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A mathematical framework
for human neutrophil state
transitions inferred from
single-cell RNA sequence data
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Thomas Finnie2, Grant Lythe5, Saumyadipta Pyne1,3,6*†,
Carmen Molina-Parı́s5,7*† and Mariana J. Kaplan1*†
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(NIAMS/National Institutes of Health (NIH)), Bethesda, MD, United States, 2Analysis and Intelligence
Assessment Directorate, UK Health Security Agency, Salisbury, United Kingdom, 3Health Analytics
Network, Columbia, MD, United States, 4Data Science Unit, The West Bengal National University of
Juridical Sciences, Kolkata, India, 5Department of Applied Mathematics, School of Mathematics,
University of Leeds, Leeds, United Kingdom, 6Department of Statistics and Applied Probability,
University of California Santa Barbara, Santa Barbara, CA, United States, 7T-6, Theoretical Biology and
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Neutrophils, the most abundant immune cells in the human circulation, play a

central role in the innate immune system. While neutrophil heterogeneity is a

topic of increasing research interest, few efforts have been made to model the

dynamics of neutrophil population subsets. We develop amathematical model to

describe the dynamics that characterizes the states and transitions involved in the

maturation of human neutrophils. We use single-cell gene expression data to

identify five clusters of healthy human neutrophils, and pseudo-time analysis to

inform model structure. We find that precursor neutrophils transition into

immature neutrophils, which then either transition to an interferon-responsive

state or continue to mature through two further states. The key model

parameters are the transition rates (the inverse of a transition rate is the mean

waiting time in one state before transitioning to another). In this framework, the

transition from the precursor to immature state (mean time less than an hour) is

more rapid than subsequent transitions (mean times more than 12 hours).

Approximately a quarter of neutrophils are estimated to follow the interferon-

responsive path; the remainder continue along the standardmaturation pathway.

We use Bayesian inference to describe the variation, between individuals, in the

fraction of cells within each cluster.
KEYWORDS

neutrophil, cell population, state transition, mathematical model, ODE, single-cell RNA
sequence data
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Introduction

Neutrophils are the most abundant immune cell subset in the

human circulation and play a central role in the rapid innate

immune response against microbes and other danger signals (1).

Neutrophils are endowed with efficient strategies to neutralize

micro-organisms, including phagocytosis, degranulation, and the

formation of neutrophil extra-cellular traps (NETs). Conversely,

neutrophil dysregulation or enhanced activation can contribute to

auto-inflammatory and auto-immune diseases and promote end-

organ damage, while decreases in neutrophil function or numbers

can lead to enhanced risk for infections (2, 3). The estimated half-

life of human mature neutrophils in circulation is considered to be

less than a day, which contributes to the challenges of their study

and full characterization (4).

Indeed, despite being such a crucial component of the innate

immune system, neutrophil physiology and dynamics remain less

well characterized than other immune cell types, due in part to

technical difficulties in the study of neutrophils, stark differences in

neutrophil behavior across species, and the short neutrophil lifetime

in circulation. Recent technological advances allow for the

investigation of transcriptional states of single neutrophils, which

has begun to reveal their heterogeneity and complexity (4, 5). We

recently showed that neutrophils can be described along a

transcriptional continuum, with discrete clusters based on

expression of certain genes (6). However, accurate knowledge of

their cell state dynamics remains incomplete, and it is important to

characterize the functionality of different neutrophil subsets.

Mathematical modeling has been used to describe the growth,

differentiation, and decay of immune cell populations. These

models are often based on different hypotheses about the

biological mechanisms involved (7). By comparing model

predictions with experimental data, researchers cannot only

evaluate the plausibility of these hypotheses but also guide the

design of future experiments. So far, much of this work has focused

on the generation and maintenance of immunological memory,

particularly through models of T-cell populations (8). This includes

models of CD8+ effector T-cell production, as well as more recent

approaches that use single-cell clustering and pseudo-time

trajectory analysis to track how tumor cells develop drug

resistance (9, 10). In contrast, relatively little effort has been made

to mathematically model the transcriptional changes in neutrophils

or to quantify their movement through the body beyond what has

been observed in vitro (11).

While previous work (6) identified four transcriptionally

distinct neutrophil states using single-cell RNA sequencing, it did

not provide a quantitative model of their transitions or kinetics. Our

study builds on this by introducing a fifth precursor state and

developing an integrated mathematical and statistical framework

that models the dynamic transitions between neutrophil states. This

enables estimation of transition rates, as defined by the

mathematical model, and provides a mechanistic interpretation of

cell state progression, which was not captured in earlier analyses (6).
Frontiers in Immunology 02
Methods

Analysis of scRNA-seq data

Data used for modeling is based on previously published single-cell

data from adult human peripheral neutrophils (6). Cells were captured

and libraries made using the 10X 3’ 3.1 chemistry. Matrix files were

generated using Cellranger 8.0.1 for downstream analysis. The Python

package scanpy (version 1.9.4) was used to import matrix files. Cells

with fewer than 102 genes or a mitochondrial gene proportion greater

than 0.1 were removed. Genes that were expressed in fewer than 5 cells

were also omitted from the subsequent analyses.

Healthy volunteer samples were integrated using scvi-tools

(version 1.3) and the top 3 × 103 variable genes identified. This

creates a low-dimensional, latent representation of the raw gene

expression data that attempts to capture the true biological variation

while correcting for batch effects. Sample number (1-7) was

provided as a categorical covariate to the scVI model, however,

donor-specific effects, such as gender, were excluded since their

effect cannot be estimated given the small sample size. The latent

representation is then used to construct a neighborhood graph that

identifies cells that are similar to each other and forms the basis of

the clustering. Embedding of this graph in two dimensions is

performed using Uniform Manifold Approximation and

Projection (UMAP) and allows for better visualization of the

clusters. Initial Leiden clustering at a resolution of 0.5 identified

eight clusters. Cells in three of these clusters were removed as

contaminants due to low expression of CSF3R, FCGR3B and

NAMPT, genes that are expected to be highly expressed in human

neutrophils. The scVI model was retrained on cells in the remaining

clusters and a resolution of 0.42 was used to identify five clusters

associated with different neutrophil transcriptional states. A

trajectory analysis of these neutrophil states was performed using

the Monocle3 Python implementation, py-monocle.
Mathematical model

Let ni(t) denote the concentration of circulating neutrophils in

state i (with 1 ≤ i ≤ N) at time, where N is the number of states

identified from the clustering analysis of individual cells. The influx

of precursor neutrophils (or precursor state), n0, is assumed to

occur with constant rate f, and neutrophils in any state are lost

from circulation at rate m. A neutrophil transitions from state i to

state j with rate xi,j. The changes in neutrophil populations

associated with each state may then be described by the following

system of ordinary differential equations (ODEs):

dn0
dt

= f − (m + x0,1) n0 ,  
dn1
dt

= x0,1n0 − (m + x1,2 + x1,3) n1 ,

dn2
dt

= x1,2n1 − mn2 ,  
dn3
dt

= x1,3n1 − (m + x3,4) n3 ,
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dn4
dt

= x3,4n3 − mn4  :

This system reflects our hypothesis that precursor neutrophils,

n0, enter state 1 before differentiating into either state 2 or state 3.

The population of neutrophils in state 3 then proceed to the most

mature state, represented here by state 4 (see Figure 1).

For healthy individuals, we assume that these populations are in

equilibrium (stable steady state), and define fi to be the fraction of

circulating neutrophils in state i; that is, fi = ni=ojnj. The transition

rates may then be written in terms of these steady state fractions, all

of which are measurable, and the loss rate, m, as follows

x0,1 =
m(1 − f0)

f0
 ,   x1,2 =

mf2
f1

 ,   x1,3 =
m(f3 + f4)

f1
 ,   x3,4 =

mf4
f3

  : (1)

Note that, for a fixed loss rate, a unique set of cluster fractions

yields a unique set of transition rates.
Statistical model and inference

To understand the variability in transition rates across a

population of individuals, we begin by using a Dirichlet

distribution, Dir(a), to model the population-level variability in

steady-state neutrophil fractions. A random variable following a

Dirichlet distribution takes values in the form of N-dimensional

vectors, with the conditions that each entry of the vector is non-

negative and all entries sum to one. Since these conditions apply to

the steady state fractions of neutrophils, the Dirichlet distribution

provides a natural way to model the between-individual variability

in these fractions.

The aim here is, therefore, to estimate the parameters of the

Dirichlet distribution, a , using the cluster fractions derived from

the analysis of the single-cell sequencing data, our observed

fractions. Let F be a M � N matrix of these observed fractions,

where M = 7 is the number of subjects we have samples for and
Frontiers in Immunology 03
N = 5 is the number of neutrophil states. The mth row, F(m), then

contains the cluster fractions for individual m (1 ≤ m ≤ M). For a

particular value of a , the likelihood of our observed fractions is

given by

L(a ; F) =
YM

m=1g F(m);a
� �

,

where g i s the probab i l i ty dens i ty funct ion of the

Dirichlet distribution.

The frequentist approach of maximum likelihood estimation

looks to find a single a that maximizes the above likelihood, or

equivalently, the value of a that makes the observed data most

probable. Here, however, we adopt a Bayesian approach that treats

our parameters as random variables. In this case, the distribution of a
in the presence of our data, or the posterior distribution, is assumed

to be proportional to the product of our prior beliefs and the above

likelihood (12). Often, as is the case here, precise expressions for the

posterior distribution are difficult to obtain, so computational

methods such as Markov Chain Monte Carlo (MCMC) are used to

instead sample from it. The posterior sampling is performed here

using the emcee Python package, version 3.1.4 (13), full details of

which are provided in the Supplementary Material. To construct

distributions for the transition rates, xi,j, a are first drawn from the

MCMC posterior sample. Then, for each draw, steady-state fractions

fi, 1 ≤ i ≤ N, are sampled from the corresponding Dir(a) distribution
and these sampled fractions are substituted into Equation (1). In this

way, we account for both the uncertainty in our estimate of a, and the
variability in steady-state fractions across a population of individuals.
Results

Clustering of neutrophils from seven human samples at single-

cell level has led to the identification of five clusters corresponding

to different transcriptional states. These clusters are depicted in

Figure 2, where the UMAP method of dimensionality reduction
FIGURE 1

Left: UMAP space showing the learned graph and pseudo-time ordering from the trajectory analysis. Right: The mathematical model of the
transition of neutrophils between different transcriptional states, derived from the trajectory analysis. Neutrophils enter the circulation from the bone
marrow at rate f, with subsequent transitions between states marked by arrows. The state subscripts correspond to the cluster number and the
parameter xi,j represents the rate at which a neutrophil transitions from state Ni to state Nj. Neutrophils in each state are cleared at rate µ, but the
arrows depicting these events are omitted from the diagram to improve clarity.
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allows us to visualize the similarity between cells in two dimensions.

Full details of the process used to derive these clusters is provided in

the Methods section. To interpret the clusters, the average gene

expression of cells in each cluster is evaluated for a subset of genes

(Figure 3). This subset comprises the top marker genes for each of

the clusters found here, as well as marker genes from a previous

study of the same dataset (6).

Cluster 0 is characterized by elevated expression of ribosomal

protein genes (RPL, RPS), suggesting these are precursor

neutrophils that have recently entered circulation from the bone

marrow. Cluster 1 shows higher expression of S100 family genes

and likely represents immature neutrophils. Cluster 2 defines a

distinct state, marked by up-regulation of genes associated with a

type I interferon (IFN) response. Clusters 3 and 4 correspond to

increasingly mature circulating neutrophils, distinguished by

elevated expression of CXCR2 and the long non-coding RNAs,

MALAT1 and NEAT1, respectively. This interpretation of

neutrophil states aligns with our previous study, which identified

four transcriptionally distinct clusters corresponding to clusters 1–4
Frontiers in Immunology 04
described here (6), as well a previous study capturing mouse

neutrophils from different compartments (14).

To better understand neutrophil dynamics across the identified

clusters, we developed a mathematical model based on a system of

ODEs, a standard approach for describing how quantities evolve

over time. In this model, each variable represents the concentration

of neutrophils in one of the five transcriptional states. The

concentration within a state can increase due to incoming cells

from other states and decrease due to transitions to other states or

exit from circulation. As such, the model requires a defined

ordering of states.

Pseudo-time analysis was used to order neutrophils along a

biological continuum based on gene expression profiles, offering a

plausible path through transcriptional states (Figure 1, left). Since

precursor neutrophils correspond to the earliest transcriptional

state, cells in cluster 0 were used to define the root of the pseudo

time analysis. We used this pseudo-time ordering to inform the

structure of our model (illustrated in Figure 1, right). In this

framework, precursor neutrophils (N0) enter the circulation from
FIGURE 2

Left: A visualization of the five neutrophil clusters that uses UMAP to produce a two-dimensional representation of the raw gene expression data.
Right: For each healthy subject (HC1-HC7), the fraction of neutrophils that belong to each cluster is depicted.
FIGURE 3

The average expression of select genes in neutrophils in each of the five clusters (states). These expression levels guide the interpretation of each cluster.
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the bone marrow and transition into immature neutrophils (N1).

From there, cells either pass through an IFN-responsive state (N2)

or continue to mature through states N3 and N4. The model’s key

parameters are the transition rates, xi,j, representing the rate at

which neutrophils move from state Ni to state Nj. The inverse of

these rates (1/xi,j) corresponds to the average time spent in state Ni

before transitioning to Nj. High transition rates imply short dwell

times, whereas low rates indicate longer persistence in a state. To

estimate these parameters, we assume that neutrophil populations

in healthy individuals are at steady-state, meaning the number of

cells in each state remains constant over time. Under this

assumption, algebraic equations can be derived for the steady-

state neutrophil fractions in each cluster, fi, that depend solely on

the transition rates and a fixed exit rate from circulation. This exit

rate is set based on a presumed 12-hour half-life for circulating

neutrophils (15). We then estimate the transition rates of the seven

healthy individuals by substituting their observed cell fractions

(Figure 2, right) into these steady-state expressions.

Since cluster fractions vary across individuals, the corresponding

estimates of transition rates also differ. However, due to the small

sample size, these estimates alone do not capture how transition rates

vary across the broader population. To address this, we developed a

statistical model, described in detail in the Methods section, that

provides us with predicted probability distributions for the steady-

state cluster fractions (Figure 4). Bayesian inference is used to obtain

full posterior distributions for the parameters of this statistical model,

while samples from this model act as simulated cluster fractions that

are representative of a broader population. These samples are

subsequently used to construct probability distributions for the

transition rates in the mathematical model. The resulting

distributions, provided in Figure 5, account for both the

uncertainty in the parametrization of the statistical model and the
Frontiers in Immunology 05
inherent variability in sampling the cluster fractions. Together, the

statistical and mathematical models link individual-level data to

population-level estimates of neutrophil state transitions.

Median estimates from this combined framework suggest a

rapid transition from precursor to immature neutrophils (x0,1 = 4.9

h−1), consistent with the low observed fraction of cells in cluster 0.

Transition rates between subsequent states occur on slower but

comparable time scales: (x1,2 = 0.025 h−1, x1,3 = 0.076 h−1, x3,4 =
0.055 h−1). From these estimates, the fraction of neutrophils that

follow the IFN-responsive path (via cluster 2) can be calculated as:

x1,2/(x1,2 +x1,3)=0.24. This suggests that approximately 24% of

neutrophils transition into the IFN-responsive state, while the

remaining 76% continue along the standard maturation pathway.
Discussion

This study contributes to our understanding of neutrophil

heterogeneity by introducing a novel mathematical framework to

model transcriptional state dynamics in circulating neutrophils in

adult healthy subjects. While mathematical models have been widely

applied to study other immune cell populations, particularly T cells,

relatively few efforts have addressed the transcriptional progression of

neutrophils. Here, we leveraged single cell RNA sequencing data from

healthy individuals to identify five distinct transcriptional neutrophil

states through clustering analysis. Building on previous work, and

based on the expression of key marker genes, these clusters were

interpreted to represent a progression from precursor cells to more

mature states, with one cluster reflecting a type I IFN-responsive

population (6, 14).

By integrating single-cell transcriptomic data with a system of

ODEs, we provide a quantitative model for neutrophil state
FIGURE 4

Marginal distributions of the Dirichlet distribution used to model the variability in cluster fractions across a wider population. Each MCMC sample
provides a different parametrization of the Dirichlet distribution, and therefore a different density for each cluster. The median across these densities
is shown by the solid lines, while the shaded 50% credible intervals indicate regions that half of these densities fall within. On each subplot, the seven
red ticks along the x-axes represent the cluster fractions for the seven individuals whose samples are included in the single-cell sequencing analysis.
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transitions. This model formalizes hypotheses about neutrophil

maturation pathways, and enables the estimation of transition

rates between transcriptional states. Despite a limited number of

healthy subject samples, our statistical approach, based on Bayesian

inference, allowed us to incorporate inter-individual variability and

generate population-level estimates of state dynamics. This feature

is especially valuable for extending insights beyond the specific

individuals sampled and provides a framework that can scale with

larger datasets of individuals affected by a number of disease states

or physiological events (1, 3).

A key insight from the model is the rapid transition from the

precursor to immature state (x0,1), consistent with the low fraction

of neutrophils observed in the precursor cluster. However, the

inferred values for x0,1 are highly sensitive to small variations in

the precursor fraction (f0), which is estimated from a sparse

population (≤1% of cells). Since x0,1 is approximately equal to µ/

f0, small fluctuations in f0 can lead to large changes in x0,1. Thus,
while the exact value of x0,1 may be uncertain, the main conclusion,

that this transition occurs rapidly, remains robust. In future studies,

it may be reasonable to exclude the precursor cluster and return to

the four-cluster model of previous work, particularly if more robust

estimates of f0 remain difficult to obtain (6).

We used the value µ = log(2)/12h−1, corresponding to a 12-hour

half-life in circulation, that is consistent with established estimates.
Frontiers in Immunology 06
Since each transition rate in the model scales linearly with µ,

uncertainty in µ propagates proportionally to the estimated rates. A +

10% change in µ, for example, would result in a corresponding +10%

change in all transition rate estimates. The effect that different

neutrophil clearance rates have on the distributions of transition rates

is provided in the Supplementary Material. Moreover, the current

statistical model assumes that all individuals are sampled from a single

population.With a larger andmore diverse dataset, it would be possible

to incorporate covariates such as age, sex, or clinical status to refine

these assumptions and better capture population-level variability.

Our current model assumes that neutrophils enter circulation

from the bone marrow at constant rate f. As a result, the ODE

model reaches equilibrium and the steady state cluster fractions are

constant. A more realistic assumption may be to use a time-

dependent, periodic function, f(t), that captures the circadian

rhythm of circulating neutrophils (16). In this case, the system of

ODEs never reaches equilibrium, with the cluster fractions instead

oscillating around the constant steady state values predicted by our

current model (see Figure 6). With constant f, the steady state

fractions may therefore be interpreted as time-averaged fractions,

taken over a 24-hour period. Estimates of the transition rates, xi,j,
are therefore also based on the assumption that cluster fractions

from each healthy sample are representative of their daily average.

While this acts as a simplification, longitudinal data, describing how
FIGURE 5

Probability distributions for the transition rates, xi,j, between state i and state j. Solid lines are model predicted densities, constructed by substituting
sampled cluster fractions from the Dirichlet distribution into the mathematical expressions for the transition rates, equation (1). These densities
therefore reflect the variability in transition rates across a broader population. Red ticks on the x-axes indicates the values of each transition rate for
the seven individuals included in the single-cell sequencing analysis. Transition rates are per hour and logarithmic values are base 10.
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cluster fractions for each individual change throughout the day,

would be required to parametrize a model with a time-dependent

influx that better reflects the true biological system.

Importantly, our model examines and assumes a steady-state

neutrophil population (in the different states) for healthy individuals.

Extending the framework to capture other non-equilibrium

dynamics, such as those occurring in acute infection, chronic

inflammation, or drug treatments, represents a valuable future

direction. There is, for example, evidence from murine models that

the IFN-related neutrophil cluster can expand during bacterial

infection, suggesting a functional link in this state (14). Since IFN is

involved in both infections and auto-immune conditions, we can

speculate that this cell cluster is pre-primed to be reactive and possibly

important for disease pathogenesis. Interestingly, it is mostly type I

IFN genes that are dynamically regulated in neutrophils (17). In

addition, while our model is built on transcriptional data, integrating

complementary data types (e.g., proteomics, epigenetics, functional

assays, or tissue localization) would provide a more comprehensive

view of neutrophil function and state transitions (2, 11). We point out

that our cluster interpretation is consistent with previous work (6),

yet, the current study goes further by placing these clusters within a

dynamic mathematical model. This framework provides not only a

snapshot of neutrophil heterogeneity, but also insight into the timing

and variability of transitions between states, offering a new dimension

to understanding neutrophil maturation.

In summary, this study presents a framework for modeling

neutrophil transcriptional dynamics, addressing a significant gap in

immunological modeling. Beyond improving our understanding of

neutrophil behavior in healthy individuals, this approach lays the

groundwork for investigating how neutrophil state dynamics is

altered in disease contexts, including autoimmune and auto-

inflammatory disorders, infections, metabolic diseases, and cancer.
Frontiers in Immunology 07
Modeling allows for comparing cell states and transition rates in very

different contexts and compartments, to identify commonalities and

unique clusters. Hopefully it could guide research and potential

treatments targeting specific neutrophil populations in disease.

Ultimately, the integration of mathematical modeling with high-

dimensional single-cell data can inform both mechanistic

understanding and experimental design, advancing the study of

neutrophil biology and its role in immune system function.
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