and performance scores to predict 100-day overall
mortality with higher accuracy than conventional EBMT scoring.
The algorithm was not only predictive but also interpretable,
enabling individualised probabilistic risk estimates through a
user-friendly online interface. A similar predictive system has
been developed for MSC therapies. For example, a neural network
model was developed to predict the therapeutic efficacy of MSC
transplantation in cartilage repair based on existing results in
animal and human clinical trials. The model incorporated key
factors such as implantation cell number, defect area, defect depth
and patient body weight and was able to impute missing data while
estimating prediction. Importantly, it provided clinicians with
individualised predictions of therapeutic outcomes and
recommended treatment parameters such as optimal implantation
dose for effective repair. This Al-based model demonstrates how

(Colony Formation and Differentiation )

@

Detection of
high quality
iPSC colonies

—>

iPSC Culture \A

Distinguish
iPSCs from
differentiating
cells

Role of Al in MSC Modification &

Gene Edmng

Machine Learning

Predict on-target and
¥ off-target effects of

Input Data CRISPR gRNAs

Predict stage of
differentiation
of iPSCs

( Cell Function and Quality )

—> —_—> -/
Predict functionality

of retinal pigment

Deep Learning

(

Biosafety and Bio efficacy Risk
Personalised Treatment

MSCs Cell Deep Learning bl
epithelial cells
Images Framework derived from iPSCs
—>
& Screen
functionality of
MSC cell line

—->
Analyse the

Machine Learning

Input Data

Deep Learning

FIGURE 1

y\_
22 F

Characterise

>

heterogenous
biosafety of MSCs based on
stem cells protein levels
DODONE
— N
Predict
senescence
Predict MSC markers in
responses to MSCs
different
therapeutic
compounds

Schematic diagram of the studies on the role of Al in MSC Modification. The schematic figure summarises different roles of Al in the modifications of
MSCs, such as gene editing, cell function and quality, predictive modelling and colony formation and differentiation. (Created using “Biorender.com”).

Frontiers in Immunology

12

frontiersin.org


http://www.Biorender.com
https://doi.org/10.3389/fimmu.2025.1654117
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Rajeev Kumar et al.

TABLE 7 ML and DL applications in fine-tuning MSC modification.

Task

Predict 100-day mortality
after HSCT

Predict MSC
transplantation efficacy in
cartilage repair

Detect iPSC colony

ML/DL model

Alternating Decision Tree
(ADT)

Neural Network

Input data

Clinical variables: disease stage,
donor type, CMV serostatus,
performance score

Cell number, defect area, defect
depth, patient body weight

Output

100-day mortality

Therapeutic efficacy,
optimal implantation dose

10.3389/fimmu.2025.1654117

Key findings

Outperformed EBMT score;
interpretable predictions; personalised
risk estimation (126)

Imputed missing data, guided
personalised dose recommendations
(134)

Higher accuracy than traditional

formation CNN Time-lapse culture images Colony detection methods (135)

DetecF high-quality iPSC V-CNN Stem cell culture images Colo'ny ql'lality AccurAately identified high-quality

colonies classification colonies (136)

Distinguish between

pluripotent vs CNN Microscopy images Differentiation stage 99% classification accuracy (137)

differentiating stem cells

Predict iPSC-to-hepat Enabled real-ti itoring of
redict o-hepatocyte CNN Morphological features Differentiation stage nabled rea-ime monitoring o

differentiation stage

differentiation (138).

Predict the function of
RPE cells from iPSCs

Screen MSC functionality

Convert microscopy
images to protein-level
data

Predict MSC senescence
markers

Classify senescence states

Predict on-/off-target
effects in CRISPR

Enhance
immunomodulatory effects
of MSCs

Deep Neural Learning

End-to-end DL

DL analysis

DL

Cascade R-CNN

ML/DL predictive models

ML/DL predictive models,
i.e. DEEP-CRISPR/
CRISPR-ML

Quantitative microscopy images

Live-cell microscopy

Light microscopy images

Phase-contrast microscopy —
immunofluorescence prediction

Multicellular microscopy images

gRNA features, sequence data,
experimental conditions

MSC genome

Functional quality

Functional classification

Protein quantification

Senescent vs non-
senescent classification

Senescence state
classification

On-target vs off-target
predictions

1 Migration, survival,
proliferation, | T-cell
differentiation

Rapid, non-invasive functionality
prediction (139)

Ensured therapeutic quality before
transplantation (140)

Enabled assessment of MSC
heterogeneity (141)

Accurately monitored senescence in real
time (142)

Automated single-cell detection and
senescence classification (143)

Improved CRISPR specificity, optimised
gRNA/Cas9 design (133-135, 144)

Al-guided CRISPR editing enhanced
MSC therapeutic traits (136, 137)

predictive modelling can guide personalised MSC therapies, assist
in clinical decision-making and be adapted for broader
applications (134).

Colony formation and differentiation

Apart from predictive modelling, Al has been used to
automatically detect induced pluripotent stem cell (iPSC) colony
formation and differentiation by monitoring stem cell cultures more
accurately. A study by Fan, Zhang (135) developed a non-invasive
machine-learning model using CNN as a classifier to detect iPSC
colonies more accurately than traditional methods. while Kavitha,
Kurita (136) also developed a V-CNN machine-learning model that
accurately detected high-quality iPSC colonies. Deep learning
neural networks have also proven to be highly accurate in
identifying early stem cell differentiation. A study by Waisman,
La Greca (137) used convolutional neural networks (CNNs) to
distinguish pluripotent cells from differentiating cells with 99%
accuracy. These studies demonstrate how Al integrates data
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acquisition (time-lapse imaging of culture), modelling (CNN-
based classification), and feedback (real-time colony quality
assessment) to support cell culture decision making. Translating
this workflow to MSC cultures, AI could enable real-time
monitoring of cell state transitions, ensuring cells retain their
therapeutic phenotype and inform time interventions such as
media replacement, supplementation or reprogramming (145). A
similar study used a similar deep learning model to predict the stage
of differentiation of iPSCs that were undergoing differentiation
towards hepatocytes based on morphological features of cell
cultures (138).

Cell function and quality

Apart from early detection of cellular differentiation, AI can be
adapted with non-invasive techniques to predict cell function and
quality during MSC-based therapies. MSCs are known for their
heterogeneity in functions and lack appropriate standardisation
methods of MSC lines. A study by Schaub, Hotaling (139)
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demonstrated that deep learning models could predict the function
of retinal pigment epithelial cells derived from iPSCs using
quantitative microscopy by analysing cell images to assess MSC
functionality, providing a rapid and reliable method to ensure the
therapeutic quality of cells before transplantation. A similar study
developed an end-to-end DL framework to screen the functionality
of MSC cell lines based on images obtained from a live-cell
microscope (140). Another study recorded the use of Al to
convert transmitted light microscopy images of the protein levels
of MSCs into measurements that can be quantified to characterise
the heterogeneous MSCs (141). The heterogeneity of MSCs also
affects the rate of senescence of MSCs. A study by Weber, Lee (142)
developed an AI model that predicts the immunofluorescence
images of senescence markers in MSCs that are obtained from
phase contrast images. The AI model successfully differentiated
the senescent and non-senescent population of MSCs, which can
further improve the therapeutic potential of MSCs. Complementing
this, a separate study introduced a morphology-based Cascade
R-CNN algorithm that automatically detects single cells of
varying shapes within multicellular images and classifies their
senescence state (143). These methods illustrate how image-based
deep learning can be integrated into the MSC processing pipeline
for real-time senescence monitoring.

Gene editing

Gene editing is a powerful tool that allows precise insertion,
removal and deletion of genes in a DNA sequence (92). The most
advanced gene-editing technologies include the zinc-finger
nucleases (ZFNs), transcription activator-like effector nucleases
(TALENS), and CRISPR-Cas-associated nucleases (CRISPR/Cas9)
(93). Among these 3 gene-editing technologies, CRISPR/Cas9 is the
most used gene-editing technology that is easy to use and more
effective comparatively (76). CRISPR technology has shown an
upward trend and positive progress, producing numerous clinical
trials (77). Gene editing can be used to treat multiple human
diseases, especially those caused by genetic mutations. CRISPR
can knock down defective genes and replace these genes in the
cells with new genes in diseases such as sickle cell anaemia and
thalassemia. Furthermore, CRISPR can target genes responsible for
metabolic syndrome, neurodegenerative diseases and cancer. Lastly,
the successful use of CRISPR has been recorded in treating immune
system diseases such as acquired immunodeficiency syndrome
AIDS caused by human immunodeficiency virus (HIV) by
creating resistant cells to infections (77, 146). The notable
outcomes of CRISPR/Cas9 in other diseases have paved the way
for its potential use in SLE. A study by Harris, Koelsch (147) used
CRISPR-Cas9 to knock down CXorf21 genes that are involved in
the X chromosome in SLE disease. The knockdown of this gene led
to the reduction of TNF-o. and IL-6 expression.

Although gene editing technologies have shown potential for
future treatment, the risks of these technologies are very much
apparent. The risk of off-target effects is high due to the potential of
Cas9 to bind and cleave unintended genomic binding sites that lead
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to undesirable gene functions (148). To overcome this risk, AI can
be integrated into the CRISPR/Cas9 to regulate and refine
numerous gRNA features that are identified to affect the binding
and cleaving efficiency of gRNA that produces off-target effects. Al
using predictive algorithms can predict various on-target and off-
target effects of CRISPR gRNAs in silico thus, improving its
specificity (149). The gRNA is highly affected by many factors,
such as cellular environment, gRNA, sequence of target and
experimental condition (150). Machine learning models can
include all these data from various factors to successfully predict
the on-target and off-target effects. Machine and deep learning-
based algorithms have been successfully used in CRISPR
technologies to predict on-target efficacy (47, 150).

Optimising gene editing technologies using Al can significantly
improve its potential to be developed as personalised medicine. AI
can predict treatment responses of patients depending on their
genetic profiles and health history. CRISPR can modify genes
depending on the profile of individual genes (151). The notable
potential of integrating Al in CRISPR poses benefits in optimising
gRNA designs, Cas9 variant selection and the prediction of
potential off-target sequences (152).

The integration of AI and CRISPR addresses the limitations of
CRISPR technology while creating a safer alternative in the world of
genome editing. The potential of gene editing technologies has
paved the way for improving MSCs by gene modifications. CRISPR
can improve MSCs by editing certain genes to express enhanced
immunomodulatory effects via the effect of IFN-r priming (153).
Apart from enhancing the immunomodulatory effect, CRISPR/
Cas9 can manipulate genes that are related to migration, survival,
proliferation and triggering either anti-inflammatory or pro-
inflammatory responses while reducing the differentiation of T
cells (153, 154). These findings suggest the possible improvement
of CRISPR editing of MSCs using Al to ensure desired outcomes in
MSC modifications.

Biosafety and bio efficacy risk &
personalised treatment

The use of MSC therapies poses serious biosafety risks due to
their risk of differentiating aberrantly and the potential adaptation
to the microenvironment, possibly aggravating any existing
condition. Al has the potential to assess the biosafety and bio-
efficacy of MSC therapies, ensuring that modifications made to
MSCs do not lead to unintended side effects such as tumorigenesis
and teratogenesis (47).

Al-guided MSC engineering- current
efforts and potential improvements

Incorporating Al into MSC research can help identify optimal
modification techniques while optimising the microenvironment
for the development of stem cells without compromising cellular
integrity. AI also plays a role in drug screening and treatment
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personalisation. AI models ‘predict’ via noticing patterns, therefore
multi-omic datasets (transcriptomic, proteomic and epigenetic
profiles) can be added for AI to form meaningful analyses,
uncovering subtle determinants of MSC fate and functionality
that are obscure through conventional means (155). This
integration could potentially serve as regulatory checkpoints that
dictate MSC differentiation, proliferation and immunomodulatory
potential, which can inform the design of targeted interventions for
disease-specific applications.

Al can also predict MSC responses to different therapeutic
compounds and gene editing techniques (156). For example,
applied machine learning has analysed the effects of drugs on
iPSC-derived cardiomyocytes, which achieved a classification
accuracy of 79%. This model can be adapted to MSC-based
therapies to predict the responses of cells to various drugs or
gene-editing techniques (157). Similar approaches could in theory
be adapted following the 4 classifications above, reducing time and
effort taken on in vitro and in vivo testing.

Beyond drug response prediction, Al has also been applied to
modelling immune pathway activation, which might hold promise
in informing MSC engineering. Previous efforts been successfully
done in the profiling of sepsis immunity using supervised learning
algorithms such as Gradient Boosting Trees (158). Another proof of
concept was done by Yifeng Tang et al., whose group successfully
applied quantitative structure-activity relationship (QSAR) models
to identify innate immunomodulators. Signalling cascades that are
most relevant for enhancing or suppressing specific immune
responses can be identified, which would largely guide the
rational design of MSC modifications. Pathways that serve as
negative feedback loops for aberrant inflammation for example
can be upregulated, which would serve fastidiously in stamping out
the problem.

The advent of machine learning models can pioneer the
personalisation of MSC-based therapies, tailoring treatment
regimens to the individual’s cellular microenvironment and genetic
profiling for better outcomes. These noteworthy outcomes of Al in
MSC modification can be potentially applied to further improve MSC
treatment in SLE. Tailoring treatments could potentially be done at a
holistic and in-detail manner, maximising efficacy while minimising
risks such as flare-ups or tumorigenesis. This invokes a paradigm
shift toward precision cellular medicine, which holds great potential
in the transformation of MSC therapies from experimental
interventions into safe, standardised and patient-centric treatments.

The future potential of Al-guided
modification of MSC in the therapy of
SLE

The modification of MSCs has emerged as a promising
approach in regenerative medicine, yet the outcomes of these
modifications vary significantly across different methods. This
inconsistency is largely due to the intricate interplay between
MSCs and the imposed modifications, which can alter the
autocrine and paracrine signalling mechanisms within the culture.
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Traditionally, researchers have relied on fundamental principles of
immunology and molecular biology to guide these modifications,
often making educated guesses that, while effective in a general
context, still leave considerable room for optimisation.

This is where AI, particularly deep learning, offers exciting
potential. By analysing vast datasets of past successes and failures,
Al can provide data-driven predictions or even perform zero-shot
learning, inferring optimal modification strategies for MSCs. As Al
systems continuously improve, they can suggest increasingly effective
approaches tailored to specific conditions, such as SLE. Over time,
these models will become more refined, offering more precise and
cost-effective solutions, while also reducing the time and resources
needed to develop individualized treatment plans. This integration of
AT holds the promise of revolutionizing MSC modification strategies
for the treatment of SLE, driving both deeper scientific understanding
and clinical breakthroughs (Figure 2).

Identifying key pathways and gene
modules for targeting

Machine learning has significantly proven to predict SLE
disease activity based on gene expression data to overcome the
issue of heterogeneity among patients. AT models like generalised
linear models (GLM), k-nearest neighbours (KNN) and RF
classifiers were trained on SLE patient gene expression data from
multiple SLE datasets to identify important genes involved in SLE
disease activity. These gene expression profiles must be understood
as they provide a potential for therapeutics in SLE (159). Critical
genes associated with SLE activity that are identified through
machine learning can serve as targets for gene editing
technologies. For example, a study used BioGPS, STRING
database, Protein-Protein Interaction (PPI) and KEGG
enrichment analysis to identify potential therapeutic genes for the
treatment of SLE. MSCs can be modified specifically to carry these
therapeutic genes that can be expressed, increasing their efficacy in
treating SLE (160). Moreover, overexpressing certain enzymes in
MSC-derived extracellular vesicles could enhance their therapeutic
potential for SLE patients (161). miRNAs in MSC-derived
extracellular vesicles (EVs) could be an effective tool for both the
identification of key pathways and gene modules that mediate the
pathogenesis of SLE. Al can be used to understand the different
miRNAs, such as miR-146a-5p, miR-19b, and miR-20a, that are
required to be overexpressed or inhibited in MSC-derived EVs for
improved therapeutic potential in SLE patients (162, 163). The use
of Al to identify these miRNAs could revolutionise the discovery of
more therapeutic miRNAs and understand their effects and
outcomes in SLE patients before treatment.

Understanding gene expression profiles identified by machine
learning of SLE patients potentially allows for the priming of MSCs
to enhance their therapeutic efficacy. By upregulating genes
involved in immune modulation, MSCs can be tailored to better
meet the therapeutic needs of SLE patients. For example, priming
MSCs with IFN-y has been shown to increase the expression of class
IT HLA molecules, contributing to immune system homeostasis
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anti-dsDNA and complement levels that will be analysed using an Al model. The MSC modification is tailored accordingly based on the specific data
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(164). Moreover, machine learning classifiers can assess the efficacy
of primed MSCs by analysing their post-priming gene expression
profiles. By comparing these profiles to established markers of MSC
efficacy, machine learning models can predict the potential of
primed MSCs to modulate SLE activity effectively.

Improving MSC therapy precision
through predictive models

A Swedish study (165) obtained genotype data from SLE patients
(1160 people) and healthy controls (2711 people) using the Illumina
Immunochip. After quality control, 134523 SNPs that are either
located in or are close to 125000 genes related to the immune
system are selected for further analysis. The random forest model is
chosen to first classify individuals as either SLE patients or healthy
individuals, with its performance evaluated using the Area Under
Curve metric (AUC), which ranges from 0 to 1, with 0.5 indicating a
random prediction and 1 representing a perfect prediction. The model
scored 0.78 in SLE prediction, which was better than the logistic model
(p-value 0.0028, DeLong’s test), which only scored 0.74. AUC also
reached 0.91 for the random forest model in the detection of nephritis
within SLE patients, compared to the logistics model which only
scored 0.70. The ability of random forest models to predict SLE
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through AUC suggests that predictive biomarkers derived from
genotype or gene expression data are accurate and feasible. This
information could lead to patient stratification based on genetic and
gene expression profiles that could optimise MSC therapy, tailoring
treatment to those most likely to benefit. The predictive biomarkers
can potentially create a biomarker-guided selection of MSC
(e.g., based on secretome profiles or expression of specific
immunomodulatory genes) that can enhance therapeutic efficacy.
After successful prediction, the study proceeded to use Al to
identify risk genes for SLE by quantifying how strongly a gene
region contributes to SLE risk based on SNP genotype data. 40 top
genes associated with SLE were identified, and from within 25
known SLE-associated genes were validated, and novel candidate
genes (i.e. ZNF804A, ANK3 and MANF) were identified. 12 of the
top 40 genes were associated with other autoimmune diseases.
Within the 40 genes, 15 have differential expression between B
cells and T cells (enrichment in B cells), and 30 were expressed in B
or T cells. 6 were regulated by cis-regulatory SNPs. These risk genes
showed enrichment for allele-specific expression and cell-type-
specific regulation, supporting functional relevance in SLE
pathogenesis. This study proved the potential of Al in identifying
differentially expressed genes in B and T cells, and cis-regulatory
SNPs linked to immune cell-specific activity in SLE. This
information could potentially lead to the engineering of MSCs to
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express factors that specifically modulate B and T cell activity and
target cytokine signalling pathways that are identified as critical in
SLE pathogenesis.

Targeting immune cell populations

In another study by Kegerreis, Catalina (159), SLE disease
activity is predicted using gene expression data from Gene
Expression Omnibus (GEO), taking into consideration active and
inactive SLE (SLEDAI > 6 for active,<6 for inactive). The data
selected consists of purified cell populations (CD4, CD14, CD19,
CD33 and LDG) and whole blood (WB) samples. R statistical
package is used for Quality Control, normalisation and filtering
on the raw microarray data, and then LIMMA R packaged is used to
perform Differential Expression analysis (DE). Weighted Gene Co-
expression Network Analysis (WGCNA) is then used to identify
gene modules in purified cell populations. Gene Set Variation
Analysis was then conducted to test the enrichment of cell-
specific gene modules in WB datasets. 3 classifiers are trained and
validated through 10-fold cross-validation and study-based cross-
validation, with them bringing Elastic Generalised Linear Model, k-
Nearest Neighbours and Random Forest.

The clustering of patients based on DE genes fails to reliably
separate active from inactive disease states, and although several
gene modules correlate with SLEDAI, they cannot fully distinguish
active and inactive patients in individual analysis. Random Forest
achieved 83% accuracy using raw gene expression data and
identified critical genes and modules to SLE pathogenesis, which
include interferon-related pathways and monocyte-derived
modules, both positively and negatively associated. The use of Al
to identify the gene modules associated with the leukocyte
population monocyte-derived modules, interferon-related
pathways) could assist in the engineering of MSCs to target
immune cell populations. For instance, MScs could be modified
to reduce the activity of monocytes, which play a significant role in
autoimmune response in SLE. MSCs could also be modified to
regulate B and T cells that reduce autoantibody production and T
cell activation. Thus, improving patients’ clinical outcomes.

The noteworthy evidence of the use of Al in SLE represents a
significant advancement, as it enables the analysis of large and
complex datasets to identify critical insights. These insights can be
leveraged to modify MSCs, tailoring their therapeutic properties to
align with the specific needs of individual patients. By integrating
Al-driven data analysis with MSC therapy, a more personalised and
effective treatment approach for SLE can be achieved, ensuring the
therapy is optimised based on patient-specific genetic and
molecular profiles identified through AL

Challenges and ethical considerations

The use of gene-editing approaches, which although powerful,
remain imperfect. Off-target editing or insertional mutagenesis have
yet to be completely resolved. For mitigation, orthogonal detection
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platforms, such as GUIDE-seq and CIRCLE-seq should be utilised,
accompanied by stringent release criteria as suggested by FDA and
EMA as part of Advanced Therapy Medicinal Products oversight,
with the related guidelines cited here (166-168). A lot of the clinical
trials also demonstrated donor-specific HLA antibodies following
allogenic MSC infusion (author’s observation). This presents a
problem that limits translation, immunogenicity. Although so far,
no adverse events have been observed due to such immunogenicity,
such phenomenon warrants caution. Care should be taken to follow
the EMA guidelines for cell- based therapies, placing emphasis on
standardised immuno-monitoring as well as using early-passage/
hypoimmunogenic engineered MSCs to prevent adverse events.

Donor-related variability further increases the risk of such
therapeutic option. As illustrated by heterogeneity in HPL
expansion media, donor age and tissue source substantially
influence MSC potency and reproducibility (169). Implementation
of potency assays that are based on defined mechanisms of action,
such as immunomodulation via IDO activity, or the expression of
specific surface markers, are increasingly recognised as essential for
lot release under ATMP guidance (170, 171). MSC procurement
should also be done responsibly and ethically, covering all bases such
as informed consent, fair compensation and transparent donor
communication, to avoid repeating historical injustices such as the
Henrietta Lacks case.

AT holds significant promise in enhancing the modification and
personalisation of MSCs for SLE, yet its application is a double-
edged sword. One significant challenge is the availability and quality
of data. The functionality of AI highly depends on large, high-
quality datasets, but, MSC research is often inconsistent, yielding
incomplete data from different labs and clinical trials (author’s
observation). The lack of quality data leads to the inaccuracy of Al
models to make predictions and reliable conclusions regarding
MSC behaviour, treatment outcomes and optimal conditions
(172). It is important to ensure there is a large, open-source and
standardised database to improve the quality of Al-driven insights
(173). Furthermore, SLE is a highly heterogeneous disease with
varying clinical representation based on patient genetics, ethnicity,
sex, immune response and disease progress (174). AI models must
account for this complexity to predict the modifications of MSCs in
different patients. This limits the ability of AI to provide universally
applicable solutions, thus increasing the difficulty in personalising
MSC treatments for individual patients.

Apart from SLE, MSCs are highly heterogeneous with their
behaviour influenced by numerous factors such as tissue origin,
donor variability, culture conditions and disease environment (175-
177). The complex biology of MSCs makes it difficult for AT models
to predict MSC behaviour and their therapeutic effects accurately in
diseases like SLE, where the immune system is a major component.
The complexity of MSCs and SLE can be understood if AT models
are developed to integrate multi-omics data (genomics, proteomics
and metabolomics) to account for this complexity (178, 179). The
integration of AI with biological systems is also a significant
challenge. AI can predict optimal gene modifications, but
validating these predictions in biological systems requires
extensive experimentation due to the intricacies of biological
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validation. The FDA and MHRA have issued Good Machine
Learning Practice (GMLP) principles that urge model calibration,
external validation and transparent reporting.

Apart from challenges, the use of Al comes with the issue of
patient data privacy. Al systems largely rely on datasets that include
sensitive patient information such as genetic data and medical
history (180). This information is considered confidential.
Ensuring the confidentiality of this data while sharing it for AI
model training poses significant ethical concerns (180). Strict laws
must be developed to protect patient privacy and ensure compliance
with regulatory requirements regarding data privacy (181).
Frameworks such as the EU AI act and WHO guidance on Al
ethics serve as good advice to secure data governance, federated
learning and also strict regulatory compliance to maintain and
safeguard confidentiality.

Furthermore, AI models can inherit biases from the data on
which they are trained. If the training data predominantly
represents certain demographics (ethnic or gender biases), Al
may produce fewer effective treatments for underrepresented
populations (182). This indirectly will worsen health disparities in
SLE, which disproportionately affect women and certain ethnic
groups (182). AT must be designed to reduce these biases to ensure
fairness in MSC treatment. Moreover, it is of utmost importance
that the patients are fully informed about the use of AI in
developing their MSC-based treatment. Patients should
understand the role of Al and its potential risks and uncertainties
associated with AI decisions to maintain trust in AI-based medical
innovations (183).

Accountability and liability are important ethical considerations
for the use of Al in MSC modifications. It is important to establish
accountability frameworks to manage risk associated with Al in
medical research, especially in treatment involving modification of
MSCs in complex diseases like SLE (184). The area of using Al to
modify MSCs for the treatment of SLE is relatively new thus, long-
term safety and ethical use of modified MSCs should be carefully
considered. The long-term effects of genetically modified MSCs are
still not fully understood. AI may optimise gene-editing techniques,
but permanently altering cells for therapeutic purposes, especially in
autoimmune diseases like SLE comes with ethical implications
(185). Robust safety protocols must be established, and long-term
monitoring must be done to ensure the modified MSCs do not cause
tumorigenicity or immune dysregulation.

Finally, regulatory and real-world design considerations would
determine whether Al-enhanced MSC therapy achieves safe
translation. The updated International Council for Harmonisation
E6 (R3) clinical trial guidance emphasises adaptive design,
independent monitoring and harmonised data collection to
support reproducibility across sites (186). EMA reflections on
ATMP stress the importance of long term follow up to monitor
tumorigenicity, immune dysregulation and other delayed effects
(166). Vigilance should extend beyond conventional endpoints,
encompassing algorithmic oversight to track when and how AI-
driven recommendations deviate from expectations. Black-box and
limited white-box access should also be given to regulatory bodies to
further audit the data.
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Future directions and innovations

The application of AI to enhance MSC therapy for SLE offers
promise to revolutionise both the development and clinical
applications of MSC and the future of MSC, as well as their
offshoot modifications to treat SLE. As mentioned above, Al can
be a powerful tool to optimise MSC modification, culture, and
application, thereby reducing costs, improving therapeutic efficacy,
and personalising treatments to individual patients. A few
directions are listed below for further reference.

Combining different methods of MSC
modification

SLE is a complex disease, being an intermeshing of various
individual segregated conditions stemming from the aberrancy of
inflammation (1). Therefore, the eventual successful treatment of
SLE would probably lie in the integration of various modification
techniques. Al can streamline this process by predicting how
different modifications (e.g., culture conditions, cytokines, small
molecules, or gene-editing tools) will influence the phenotype and
behaviour of MSCs (97). Al algorithms can also anticipate how
CRISPR-induced gene modifications will affect MSCs, minimising
off-target effects, and thus improving the precision of gene editing
(148). Similarly, AI can be used to predict how new biologics or
drug compounds will alter MSC function, allowing for the creation
of more potent and stable therapeutic cells tailored to SLE
patients (119).

Optimising MSC culture methods to lower
costs

A major hurdle in MSC therapy is the high cost of cell culture,
either by wasting culture medium in 2D cultures or needing a high-cost
setup in 3D cultures or large-scale bioreactor conditions (187). Al-
driven models can help refine culture conditions by predicting which
nutrients, growth factors, and environmental conditions will support
the optimal growth and differentiation of MSCs. These models can
potentially help identify specific nutrient combinations and conditions
that would best encourage MSC differentiation into desired phenotypes,
such as those with enhanced immunomodulatory or anti-inflammatory
properties, or even into specific cell types such as nerve or sciatic cells
(52). Additionally, AI can predict the longevity of MSCs in culture and
provide solutions for extending their viability without compromising
quality, thus reducing overall production costs (156).

Precision medicine for SLE patients

Al analyses copious amounts of data, forming correlations and
associations within the data and infers changes within the general
picture if specific factors change (110, 114). Being a predictive
model, it can ‘divinate’ the outcome of taking a specific action.
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Therefore, it has the potential to revolutionise precision medicine in
SLE by analysing patient-specific data (genomic, proteomic, and
clinical data) to customise MSC treatments (97). AI models can
predict how individual patients will respond to different MSC
modifications, helping to create personalised therapies that take
their unique immune system profiles and disease characteristics
into consideration. Moreover, Al could be utilised to optimise
medication doses for SLE patients depending on their patient-
specific history, such as metabolism, pharmacogenetics and
treatment history (188). By integrating patient-specific data, Al
could also potentially forecast the most effective MSC intervention
strategies, including the optimal dosage, timing, and possible
combination of MSC modifications, enhancing the likelihood of
successful treatment outcomes.

Predicting patient prognosis and treatment
success

Al could also be potentially utilised to predict the prognosis of
SLE patients and the potential success of MSC-based interventions.
By analysing historical data on patient outcomes, AI could identify
correlations and associations that suggest which patients are most
likely to benefit from MSC therapy (114). This can guide more
timely and targeted interventions, improving overall patient care.
Other interventions can also be suggested in the event of low
efficacy of the present MSC treatment, such as the focus on
specific immunosuppressants that cause fewer side effects to the
patient (122).

Predicting the tolerability of
immunosuppressants

Immunosuppressants are often essential for treating SLE, but
their interactions with MSCs and individual patient biology need to
be carefully managed. AI can predict the tolerability of these drugs
in both patients and modified MSCs by analysing patient-specific
immune profiles (genomics, proteomics and clinical data) and MSC
characteristics (189-191). This approach would allow for better
decision-making when choosing immunosuppressive treatments
that complement MSC therapy, thereby reducing the risk of
adverse reactions and improving overall treatment efficacy.

Discovering novel biologics for MSC
modification

Al can be instrumental in identifying new biologics to modify
MSCs for SLE treatment. By screening large datasets (especially on
gene expression profiling, gene expression network and interaction
of biologics with MSC), AI can predict how novel compounds will
enhance MSC properties, such as their immunosuppressive or
regenerative capabilities (192, 193). This could accelerate the
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discovery of innovative biologics that are more effective than
current options, leading to the development of next-generation
MSC therapies. It is also possible that animal biologics could be
more effective in modifying MSCs to better suit SLE treatment, and
this can only be known by training AI with a proteomics model of
known biologics used to modify MSCs.

Vaccine against Epstein-Barr Virus

The Epstein-Barr Virus (EBV), a member of the herpesvirus
family, has been strongly implicated in the pathogenesis of SLE
through molecular mimicry, whereby viral antigens resemble host
proteins, leading to misdirected immune responses that exacerbate
autoimmunity. Numerous studies have demonstrated a strong
correlation between EBV infection and SLE, with elevated anti-
EBV antibody levels consistently observed in SLE patients
compared to healthy controls (22). These findings suggest that
prior exposure to EBV may increase the risk of developing SLE,
particularly in genetically predisposed individuals (22).

Given this association, the development of an effective EBV
vaccine holds significant potential for preventing or mitigating SLE
by reducing primary EBV infection or subsequent viral reactivation
in high risk populations. Advances in mRNA vaccine platforms,
supported by AI and machine learning, are accelerating this effort.
Al-driven models can optimise antigen delivery and machine
learning, and dosing strategies, while minimising toxicity and
enhancing durable activation against EBV (49).

A safe and effective EBV vaccine could reduce autoimmune
responses triggered by viral reactivation, thereby lowering disease risk
in genetically predisposed individuals. Encouragingly, clinical trials for
EBV vaccines are already underway (248), marking a critical step
toward preventive strategies that may also benefit patients at risk of
EBV-associated autoimmune diseases such as SLE.

Conclusion

Incorporating Al into MSC research and therapy development
for SLE holds transformative potential for disease therapy. AI’s
ability to optimise MSC modification, predict patient responses and
integrate traditional treatments pave way for more cost-effective,
personalised and successful interventions. These advancements
might potentially find their way to permanently cure SLE, instead
of controlled remission. If such an idea were to be pursued,
worldwide collaboration would be necessary, as SLE is a highly
complex disease; thus, an enormous dataset would likely
be required.

On a basis of cooperative worldwide collaboration, several
concrete steps can make this reality. Firstly, establishing a
prospective registry of MSC lots that links donor, disease and
culture variables with clinical outcomes, creating a shared data
infrastructure. Advanced imaging of MSC morphology can be
incorporated, relating it to function. With interpretation via
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machine learning approaches, potency signatures could be
established before infusion. This gives confidence that the MSCs
used are high potency.

Secondly, flare-prediction models should embed PROMs and
wearable data into flare-prediction models. This enables therapy to
adapt to the patient, rather than the reverse. Fusing subjective
reports of fatigue, pain and function with continuous physiological
readouts (i.e. heart rate variability/sleep cycles) allow AT systems to
detect early warning signs of flares, which allows tailored and
timely interventions.

Thirdly, AI should be trained on MSC modification data to
compare priming approaches and gene edits structurally. By
training optimisation algorithms on large in-vitro datasets, the
field could prioritise modifications that reliably enhance
immunoregulation while minimising safety risks, accelerating the
design of next-generation MSCs. Clinical evaluation should also
move toward small, adaptive trials that test dose and patient-
matching strategies. Rather than relying solely on large, fixed
protocols, Bayesian or response-adaptive designs would allow
dosing schedules and subgroup inclusion to evolve in real time
based on emerging outcomes, shortening the path to clinically
actionable insights.

Finally, these efforts must be anchored by harmonised quality-
control benchmarks. Standardised criteria for MSC identity,
potency, and genomic integrity, augmented by Al-based analytics,
would make results across centres and trials comparable, strengthen
regulatory confidence, and provide a common language for the
field. Together, these steps delineate a pragmatic agenda for
advancing MSC therapy in SLE. By uniting registry science,
patient-centred metrics, Al-driven optimisation, adaptive clinical
design, and harmonised quality standards, the field can move
beyond proof-of-concept to reproducible, personalised, and
ethically responsible care. The opportunity now is not simply to
test MSCs, but to build the translational ecosystem that will allow
them to fulfil their promise for patients with SLE. It is our most
sincere hope that this idea can one day be a reality in the medical
setting, not just for SLE but for other incurable diseases such as
cancer and HIV.
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