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Neutrophils, the most abundant immune cells in the human circulation, play a
central role in the innate immune system. While neutrophil heterogeneity is a
topic of increasing research interest, few efforts have been made to model the
dynamics of neutrophil population subsets. We develop a mathematical model to
describe the dynamics that characterizes the states and transitions involved in the
maturation of human neutrophils. We use single-cell gene expression data to
identify five clusters of healthy human neutrophils, and pseudo-time analysis to
inform model structure. We find that precursor neutrophils transition into
immature neutrophils, which then either transition to an interferon-responsive
state or continue to mature through two further states. The key model
parameters are the transition rates (the inverse of a transition rate is the mean
waiting time in one state before transitioning to another). In this framework, the
transition from the precursor to immature state (mean time less than an hour) is
more rapid than subsequent transitions (mean times more than 12 hours).
Approximately a quarter of neutrophils are estimated to follow the interferon-
responsive path; the remainder continue along the standard maturation pathway.
We use Bayesian inference to describe the variation, between individuals, in the
fraction of cells within each cluster.
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Introduction

Neutrophils are the most abundant immune cell subset in the
human circulation and play a central role in the rapid innate
immune response against microbes and other danger signals (1).
Neutrophils are endowed with efficient strategies to neutralize
micro-organisms, including phagocytosis, degranulation, and the
formation of neutrophil extra-cellular traps (NETSs). Conversely,
neutrophil dysregulation or enhanced activation can contribute to
auto-inflammatory and auto-immune diseases and promote end-
organ damage, while decreases in neutrophil function or numbers
can lead to enhanced risk for infections (2, 3). The estimated half-
life of human mature neutrophils in circulation is considered to be
less than a day, which contributes to the challenges of their study
and full characterization (4).

Indeed, despite being such a crucial component of the innate
immune system, neutrophil physiology and dynamics remain less
well characterized than other immune cell types, due in part to
technical difficulties in the study of neutrophils, stark differences in
neutrophil behavior across species, and the short neutrophil lifetime
in circulation. Recent technological advances allow for the
investigation of transcriptional states of single neutrophils, which
has begun to reveal their heterogeneity and complexity (4, 5). We
recently showed that neutrophils can be described along a
transcriptional continuum, with discrete clusters based on
expression of certain genes (6). However, accurate knowledge of
their cell state dynamics remains incomplete, and it is important to
characterize the functionality of different neutrophil subsets.

Mathematical modeling has been used to describe the growth,
differentiation, and decay of immune cell populations. These
models are often based on different hypotheses about the
biological mechanisms involved (7). By comparing model
predictions with experimental data, researchers cannot only
evaluate the plausibility of these hypotheses but also guide the
design of future experiments. So far, much of this work has focused
on the generation and maintenance of immunological memory,
particularly through models of T-cell populations (8). This includes
models of CD8" effector T-cell production, as well as more recent
approaches that use single-cell clustering and pseudo-time
trajectory analysis to track how tumor cells develop drug
resistance (9, 10). In contrast, relatively little effort has been made
to mathematically model the transcriptional changes in neutrophils
or to quantify their movement through the body beyond what has
been observed in vitro (11).

While previous work (6) identified four transcriptionally
distinct neutrophil states using single-cell RNA sequencing, it did
not provide a quantitative model of their transitions or kinetics. Our
study builds on this by introducing a fifth precursor state and
developing an integrated mathematical and statistical framework
that models the dynamic transitions between neutrophil states. This
enables estimation of transition rates, as defined by the
mathematical model, and provides a mechanistic interpretation of
cell state progression, which was not captured in earlier analyses (6).
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Methods
Analysis of scRNA-seq data

Data used for modeling is based on previously published single-cell
data from adult human peripheral neutrophils (6). Cells were captured
and libraries made using the 10X 3’ 3.1 chemistry. Matrix files were
generated using Cellranger 8.0.1 for downstream analysis. The Python
package scanpy (version 1.9.4) was used to import matrix files. Cells
with fewer than 10 genes or a mitochondrial gene proportion greater
than 0.1 were removed. Genes that were expressed in fewer than 5 cells
were also omitted from the subsequent analyses.

Healthy volunteer samples were integrated using scvi-tools
(version 1.3) and the top 3 x 10 variable genes identified. This
creates a low-dimensional, latent representation of the raw gene
expression data that attempts to capture the true biological variation
while correcting for batch effects. Sample number (1-7) was
provided as a categorical covariate to the scVI model, however,
donor-specific effects, such as gender, were excluded since their
effect cannot be estimated given the small sample size. The latent
representation is then used to construct a neighborhood graph that
identifies cells that are similar to each other and forms the basis of
the clustering. Embedding of this graph in two dimensions is
performed using Uniform Manifold Approximation and
Projection (UMAP) and allows for better visualization of the
clusters. Initial Leiden clustering at a resolution of 0.5 identified
eight clusters. Cells in three of these clusters were removed as
contaminants due to low expression of CSF3R, FCGR3B and
NAMPT, genes that are expected to be highly expressed in human
neutrophils. The scVI model was retrained on cells in the remaining
clusters and a resolution of 0.42 was used to identify five clusters
associated with different neutrophil transcriptional states. A
trajectory analysis of these neutrophil states was performed using
the Monocle3 Python implementation, py-monocle.

Mathematical model

Let n,(t) denote the concentration of circulating neutrophils in
state i (with 1 < i < N) at time, where N is the number of states
identified from the clustering analysis of individual cells. The influx
of precursor neutrophils (or precursor state), 1y, is assumed to
occur with constant rate ¢, and neutrophils in any state are lost
from circulation at rate (. A neutrophil transitions from state i to
state j with rate ;. The changes in neutrophil populations
associated with each state may then be described by the following
system of ordinary differential equations (ODEs):

dn dn
d_to =¢—(u+&1)ng, d_tl = Eoang —(U+&1p+&13) s

dn dn

7: =& ony — uny, 7; =&am — (U+&34) s,
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This system reflects our hypothesis that precursor neutrophils,
1, enter state 1 before differentiating into either state 2 or state 3.
The population of neutrophils in state 3 then proceed to the most
mature state, represented here by state 4 (see Figure 1).

For healthy individuals, we assume that these populations are in
equilibrium (stable steady state), and define f; to be the fraction of
circulating neutrophils in state i; that is, f; = n;/ 2 M- The transition
rates may then be written in terms of these steady state fractions, all
of which are measurable, and the loss rate, 4, as follows

pO-f) . _mh . G ufy
f f f 2

Note that, for a fixed loss rate, a unique set of cluster fractions

So1 = s Ein s i3 s Ga= (1)

yields a unique set of transition rates.

Statistical model and inference

To understand the variability in transition rates across a
population of individuals, we begin by using a Dirichlet
distribution, Dir(¢), to model the population-level variability in
steady-state neutrophil fractions. A random variable following a
Dirichlet distribution takes values in the form of N-dimensional
vectors, with the conditions that each entry of the vector is non-
negative and all entries sum to one. Since these conditions apply to
the steady state fractions of neutrophils, the Dirichlet distribution
provides a natural way to model the between-individual variability
in these fractions.

The aim here is, therefore, to estimate the parameters of the
Dirichlet distribution, @, using the cluster fractions derived from
the analysis of the single-cell sequencing data, our observed
fractions. Let F be a M x N matrix of these observed fractions,
where M =7 is the number of subjects we have samples for and
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N =5 is the number of neutrophil states. The m™ row, F™, then
contains the cluster fractions for individual m (1 < m < M). For a
particular value of ¢, the likelihood of our observed fractions is
given by

L(a; F) = Hi\::lg (F(m); a) ,

where g is the probability density function of the
Dirichlet distribution.

The frequentist approach of maximum likelihood estimation
looks to find a single ¢ that maximizes the above likelihood, or
equivalently, the value of & that makes the observed data most
probable. Here, however, we adopt a Bayesian approach that treats
our parameters as random variables. In this case, the distribution of &
in the presence of our data, or the posterior distribution, is assumed
to be proportional to the product of our prior beliefs and the above
likelihood (12). Often, as is the case here, precise expressions for the
posterior distribution are difficult to obtain, so computational
methods such as Markov Chain Monte Carlo (MCMC) are used to
instead sample from it. The posterior sampling is performed here
using the emcee Python package, version 3.1.4 (13), full details of
which are provided in the Supplementary Material. To construct

distributions for the transition rates, &;;, & are first drawn from the

MCMC posterior sample. Then, for eacfl draw, steady-state fractions
f»>1<i<N,are sampled from the corresponding Dir() distribution
and these sampled fractions are substituted into Equation (1). In this
way, we account for both the uncertainty in our estimate of ¢ and the

variability in steady-state fractions across a population of individuals.

Results

Clustering of neutrophils from seven human samples at single-
cell level has led to the identification of five clusters corresponding
to different transcriptional states. These clusters are depicted in
Figure 2, where the UMAP method of dimensionality reduction

61,2
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'51,3

34 @
e

Left: UMAP space showing the learned graph and pseudo-time ordering from the trajectory analysis. Right: The mathematical model of the
transition of neutrophils between different transcriptional states, derived from the trajectory analysis. Neutrophils enter the circulation from the bone
marrow at rate ¢, with subsequent transitions between states marked by arrows. The state subscripts correspond to the cluster number and the
parameter &;; represents the rate at which a neutrophil transitions from state N; to state N;. Neutrophils in each state are cleared at rate y, but the
arrows depicting these events are omitted from the diagram to improve clarity.
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Left: A visualization of the five neutrophil clusters that uses UMAP to produce a two-dimensional representation of the raw gene expression data.
Right: For each healthy subject (HC1-HC?7), the fraction of neutrophils that belong to each cluster is depicted.

allows us to visualize the similarity between cells in two dimensions.
Full details of the process used to derive these clusters is provided in
the Methods section. To interpret the clusters, the average gene
expression of cells in each cluster is evaluated for a subset of genes
(Figure 3). This subset comprises the top marker genes for each of
the clusters found here, as well as marker genes from a previous
study of the same dataset (6).

Cluster 0 is characterized by elevated expression of ribosomal
protein genes (RPL, RPS), suggesting these are precursor
neutrophils that have recently entered circulation from the bone
marrow. Cluster 1 shows higher expression of S100 family genes
and likely represents immature neutrophils. Cluster 2 defines a
distinct state, marked by up-regulation of genes associated with a
type I interferon (IFN) response. Clusters 3 and 4 correspond to
increasingly mature circulating neutrophils, distinguished by
elevated expression of CXCR2 and the long non-coding RNAs,
MALATI and NEATI, respectively. This interpretation of
neutrophil states aligns with our previous study, which identified
four transcriptionally distinct clusters corresponding to clusters 1-4

described here (6), as well a previous study capturing mouse
neutrophils from different compartments (14).

To better understand neutrophil dynamics across the identified
clusters, we developed a mathematical model based on a system of
ODEs, a standard approach for describing how quantities evolve
over time. In this model, each variable represents the concentration
of neutrophils in one of the five transcriptional states. The
concentration within a state can increase due to incoming cells
from other states and decrease due to transitions to other states or
exit from circulation. As such, the model requires a defined
ordering of states.

Pseudo-time analysis was used to order neutrophils along a
biological continuum based on gene expression profiles, offering a
plausible path through transcriptional states (Figure 1, left). Since
precursor neutrophils correspond to the earliest transcriptional
state, cells in cluster 0 were used to define the root of the pseudo
time analysis. We used this pseudo-time ordering to inform the
structure of our model (illustrated in Figure I, right). In this
framework, precursor neutrophils (N,) enter the circulation from

0 1 2 3 4
| 1 1 1 | 1 1 1 1 1
B _ Fraction of cells
o1 @ e o ] . ] . > - @ ) ) in group (%)
5 1 ® - o ° o O @ @ | +0000
w2 : o e e e e o (0 o 20 40 60 80 100
3 .
O 31 O ® . ® O . . Mean expression
4 . . ® . . ® in group
[
T l‘) T T 1 |q le T I‘) T 6 T % T 'L IN T T T Q~ 0.0 0.5 10
o] s 4 L 2 4
g \:} "y Q Aj' <s (;V (J <>l (3“ Q 6& '& 4(5
& & @ F & F &S MRS
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Gene
FIGURE 3

The average expression of select genes in neutrophils in each of the five clusters (states). These expression levels guide the interpretation of each cluster.

Frontiers in Immunology

04

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1654015
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wigerblad et al.

the bone marrow and transition into immature neutrophils (N;).
From there, cells either pass through an IFN-responsive state (N,)
or continue to mature through states N3 and N,. The model’s key
parameters are the transition rates, éi,j, representing the rate at
which neutrophils move from state N; to state Nj. The inverse of
these rates (1/§;;) corresponds to the average time spent in state N;
before transitioning to N;. High transition rates imply short dwell
times, whereas low rates indicate longer persistence in a state. To
estimate these parameters, we assume that neutrophil populations
in healthy individuals are at steady-state, meaning the number of
cells in each state remains constant over time. Under this
assumption, algebraic equations can be derived for the steady-
state neutrophil fractions in each cluster, f;, that depend solely on
the transition rates and a fixed exit rate from circulation. This exit
rate is set based on a presumed 12-hour half-life for circulating
neutrophils (15). We then estimate the transition rates of the seven
healthy individuals by substituting their observed cell fractions
(Figure 2, right) into these steady-state expressions.

Since cluster fractions vary across individuals, the corresponding
estimates of transition rates also differ. However, due to the small
sample size, these estimates alone do not capture how transition rates
vary across the broader population. To address this, we developed a
statistical model, described in detail in the Methods section, that
provides us with predicted probability distributions for the steady-
state cluster fractions (Figure 4). Bayesian inference is used to obtain
full posterior distributions for the parameters of this statistical model,
while samples from this model act as simulated cluster fractions that
are representative of a broader population. These samples are
subsequently used to construct probability distributions for the
transition rates in the mathematical model. The resulting
distributions, provided in Figure 5, account for both the
uncertainty in the parametrization of the statistical model and the

400 4
_J? 300 3
§ 200 2
A 100 1
0 0—1 1
0.5 1
fo
4
2
07 un

FIGURE 4

10.3389/fimmu.2025.1654015

inherent variability in sampling the cluster fractions. Together, the
statistical and mathematical models link individual-level data to
population-level estimates of neutrophil state transitions.

Median estimates from this combined framework suggest a
rapid transition from precursor to immature neutrophils (y,, = 4.9
k™), consistent with the low observed fraction of cells in cluster 0.
Transition rates between subsequent states occur on slower but
comparable time scales: (&;,, = 0.025 h™%, &5 = 0.076 h'', &, =
0.055 h'). From these estimates, the fraction of neutrophils that
follow the IFN-responsive path (via cluster 2) can be calculated as:
E1/(&1,n +&1,3)=0.24. This suggests that approximately 24% of
neutrophils transition into the IFN-responsive state, while the
remaining 76% continue along the standard maturation pathway.

Discussion

This study contributes to our understanding of neutrophil
heterogeneity by introducing a novel mathematical framework to
model transcriptional state dynamics in circulating neutrophils in
adult healthy subjects. While mathematical models have been widely
applied to study other immune cell populations, particularly T cells,
relatively few efforts have addressed the transcriptional progression of
neutrophils. Here, we leveraged single cell RNA sequencing data from
healthy individuals to identify five distinct transcriptional neutrophil
states through clustering analysis. Building on previous work, and
based on the expression of key marker genes, these clusters were
interpreted to represent a progression from precursor cells to more
mature states, with one cluster reflecting a type I IFN-responsive
population (6, 14).

By integrating single-cell transcriptomic data with a system of
ODEs, we provide a quantitative model for neutrophil state

6
4
2
1 of m 11
0.5 1 0.5 1
fy f
___ Healthy sample
cluster fractions
— Median
50% credible interval
0.5 1
fq

Marginal distributions of the Dirichlet distribution used to model the variability in cluster fractions across a wider population. Each MCMC sample
provides a different parametrization of the Dirichlet distribution, and therefore a different density for each cluster. The median across these densities
is shown by the solid lines, while the shaded 50% credible intervals indicate regions that half of these densities fall within. On each subplot, the seven
red ticks along the x-axes represent the cluster fractions for the seven individuals whose samples are included in the single-cell sequencing analysis
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FIGURE 5

Probability distributions for the transition rates, &;;, between state j and state j. Solid lines are model predicted densities, constructed by substituting
sampled cluster fractions from the Dirichlet distribution into the mathematical expressions for the transition rates, equation (1). These densities
therefore reflect the variability in transition rates across a broader population. Red ticks on the x-axes indicates the values of each transition rate for
the seven individuals included in the single-cell sequencing analysis. Transition rates are per hour and logarithmic values are base 10.

transitions. This model formalizes hypotheses about neutrophil
maturation pathways, and enables the estimation of transition
rates between transcriptional states. Despite a limited number of
healthy subject samples, our statistical approach, based on Bayesian
inference, allowed us to incorporate inter-individual variability and
generate population-level estimates of state dynamics. This feature
is especially valuable for extending insights beyond the specific
individuals sampled and provides a framework that can scale with
larger datasets of individuals affected by a number of disease states
or physiological events (1, 3).

A key insight from the model is the rapid transition from the
precursor to immature state (&,;), consistent with the low fraction
of neutrophils observed in the precursor cluster. However, the
inferred values for &, are highly sensitive to small variations in
the precursor fraction (fp), which is estimated from a sparse
population (1% of cells). Since &, is approximately equal to y/
fo, small fluctuations in f, can lead to large changes in &y,;. Thus,
while the exact value of &),; may be uncertain, the main conclusion,
that this transition occurs rapidly, remains robust. In future studies,
it may be reasonable to exclude the precursor cluster and return to
the four-cluster model of previous work, particularly if more robust
estimates of f, remain difficult to obtain (6).

We used the value y = log(2)/12h™", corresponding to a 12-hour
half-life in circulation, that is consistent with established estimates.

Frontiers in Immunology

Since each transition rate in the model scales linearly with u,
uncertainty in y propagates proportionally to the estimated rates. A +
10% change in y, for example, would result in a corresponding +10%
change in all transition rate estimates. The effect that different
neutrophil clearance rates have on the distributions of transition rates
is provided in the Supplementary Material. Moreover, the current
statistical model assumes that all individuals are sampled from a single
population. With a larger and more diverse dataset, it would be possible
to incorporate covariates such as age, sex, or clinical status to refine
these assumptions and better capture population-level variability.

Our current model assumes that neutrophils enter circulation
from the bone marrow at constant rate ¢. As a result, the ODE
model reaches equilibrium and the steady state cluster fractions are
constant. A more realistic assumption may be to use a time-
dependent, periodic function, ¢(), that captures the circadian
rhythm of circulating neutrophils (16). In this case, the system of
ODEs never reaches equilibrium, with the cluster fractions instead
oscillating around the constant steady state values predicted by our
current model (see Figure 6). With constant ¢, the steady state
fractions may therefore be interpreted as time-averaged fractions,
taken over a 24-hour period. Estimates of the transition rates, 5,»,]»,
are therefore also based on the assumption that cluster fractions
from each healthy sample are representative of their daily average.
While this acts as a simplification, longitudinal data, describing how
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FIGURE 6

A comparison between the predicted cluster fractions when the influx of neutrophils from the bone marrow, ¢, is assumed to be constant (red) and
varies throughout the day (blue). Here, the time-varying ¢ takes the form of a simple sinusoidal function that describes the circadian rhythm

exhibited by circulating neutrophil populations.

cluster fractions for each individual change throughout the day,
would be required to parametrize a model with a time-dependent
influx that better reflects the true biological system.

Importantly, our model examines and assumes a steady-state
neutrophil population (in the different states) for healthy individuals.
Extending the framework to capture other non-equilibrium
dynamics, such as those occurring in acute infection, chronic
inflammation, or drug treatments, represents a valuable future
direction. There is, for example, evidence from murine models that
the IFN-related neutrophil cluster can expand during bacterial
infection, suggesting a functional link in this state (14). Since IFN is
involved in both infections and auto-immune conditions, we can
speculate that this cell cluster is pre-primed to be reactive and possibly
important for disease pathogenesis. Interestingly, it is mostly type I
IFN genes that are dynamically regulated in neutrophils (17). In
addition, while our model is built on transcriptional data, integrating
complementary data types (e.g., proteomics, epigenetics, functional
assays, or tissue localization) would provide a more comprehensive
view of neutrophil function and state transitions (2, 11). We point out
that our cluster interpretation is consistent with previous work (6),
yet, the current study goes further by placing these clusters within a
dynamic mathematical model. This framework provides not only a
snapshot of neutrophil heterogeneity, but also insight into the timing
and variability of transitions between states, offering a new dimension
to understanding neutrophil maturation.

In summary, this study presents a framework for modeling
neutrophil transcriptional dynamics, addressing a significant gap in
immunological modeling. Beyond improving our understanding of
neutrophil behavior in healthy individuals, this approach lays the
groundwork for investigating how neutrophil state dynamics is
altered in disease contexts, including autoimmune and auto-
inflammatory disorders, infections, metabolic diseases, and cancer.

Frontiers in Immunology 07

Modeling allows for comparing cell states and transition rates in very
different contexts and compartments, to identify commonalities and
unique clusters. Hopefully it could guide research and potential
treatments targeting specific neutrophil populations in disease.
Ultimately, the integration of mathematical modeling with high-
dimensional single-cell data can inform both mechanistic
understanding and experimental design, advancing the study of
neutrophil biology and its role in immune system function.
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