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Inflammation preservation
strategy: reconciling pain
control and disc resorption
in lumbar disc herniation
Guanyi Gong †, Zheng Yan †, Qilong Lai, Peijie You, Pengfei Yu,
Xiaochun Li, Zhiqiang Wang, Shun Lin, Yuxiang Dai,
Hong Jiang* and Jintao Liu*

Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
Lumbar disc herniation (LDH) is a prevalent condition driven by inflammation, which

mediates both radicular pain and spontaneous resorption of herniated material.

Traditional anti-inflammatory therapies alleviate pain but may impede disc

regression. We propose an Inflammation Preservation Strategy (IPS) to harness

inflammation’s reparative potential while managing symptoms. Molecular, clinical,

and translational evidence reveals inflammation drives resorption in 60–90% of

LDH cases. Key mechanisms include neovascularization, dynamic macrophage

polarization (where M1 degrades matrix while M2 promotes repair), and apoptosis-

autophagy synergy. Traditional anti-inflammatory therapies risk suppressing this

reparative cascade, whereas IPS advocates precision modulation—avoiding pan-

anti-inflammatory agents during acute phases and employing targeted

interventions to balance analgesia with tissue healing. Clinical data support IPS in

achieving near-complete resorption and sustained pain relief, suggesting a

paradigm shift from symptomatic palliation to disease-modifying regeneration.

Future directions include real-time inflammation phenotyping and smart

biomaterials to advance precision IPS implementation.
KEYWORDS

lumbar disc herniation, inflammation preservation strategy, macrophage polarization,
disc resorption, precision immunomodulation, spontaneous resorption, lumbar disc
extrusion, inflammatory microenvironment modulation
Introduction

Lumbar disc herniation (LDH) represents a prevalent orthopedic condition, with

documented annual incidence rates ranging from 1.6% in the general population to as high

as 43% among certain occupational cohorts characterized by repetitive heavy lifting or

spinal loading (1). Epidemiological analyses show LDH disproportionately contributes to
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global low back pain burden, accounting for 18-22% of chronic

cases. It is a leading driver of disability, particularly among women

aged 45–49 years. In this demographic, LDH-related years lived

with disability (YLDs) peak at over 1,600 per 100,000 population,

paralleling the highest rates reported in the Global Burden of

Disease 2021 (2). Furthermore, since 1990, medium socio-

demographic index regions have experienced a 12.9% rise in the

age-standardized prevalence of LDH (3).

Inflammation serves as the central pathophysiological

mechanism underlying LDH-associated pain, with inflammatory

mediators acting as the primary driving force behind the transition

from acute to chronic pain through sustained activation of

nociceptive pathways and promotion of neural plasticity (4).

Traditional therapeutic paradigms focus on suppressing acute

inflammatory responses, based on the concept that cytokine

storms (e.g., TNF-a, IL-1b, PGE2) directly stimulate nerve roots,

triggering radicular pain (5, 6). International surveys indicate that

non-steroidal anti- inflammatory drugs (NSAIDs) and

glucocorticoids are widely adopted as first-line pharmacotherapies

for LDH by spine surgeons (7). Cochrane reviews (8–10) emphasize

NSAIDs as the only oral non-opioid agents with dual anti-

inflammatory and analgesic effects, positioning them as primary

interventions for low back pain. The North American Spine Society

(NASS) guidelines (11) recommend NSAIDs as preferred acute-

phase treatment for LDH.

However, emerging evidence (12–14) reveals inflammation as a

key driver of herniated disc resorption. Spontaneous resorption occurs

in 60%–90% of extruded and sequestrated LDH cases, with

inflammation serving as the core mechanism. Fundamental studies

(12, 15, 16) confirm this process relies on a cascade of

neovascularization, macrophage infiltration, and matrix degradation.

Non-surgical management promotes size reduction of herniations,

particularly in extruded/sequestrated subtypes (17).

A critical paradox emerges: While inflammation is traditionally

viewed as a pain inducer, new data highlight its essential role in
Abbreviations: AF, annulus fibrosus; COX, cyclooxygenase; DAMPs, damage-

associated molecular patterns; DCs, dendritic cells; DNA, deoxyribonucleic acid;

DN, dual-network; ECM, extracellular matrix; GSDMD, gasdermin D; HIF-1a,

hypoxia-inducible factor 1-alpha; IL, interleukin; IPS, inflammation preservation

strategy; IVD, intervertebral disc degeneration; LDH, lumbar disc herniation;

M1/M2, macrophage polarization phenotypes; MHC-I, major histocompatibility

complex class I; MMPs, matrix metalloproteinases; MRI, magnetic resonance

imaging; NASS, North American Spine Society; NF-kB, nuclear factor kappa-

light-chain-enhancer of activated B cells; NLRP3, NOD-, LRR- and pyrin

domain-containing protein 3; NPCs, nucleus pulposus cells; NSAIDs, non-

steroidal anti-inflammatory drugs; PELD, percutaneous endoscopic lumbar

discectomy; PG, prostaglandin; PRP, platelet-rich plasma; PRRs, pattern

recognition receptors; QCT, quantitative computed tomography; ROS, reactive

oxygen species; SAVES v2, Spine Adverse Events Severity System version 2;

TIMPs, tissue inhibitors of metalloproteinases; TLR9, Toll-like receptor 9; TNF-

a, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor
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spontaneous disc regression. Anti-inflammatory therapies, despite

symptom relief, may impede resorption (18). Thus, we propose the

Inflammation Preservation Strategy (IPS), advocating avoidance of

potent anti-inflammatory agents during the acute phase to harness

localized inflammation for herniation clearance.

Unlike traditional conservative management (e.g., NSAIDs,

glucocorticoids) that globally suppress inflammation, or targeted

anti-cytokine therapies that neutralize specific pro-inflammatory

mediators, IPS represents a paradigm shift. It selectively preserves

inflammation during the critical “resorption window” by avoiding

potent anti-inflammatory agents in the acute phase, thereby

harnessing endogenous repair mechanisms. This perspective

explores three dimensions—molecular mechanisms, clinical

evidence, and translational value—to reconcile inflammation’s

dual nature. By deconstructing this “double-edged sword,” we

aim to pioneer novel therapeutic approaches balancing pain

control and tissue healing, ultimately advancing from symptom

palliation to disease-modifying therapy.
The cellular and molecular network
driving inflammation-mediated
resorption.

Neovascular ingrowth: the “conduit
engineering” of resorption

As an intrinsically avascular tissue, the intervertebral disc

degeneration (IVD) establishes contact with the epidural vascular

plexus upon herniation, triggering a precisely regulated “conduit

engineering” process manifesting as a pathological angiogenesis

network. Central to this process is the hypoxia-induced

microenvironment, which stimulates nucleus pulposus cells (NPCs)

to secrete vascular endothelial growth factor (VEGF). VEGF binds to

the endothelial cell-specific receptor VEGFR2, activating downstream

signaling pathways that drive the directed migration of vascular

endothelial cells towards the herniated site, culminating in the

formation of a functional neovascular network (19). Within this

cascade, M2 macrophages and VEGF form a bidirectional

regulatory loop: the anti-inflammatory cytokine IL-10 secreted by

M2 macrophages further upregulates VEGF expression, reinforcing a

positive feedback loop for angiogenesis (20). Conversely, the anti-

angiogenic isoform VEGF165b antagonizes M2 polarization by

inhibiting the S100A8/S100A9 signaling axis, constituting a negative

feedback mechanism (21). Clinically, the newly formed vascular

network (neovascularization) serves as a physical conduit for

macrophage infiltration (22) while simultaneously transporting

MMP precursors to the lesion site, facilitating extracellular matrix

(ECM) degradation and tissue resorption (23). This cascade of

angiogenesis-immune modulation-matrix degradation represents the

critical pathological pathway from vascular invasion to tissue

remodeling following disc herniation.
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Macrophage polarization: dynamic
equilibrium regulating inflammation and
repair

Macrophage polarization (M1/M2 switching) dynamically

balances inflammation and repair, serving as a central hub for

tissue homeostasis. During the inflammatory activation phase, pro-

inflammatory cytokines such as TNF-a and IL-1b drive M1

polarization. Activated M1 macrophages, via the NF-kB signaling

pathway, induce the expression of matrix metalloproteinases MMP-

3 and MMP-9, which directly degrade the collagen network of the

ECM (24, 25). Concurrently, M1 macrophages secrete IL-1b and

TNF-a, activating apoptotic signaling pathways in NPCs (26, 27).

Specifically, IL-1b induces mitochondrial-dependent apoptosis

(e.g., via caspase cascade activation) and suppresses the synthesis

of ECM components like collagen type II, leading to the loss of

structural integrity in the IVD and ultimately accelerating the

degenerative process (28).

Counterbalancing this is the M2 anti-inflammatory/repair

phenotype. M2 macrophages secrete cytokines like IL-10 and

TGF-b to establish an immunosuppressive microenvironment and

upregulate MMP expression to promote cellular debris clearance

(29). Notably, M2 macrophages transmit the HIF-1a/VEGF
signaling axis via exosomes, directly stimulating angiogenesis and

tissue regeneration (30). This phenotypic switching is finely

regulated by multiple mechanisms: autophagy flux enhancers

(e.g., theaflavin-3,3’-digallate) can drive M2 polarization by

promoting lysosomal degradation pathways, demonstrating

therapeutic potential in collagen-induced arthritis models (25). At

the epigenetic level, the DNA methyltransferase inhibitor 5-Aza

upregulates the M2 marker arginase-1 (Arg-1) while inhibiting the

release of the pro-fibrotic factor TGF-b1, revealing the critical role

of epigenetic modifications in determining polarization direction

(31). This spatiotemporal switching between M1 and M2

phenotypes constitutes a comprehensive regulatory network

governing the transition from inflammatory clearance to repair

and reconstruction following tissue injury.
Cell death and matrix remodeling:
synergistic action of the apoptosis-
autophagy axis

Within the resorption process of herniated IVDs, cell death and

matrix remodeling form a precisely coordinated network via the

apoptosis-autophagy axis. Apoptosis serves as a core pathway for

clearing redundant cells, driven by the TNF-a/caspase-3 signaling

axis to execute programmed cell death in NPCs, releasing apoptotic

bodies containing damage-associated molecular patterns (DAMPs)

(32). Notably, M2 macrophages secrete IL-10, creating a protective

microenvironment. This directly inhibits caspase-3 activity and

reduces apoptosis in adjacent cells—a key negative feedback

mechanism (33). Simultaneously, the autophagy system initiates
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cytoplasmic component turnover through upregulated LC3-II

protein expression, efficiently clearing damaged organelles and

misfolded proteins via the lysosomal pathway, thereby acting as a

“scavenger” in cellular homeostasis maintenance. Studies indicate

(34) that deficiency in the Nrf2 transcription factor significantly

suppresses autophagic flux, leading to the accumulation of

undegraded protein aggregates. This exacerbates M1 macrophage

polarization via the ROS-NF-kB axis, forming a vicious cycle

contributing to pathological changes like lung injury. Regarding

matrix remodeling, the dynamic balance between MMP-3/9 and

TIMP-1 determines the degradation threshold of the collagen

network: pathological disintegration of collagen fibers occurs when

MMPs are excessively activated or TIMP-1 expression is insufficient.

Furthermore, reactive oxygen species (ROS) accumulation can

directly inhibit TIMP-1 enzymatic activity through oxidative

modification, exacerbating matrix degradation imbalance (35).

Notably, antioxidants like cerium-manganese nanozymes, by

scavenging excess ROS, can effectively restore the MMP/TIMP

enzymatic activity ratio, offering novel strategies for matrix

homeostasis reconstruction. This three-dimensional regulatory

network of apoptosis-autophagy-matrix degradation constitutes the

core mechanism for cellular component renewal and tissue structural

remodeling during herniated disc resorption. The resorption cascade

initiates with hypoxia-induced VEGF secretion, which recruits

vascular endothelial cells to form neovessels (Days 1–7). These

neovessels enable macrophage influx, where early M1 activity

(Days 3–14) degrades ECM components, followed by M2

polarization promoting repair. Concurrently, TNF-a/caspase-3-
mediated apoptosis peaks (Days 7–28), releasing DAMPs that

amplify M2 activation while autophagy clears ROS/protein

aggregates to restore MMP/TIMP balance.

Figure 1 illustrates the tripartite inflammatory cascade governing

lumbar disc herniation resorption, integrating neovascular conduit

engineering, dynamic macrophage polarization (M1/M2 balance), and

the apoptosis-autophagy-matrix remodeling axis, which collectively

mediate the transition from inflammatory injury to reparative

tissue homeostasis.

The inflammatory response in spontaneous resorption is not

merely pathological destruction but a precisely programmed tissue-

repair mechanism. Its beneficial effects are achieved through multi-

layered immunoregulation: firstly, as core executors, macrophages

perceive DAMPs released from herniated nucleus pulposus via

pattern recognition receptors (PRRs), triggering secretion of pro-

inflammatory factors (TNF-a, IL-1b) to initiate immune cascades

(36, 37). This process eliminates necrotic tissue fragments through

lysosomal pathways while establishing a reparative microenvironment

via the angiogenesis-matrix remodeling axis (38). The neovascular

system provides physical channels for macrophage migration and

delivers matrix metalloproteinases (MMPs) to lesion sites, with

MMP-3/9 degrading collagen networks to enable tissue restructuring

(39). Notably, caspase-1-mediated proteolytic cleavage of gasdermin D

(GSDMD) by activated inflammasomes represents the critical step

initiating pyroptosis (40), while pyroptosis-released inflammatory

factors may indirectly promote VEGF expression, forming an
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1653681
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2025.1653681
“inflammation-angiogenesis-matrix degradation” positive regulatory

circuit (41). Although specific cellular infiltration density and

quantification efficiency remain unclarified, this dynamic equilibrium

mechanism likely constitutes the core pathophysiological framework
Frontiers in Immunology 04
for LDH resorption. While the proposed temporal sequence of

inflammatory resorption phases is mechanistically plausible, future

studies using longitudinal imaging or serial biomarker assays are

needed to validate these dynamics in vivo.
FIGURE 1

Schematic illustration of the inflammatory cascade driving lumbar disc herniation resorption (a) Hypoxic environment: Hypoxia-induced VEGF
secretion by nucleus pulposus cells initiates neovascularization, forming vascular conduits for macrophage infiltration and MMP delivery. (b) Immune
microenvironment: M1 macrophages drive ECM degradation via TNF-a/MMPs, while M2 macrophages promote repair through (IL-10/TGF-b/HIF-1a
signaling, with epigenetic/autophagy regulators fine-tuning polarization. (c) Protective microenvironment: Apoptosis (TNF-a/caspase-3) releases
DAMPs, counterbalanced by M2-derived IL-10 and autophagy-mediated debris clearance. ROS/MMP-driven matrix degradation is mitigated by
antioxidants, restoring ECM homeostasis.
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The dual role of inflammation and the
therapeutic rationale for inflammation
preservation strategies: risks and
regulatory approaches

The inflammatory response in spontaneous resorption of LDH is

not merely pathological destruction but a precisely programmed

response essential for tissue repair. Inflammation in LDH exhibits a

dualistic nature: it is a necessary driver for resorption, yet

inappropriate intervention can suppress this process. This duality

forms the core logic of inflammation preservation strategies—

retaining inflammation to facilitate “self-healing.
The anti-inflammatory treatment paradox:
comprehensive suppression disrupts
physiological repair

Conventional anti-inflammatory drugs are widely used to alleviate

inflammation-related symptoms, such as pain and swelling. However,

their core mechanism of blocking the inflammatory cascade creates a

paradox: while mitigating pathological states, global suppression may

potentially interfere with physiological repair processes. Specifically,

this “non-selective suppression” characteristic may antagonize the

natural regulatory processes required for tissue resorption or healing,

particularly evident with NSAIDs.

NSAIDs, including traditional non-selective agents and selective

COX-2 inhibitors, primarily act by competitively inhibiting

cyclooxygenase (COX) to block prostaglandin (PG) synthesis (42).

COX enzymes play a central role in inflammatory pathways, mediating

the biotransformation of arachidonic acid to generate various PGs.

While most studies report reduced disc resorption rates with NSAID

use, certain clinical scenarios—such as short-term (<7 days)

administration for non-sequestered herniations—show neutral effects

on resorption. This may reflect preserved VEGF signaling due to

limited intervention depth and maintained neovascularization

potential. These PGs are not only biochemical mediators of

inflammation and pain but are also theoretically involved in

angiogenesis and tissue repair. However, global suppression of the

COX pathway may indiscriminately inhibit beneficial signals, leading

to disruption of the “inflammation-repair” balance.
Precision intervention pathways for
inflammation preservation strategies

The core of inflammation preservation strategies lies in

implementing targeted interventions that block excessive damage

while preserving the reparative functions of inflammation. Any

carrier system employed requires rigorous biocompatibility

assessment to avoid foreign body reactions inducing secondary

inflammation. Research exploring spontaneous resolution

mechanisms provides a foundation for these strategies. Zhao et al.

(43) through a case study, confirmed spontaneous resorption of the
Frontiers in Immunology 05
nucleus pulposus in a patient with severe L5/S1 herniation after two

years of conservative management (including NSAIDs,

thermotherapy, and exercise therapy), accompanied by significant

decreases in inflammatory markers and symptom improvement. The

study indicated that spontaneous resolution involves macrophage-

mediated phagocytosis and reductions in inflammatory cytokines

(e.g., IL-6, TNF-a), providing theoretical support for conservative

management. Similarly, a systematic review (44) analyzing predictors

and mechanisms of nucleus pulposus (NP) spontaneous resorption

demonstrated that approximately 50–70% of patients under

conservative management (≥3 months) exhibited significant

resorption, primarily attributed to neovascularization and immune

cell infiltration reducing the inflammatory response. Clinical research

further corroborates this (45): the resorption rate was lower in groups

receiving early anti-inflammatory medication compared to those

managed with inflammation preservation approaches. Consequently,

avoiding anti-inflammatory drugs like NSAIDs resulted in a 100%

resorption rate in acute LDH patients. Current evidence (46, 47)

indicates that NSAIDs may exert inhibitory effects on bone healing.

However, the distinct pharmacological profiles between COX-2

selective inhibitors and non-selective NSAIDs, along with the

emergence of novel compounds, present opportunities to develop

more nuanced and patient-specific treatment regimens for individuals

undergoing IPS protocols.

Deeper regulatory mechanisms focus on modulating cell death

modalities. Small-molecule inhibitors targeting the caspase-1/

GSDMD complex structure can selectively suppress excessive

pyroptotic damage while preserving the contribution of apoptosis/

autophagy pathways to tissue repair (48).

During apoptosis, mitochondrial BAK protein, activated by

BH3-only molecules, sequesters ATP within LC3-positive vesicles

via a non-canonical autophagy pathway. This molecular

sequestration mechanism reduces ATP efflux as a DAMP, thereby

inhibiting phagocyte activation and the secretion of pro-

inflammatory cytokines l ike IL-1b (49) . This finding

mechanistically aligns with (IVD research: IL-1b accelerates IVD

via NLRP3 inflammasome-mediated pyroptosis, while activating

the nuclear receptor NR1D1 suppresses this pathway. The NR1D1

agonist SR9009 effectively mitigates inflammatory damage and

promotes extracellular matrix synthesis by regulating the NR1D1/

NLRP3/IL-1b axis, offering a novel therapeutic target for IVD (50).

This multi-dimensional regulatory strategy provides a paradigm

shift from “inflammation suppression” to “inflammation

remodeling” for LDH treatment (51).
Translational applications of inflammation
preservation strategies

The transition of inflammation preservation strategies from

theory to clinical application is underway, centered on precise

modulation rather than comprehensive suppression of

inflammation. Conservative management remains the first-line

approach for LDH, with current clinical pathways encompassing

three main directions: pharmacotherapy, physical therapy, and
frontiersin.org
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regenerative medicine, all aiming to control inflammation and

promote repair.

Multiple sources address this theme: A 2025 review (52)

summarized recent non-surgical strategies. Platelet-rich plasma

(PRP) and bone marrow aspirate concentrate (BMAC) modulate

macrophage polarization from pro-inflammatory M1 to anti-

inflammatory M2 phenotypes, inhibiting the release of

inflammatory cytokines like IL-1b and TNF-a, thereby slowing

disc degeneration. Based on World Federation of Neurosurgical

Societies (WFNS) Spine Committee recommendations, Yaman et al.

(53) stated that conservative treatment (including NSAIDs,

thermotherapy, and exercise) is effective in ≥70% of patients with

mild-to-moderate LDH, achieving symptom relief by reducing

inflammatory cytokine levels and oxidative stress.

Systemic administration of traditional NSAIDs, due to their

non-selective inhibition of PG synthesis, may concurrently block

MMP-mediated enzymatic clearance of herniated material. Novel

epidural/selective nerve root blockade techniques enable precise,

image-guided drug delivery to the inflammatory site. These

techniques deliver anti-TNF-a antibodies directly to areas of

nerve root compression, targeting pro-inflammatory factors (e.g.,

TNF-a, IL-6, PGE2) released by herniated NP material (54). A

meta-analysis of randomized controlled trials (55) demonstrated

that tailored exercise protocols for LDH (e.g., core muscle training)

downregulate pro-inflammatory factors while upregulating anti-

inflammatory mediators, improving functional scores without

completely blocking inflammatory pathways. This evidence

highlights the translational potential of inflammation preservation

strategies in non-pharmacological treatments.

Regenerative medicine strategies are particularly promising.

Researchers developed a dual-network bio-sealant loaded with

extracellular vesicles for immunomodulation and annulus fibrosus

(AF) repair (56). By downregulating inflammatory cytokines (e.g.,

TNF-a, IL-1b) and activating anti-inflammatory pathways (e.g.,

eNOS/VEGFa), it significantly reduced inflammatory infiltration in

the herniation zone, with tissue regeneration and functional

recovery observed in animal models after 4 weeks. Furthermore,

hydrogels demonstrate biocompatibility and biodegradability

matching neuronal tissues (57). Studies show that hydrogel

scaffolds loaded with the anti-inflammatory molecule TGF-b1 can

neutralize pro-inflammatory factors in the microenvironment,

inhibit MMP-3/13 expression, and protect the extracellular matrix

(58). Utilizing hydrogels to deliver anti-inflammatory cytokines

(e.g., IL-4, TGF-b1) or stem cells promotes the shift from M1 (pro-

inflammatory) to M2 (reparative) phenotypes (59). Concurrently,

Yu et al. (60) employed menstrual blood-derived mesenchymal

stem cells (MenSCs) combined with collagen I gel in a post-

discectomy rat model. They confirmed that stem cells secrete the

anti-inflammatory factor IL-4, promoting disc tissue remodeling,

reducing inflammatory damage, and improving biomechanical

stability. A systematic review (61) showed that percutaneous

endoscopic lumbar discectomy (PELD) combined with platelet-

rich plasma (PRP) injection significantly reduces postoperative

recurrence rates in LDH. PRP suppresses local inflammation by
Frontiers in Immunology 06
releasing anti-inflammatory factors (e.g., IL-1Ra) and promotes disc

tissue repair.
Future directions: precision-targeting
of inflammation preservation
strategies and clinical translation
pathways

The Inflammation Preservation Strategy (IPS) represents a

paradigm shift in lumbar disc herniation (LDH) management.

However, its clinical translation faces critical challenges. Future

research must focus on the following core directions to advance this

strategy from concept to precision practice:
Direction 1: clinical translation of dynamic
inflammation phenotyping technologies

Establishing a non-invasive, dynamic monitoring system for

inflammatory phenotypes in LDH is a pivotal technological

breakthrough for the precise implementation of IPS. A multi-

scale inflammation assessment framework, integrating molecular

biomarkers with macro-imaging features, can be achieved through

the deep integration of multi-modal radiomics and liquid

biopsy technologies.

ROS-responsive nanosensors enable real-time capture of local

inflammatory signal changes within the microenvironment. PET-

CT can detect specific inflammatory targets. Additionally,

microsampling techniques (e.g., capillary microsampling, dried

blood spots) facilitate continuous monitoring of inflammatory

biomarkers (62). Zhao et al. (63) designed a DNA nano-

orchestrator exhibiting ROS-responsive component release. In

vitro, it is efficiently internalized by cells, stimulates Toll-like

receptor 9 (TLR9) in dendritic cells (DCs), inhibits autophagy,

and enhances major histocompatibility complex class I (MHC-I)

expression. It also activates systemic adaptive immunity by

increasing the infiltration of DCs and CD8+ T cells. Li et al. (64)

further propose that the relationship between paraspinal muscle

properties and bone mineral density, assessed via MRI and

quantitative computed tomography (QCT), can extend this multi-

modal imaging approach to inflammatory phenotype analysis.
Direction 2: functional iteration of
intelligent biomaterials

Traditional discectomy can trigger postoperative inflammatory

cascades due to mechanical trauma, potentially leading to

secondary annular rupture in residual nucleus pulposus tissue,

exacerbated inflammation, and reherniation risk. Studies indicate

that unaddressed annular defects post-discectomy increase

reherniation rates, while biomaterials can locally deliver anti-
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inflammatory factors and provide repair scaffolds (65).

Consequently, developing microenvironment-responsive scaffold

materials capable of dynamically sensing local inflammation levels

and regulating the inflammation-repair balance is crucial (66).

Recent research (67) reports a multifunctional dual-network

(DN) hydrogel composed of a physically cross-linked

carboxymethyl chitosan (CMCS) and tannic acid (TA) network,

combined with a chemically cross-linked acrylamide (AM)

network. This hydrogel integrates high strength, adhesion,

biocompatibility, and anti-inflammatory properties. Treatment

significantly reduces levels of inflammatory cytokines during IVD

and partially restores disc biomechanics. Additional research

avenues include self-powered triboelectric-responsive microneedle

devices integrating targeted optogenetically engineered extracellular

vesicles for controlled release, aiming to restore functional

homeostasis in aged nucleus pulposus cells and promote precision

repair of inflammatory disc degeneration (68). Future research

should focus on deep modulation of the material-immune

interface, integrating extracellular matrix (ECM)-mimetic ligands

with immune checkpoint modulators to engineer clinical

biomaterials with combined immune-evasive and inflammation-

reprogramming functions, creating an immunologically favorable

microenvironment for endogenous disc repair.
Direction 3: evidence-based advancement
of clinical translation pathways

Despite the diversified development of clinical intervention

strategies for LDH, evidence-based research on inflammation-

retaining protocols still faces the fundamental challenge of lacking

standardized pathways. Substantial controversies persist in current

treatment paradigms regarding surgical indications, conservative

protocol selection, and complication prevention, leading to the

coexistence of overtreatment and undertreatment (69). To address

this impasse, future research could establish a clinical translation

framework integrating phenotypic precision stratification,

individualized therapeutic decision-making, and dynamic

prognostic assessment. This approach would enable comprehensive

precision management from diagnostic classification to treatment

planning through systematic integration of disease heterogeneity

markers and therapeutic response biomarkers. The critical window

for IPS intervention is defined by the temporal dynamics of

inflammation and tissue remodeling. During this interval,

inflammatory processes are maximally active, creating an optimal

environment for nucleus pulposus resorption through angiogenesis

and pro-repair macrophage activity (70). Premature or delayed

administration of anti-inflammatory agents during this window

may disrupt the delicate balance between catabolic inflammation

and anabolic repair, potentially reducing resorption efficacy.

In the context of staged disease intervention, patients in acute

inflammatory phases may benefit from minimally invasive

transforaminal endoscopic decompression combined with drug-

eluting anti-inflammatory scaffold implantation, achieving localized

inflammatory microenvironment modulation via controlled
Frontiers in Immunology 07
glucocorticoid release. During subsequent tissue repair phases,

bioactive scaffolds loaded with mesenchymal stem cell-derived

exosomes containing miR-21-5p and TGF-b1 regulatory factors

could be introduced to promote disc matrix synthesis and neural

regeneration (71). Notably, the postoperative management module

incorporates spinal surgery experience (72) by integrating the

complication prediction system with longitudinal functional

recovery data, facilitating proactive monitoring and prevention of

adverse events and surgical sequelae. As underscored in recent

studies, “Addressing these factors – regulatory compliance, scalable

production, cost-effectiveness, and rigorous safety assessments – is

crucial for advancing biomaterials from the lab to clinical

applications” (73). Clinician-scientist partnerships are critical to

overcoming translational barriers. Looking ahead, “Collaboration

between clinicians and scientists holds the key to revolutionizing

patient care through biomaterial science” (74).
Temporal prioritization of research goals

To operationalize the ambitious future directions, we propose a

tiered implementation framework: short-term (1–3 years) efforts

will validate dynamic inflammation phenotyping through multi-

center radiomics studies, medium-term (3–5 years) initiatives will

advance intelligent biomaterial iteration via FDA-regulated

hydrogel trials, and long-term (5–10 years) objectives will

establish clinical translation pathways through international

consortium-driven registries, aligning with NIH Stage Model

principles for actionable research prioritization.
Conclusion

The Inflammation Preservation Strategy represents a

transformative innovation in LDH management. Inflammation is

not only a key driver of radicular pain but also an indispensable

physiological engine for the spontaneous resorption of herniated

nucleus pulposus. This process relies on a precisely regulated

cascade: neovascularization provides the “logistical conduit,”

macrophage infiltration executes matrix degradation and debris

clearance, and the synergistic action of the apoptosis-autophagy

axis facilitates final cellular turnover and tissue remodeling.

Traditional pan-anti-inflammatory strategies centered on non-

steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids,

while effective for acute pain relief, employ non-selective global

suppression. Both basic and clinical evidence confirms this

significantly interferes with, or even blocks, this physiological

repair process, leading to reduced resorption rates and increased

recurrence risk. Supplementary Material 1 presents a hierarchical

evidence matrix that categorizes key findings by research strata

(basic/translational/clinical) and thematic dimensions (mechanistic

pathways/biomaterial innovation/interventional efficacy).

The core logic of IPS is therefore revolutionary: During specific

stages, particularly for sequestered/migrated LDH patients within the

“inflammation-driven resorption window”(approximately Days 3–14
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post-injury) in patients with sequestered/migrated lumbar disc

herniation (LDH)—potent anti-inflammatory agents should be

judiciously avoided or strictly limited. This phase, bridging the

inflammatory (Days 0–4) and proliferative stages (Days 4–14) of

tissue repair as delineated in contemporary wound healing

frameworks, represents a critical period when inflammatory

processes are maximally active yet precisely regulated. Instead,

employ physical therapy (e.g., thermotherapy/exercise),

spatiotemporally responsive biomaterials like hydrogels or

nanocarriers, and repurposed traditional agents should be employed

to achieve “precision modulation” rather than “comprehensive

suppression” of the inflammatory microenvironment (75). The goal

is to effectively manage pain thresholds while maximally preserving

and optimizing the inflammation response’s capacity for herniated

tissue clearance and repair, ultimately enabling a transition from

“palliative symptom relief” to “disease-modifying therapy.
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