? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Katja Lakota,
University Medical Centre Ljubljana, Slovenia

REVIEWED BY
Zehao Zhao,

Capital Medical University, China

Liangzhen You,

Beijing University of Chinese Medicine, China

*CORRESPONDENCE

Jintao Liu
okdoctor@163.com

Hong Jiang
honghong751@126.com

"These authors have contributed
equally to this work and share
first authorship

RECEIVED 25 June 2025
ACCEPTED 12 August 2025
PUBLISHED 02 September 2025

CITATION

Gong G, Yan Z, Lai Q, You P, Yu P, Li X,
Wang Z, Lin S, Dai Y, Jiang H and Liu J (2025)
Inflammation preservation strategy:
reconciling pain control and disc

resorption in lumbar disc herniation.

Front. Immunol. 16:1653681.

doi: 10.3389/fimmu.2025.1653681

COPYRIGHT

© 2025 Gong, Yan, Lai, You, Yu, Li, Wang, Lin,
Dai, Jiang and Liu. This is an open-access
article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TYPE Perspective
PUBLISHED 02 September 2025
po110.3389/fimmu.2025.1653681

Inflammation preservation
strategy: reconciling pain
control and disc resorption
in lumbar disc herniation

Guanyi Gong', Zheng Yan', Qilong Lai, Peijie You, Pengfei Yu,
Xiaochun Li, Zhigiang Wang, Shun Lin, Yuxiang Dai,
Hong Jiang* and Jintao Liu*

Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China

Lumbar disc herniation (LDH) is a prevalent condition driven by inflammation, which
mediates both radicular pain and spontaneous resorption of herniated material.
Traditional anti-inflammatory therapies alleviate pain but may impede disc
regression. We propose an Inflammation Preservation Strategy (IPS) to harness
inflammation’s reparative potential while managing symptoms. Molecular, clinical,
and translational evidence reveals inflammation drives resorption in 60-90% of
LDH cases. Key mechanisms include neovascularization, dynamic macrophage
polarization (where M1 degrades matrix while M2 promotes repair), and apoptosis-
autophagy synergy. Traditional anti-inflammatory therapies risk suppressing this
reparative cascade, whereas IPS advocates precision modulation—avoiding pan-
anti-inflammatory agents during acute phases and employing targeted
interventions to balance analgesia with tissue healing. Clinical data support IPS in
achieving near-complete resorption and sustained pain relief, suggesting a
paradigm shift from symptomatic palliation to disease-modifying regeneration.
Future directions include real-time inflammation phenotyping and smart
biomaterials to advance precision IPS implementation.

KEYWORDS

lumbar disc herniation, inflammation preservation strategy, macrophage polarization,
disc resorption, precision immunomodulation, spontaneous resorption, lumbar disc
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Introduction

Lumbar disc herniation (LDH) represents a prevalent orthopedic condition, with
documented annual incidence rates ranging from 1.6% in the general population to as high
as 43% among certain occupational cohorts characterized by repetitive heavy lifting or
spinal loading (1). Epidemiological analyses show LDH disproportionately contributes to
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global low back pain burden, accounting for 18-22% of chronic
cases. It is a leading driver of disability, particularly among women
aged 45-49 years. In this demographic, LDH-related years lived
with disability (YLDs) peak at over 1,600 per 100,000 population,
paralleling the highest rates reported in the Global Burden of
Disease 2021 (2). Furthermore, since 1990, medium socio-
demographic index regions have experienced a 12.9% rise in the
age-standardized prevalence of LDH (3).

Inflammation serves as the central pathophysiological
mechanism underlying LDH-associated pain, with inflammatory
mediators acting as the primary driving force behind the transition
from acute to chronic pain through sustained activation of
nociceptive pathways and promotion of neural plasticity (4).
Traditional therapeutic paradigms focus on suppressing acute
inflammatory responses, based on the concept that cytokine
storms (e.g., TNF-o, IL-1B, PGE,) directly stimulate nerve roots,
triggering radicular pain (5, 6). International surveys indicate that
non-steroidal anti-inflammatory drugs (NSAIDs) and
glucocorticoids are widely adopted as first-line pharmacotherapies
for LDH by spine surgeons (7). Cochrane reviews (8-10) emphasize
NSAIDs as the only oral non-opioid agents with dual anti-
inflammatory and analgesic effects, positioning them as primary
interventions for low back pain. The North American Spine Society
(NASS) guidelines (11) recommend NSAIDs as preferred acute-
phase treatment for LDH.

However, emerging evidence (12-14) reveals inflammation as a
key driver of herniated disc resorption. Spontaneous resorption occurs
in 60%-90% of extruded and sequestrated LDH cases, with
inflammation serving as the core mechanism. Fundamental studies
(12, 15, 16) confirm this process relies on a cascade of
neovascularization, macrophage infiltration, and matrix degradation.
Non-surgical management promotes size reduction of herniations,
particularly in extruded/sequestrated subtypes (17).

A critical paradox emerges: While inflammation is traditionally
viewed as a pain inducer, new data highlight its essential role in

Abbreviations: AF, annulus fibrosus; COX, cyclooxygenase; DAMPs, damage-
associated molecular patterns; DCs, dendritic cells; DNA, deoxyribonucleic acid;
DN, dual-network; ECM, extracellular matrix; GSDMD, gasdermin D; HIF-1c.,
hypoxia-inducible factor 1-alpha; IL, interleukin; IPS, inflammation preservation
strategy; IVD, intervertebral disc degeneration; LDH, lumbar disc herniation;
M1/M2, macrophage polarization phenotypes; MHC-I, major histocompatibility
complex class I; MMPs, matrix metalloproteinases; MRI, magnetic resonance
imaging; NASS, North American Spine Society; NF-kB, nuclear factor kappa-
light-chain-enhancer of activated B cells; NLRP3, NOD-, LRR- and pyrin
domain-containing protein 3; NPCs, nucleus pulposus cells; NSAIDs, non-
steroidal anti-inflammatory drugs; PELD, percutaneous endoscopic lumbar
discectomy; PG, prostaglandin; PRP, platelet-rich plasma; PRRs, pattern
recognition receptors; QCT, quantitative computed tomography; ROS, reactive
oxygen species; SAVES v2, Spine Adverse Events Severity System version 2;
TIMPs, tissue inhibitors of metalloproteinases; TLR9, Toll-like receptor 9; TNF-

o, tumor necrosis factor-alpha; VEGF, vascular endothelial growth factor
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spontaneous disc regression. Anti-inflammatory therapies, despite
symptom relief, may impede resorption (18). Thus, we propose the
Inflammation Preservation Strategy (IPS), advocating avoidance of
potent anti-inflammatory agents during the acute phase to harness
localized inflammation for herniation clearance.

Unlike traditional conservative management (e.g., NSAIDs,
glucocorticoids) that globally suppress inflammation, or targeted
anti-cytokine therapies that neutralize specific pro-inflammatory
mediators, IPS represents a paradigm shift. It selectively preserves
inflammation during the critical “resorption window” by avoiding
potent anti-inflammatory agents in the acute phase, thereby
harnessing endogenous repair mechanisms. This perspective
explores three dimensions—molecular mechanisms, clinical
evidence, and translational value—to reconcile inflammation’s
dual nature. By deconstructing this “double-edged sword,” we
aim to pioneer novel therapeutic approaches balancing pain
control and tissue healing, ultimately advancing from symptom
palliation to disease-modifying therapy.

The cellular and molecular network
driving inflammation-mediated
resorption.

Neovascular ingrowth: the “conduit
engineering” of resorption

As an intrinsically avascular tissue, the intervertebral disc
degeneration (IVD) establishes contact with the epidural vascular
plexus upon herniation, triggering a precisely regulated “conduit
engineering” process manifesting as a pathological angiogenesis
network. Central to this process is the hypoxia-induced
microenvironment, which stimulates nucleus pulposus cells (NPCs)
to secrete vascular endothelial growth factor (VEGF). VEGF binds to
the endothelial cell-specific receptor VEGFR2, activating downstream
signaling pathways that drive the directed migration of vascular
endothelial cells towards the herniated site, culminating in the
formation of a functional neovascular network (19). Within this
cascade, M2 macrophages and VEGF form a bidirectional
regulatory loop: the anti-inflammatory cytokine IL-10 secreted by
M2 macrophages further upregulates VEGF expression, reinforcing a
positive feedback loop for angiogenesis (20). Conversely, the anti-
angiogenic isoform VEGF,;¢sb antagonizes M2 polarization by
inhibiting the S100A8/S100A9 signaling axis, constituting a negative
feedback mechanism (21). Clinically, the newly formed vascular
network (neovascularization) serves as a physical conduit for
macrophage infiltration (22) while simultaneously transporting
MMP precursors to the lesion site, facilitating extracellular matrix
(ECM) degradation and tissue resorption (23). This cascade of
angiogenesis-immune modulation-matrix degradation represents the
critical pathological pathway from vascular invasion to tissue
remodeling following disc herniation.
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Macrophage polarization: dynamic
equilibrium regulating inflammation and
repair

Macrophage polarization (M1/M2 switching) dynamically
balances inflammation and repair, serving as a central hub for
tissue homeostasis. During the inflammatory activation phase, pro-
inflammatory cytokines such as TNF-o. and IL-1B drive MI
polarization. Activated M1 macrophages, via the NF-xB signaling
pathway, induce the expression of matrix metalloproteinases MMP-
3 and MMP-9, which directly degrade the collagen network of the
ECM (24, 25). Concurrently, M1 macrophages secrete IL-1 and
TNF-0,, activating apoptotic signaling pathways in NPCs (26, 27).
Specifically, IL-1B induces mitochondrial-dependent apoptosis
(e.g., via caspase cascade activation) and suppresses the synthesis
of ECM components like collagen type II, leading to the loss of
structural integrity in the IVD and ultimately accelerating the
degenerative process (28).

Counterbalancing this is the M2 anti-inflammatory/repair
phenotype. M2 macrophages secrete cytokines like IL-10 and
TGEF-P to establish an immunosuppressive microenvironment and
upregulate MMP expression to promote cellular debris clearance
(29). Notably, M2 macrophages transmit the HIF-1o/VEGF
signaling axis via exosomes, directly stimulating angiogenesis and
tissue regeneration (30). This phenotypic switching is finely
regulated by multiple mechanisms: autophagy flux enhancers
(e.g., theaflavin-3,3’-digallate) can drive M2 polarization by
promoting lysosomal degradation pathways, demonstrating
therapeutic potential in collagen-induced arthritis models (25). At
the epigenetic level, the DNA methyltransferase inhibitor 5-Aza
upregulates the M2 marker arginase-1 (Arg-1) while inhibiting the
release of the pro-fibrotic factor TGF-B1, revealing the critical role
of epigenetic modifications in determining polarization direction
(31). This spatiotemporal switching between M1 and M2
phenotypes constitutes a comprehensive regulatory network
governing the transition from inflammatory clearance to repair
and reconstruction following tissue injury.

Cell death and matrix remodeling:
synergistic action of the apoptosis-
autophagy axis

Within the resorption process of herniated IVDs, cell death and
matrix remodeling form a precisely coordinated network via the
apoptosis-autophagy axis. Apoptosis serves as a core pathway for
clearing redundant cells, driven by the TNF-o/caspase-3 signaling
axis to execute programmed cell death in NPCs, releasing apoptotic
bodies containing damage-associated molecular patterns (DAMPs)
(32). Notably, M2 macrophages secrete IL-10, creating a protective
microenvironment. This directly inhibits caspase-3 activity and
reduces apoptosis in adjacent cells—a key negative feedback
mechanism (33). Simultaneously, the autophagy system initiates
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cytoplasmic component turnover through upregulated LC3-II
protein expression, efficiently clearing damaged organelles and
misfolded proteins via the lysosomal pathway, thereby acting as a
“scavenger” in cellular homeostasis maintenance. Studies indicate
(34) that deficiency in the Nrf2 transcription factor significantly
suppresses autophagic flux, leading to the accumulation of
undegraded protein aggregates. This exacerbates M1 macrophage
polarization via the ROS-NF-xB axis, forming a vicious cycle
contributing to pathological changes like lung injury. Regarding
matrix remodeling, the dynamic balance between MMP-3/9 and
TIMP-1 determines the degradation threshold of the collagen
network: pathological disintegration of collagen fibers occurs when
MMPs are excessively activated or TIMP-1 expression is insufficient.
Furthermore, reactive oxygen species (ROS) accumulation can
directly inhibit TIMP-1 enzymatic activity through oxidative
modification, exacerbating matrix degradation imbalance (35).
Notably, antioxidants like cerium-manganese nanozymes, by
scavenging excess ROS, can effectively restore the MMP/TIMP
enzymatic activity ratio, offering novel strategies for matrix
homeostasis reconstruction. This three-dimensional regulatory
network of apoptosis-autophagy-matrix degradation constitutes the
core mechanism for cellular component renewal and tissue structural
remodeling during herniated disc resorption. The resorption cascade
initiates with hypoxia-induced VEGF secretion, which recruits
vascular endothelial cells to form neovessels (Days 1-7). These
neovessels enable macrophage influx, where early M1 activity
(Days 3-14) degrades ECM components, followed by M2
polarization promoting repair. Concurrently, TNF-o/caspase-3-
mediated apoptosis peaks (Days 7-28), releasing DAMPs that
amplify M2 activation while autophagy clears ROS/protein
aggregates to restore MMP/TIMP balance.

Figure 1 illustrates the tripartite inflammatory cascade governing
lumbar disc herniation resorption, integrating neovascular conduit
engineering, dynamic macrophage polarization (M1/M2 balance), and
the apoptosis-autophagy-matrix remodeling axis, which collectively
mediate the transition from inflammatory injury to reparative
tissue homeostasis.

The inflammatory response in spontaneous resorption is not
merely pathological destruction but a precisely programmed tissue-
repair mechanism. Its beneficial effects are achieved through multi-
layered immunoregulation: firstly, as core executors, macrophages
perceive DAMPs released from herniated nucleus pulposus via
pattern recognition receptors (PRRs), triggering secretion of pro-
inflammatory factors (TNF-o, IL-1B) to initiate immune cascades
(36, 37). This process eliminates necrotic tissue fragments through
lysosomal pathways while establishing a reparative microenvironment
via the angiogenesis-matrix remodeling axis (38). The neovascular
system provides physical channels for macrophage migration and
delivers matrix metalloproteinases (MMPs) to lesion sites, with
MMP-3/9 degrading collagen networks to enable tissue restructuring
(39). Notably, caspase-1-mediated proteolytic cleavage of gasdermin D
(GSDMD) by activated inflammasomes represents the critical step
initiating pyroptosis (40), while pyroptosis-released inflammatory
factors may indirectly promote VEGF expression, forming an

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1653681
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gong et al. 10.3389/fimmu.2025.1653681
Hypoxic Immune protective
environment microenvironment microenvironment
OO
— ©®
w TNF-a
’ 00
DAMPS (@)
IL-18
' //
@O
o
VGEF/ \\
dynamic
balance .
_/ o TIMMP-1 MMP
¥ \
VGEF2 \ /
MMPse
FIGURE 1
Schematic illustration of the inflammatory cascade driving lumbar disc herniation resorption (a) Hypoxic environment: Hypoxia-induced VEGF
secretion by nucleus pulposus cells initiates neovascularization, forming vascular conduits for macrophage infiltration and MMP delivery. (b) Immune
microenvironment: M1 macrophages drive ECM degradation via TNF-a/MMPs, while M2 macrophages promote repair through (IL-10/TGF-B/HIF-1o
signaling, with epigenetic/autophagy regulators fine-tuning polarization. (c) Protective microenvironment: Apoptosis (TNF-a/caspase-3) releases
DAMPs, counterbalanced by M2-derived IL-10 and autophagy-mediated debris clearance. ROS/MMP-driven matrix degradation is mitigated by
antioxidants, restoring ECM homeostasis.

“inflammation-angiogenesis-matrix degradation” positive regulatory
circuit (41). Although specific cellular infiltration density and
quantification efficiency remain unclarified, this dynamic equilibrium
mechanism likely constitutes the core pathophysiological framework
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for LDH resorption. While the proposed temporal sequence of
inflammatory resorption phases is mechanistically plausible, future
studies using longitudinal imaging or serial biomarker assays are
needed to validate these dynamics in vivo.
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The dual role of inflammation and the
therapeutic rationale for inflammation
preservation strategies: risks and
regulatory approaches

The inflammatory response in spontaneous resorption of LDH is
not merely pathological destruction but a precisely programmed
response essential for tissue repair. Inflammation in LDH exhibits a
dualistic nature: it is a necessary driver for resorption, yet
inappropriate intervention can suppress this process. This duality
forms the core logic of inflammation preservation strategies—
retaining inflammation to facilitate “self-healing.

The anti-inflammatory treatment paradox:
comprehensive suppression disrupts
physiological repair

Conventional anti-inflammatory drugs are widely used to alleviate
inflammation-related symptoms, such as pain and swelling. However,
their core mechanism of blocking the inflammatory cascade creates a
paradox: while mitigating pathological states, global suppression may
potentially interfere with physiological repair processes. Specifically,
this “non-selective suppression” characteristic may antagonize the
natural regulatory processes required for tissue resorption or healing,
particularly evident with NSAIDs.

NSAIDs, including traditional non-selective agents and selective
COX-2 inhibitors, primarily act by competitively inhibiting
cyclooxygenase (COX) to block prostaglandin (PG) synthesis (42).
COX enzymes play a central role in inflammatory pathways, mediating
the biotransformation of arachidonic acid to generate various PGs.
While most studies report reduced disc resorption rates with NSAID
use, certain clinical scenarios—such as short-term (<7 days)
administration for non-sequestered herniations—show neutral effects
on resorption. This may reflect preserved VEGF signaling due to
limited intervention depth and maintained neovascularization
potential. These PGs are not only biochemical mediators of
inflammation and pain but are also theoretically involved in
angiogenesis and tissue repair. However, global suppression of the
COX pathway may indiscriminately inhibit beneficial signals, leading
to disruption of the “inflammation-repair” balance.

Precision intervention pathways for
inflammation preservation strategies

The core of inflammation preservation strategies lies in
implementing targeted interventions that block excessive damage
while preserving the reparative functions of inflammation. Any
carrier system employed requires rigorous biocompatibility
assessment to avoid foreign body reactions inducing secondary
inflammation. Research exploring spontaneous resolution
mechanisms provides a foundation for these strategies. Zhao et al.
(43) through a case study, confirmed spontaneous resorption of the
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nucleus pulposus in a patient with severe L5/S1 herniation after two
years of conservative management (including NSAIDs,
thermotherapy, and exercise therapy), accompanied by significant
decreases in inflammatory markers and symptom improvement. The
study indicated that spontaneous resolution involves macrophage-
mediated phagocytosis and reductions in inflammatory cytokines
(e.g, IL-6, TNF-0), providing theoretical support for conservative
management. Similarly, a systematic review (44) analyzing predictors
and mechanisms of nucleus pulposus (NP) spontaneous resorption
demonstrated that approximately 50-70% of patients under
conservative management (=3 months) exhibited significant
resorption, primarily attributed to neovascularization and immune
cell infiltration reducing the inflammatory response. Clinical research
further corroborates this (45): the resorption rate was lower in groups
receiving early anti-inflammatory medication compared to those
managed with inflammation preservation approaches. Consequently,
avoiding anti-inflammatory drugs like NSAIDs resulted in a 100%
resorption rate in acute LDH patients. Current evidence (46, 47)
indicates that NSAIDs may exert inhibitory effects on bone healing.
However, the distinct pharmacological profiles between COX-2
selective inhibitors and non-selective NSAIDs, along with the
emergence of novel compounds, present opportunities to develop
more nuanced and patient-specific treatment regimens for individuals
undergoing IPS protocols.

Deeper regulatory mechanisms focus on modulating cell death
modalities. Small-molecule inhibitors targeting the caspase-1/
GSDMD complex structure can selectively suppress excessive
pyroptotic damage while preserving the contribution of apoptosis/
autophagy pathways to tissue repair (48).

During apoptosis, mitochondrial BAK protein, activated by
BH3-only molecules, sequesters ATP within LC3-positive vesicles
via a non-canonical autophagy pathway. This molecular
sequestration mechanism reduces ATP efflux as a DAMP, thereby
inhibiting phagocyte activation and the secretion of pro-
inflammatory cytokines like IL-1B (49). This finding
mechanistically aligns with (IVD research: IL-1J3 accelerates IVD
via NLRP3 inflammasome-mediated pyroptosis, while activating
the nuclear receptor NR1D1 suppresses this pathway. The NR1D1
agonist SR9009 effectively mitigates inflammatory damage and
promotes extracellular matrix synthesis by regulating the NR1D1/
NLRP3/IL-1P axis, offering a novel therapeutic target for IVD (50).
This multi-dimensional regulatory strategy provides a paradigm
shift from “inflammation suppression” to “inflammation
remodeling” for LDH treatment (51).

Translational applications of inflammation
preservation strategies

The transition of inflammation preservation strategies from
theory to clinical application is underway, centered on precise
modulation rather than comprehensive suppression of
inflammation. Conservative management remains the first-line
approach for LDH, with current clinical pathways encompassing
three main directions: pharmacotherapy, physical therapy, and
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regenerative medicine, all aiming to control inflammation and
promote repair.

Multiple sources address this theme: A 2025 review (52)
summarized recent non-surgical strategies. Platelet-rich plasma
(PRP) and bone marrow aspirate concentrate (BMAC) modulate
macrophage polarization from pro-inflammatory M1 to anti-
inflammatory M2 phenotypes, inhibiting the release of
inflammatory cytokines like IL-1B and TNF-c, thereby slowing
disc degeneration. Based on World Federation of Neurosurgical
Societies (WENS) Spine Committee recommendations, Yaman et al.
(53) stated that conservative treatment (including NSAIDs,
thermotherapy, and exercise) is effective in 270% of patients with
mild-to-moderate LDH, achieving symptom relief by reducing
inflammatory cytokine levels and oxidative stress.

Systemic administration of traditional NSAIDs, due to their
non-selective inhibition of PG synthesis, may concurrently block
MMP-mediated enzymatic clearance of herniated material. Novel
epidural/selective nerve root blockade techniques enable precise,
image-guided drug delivery to the inflammatory site. These
techniques deliver anti-TNF-o antibodies directly to areas of
nerve root compression, targeting pro-inflammatory factors (e.g.,
TNF-o, IL-6, PGE2) released by herniated NP material (54). A
meta-analysis of randomized controlled trials (55) demonstrated
that tailored exercise protocols for LDH (e.g., core muscle training)
downregulate pro-inflammatory factors while upregulating anti-
inflammatory mediators, improving functional scores without
completely blocking inflammatory pathways. This evidence
highlights the translational potential of inflammation preservation
strategies in non-pharmacological treatments.

Regenerative medicine strategies are particularly promising.
Researchers developed a dual-network bio-sealant loaded with
extracellular vesicles for immunomodulation and annulus fibrosus
(AF) repair (56). By downregulating inflammatory cytokines (e.g.,
TNF-a, IL-1B) and activating anti-inflammatory pathways (e.g.,
eNOS/VEGFa), it significantly reduced inflammatory infiltration in
the herniation zone, with tissue regeneration and functional
recovery observed in animal models after 4 weeks. Furthermore,
hydrogels demonstrate biocompatibility and biodegradability
matching neuronal tissues (57). Studies show that hydrogel
scaffolds loaded with the anti-inflammatory molecule TGF-B1 can
neutralize pro-inflammatory factors in the microenvironment,
inhibit MMP-3/13 expression, and protect the extracellular matrix
(58). Utilizing hydrogels to deliver anti-inflammatory cytokines
(e.g., IL-4, TGF-B1) or stem cells promotes the shift from M1 (pro-
inflammatory) to M2 (reparative) phenotypes (59). Concurrently,
Yu et al. (60) employed menstrual blood-derived mesenchymal
stem cells (MenSCs) combined with collagen I gel in a post-
discectomy rat model. They confirmed that stem cells secrete the
anti-inflammatory factor IL-4, promoting disc tissue remodeling,
reducing inflammatory damage, and improving biomechanical
stability. A systematic review (61) showed that percutaneous
endoscopic lumbar discectomy (PELD) combined with platelet-
rich plasma (PRP) injection significantly reduces postoperative
recurrence rates in LDH. PRP suppresses local inflammation by
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releasing anti-inflammatory factors (e.g., IL-1Ra) and promotes disc
tissue repair.

Future directions: precision-targeting
of inflammation preservation
strategies and clinical translation
pathways

The Inflammation Preservation Strategy (IPS) represents a
paradigm shift in lumbar disc herniation (LDH) management.
However, its clinical translation faces critical challenges. Future
research must focus on the following core directions to advance this
strategy from concept to precision practice:

Direction 1: clinical translation of dynamic
inflammation phenotyping technologies

Establishing a non-invasive, dynamic monitoring system for
inflammatory phenotypes in LDH is a pivotal technological
breakthrough for the precise implementation of IPS. A multi-
scale inflammation assessment framework, integrating molecular
biomarkers with macro-imaging features, can be achieved through
the deep integration of multi-modal radiomics and liquid
biopsy technologies.

ROS-responsive nanosensors enable real-time capture of local
inflammatory signal changes within the microenvironment. PET-
CT can detect specific inflammatory targets. Additionally,
microsampling techniques (e.g., capillary microsampling, dried
blood spots) facilitate continuous monitoring of inflammatory
biomarkers (62). Zhao et al. (63) designed a DNA nano-
orchestrator exhibiting ROS-responsive component release. In
vitro, it is efficiently internalized by cells, stimulates Toll-like
receptor 9 (TLRY) in dendritic cells (DCs), inhibits autophagy,
and enhances major histocompatibility complex class I (MHC-I)
expression. It also activates systemic adaptive immunity by
increasing the infiltration of DCs and CD8+ T cells. Li et al. (64)
further propose that the relationship between paraspinal muscle
properties and bone mineral density, assessed via MRI and
quantitative computed tomography (QCT), can extend this multi-
modal imaging approach to inflammatory phenotype analysis.

Direction 2: functional iteration of
intelligent biomaterials

Traditional discectomy can trigger postoperative inflammatory
cascades due to mechanical trauma, potentially leading to
secondary annular rupture in residual nucleus pulposus tissue,
exacerbated inflammation, and reherniation risk. Studies indicate
that unaddressed annular defects post-discectomy increase
reherniation rates, while biomaterials can locally deliver anti-
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inflammatory factors and provide repair scaffolds (65).
Consequently, developing microenvironment-responsive scaffold
materials capable of dynamically sensing local inflammation levels
and regulating the inflammation-repair balance is crucial (66).

Recent research (67) reports a multifunctional dual-network
(DN) hydrogel composed of a physically cross-linked
carboxymethyl chitosan (CMCS) and tannic acid (TA) network,
combined with a chemically cross-linked acrylamide (AM)
network. This hydrogel integrates high strength, adhesion,
biocompatibility, and anti-inflammatory properties. Treatment
significantly reduces levels of inflammatory cytokines during IVD
and partially restores disc biomechanics. Additional research
avenues include self-powered triboelectric-responsive microneedle
devices integrating targeted optogenetically engineered extracellular
vesicles for controlled release, aiming to restore functional
homeostasis in aged nucleus pulposus cells and promote precision
repair of inflammatory disc degeneration (68). Future research
should focus on deep modulation of the material-immune
interface, integrating extracellular matrix (ECM)-mimetic ligands
with immune checkpoint modulators to engineer clinical
biomaterials with combined immune-evasive and inflammation-
reprogramming functions, creating an immunologically favorable
microenvironment for endogenous disc repair.

Direction 3: evidence-based advancement
of clinical translation pathways

Despite the diversified development of clinical intervention
strategies for LDH, evidence-based research on inflammation-
retaining protocols still faces the fundamental challenge of lacking
standardized pathways. Substantial controversies persist in current
treatment paradigms regarding surgical indications, conservative
protocol selection, and complication prevention, leading to the
coexistence of overtreatment and undertreatment (69). To address
this impasse, future research could establish a clinical translation
framework integrating phenotypic precision stratification,
individualized therapeutic decision-making, and dynamic
prognostic assessment. This approach would enable comprehensive
precision management from diagnostic classification to treatment
planning through systematic integration of disease heterogeneity
markers and therapeutic response biomarkers. The critical window
for IPS intervention is defined by the temporal dynamics of
inflammation and tissue remodeling. During this interval,
inflammatory processes are maximally active, creating an optimal
environment for nucleus pulposus resorption through angiogenesis
and pro-repair macrophage activity (70). Premature or delayed
administration of anti-inflammatory agents during this window
may disrupt the delicate balance between catabolic inflammation
and anabolic repair, potentially reducing resorption efficacy.

In the context of staged disease intervention, patients in acute
inflammatory phases may benefit from minimally invasive
transforaminal endoscopic decompression combined with drug-
eluting anti-inflammatory scaffold implantation, achieving localized
inflammatory microenvironment modulation via controlled
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glucocorticoid release. During subsequent tissue repair phases,
bioactive scaffolds loaded with mesenchymal stem cell-derived
exosomes containing miR-21-5p and TGEF-f1 regulatory factors
could be introduced to promote disc matrix synthesis and neural
regeneration (71). Notably, the postoperative management module
incorporates spinal surgery experience (72) by integrating the
complication prediction system with longitudinal functional
recovery data, facilitating proactive monitoring and prevention of
adverse events and surgical sequelae. As underscored in recent
studies, “Addressing these factors — regulatory compliance, scalable
production, cost-effectiveness, and rigorous safety assessments - is
crucial for advancing biomaterials from the lab to clinical
applications” (73). Clinician-scientist partnerships are critical to
overcoming translational barriers. Looking ahead, “Collaboration
between clinicians and scientists holds the key to revolutionizing
patient care through biomaterial science” (74).

Temporal prioritization of research goals

To operationalize the ambitious future directions, we propose a
tiered implementation framework: short-term (1-3 years) efforts
will validate dynamic inflammation phenotyping through multi-
center radiomics studies, medium-term (3-5 years) initiatives will
advance intelligent biomaterial iteration via FDA-regulated
hydrogel trials, and long-term (5-10 years) objectives will
establish clinical translation pathways through international
consortium-driven registries, aligning with NIH Stage Model
principles for actionable research prioritization.

Conclusion

The Inflammation Preservation Strategy represents a
transformative innovation in LDH management. Inflammation is
not only a key driver of radicular pain but also an indispensable
physiological engine for the spontaneous resorption of herniated
nucleus pulposus. This process relies on a precisely regulated
cascade: neovascularization provides the “logistical conduit,”
macrophage infiltration executes matrix degradation and debris
clearance, and the synergistic action of the apoptosis-autophagy
axis facilitates final cellular turnover and tissue remodeling.

Traditional pan-anti-inflammatory strategies centered on non-
steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids,
while effective for acute pain relief, employ non-selective global
suppression. Both basic and clinical evidence confirms this
significantly interferes with, or even blocks, this physiological
repair process, leading to reduced resorption rates and increased
recurrence risk. Supplementary Material 1 presents a hierarchical
evidence matrix that categorizes key findings by research strata
(basic/translational/clinical) and thematic dimensions (mechanistic
pathways/biomaterial innovation/interventional efficacy).

The core logic of IPS is therefore revolutionary: During specific
stages, particularly for sequestered/migrated LDH patients within the
“inflammation-driven resorption window”(approximately Days 3-14
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post-injury) in patients with sequestered/migrated lumbar disc
herniation (LDH)—potent anti-inflammatory agents should be
judiciously avoided or strictly limited. This phase, bridging the
inflammatory (Days 0-4) and proliferative stages (Days 4-14) of
tissue repair as delineated in contemporary wound healing
frameworks, represents a critical period when inflammatory
processes are maximally active yet precisely regulated. Instead,
employ physical therapy (e.g., thermotherapy/exercise),
spatiotemporally responsive biomaterials like hydrogels or
nanocarriers, and repurposed traditional agents should be employed
to achieve “precision modulation” rather than “comprehensive
suppression” of the inflammatory microenvironment (75). The goal
is to effectively manage pain thresholds while maximally preserving
and optimizing the inflammation response’s capacity for herniated
tissue clearance and repair, ultimately enabling a transition from
“palliative symptom relief” to “disease-modifying therapy.
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