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and inflammation
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The metabolism of immune cells adapts to support the energy demands for their

activation, differentiation, and effector functions through a process known as

metabolic reprogramming. This metabolic plasticity is influenced by both

extrinsic and intrinsic factors, including steroid hormones such as

glucocorticoids, androgens, progestogens, and estrogens. These critical

mediators modulate immune function and inflammatory responses through

genomic and non-genomic regulation of intracellular metabolic pathways,

including glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation.

Interestingly, these effects appear to be dependent on cell type, hormonal

concentration, and microenvironmental context. Herein, we discuss how

steroid hormones regulate inflammation and immunometabolism and

summarize recent studies highlighting immunometabolic regulation by steroid

hormones as the key driver of their immunomodulatory effects. We also address

potential mechanisms contributing to their seemingly dichotomous and

context-specific regulation. Understanding the link between steroid hormone

signaling, immunometabolism, host defense, chronic inflammation, and

immunity will expand our understanding about how biological sex and stress

influence the immune system and facilitate more precise therapeutic targeting of

immune cell activity to mitigate inflammation- and immune-mediated diseases.
KEYWORDS

steroid hormones, immunometabolism, immune, inflammation, glycolysis,
oxidative phosphorylation
1 Introduction

Immune cells modify the metabolic pathways by which they generate energy to

appropriately respond to sterile and infectious stimuli (1). This metabolic

reprogramming is triggered by the activation of pattern recognition receptors and

cytokine receptors that initiate signaling cascades and activate diverse transcriptional

regulators that induce or inhibit the expression of substrate uptake transporters, enzymes,

and mitochondrial proteins. In turn, this shifts energy production between aerobic
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654034/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1654034/full
https://orcid.org/0000-0003-2388-4032
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1654034&domain=pdf&date_stamp=2025-09-17
mailto:l.cody.smith@uconn.edu
https://doi.org/10.3389/fimmu.2025.1654034
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1654034
https://www.frontiersin.org/journals/immunology


Smith et al. 10.3389/fimmu.2025.1654034
glycolysis, the TCA cycle, and oxidative phosphorylation (2).

Changes in metabolism can also modulate immune cell activity,

as highlighted by numerous studies reporting that modifying

substrate availability or utilization can influence immune cell

proliferation, differentiation, activation, and effector functions (3).

Thus, understanding the intricate and bidirectional relationship

between intracellular metabolism and immune cell activation and

function is essential to develop targeted therapeutic strategies to

modula te immune and inflammatory responses and

mitigate disease.

Immune cell activation and function are regulated by sex- and

environmental-based factors. For example, males and females

respond to foreign and self-antigens differently, and these

responses may change over the course of the lifespan,

highlighting gonadal sex hormones as major immunoregulatory

agents. In this regard, females exhibit increased susceptibility to

autoimmune disease development whereas males show increased

susceptibility to non-reproductive malignant cancers (4).

Environmental factors such as stress are also known to affect

susceptibility to illness by modulating the immune system,

sometimes in a sexually dimorphic manner (reviewed in 5 and 6).

Underpinning these sex- and environmental-based differences are

the actions of steroid hormones, including estrogens, progestogens,

androgens, and glucocorticoids. The steroid hormones are derived

from cholesterol and regulate reproduction, stress responses,

metabolism, and immunity (7). Their levels fluctuate following

circadian and ultradian rhythms throughout the estrus (in

rodents) and menstrual (in humans) cycle, as well as throughout

the lifespan (8–12).

Steroid hormones signal through their cognate steroid hormone

receptors, NR3 class nuclear receptors that share similar structures,

including an N-terminal transactivation domain, a highly conserved

central DNA binding domain, and a C-terminal ligand-binding

domain (13). Upon ligand binding, the receptors undergo

conformational changes that facilitate the recruitment of co-

regulatory proteins and their translocation to the nucleus, where

they interact with hormone response elements (HREs) to regulate

gene transcription (13). In addition to these direct genomic

mechanisms, some steroid hormone receptors (e.g., estrogen

receptors and the glucocorticoid receptor) can indirectly regulate

gene expression at distinct promoters by tethering to other

transcription factors (e.g., AP-1 and NF-kB) (14, 15). The steroid

hormones also signal through non-genomic mechanisms initiated

at the cell membrane by palmitoylated steroid hormone receptor

variants or GPCRs (e.g., G-protein coupled estrogen receptor 1,

GPER1); these receptors activate kinase pathways (e.g., MAPK/ERK

and phosphoinositide 3-kinase [PI3K]/protein kinase B [Akt]) and

modulate gene expression by regulating the activity of the

cytoplasmic nuclear receptors and growth factor receptors (16).

Several reviews have thoroughly described the roles of steroid

hormones in regulating intracellular metabolic pathways and

immune cell development, activation, and function separately, but

they rarely connect the two (17–21). Interestingly, these effects

appear to vary depending on the cellular microenvironment, cell

type, disease or life stage, and concentration of ligand. Parallel to
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these discordant responses on immune cells are corresponding

changes in intracellular metabolism. Thus, the purpose of this

review is to explore the interaction between metabolism and

immune regulation with a focus on steroid hormone modulation

as a key mediator of these seemingly dichotomous effects. This

review is focused on immune cells which have been observed to

exhibit metabolic reprogramming and be regulated by steroid

hormones; these include T cells, macrophages, myeloid-derived

suppressor cells (MDSCs), and dendritic cells.
2 Metabolic reprogramming in
immune cells

Immune cells play a pivotal role in protecting us from disease

and in maintaining tissue integrity during conditions of

homeostasis. The rapid activation and resolution of immune and

inflammatory responses, accompanied by the secretion of

numerous proteins, lipids, and other mediators, incur a

significant bioenergetic cost requiring the increased uptake of

glucose, fatty acids, and amino acids. This often requires a shift in

the metabolism of immune cells corresponding to the state they are

in, i.e., quiescent, effector, memory, or regulatory. Each of these

states can present with a different metabolic phenotype.
2.1 T cells

T cells are the major cellular mediators of the adaptive immune

system and comprise diverse subpopulations with unique effector

functions (22). Both T cell development and function are marked by

distinct stages that are associated with changes in morphology and

phenotype. Furthermore, the induction of an immune response is

accompanied by rapid shifts in T cell status including naïve,

activated, effector, and memory phenotypes that come at a

significant bioenergetic cost to the cell. Metabolic reprogramming

fuels the various stages allowing T cells to maintain optimal

metabolic fitness and prime for maximum responsiveness during

states of heightened immune activity (23). In T-cell development,

elevated expression of hypoxia-inducible factor 1-alpha (HIF-1a)
leads to increased induction of glucose transporter type 1 (GLUT1)

and enhanced glycolysis and flux through the pentose phosphate

pathway to support b-selection (24–26). Then, CD4 or CD8

selection results in a sharp reduction in glucose metabolism and

shift to mitochondrial oxidative phosphorylation through down-

regulation of HIF-1a (26). This shift is essential for the maturation

of memory-phenotype T cells (27).

Naïve or quiescent T cells have minimal metabolic needs and

maximize the glycolysis and oxidative phosphorylation pathways by

fully oxidizing glucose and generating ATP. The predomination of

these pathways provides these cells with the energy required to

conduct immune surveillance (1). In contrast, the processes of T cell

activation, clonal expansion, differentiation into various effector T

cell subsets, and subsequent effector function are characterized by

increased energetic demands, resulting in the successive generation
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and replenishment of biosynthetic precursors that power rapid cell

growth and proliferation (23, 28). In CD4+ cells, Th1 and Th17

activation is associated with increased expression of glutamine

transporters, which provides more substrates for the TCA cycle as

well as enhanced fatty acid biosynthesis (29–31). On the other hand,

Th2 and T regulatory cell (Treg) differentiation and activation

involve transitions to fatty acid oxidation for energy acquisition

(30, 32). In CD8+ T cells, increased expression of GLUT1, lactate

dehydrogenase, and hexokinase and a concomitant reduction in

carnitine palmitoyltransferase 1A (CPT1a) expression shifts

metabolism from fatty acid oxidation to glycolysis, supporting the

synthesis of nucleotides and serine for activation (33).

At the end of an immune response, the cells that survive to

become memory T cells revert back to lipid oxidation with an

increased capacity for efficient energy generation. Because memory

T cells do not proliferate or produce cytokines, they have a similar

metabolic profile as naïve T cells, wherein fatty acid oxidation and

oxidative phosphorylation are sufficient to sustain T cell survival

and to meet their energetic requirements. However, unlike naïve T

cells, they have increased spare respiratory and glycolytic capacities,

with elongated mitochondria and increased expression of electron

transport chain proteins. As such, memory T cells exist in a state of

improved metabolic fitness where they are ready to engage

pathogens upon antigen stimulation (34).
2.2 Macrophages

Macrophages are innate immune cells that play important

regulatory roles in various tissues and are essential in host defense.

They comprise diverse subpopulations characterized by their ontogeny

and polarization state (35). The subpopulations are broadly classified

into two phenotypes: pro-inflammatory/M1 that promotes Th1-

mediated responses against intracellular bacteria with increased

phagocytic activity, and an anti-inflammatory/M2 phenotype that

promotes type 2 inflammation (36). Macrophages undergo metabolic

reprogramming to efficiently perform their major functions of

immunomodulation, phagocytosis, and antigen presentation (35, 37).

Tissue resident macrophages are long-lived cells and thus rely on fatty

acid oxidation and oxidative phosphorylation for both redox balance

and prolonged survival (38–40). Conversely, proinflammatory

macrophages upregulate glycolysis and exhibit two breaks in the

TCA cycle at succinate dehydrogenase (SDH) and isocitrate

dehydrogenase (IDH), leading to the accumulation of citrate and

succinate (41–43). These metabolites increase flux through the

pentose phosphate pathway and upregulate fatty acid synthesis to

promote the synthesis of ROS and intermediates for proinflammatory

cytokine production and cell proliferation (39, 44–46).

During the resolution of inflammation, macrophages

accumulate glutamine from the extracellular environment or

through the engulfment of apoptotic cells and break it down into

the TCA cycle intermediate a-ketoglutarate (47, 48). The resulting
upregulation of oxidative phosphorylation facilitates enhanced

efferocytosis and production of the anti-inflammatory and pro-

resolving cytokine, IL-10 (47, 49). Enhanced IL-10 signaling
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potentiates oxidative phosphorylation and inhibits glucose uptake,

further suppressing glycolysis (50, 51). It should be noted that there

is some controversy regarding the requirement of fatty acid

oxidation for anti-inflammatory activation (52–58). Nonetheless,

the clear reliance of pro-inflammatory macrophages on aerobic

glycolysis and that of anti-inflammatory and tissue-resident cells on

oxidative phosphorylation suggests that targeting metabolic

reprogramming may be an efficacious strategy to modulate

macrophage activity.

Recent studies suggest that crosstalk between macrophages and

other immune cells such as mast cells may affect their metabolic

fates and enhance functional outcomes during immune activity.

Holter et al. demonstrated that IgE-activated mast cells can drive

macrophage polarization, phagocytosis, and antibacterial activity by

influencing metabolic and epigenetic processes in macrophages

(59). Macrophages exposed to supernatants from IgE-activated

mast cells exhibited increased basal oxygen consumption rates

(representative of mitochondrial respiration), ATP production,

maximal respiration, and spare respiratory capacity compared to

cells exposed to supernatants from non-sensitized mast cells. This

suggests that during inflammatory states such as allergic responses,

crosstalk between immune cells may have the potential to regulate

metabolic plasticity and function.
2.3 Myeloid-derived suppressor cells

Myeloid-derived suppressor cells (MDSCs) comprise

pathologically activated neutrophils and monocytes that exhibit

potent immunosuppressive activity (60). In cancer, MDSCs adapt to

the anoxic tumor microenvironment by upregulating mechanistic

target of rapamycin (mTOR) and HIF-1a signaling, as well as

expression of lipid uptake scavenger receptors (e.g., CD36 and

macrophage scavenger receptor 1 [MSR1]) and key fatty acid

oxidation enzymes (e.g., CPT1A, acyl-CoA dehydrogenase

medium chain [ACADM], hydroxyacyl-CoA dehydrogenase

trifunctional multienzyme complex subunit alpha [HADHA], and

peroxisome proliferator-activated receptor coactivator 1 beta [PGC-

1b]) (61–64). This leads to a simultaneous increase in glucose

uptake and glycolysis, as well as lipid uptake and oxidative

phosphorylation that have both been shown to enhance the

immunosuppressive activity of these cells (65–67).
2.4 Dendritic cells

Dendritic cells are professional antigen-presenting cells that

link the innate to the adaptive immune system. They detect and

proteolytically degrade pathogen-derived components, which are in

turn loaded onto MHC class I or class II molecules to activate

cytotoxic CD8+ T cells or helper CD4+ T cells, respectively (68).

Dendritic cells encompass diverse subpopulations, including

conventional cDC1s that are efficient at cross-presenting antigens

to CD8+ T cells and cDC2s that specialize in CD4+ T cell activation

(69). Plasmacytoid dendritic cells (pDCs) are critical in viral
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defenses by producing Type-I interferon, whereas monocyte-

derived, inflammatory DCs (infDCs) regulate inflammation and

infection (70). The differentiation and activation of dendritic cells

are regulated by intracellular metabolism (71). At baseline, cDC1s

are more heavily reliant on oxidative phosphorylation compared to

cDC2s or pDCs, likely due to their larger mitochondrial mass and

membrane potential (72–74). Treatment with LPS and poly(I:C)

was shown to induce PI3K/AKT, nitric oxide (NO), and BNIP33

signaling that resulted in a rapid increase in glucose uptake and

glycolytic flux, as well as a decrease in oxidative phosphorylation in

cDC1s, cDC2s, pDCs, and infDCs (75–81). The requirement for

this metabolic reprogramming in dendritic cell activity is evidenced

by studies showing that inhibition of glycolysis with 2-deoxyglucose

(2-DG) or knockdown of glycolytic inducers [e.g., HIF-1a and

alpha enolase (ENO1)], impaired dendritic cell maturation, and

subsequent T cell activation (78, 80, 82, 83). Similarly, in a model of

allergic asthma, intranasal treatment with D-2-hydroxyglutarate

suppressed allergic sensitization mediated by dendritic cells and

promoted the activity of follicular regulatory T cells (84).
3 Steroid hormone regulation of
inflammation

3.1 Glucocorticoids

The production of endogenous glucocorticoids is rapidly

induced in response to inflammation and other stressors, but the

secretion patterns are also affected by circadian and ultradian

rhythms (85). Glucocorticoid receptors are expressed in

essentially all immune cells in mice and humans where they

exhibit time-, concentration-, cell type-, and in some cases,

species-specific effects (86). Glucocorticoids bind to cytosolic

glucocorticoid receptors and regulate gene expression by

interacting with glucocorticoid response elements (GREs) in gene

promoters. In addition, they induce transcription through protein-

protein interactions in the cytosol and by composite binding to

other transcription factors at DNA sequences containing GREs and

a response element of a distinct transcription factor (85, 87).

Glucocorticoids may also signal through membrane-bound

glucocorticoid receptors to mediate rapid signaling (88). High

concentrations or chronic administration of glucocorticoids

promote apoptosis of immune cells, including T cells,

macrophages, dendritic cells, and eosinophils in mice and

humans (18, 89), whereas lower concentrations and shorter

exposure windows exhibit more nuanced effects on inflammation

and immunity.

In murine macrophages, glucocorticoids generally suppress

production of pro-inflammatory eicosanoids (e.g., prostaglandins

and leukotrienes), and pro-inflammatory cytokines (e.g., IL-1b, IL-
6, TNFa, and IL-12), and they inhibit leukocyte migration (85, 90–

94). Interestingly, expression of pro-inflammatory cytokines (e.g.,

IL-6 and TNFa) was significantly reduced in male rat livers

compared to females after LPS administration, a response that
Frontiers in Immunology 04
correlated with enhanced survival (95). Conversely, the estrogen

receptor antagonist ICI 182,780 was found to inhibit

dexamethasone-induced reductions in TNFa, IL-1b, and iNOS in

the lungs of rats treated with carrageenan (96).

Glucocorticoids also promote the resolution of inflammation by

inducing expression of scavenger receptors (e.g., CD153, CD206, and

MERTK), anti-inflammatory cytokines (e.g., TGF-b and IL-10), and

the receptor for the pro-resolving lipid mediator, lipoxin A4, in

human andmurinemacrophages, all of which potentiate macrophage

phagocytosis and efferocytosis (97–101). Dichotomous effects have

been observed in human T cells in which glucocorticoids suppress

pro-inflammatory responses of Th1 and Th17 cells but promote the

function of anti-inflammatory and immunosuppressive Th2 and

Treg cells (85, 89, 102). Likewise, the expression of pro-

inflammatory cytokines (e.g., IL-12 and TNFa) is reduced while

that of anti-inflammatory cytokines (e.g., IL-10) is increased in

dendritic cells treated with glucocorticoids (103). These effects on

pro- and anti-inflammatory signaling and immune responses have

resulted in their widespread use in asthma therapy and are associated

with distinct changes in intracellular metabolism and metabolic

reprogramming as described below (104, 105).
3.2 Androgens

Androgens are commonly known as male sex hormones but are

produced by both sexes (106). The main androgen, testosterone,

along with other androgens such as androstenedione, are produced

by testicular Leydig cells, ovarian theca cells, and adrenal zona

reticularis cells (107). Testosterone is locally converted into the

more potent dihydrotestosterone (DHT) by 5a-reductase (108).

Androgens signal by binding to the androgen receptor (AR), which

interacts with androgen response elements (AREs) and recruits co-

activators and co-repressors to regulate transcription of AR target

genes. While no membrane-bound AR has been reported,

androgens may mediate rapid, non-genomic effects by interacting

with kinases such as SRC and PI3K in the cytoplasm (109).

Androgen receptors are expressed by murine and human

macrophages, monocytes, neutrophils, T cells, and B cells, in

which they exhibit predominantly anti-inflammatory and

immunosuppressive effects (17).

In human monocyte-derived macrophages, murine peritoneal

macrophages, and human and murine macrophage cell lines

(e.g., RAW 264.7 and J774A.1), testosterone dose-dependently

inhibited LPS-induced production of nitric oxide (NO) and

TNFa, as well as expression of inducible nitric oxide synthase

(iNOS/Nos2) and TLR4 (110–115). Likewise, testosterone treatment

increased production of anti-inflammatory IL-10 after LPS

stimulation in a human macrophage cell line (111). Similar

findings have been reported in T cells where androgens decreased

murine and human T cell numbers and dampened the production

of type I (T1) and type II (T2) inflammatory mediators (e.g., IFNg,
IL-4, IL-5) while enhancing production of immunosuppressive IL-

10 (17, 116–121).
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3.3 Progestogens

The main natural progestogen, progesterone (P4), is

synthesized from cholesterol by the cholesterol side-chain

cleavage enzyme and 3b-hydroxysteroid dehydrogenase (122).

Progesterone signals by binding to progesterone receptors, which

have two isoforms (A and B) that exhibit tissue-specific expression

and functions (123). They exert agonistic and antagonistic effects on

other steroid hormone pathways by interacting with other

receptors, including estrogen receptors, and androgen receptor,

glucocorticoid receptor, and mineralocorticoid receptor (123–

126). Progesterone receptors are expressed by murine and human

T cells, murine dendritic cells, human natural killer cells, and

murine and human macrophages, where they generally suppress

pro-inflammatory and enhance immunosuppressive activity (123,

127, 128).

For example, progesterone inhibited NF-kB signaling and

reduced NO and IL-12 production in LPS-stimulated murine

bone marrow-derived and alveolar macrophages, respectively

(129–132) . In th i s regard , the synthe t i c proges t in ,

medroxyprogesterone acetate, triggered the differentiation of the

human monocyte cell line, THP-1, into a more anti-inflammatory

phenotype (e.g., upregulated CD163 and IL-10 expression) (133). In

human, murine, and bovine CD4+ T cells, progesterone promotes

Th2 and Treg expansion and activation (increased IL-4 and IL-10)

and inhibits Th17 differentiation (reduced IL-2 and IL-12) (127,

134–138). Likewise, progesterone inhibited LPS and TLR-driven

responses in human dendritic cells (e.g., reduced IL-1b, IL-6, and
IFN-b); these immunosuppressive effects are important in ensuring

successful pregnancies by preventing fetal rejection (128, 139–142).
3.4 Estrogens

Endogenous estrogens are steroid hormones derived from

cholesterol (e.g., estrone [E1], 17b-estradiol [E2], estriol, estetrol
[E4], and 27-hydroxycholesterol), which exhibit tissue- and life

stage-specific production (143, 144). The different estrogens exhibit

distinct pharmacology, with E2 exhibiting the greatest affinity for

the estrogen receptors (ERs) (143, 144). Estrogens signal through

myriad pathways, including genomic mechanisms mediated by two

nuclear receptors (ERa and ERb) that recruit various co-regulatory
proteins and induce transcription at estrogen response elements

(EREs), in addition to other promoters by tethering to transcription

factors (e.g., AP-1 and NF-kB). Estrogens also signal through

membrane-bound receptors (e.g., GPER1 and palmitoylated-ERa
variants) to initiate non-genomic signaling, and these pathways

often intersect and cross-regulate each other (145–148). ERa is the

most widely expressed receptor isoform in immune cells, with

positive expression in human and murine natural killer cells, T

cells, neutrophils, eosinophils, dendritic cells, monocytes, and

macrophages (113), while ERb expression is less widespread and

heavily debated (113, 149). GPER1 has been detected in human

neutrophils and eosinophils, and palmitoylated ERa variants in

natural killer cells, monocytes, and macrophages (113).
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The effects of estrogens on immunity have been thoroughly

reviewed by multiple groups who report cell- and disease-specific

effects (19, 113). In acute inflammation models, E2 appears to

enhance TLR-mediated pro-inflammatory responses in human and

murine macrophages while also promoting T2 and anti-

inflammatory activity in allergic asthma and cutaneous wound

healing (110, 115, 150–157). The positive regulation of pro-

inflammatory macrophage activity appears to be dependent on

activation of STAT1, whereas the increased anti-inflammatory

activation is driven by ERa-mediated phosphorylation and

activation of STAT3 and interference with p65 subunit binding to

the NF-kB complex (158–161). Estrogens modulate T cell activity

throughout their entire life cycle, and similar discordant results

have been reported in diverse T cell subpopulations. For example,

E2 increased human and murine Th1 differentiation by inducing T-

bet and enhancing IFNg production while also promoting IL-4

production and favoring Treg expansion (162–169). These

disparate results are likely due to the differences in the cellular

microenvironment, cell type-specific utilization of coregulatory

proteins, and concentration-dependent effects of estrogens (170–

172). Several studies also suggest that estrogen may modulate

human and murine mast cell behavior and activity during allergic

diseases and other conditions such as endometriosis (173–175).
4 Immunometabolism as the link
between steroid hormones and
inflammation and immunity

4.1 Glucocorticoids

As discussed, glucocorticoid receptor signaling promotes anti-

inflammatory and immunosuppressive activities of innate immune

cells, including macrophages and myeloid-derived suppressor cells.

Emerging evidence indicates that this is driven by metabolic

changes. In a zebrafish model of hair cell ablation injury,

activation of glucocorticoid signaling initiated a linear sequence of

IL-10, polyamine, and IL-4 signaling, culminating in an increase in

the expression of genes involved in oxidative phosphorylation

facilitating wound repair (176). Other studies have shown that

cortisol increased the expression of carnitine palmitoyltransferase II

(CPT2) and glutaminase (GLS) in human monocyte-derived

macrophages; this upregulated fatty acid oxidation and

glutaminolysis, respectively, resulting in TCA cycle anaplerosis

(177). In this regard, dexamethasone increased the expression of

carnitine palmitoyltransferase I (CPT1) in human myeloid-derived

suppressor cells, leading to an increase in fatty acid oxidation,

mitochondrial respiration, and enhanced immunosuppressive

activity (178). Collectively, these studies indicate that

glucocorticoid receptor signaling promotes immunosuppression

and the resolution of inflammation by enhancing oxidative

phosphorylation in innate immune cells.

In addition, glucocorticoids have been found to indirectly

increase mitochondrial respiration by inhibiting glycolytic

activity. For example, treatment of macrophages (e.g., murine
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bone marrow-derived macrophages [BMDMs] and human THP-1

cells) and myeloid-derived suppressor cells with dexamethasone

after exposure to E. coli, LPS, and ovalbumin (OVA) inhibited

glycolysis and led to a compensatory increase in glutamine

metabolism, anaplerosis, TCA cycle flux, and a restoration of

basal and maximal oxidative phosphorylation (179–181). These

studies highlighted reduced expression and inhibition of HIF-1a
activity and subsequent reductions in expression of key glycolytic

enzymes (e.g., Glut1, PDK, pyruvate kinase M2 [PKM2], lactate

dehydrogenase a [LDH], and hexokinases) as major drivers of this

metabolic plasticity (179, 180, 182). Of note, the shift toward

oxidative phosphorylation was associated with reduced expression

of T1 and T2 cytokines (e.g., IL-4, -5, -13, -1b), iNOS, and ROS

production in these cells (179–181, 183). Thus, in addition to direct

effects on oxidative phosphorylation, GR signaling downregulates

HIF-1a, leading to a suppression of glycolysis and impaired pro-

inflammatory activation; this results in a compensatory shift toward

oxidative phosphorylation, enhancing anti-inflammatory and

immunosuppressive activity.

The well-established immunosuppressive effects of

glucocorticoids on T cells appear to also be mediated, in part, by

changes in intracellular metabolism. Dexamethasone inhibited

mRNA expression of glycolytic proteins [e.g., Glut1, Glut3, Ldha)

in mouse and human T cells and leukemic cells (184, 185)]. This

was associated with reduced pro-inflammatory gene expression

(e.g., Il2, Ifng) (185). In Tregs, dexamethasone enhanced

immunosuppressive activity by reducing glycolysis and increasing

oxidative phosphorylation through miR-342-dependent inhibition

of rapamycin-insensitive companion of mTOR (RICTOR) (186). It

should be noted that the immunosuppressive effects of

glucocorticoids are not always desirable. For example, the

glucocorticoid, prednisolone, impaired the differentiation and

effector function of memory CD8+ T cells by reducing glycolysis;

this resulted in impairments in memory formation, recall antigen

responses, and anti-tumor activity (187).

Conversely, glucocorticoids have also been shown to suppress

oxidative phosphorylation; however, this appears to be a dose-

dependent effect. For example, high-dose dexamethasone reduced

mRNA and protein expression of mitochondrially encoded

cytochrome c oxidase subunit I (MT-CO1) in murine

macrophages and PKM2 expression in human chronic

lymphocytic leukemia cells (188, 189). This was associated with

reduced mitochondrial respiratory chain complex IV activity and

loss of mitochondrial membrane potential, respectively, and

increased apoptosis (188, 189). Thus, selectively regulating pro- or

anti-inflammatory activity of immune cells may require targeting

distinct metabolic pathways by careful titration of glucocorticoids.
4.2 Androgens

Although androgens do not appear to directly modulate

glycolysis, they have been shown to regulate the expression of

genes involved in oxidative phosphorylation. An analysis of

previously published single-cell RNA-sequencing data collected
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from the prostates of castrated male mice identified reduced

expression of complex (C) I, CIV, and CV subunits of the

mitochondrial oxidative phosphorylation system in macrophage

and T cell clusters. Of note, this response was reversed after

administration of exogenous testosterone (190). In murine

myeloid-derived suppressor cells, androgen receptor up-regulated

mitochondrial pyruvate carrier 2 (MPC-2) expression to enhance

TCA cycle flux, mitochondrial respiration, and immunosuppressive

activities (191). Inhibition of the androgen receptor with

enzalutamide reduced oxidative phosphorylation, which in turn

resulted in a compensatory increase in GLUT1 expression, glucose

uptake, and glycolytic flux (191). The authors suggested this

metabolic plasticity led to persistent immunosuppressive activity

and limited the effectiveness of anti-androgen therapy in prostate

cancer (191). In a mouse model of allergic asthma, androgen

receptor signaling was found to restrict allergen-induced airway

inflammation and airway hyperresponsiveness by reducing

glutamine uptake and glutaminolysis in CD4+ T cells by reducing

the expression of glutamine uptake transporters (e.g., Slc1a5 and

Slc38a1) (192). The reduction in glutamine shunted metabolism

away from the TCA cycle and decreased glutathione levels; this

resulted in increased ROS production, which prevented Th17

differentiation and effector function by promoting a regulatory

phenotype (192). Thus, the effects of testosterone on bioenergetics

and inflammatory activity appear to depend on the cell type.
4.3 Progestogens

In general, progesterone seems to enhance the metabolic

activity and function of myeloid cells. Gonadectomy of female

rats reduced the production of hydrogen peroxide and phagocytic

capacity of both unstimulated macrophages and those stimulated by

phorbol myristate acetate (PMA). Progesterone supplementation

reversed these effects, and this was associated with an increase in

glutaminase activity (193). In immature human dendritic cells,

progesterone increased expression of mitochondrial complex II-V

genes (succinate dehydrogenase complex iron sulfur subunit B,

[SDHB], succinate dehydrogenase complex subunit C [SDHC],

ubiquinol-cytochrome C reductase complex III subunit VII

[UQCRQ], cytochrome c oxidase subunit II [COX II], and ATP

synthase F1 subunit alpha [ATP5A]), and mitochondrial pyruvate

carrier 1 (MPC1) (194). In addition, genes involved in fatty acid

oxidation (e.g., hydroxyacyl-CoA dehydrogenase trifunctional

multienzyme complex subunit beta [HADHB], CPT1, and CPT2),

as well as genes involved in fatty acid synthesis (e.g., acetyl-CoA

carboxylase alpha [ACACA] and fatty acid synthase [FASN]) were

upregulated (194). Another study by the same group found that

progesterone also increased mRNA expression of glycolytic

enzymes [e.g., HK2, LDHA, and pyruvate dehydrogenase (PDH)]

in immature dendritic cells (194). This was associated with

enhancements in parameters of oxidative phosphorylation (e.g.,

basal and maximal oxidative phosphorylation and spare respiratory

capacity), as well as glycolytic capacity, and increased cell-surface

expression of immunosuppressive inhibitor receptor Ig-like
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transcript 4 (ILT4) (194). The authors concluded that the

progesterone-mediated enhancement of metabolic activity in

immature dendritic cells helped maintain immune tolerance in

the decidual microenvironment to prevent fetal rejection and

ensure reproductive success.
4.4 Estrogens

Estrogens appear to differentially regulate intracellular

bioenergetics, inflammatory, and immune responses in a cell

type- and microenvironment-dependent manner. Spare

respiratory capacity, differentiation, and activation were reduced

in murine Th17 cells lacking ERa (195). Similarly, treatment of

murine RAW 264.7 cells with E2 blunted LPS/IFNg-induced
reductions in basal oxidative phosphorylation, and this was

associated with reduced TNF-a and increased IL-10 secretion

compared to cells treated with LPS/IFNg; however, no response

was observed in murine BMDMs (196). It appears that the effects on

mitochondrial function and inflammatory activity were mediated

by E2-dependent increases in Sirt3 expression and mitochondrial

protein acetylation (196). A key role for ERa was established in one

study showing that murine BMDMs deficient in ERa exhibited

reduced fatty acid oxidation compared to wild types (155). In

contrast, other studies have found that E2 inhibited receptor

activator of nuclear factor-kB ligand (RANKL)-induced

upregulation of oxidative phosphorylation (197–199). The authors

of the latter studies concluded that the reduced mitochondrial

respiration led to enhanced apoptosis and postulated that this

immunosuppressive effect of E2 explained why post-menopausal

women exhibit increased osteoclast activity and bone resorption

(197–199). Interestingly, these seemingly dichotomous effects of E2

on intracellular bioenergetics could be a result of differential

receptor activation, as E2 was found to inhibit F0F1-ATP

synthase activity via non-genomic mechanisms in a human

osteoclastic cell line (FLG 29.1 cells) (200). In this regard, E2

rapidly increased lactate production in human MCF-7 breast

cancer cells in a PI3K/AKT-dependent mechanism that was

speculated to be initiated by a membrane-bound pool of ERa (201).

In murine alveolar macrophages, genetic deletion of ERa
resulted in increased glycolytic capacity and glycolytic reserve

with no effect on mitochondrial oxidative phosphorylation; these

data suggest that ERa functions to suppress glycolysis (202). It

appears this may be a result of the alveolar microenvironment,

which is characterized by low glucose levels. One study found that

in high glucose conditions, E2 dose-dependently increased lactate

and glucose-6-phosphate (G6P) production in human MCF-7

breast cancer cells, whereas in low glucose conditions, E2 dose-

dependently reduced lactate production and enhanced TCA cycle

flux (201). These results indicate that the local fuel supply can

dictate the effect of E2 on metabolic plasticity and may explain the

observations of increased glycolysis in ERa-deficient murine

alveolar macrophages . While estrogen also regulates
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mitochondrial DNA transcription, mitochondrial morphology,

and mitochondrial fission and fusion in breast cancer cells

(reviewed in 203), these mechanisms are understudied in the

context of immune cells.

Estrogenic endocrine-disrupting chemicals also influence

macrophage activity by modulating intracellular bioenergetics.

Exposure of murine J774A.1 cells to the weakly estrogenic

plasticizer, bisphenol S (BPS), increased levels of glycolytic

metabolites (e.g., lactate, pyruvate, and glucose-6-phosphate) and

increased mRNA and protein expression of glycolytic enzymes (e.g.,

PKM2, LDHA, hexokinase 1 [HK1], and HK2). The BPS-induced

enhancements in glycolytic activity were associated with increased

expression of pro-inflammatory (e.g., TNF-a, IL-1b, and IL-6) and

reduced expression of anti-inflammatory (e.g., TGFb and IL-10)

cytokines and growth factors (204). Another study found that the

analogous plasticizer, bisphenol F (BPF), dose-dependently increased

expression of glycolytic enzymes (e.g., HIF-1a, GLUT1, PKM2),

lactate production, and glucose consumption, and increased the

secretion of pro-inflammatory cytokines (e.g., TNF-a, IL-1b, and
IL-6) in murine RAW 264.7 cells; this was confirmed to be through

an ERa and PI3K/AKT-dependent mechanism (205). These studies

highlight environmental estrogens as immunomodulatory agents and

demonstrate the critical role of metabolic plasticity in pro- and anti-

inflammatory macrophage activation.
5 Discussion

Immune cells undergo metabolic reprogramming to meet the

energetic and biosynthetic demands of their activation,

differentiation, and effector functions. This reprogramming

involves dynamic shifts between glycolysis, the TCA cycle, and

oxidative phosphorylation and is influenced by both intrinsic

signaling pathways and extrinsic factors such as steroid

hormones. Steroid hormones—including glucocorticoids,

androgens, progestogens, and estrogens—regulate immune

responses by modulating intracellular metabolism in rodents and

humans, although species-specific effects have been reported. The

effects of steroid hormones can also vary depending on the

microenvironment and disease-state. Nonetheless, these findings

underscore the intricate and bidirectional relationship between

metabolism and immune regulation and highlight steroid

hormones as key modulators of immunometabolic activity across

multiple immune cell types (Figure 1).

While not the focus of this review, it should be noted that the

adrenal-derived steroid hormone and androgen and estrogen

precursor, dehydroepiandrosterone (DHEA), regulates

intracellular metabolism and inflammatory activity. It has been

found to inhibit glucose-6-phosphate dehydrogenase and the

pentose phosphate pathway in human and mouse endometrial

stromal cells and human breast cancer cells (206, 207), and to

increase oxidative phosphorylation in cumulus cells of aged infertile

patients and in liver mitochondria of developing rats (208, 209).
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Although it is not clear if DHEA modulates bioenergetic pathways

in immune cells, it has been shown to attenuate LPS-induced

production of pro-inflammatory mediators in murine RAW 264.7

macrophages (210); thus, future investigators into a role for this

hormone in regulating immunometabolism are warranted. In

conclusion, defining the cell type-, microenvironment-, disease-

state, and concentration-dependent effects of steroid hormones on

metabolic reprogramming in immune cells will facilitate more

precise therapeutic targeting of immune cell activity to mitigate

inflammatory- and immune-mediated diseases.
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FIGURE 1

Immunometabolic targets of steroid hormones. Activated cells (e.g., pro-inflammatory macrophages, Th1, Th17, CD8+ T cells, and stimulated
dendritic cells) preferentially rely on glycolysis and exhibit dysregulation of the TCA cycle. This rapidly generates glycolytic intermediates that can be
used for cell proliferation and production of ROS and inflammatory mediators. On the other hand, immunomodulatory cells (e.g., anti-inflammatory
macrophages, Tregs, Th2 cells, and myeloid-derived suppressor cells [MDSCs]), tissue resident cells (e.g., macrophages and osteoclasts), and
unstimulated dendritic cells, are long-lived and rely on the more efficient oxidative phosphorylation pathway to satisfy their energy requirements.
Key mediators (e.g., hypoxia-inducible factor 1-alpha [HIF-1a], receptor activator of nuclear factor-kB ligand [RANKL], mechanistic target of
rapamycin [mTOR], interleukin [IL]-4, and IL-10) that are known to be activated by inflammatory stimuli (e.g., bisphenol-F [BPF], lipopolysaccharide
[LPS], and ovalbumin [OVA]) and/or modulated by steroid hormones are depicted in yellow, and the immunometabolic pathways they target are
shown in blue. Of note, some steroid hormones exhibit dichotomous regulation driven by cell type-, microenvironment-, and concentration-
dependent mechanisms as described in the review. GC, glucocorticoids; E, estrogens; A, androgens; P, progestogens; FAO, fatty acid oxidation.
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frontiersin.org

https://BioRender.com/su4w0te
https://doi.org/10.3389/fimmu.2025.1654034
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Smith et al. 10.3389/fimmu.2025.1654034
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Frontiers in Immunology 09
Publisher’s note
All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and
quiescence. Immunity. (2013) 38:633–43. doi: 10.1016/j.immuni.2013.04.005

2. HuC, Xuan Y, Zhang X, Liu Y, Yang S, Yang K. Immune cell metabolism andmetabolic
reprogramming. Mol Biol Rep. (2022) 49:9783–95. doi: 10.1007/s11033-022-07474-2

3. Conner KR, Duberstein PR, Conwell Y. The validity of proxy-based data in
suicide research: A study of patients 50 years of age and older who attempted suicide. I.
Psychiatric diagnoses. Acta Psychiatrica Scandinavica. (2001) 104:204–9. doi: 10.1034/
j.1600-0447.2001.00405.x

4. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol.
(2016) 16(10):626–38. doi: 10.1038/nri.2016.9

5. Kroon J, Pereira AM, Meijer O. Glucocorticoids sexual dimorphism in
metabolism: Dissecting the role of sex hormones. Trends Endocrinol Metab. (2021)
31:357–67. doi: 10.1016/j.tem.2020.01.010

6. Alotiby A. Immunology of Stress: A Review Article. J Clin Med. (2024) 13
(21):6394. doi: 10.3390/jcm13216394

7. Moon J-Y, Choi MH, Kim J. Metabolic profiling of cholesterol and sex steroid
hormones to monitor urological diseases. Endocrine-Related Cancer. (2016) 23:R455–
67. doi: 10.1530/ERC-16-0285

8. Grundy SM. Metabolic complications of obesity. Endocrine. (2000) 13:155–65.
doi: 10.1385/ENDO:13:2:155

9. Lee JH, Lee SW. Monthly variations in serum testosterone levels: results from
testosterone screening of 8,367 middle-aged men. J Urol. (2021) 205:1438–43.
doi: 10.1097/JU.0000000000001546

10. Shahid W, Noor R, Bashir MS. Effects of exercise on sex steroid hormones
(estrogen, progesterone, testosterone) in eumenorrheic females: A systematic to review
and meta-analysis. BMC Women’s Health. (2024) 24:354. doi: 10.1186/s12905-024-
03203-y

11. Spiga F, Walker JJ, Terry JR, Lightman SL. HPA axis-rhythms. Compr Physiol.
(2014) 4:1273–98. doi: 10.1002/cphy.c140003

12. Wang C, Catlin DH, Starcevic B, Leung A, DiStefano E, Lucas G, et al.
Testosterone metabolic clearance and production rates determined by stable isotope
dilution/tandem mass spectrometry in normal men: Influence of ethnicity and age. J
Clin Endocrinol Metab. (2004) 89:2936–41. doi: 10.1210/jc.2003-031802

13. Geserick C, Meyer H-A, Haendler B. The role of DNA response elements as
allosteric modulators of steroid receptor function.Mol Cell Endocrinol. (2005) 236:1–7.
doi: 10.1016/j.mce.2005.03.007

14. Webb P, Nguyen P, Valentine C, Lopez GN, Kwok GR, McInerney E, et al. The
estrogen receptor enhances AP-1 activity by two distinct mechanisms with different
requirements for receptor transactivation functions. Mol Endocrinol (Baltimore Md.).
(1999) 13:1672–85. doi: 10.1210/mend.13.10.0357

15. Xavier AM, Anunciato AKO, Rosenstock TR, Glezer I. Gene expression control
by glucocorticoid receptors during innate immune responses. Front Endocrinol. (2016)
7:31. doi: 10.3389/fendo.2016.00031

16. Wilkenfeld SR, Lin C, Frigo DE. Communication between genomic and non-
genomic signaling events coordinate steroid hormone actions. Steroids. (2018) 133:2–7.
doi: 10.1016/j.steroids.2017.11.005

17. Ainslie RJ, Simitsidellis I, Kirkwood PM, Gibson DA. RISING STARS:
Androgens and immune cell function. J Endocrinol. (2024) 261:e230398.
doi: 10.1530/JOE-23-0398

18. Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, sex hormones, and
immunity. Front Immunol. (2018) 9:1332. doi: 10.3389/fimmu.2018.01332

19. Chakraborty B, Byemerwa J, Krebs T, Lim F, Chang C-Y, McDonnell DP.
Estrogen receptor signaling in the immune system. Endocrine Rev. (2023) 44:117–41.
doi: 10.1210/endrev/bnac017

20. Kobayashi A, Azuma K, Ikeda K, Inoue S. Mechanisms underlying the regulation
of mitochondrial respiratory chain complexes by nuclear steroid receptors. Int J Mol
Sci. (2020) 21:6683. doi: 10.3390/ijms21186683
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