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Dietary polyphenols, particularly flavonoids, have been extensively recognized
for their role as a source of bioactive molecules that contribute to the prevention
of various diseases, including cancer. This review aims to provide a
comprehensive overview of dietary polyphenols by examining their sources,
classification, mechanisms of action, and biological effects, with a particular
emphasis on their nutritional and immunological roles. It also highlights the need
for ongoing research into preventive strategies and the development of
improved therapeutic options. Despite their broad spectrum of antioxidant,
anti-inflammatory, neuroprotective, antimicrobial, anti-diabetic, and anti-
cancer activities, the therapeutic application of polyphenols is significantly
hindered by their inherently poor bioavailability. This limitation poses a
substantial challenge, as it prevents polyphenols from achieving the systemic
concentration necessary to elicit a therapeutic effect. This review critically
evaluates current strategies, including nano- and liposomal-based delivery
systems. Liposomal systems play a crucial role in enhancing the bioavailability
of polyphenols by encapsulating these compounds in lipid bilayers. This
encapsulation improves the solubility and stability of polyphenols, protects
them from environmental degradation and rapid metabolism, and facilitates
their controlled release and absorption in the body. Liposomes enable
polyphenols to better traverse biological membranes and protect them from
unfavorable conditions in the gastrointestinal tract, resulting in greater systemic
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availability and improved therapeutic efficacy compared to non-encapsulated
forms. The current review also explores the modulatory impact of polyphenols
on the immune system, their influence on gut microbiota, and their implications
across various life stages, from infancy to aging, as well as in athletic performance
and dermatological health. Future directions are proposed to optimize their
clinical utility, including standardized dosing, improved delivery technologies,
and targeted nutritional interventions. Ultimately, integrating polyphenols into
daily dietary practices may offer promising avenues for enhancing immune
resilience and preventing chronic diseases.

antioxidant, bioavailability, biological properties, immunological properties, polyphenols

1 Introduction

Life expectancy in developing nations is increasing in tandem
with socioeconomic progress. As a result of this shifting lifestyle, age-
related illnesses, such as cancer, diabetes, cardiovascular disease,
metabolic disorders, hepatitis, and neurological conditions, are on
the rise (1). The absence of early detection technologies or effective
treatments has prompted researchers to focus on preventive measures
(1). In this context, attention has turned to dietary and nutritional
strategies, such as the Mediterranean diet. These dietary habits may
mitigate the risk of age-related disorders associated with lifestyle
changes (1). Predominantly based on plant-derived foods such as
vegetables, fruits, legumes, and herbs, the Mediterranean diet
highlights the potential role of natural polyphenols, plant-based
bioactive compounds, in preventing disease and aging while
promoting overall health and well-being (2).

Polyphenols are naturally occurring, water-soluble compounds
derived from plants, with molecular weights ranging from 500 to
4000 Da. They are abundant in plant-based foods, including fruits,
vegetables, cereals, and beverages, and comprise a complex group of
over 8000 known compounds (3). These compounds are classified
as secondary metabolites (4), which are produced to defend against
biotic stressors (e.g., bacteria, fungi, and insects) and abiotic
stressors (e.g., environmental stress, free radicals, and metabolic
disorders) (5, 6).

Based on the number of phenolic rings and structural linkages,
they are commonly categorized into five main classes: tannins,
lignans, phenolic acids, flavonoids, and stilbenes (7). They exhibit a
wide range of biological activities, including anti-inflammatory,
anti-cancer, antimicrobial, and anti-aging effects, due to their
structural properties and biological interactions (8, 9).
Consequently, they have shown great potential in the
management of various diseases, including cancers and
neurological, cardiovascular, and metabolic conditions (8, 10).

This review highlights the major classes of polyphenols,
evaluated as secondary metabolites, along with methods used for
their extraction and characterization. It also outlines their
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bioavailability and diverse health benefits, as reported in previous
studies. In addition, the advantages of polyphenol consumption
across different population groups, including athletes, mothers,
infants, children, adults, and the elderly, are discussed.

2 Types of polyphenols

The basic phenolic structure of polyphenols is exemplified by
these naturally occurring compounds, which are classified
according to their chemical composition, particularly the number
of aromatic rings, the substituent groups on these rings, and the
structural linkages between them (7).

Figure 1 depicts the chemical structures of essential polyphenol
subclasses (lignans, phenolic acids, flavonoids, tannins, coumarins,
and stilbenes) along with their respective plant-based food sources,
highlighting dietary consumption sources.

2.1 Phenolic acids and flavonoids

Phenolic acids differ from other acids in that they contain a
single phenolic ring, characterized by the presence of one carboxylic
acid group and one or more hydroxyl groups (11). Phenolic acids
are structurally similar to other phenolic compounds. As a result,
phenolic acids are commonly associated with esters, amides, and
glycosides (11).

They are generally divided into two major subgroups:
hydroxybenzoic acids and hydroxycinnamic acids.
Hydroxybenzoic acid, derived from benzoic acid, possesses a Cg-
C, carbon structure, while hydroxycinnamic acids, derived from
cinnamic acid, typically occur in plants as simple esters with quinic
acid or glucose (12). Phenolic acids are widely distributed in various
foods, particularly cereals, fruits, legumes, vegetables, herbs, and
beverages (13).

Flavonoids are the most well-known and extensively studied
class of polyphenols (13). Their basic structure consists of two
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FIGURE 1

Chemical structures of principal polyphenol subclasses (lignans, phenolic acids, flavonoids, tannins, coumarins, and stilbenes) alongside their

respective plant-based food sources exemplifying dietary consumption.

aromatic rings connected by a three-carbon bridge, forming an
oxygen-containing heterocyclic ring. Based on the degree of
oxidation of the central carbon ring, flavonoids are categorized
into six major subclasses: flavonols, flavanones, flavones, flavanols,
isoflavones, and anthocyanidins (13, 14). Flavonoids, identified as
secondary metabolites in specific plant structures such as seeds and
fruits, play a crucial role in contributing to the color, flavor, and
aroma of plants. This structurally diverse group of polyphenols that
exists in various forms is among the most thoroughly investigated in
plant science (13).

Phenolic acids could donate hydrogen atoms, suggesting their
antioxidant properties (13). Additionally, they are notable for their
therapeutic properties in managing several chronic conditions,
including diabetes, cardiovascular diseases, cancer, and
neurodegenerative conditions (15, 16). Their fundamental
structural features, the aromatic rings, hydroxyl groups (-OH) at
specific positions, and the unsaturated side chains, contribute to a
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range of biological activities, with particular emphasis on anti-
cancer effects (17).

On the other hand, flavonoids contribute to activating defense
responses by modulating the production of reactive oxygen species
(ROS) under stress conditions (18, 19). Accordingly, flavonoids
demonstrate a wide range of bioactive properties beneficial to
human health, including anti-inflammatory, antioxidant,
cardioprotective, neuroprotective, anti-cancer, and anti-aging
effects (20, 21).

2.2 Stilbenes

This class of polyphenols represents a distinct group of non-
flavonoid phytochemicals characterized by two aromatic rings
linked by a methylene bridge (13). Stilbenes are structurally
defined by a 1,2-diphenylethylene core, distinguishing them as a
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subclass of phenylpropanoids. Resveratrol, the most prominent
stilbene, is naturally found in peanuts and grapes and is present
in high concentrations in red wine (14, 22).

The abundance of resveratrol in red wine has contributed to
hypotheses regarding its potential role in preventing chronic
diseases (23). Additionally, resveratrol has been reported to
possess anti-inflammatory and antioxidant properties (14, 24). It
has also been suggested to contribute to wine preservation (25).
Previous studies reported the development of a wine quality index
based on the concentration and composition of stilbenes (26).

2.3 Lignans

Lignans are another class of polyphenols that share structural
similarities with phenolic acids (14). Their diphenolic structure
includes a carbon-carbon bond formed between two phenylpropane
units, which polymerize to produce compounds commonly found
in plant seeds, roots, and leaves (27). Lignans are classified into
eight subgroups based on their cyclization pattern, the
incorporation of oxygen atoms, and carbon skeleton structures.
These subclasses include furofurans, furans, aryltetralins,
arylnaphthalenes, dibenzylbutyrolactones, dibenzylbutanes,
dibenzybutyrolactols, and dibenzocyclooctadienes (27). Li et al.
(27) reported that the position of the oxygen atom also plays a
key role in the classification of lignans.

Lignans are primarily found in vegetables, cereals, and legumes.
Diets rich in lignans have been associated with various health-
promoting effects. Notably, lignans exhibit anti-cancer activity
through multiple regulatory pathways (28, 29). Furthermore, they
possess anti-inflammatory, antioxidant, and anti-menopausal
properties, providing protective effects against cardiovascular and
bone diseases, as well as antimicrobial effects (30, 31).

3 Factors affecting the appropriate
extraction methods for phenolic
compounds

Polyphenols comprise a broad array of chemical structures,
resulting in varied chemical and physical properties (32). This
structural heterogeneity necessitates the application of extraction
techniques specifically designed for the distinct properties of each
compound and the nature of the sample matrix (32). The selection
of an efficient extraction method depends on various aspects,
including the chemical structure of the target polyphenols, the
sample’s particle size, and the existence of other coexisting
chemicals that may interfere or interact during the extraction
process (33).

Furthermore, extraction efficiency is highly sensitive to
operational parameters such as pH, type of solvent employed,
solvent-to-sample ratio, and duration of the extraction process
(34). Despite considerable technological progress in extraction
techniques, significant challenges remain in precisely identifying
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and quantifying polyphenols. Obtaining accurate and reproducible
data on the composition and concentration of polyphenols is
critical for substantiating their health-promoting properties and
ensuring the reliability of related scientific assessments (35).

3.1 Extraction methods of phenolic
compounds

3.1.1 Ultrasound-assisted extraction method

Ultrasound-assisted extraction is a widely used and efficient
technique for isolating phenolic compounds, offering high yields in
a relatively short time (36). Ultrasonic radiation with frequencies
above 20 kHz enhances the extraction of inorganic and organic
substances using liquid solvents. This method is considered
environmentally sustainable as it reduces extraction time, solvent
consumption, and energy requirements (37).

The process relies on acoustic cavitation, wherein ultrasonic
waves disrupt plant cell walls by inducing rapid expansion and
contraction of solid surfaces (38), increasing cell wall permeability,
facilitating solvent penetration, and promoting the release of water-
soluble compounds from the plant matrix (37). In recent years,
ultrasound-assisted extraction has been applied to extract
polyphenols from various plant parts, including pecan nutshells,
Randia monantha, mango seed kernels, olive pomace, and pine
needles (36, 39). Studies have focused on optimizing extraction
conditions and evaluating the antioxidant and antifungal properties
of the resulting polyphenol-rich extracts (36, 37, 39).

Ultrasound-assisted extraction provides notable advantages for
the extraction of polyphenols. This technique significantly enhances
yield and efficiency compared to conventional methods, allowing
for higher concentrations of bioactive compounds in a much
shorter extraction time (40). Ultrasound-assisted extraction
reduces both solvent and energy consumption, making the
process more environmentally friendly and cost-effective. The
operation at lower temperatures also helps preserve the structural
integrity of heat-sensitive polyphenols, minimizing their thermal
degradation during extraction (40). These benefits are reflected in
various studies, which demonstrate that the ultrasound-assisted
extraction delivers superior extraction performance while aligning
with green chemistry principles (40).

However, the ultrasound-assisted extraction also has its
limitations (41). Excessive ultrasound intensity or prolonged
application can lead to the generation of free radicals and high
local temperatures, potentially causing the degradation or
modification of certain sensitive polyphenolic compounds (41).
The method’s efficacy is highly dependent on the careful
optimization of operating parameters, such as ultrasound power,
extraction time, solvent type, and temperature, as suboptimal
conditions may reduce extraction yields or lead to inconsistent
results (41). Additionally, scaling up the ultrasound-assisted
extraction from laboratory to industrial production remains
challenging due to equipment limitations and the need to
replicate the cavitation effects that drive the process
consistently (41).
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3.1.2 Microwave-assisted extraction method

Microwave-assisted extraction is an environmentally friendly
technique used to isolate polyphenols from plants, herbs, and plant-
based products (42). Water is commonly used as the solvent due to
its efficiency, cost-effectiveness, and reliability compared to other
extraction media. Optimizing operational parameters is essential, as
the heat generated during microwave exposure influences the
release of targeted polyphenols (42). Extraction efficiency depends
on factors such as solvent type and ratio, microwave power, and
extraction time (43). These conditions must be maintained and
optimized to obtain the highest yield. Depending on the plant
sample, the solvent can be water, ethanol, or a combination (43).

Microwave-assisted extraction is frequently employed to
recover polyphenols from agricultural by-products and processed
wastes, such as pomace, leaves, and peels (44). Extracted
polyphenols by the microwave-assisted extraction method have
demonstrated various biological activities, including antimicrobial,
antioxidant, and anti-cancer activities (44, 45). These bioactive
compounds have potential applications in pharmaceuticals and
nutraceuticals (43, 46, 47).

This technique significantly reduces extraction time and energy
consumption compared to conventional methods. Microwave-
assisted extraction enhances extraction efficiency by rapidly
heating the sample and solvent, which disrupts plant cell walls
and allows better solvent penetration, leading to higher yields of
polyphenolic compounds (41). The method also offers improved
selectivity and precise control of temperature, helping preserve the
integrity of thermosensitive compounds (41).

Nonetheless, microwave-assisted extraction possesses
limitations. Excessive microwave power or prolonged exposure
can lead to the degradation of heat-sensitive or volatile phenolics,
thus reducing the quality and quantity of the extracted compounds
(48). Additionally, optimization is required for each plant matrix
and polyphenol type, as extraction parameters such as microwave
power, temperature, solvent composition, and sample-to-solvent
ratio can significantly influence outcomes (48). Some specialized
equipment and careful calibration are needed to ensure
reproducibility and scalability for industrial applications (48).

3.1.3 Microwave-assisted ultrasound extraction
method

Microwave-assisted ultrasound extraction presents notable
advantages for extracting polyphenols (49). Microwave-assisted
ultrasound extraction is a hybrid method that combines
microwave and ultrasonic treatments to enhance the yield of
phenolic compounds, reduce extraction time, and minimize
solvent usage compared to ultrasound-assisted extraction and
microwave-assisted extraction alone (49). This method employs
microwave heating to extract compounds through dielectric
heating, while ultrasound enhances cell wall permeability and
facilitates solvent penetration. A comparative study reported that
microwave-assisted extraction yielded higher polyphenol content
and antioxidant activity than ultrasound-assisted extraction (50).

While microwave-assisted extraction required less extraction
time, ultrasound-assisted extraction demonstrated greater energy
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efficiency and environmental sustainability (51). When both
techniques were combined, the resulting method improved
extraction efficiency and polyphenol yield. For instance, a study
comparing enzyme-assisted ultrasound extraction and ultrasound-
microwave-assisted extraction from mangosteen peels found that
the enzyme-assisted ultrasound method produced a higher
polyphenol yield (51). Nonetheless, both extraction approaches
yielded polyphenol-rich extracts with promising applications as
functional food additives and in pharmaceutical formulations (51).

By combining microwave and ultrasound energies, microwave-
assisted ultrasound extraction disrupts plant cell walls more
efficiently, allowing improved release of polyphenols with reduced
solvent consumption and lower energy usage (51). Additionally, the
process can preserve the antioxidant activities of the extracted
compounds and is considered both cost-effective and
environmentally friendly (48).

However, there are some limitations. Precise control of
operational parameters—such as power, temperature, and
extraction duration—is essential, as excessive energy input or
prolonged treatment can degrade sensitive polyphenolic
structures, potentially lowering yield or altering compound
profiles (52). Variability in sample characteristics and the risk of
free radical generation during ultrasound application can also
influence extraction efficiency and product quality (52). Despite
these challenges, when carefully optimized, microwave-assisted
ultrasound extraction remains a powerful, green technology for
extracting high-value polyphenols from complex plant
matrices (52).

3.1.4 Supercritical fluid extraction method

Supercritical fluid extraction is an alternative two-step
technique. First, soluble phenolic compounds are extracted from
the herbal cell matrix using a supercritical fluid, followed by
depressurization to separate the bioactive components, converting
the supercritical fluid into a gas phase (53, 54). Supercritical fluids
are generated when pressure (10-35 MPa) and temperature (40-80
°C) exceed critical values. This method enhances safety by using less
hazardous solvents, such as methyl tert-butyl ether, methanol,
hexane, and dichloromethane (55).

Supercritical fluid extraction is considered a green technology,
frequently employing gases like CO,, CH;, C,Hs, C,HO, C;Hs,
Ce¢Hs, and NH; during depressurization (56). Additionally,
compared to conventional methods, supercritical fluid extraction
protects bioactive compounds from air and light, reducing
degradation and minimizing contamination risk from impure
solvents (57). This technique has recently been applied to extract
polyphenols from sources such as chestnut shells, Ailanthus excelsa,
and Dunaliella salina (54, 55, 58).

Supercritical fluid extraction, particularly with supercritical
carbon dioxide (CO5,), offers several advantages for the extraction
of polyphenols (59). It is an environmentally friendly “green”
technology that uses non-toxic, non-flammable CO,, resulting in
solvent-free extracts that are safe for food, pharmaceutical, and
cosmetic uses. This method operates at moderate temperatures,
which helps preserve the structural integrity and bioactivity of heat-
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sensitive polyphenols (59). Supercritical fluid extraction also
features tunable selectivity; by adjusting pressure, temperature,
and the use of co-solvents such as ethanol or water, it can be
optimized for higher purity and targeted extraction of diverse
phenolic compounds (59). Additionally, supercritical fluid
extraction minimizes solvent residue and maintains high extract
quality, thus supporting the production of high-purity
polyphenols (59).

However, supercritical fluid extraction also has limitations. The
high initial cost and technical complexity of the required equipment
are significant barriers to large-scale industrial application (60).
Extraction efficiency can be lower for highly polar compounds
unless co-solvents are used to enhance solubility (60). The
method typically requires longer extraction times compared to
some alternative techniques, and optimizing operational
parameters such as pressure, temperature, and co-solvent
composition can be challenging. Furthermore, scaling up the
process for industrial throughput poses logistical and operational
hurdles, and energy consumption is relatively high due to the need
to maintain supercritical conditions (60).

3.1.5 Subcritical water extraction method

Also known as hot liquid or superheated water extraction (61).
In subcritical water extraction, water remains in a liquid state at
temperatures between 100°C and 347°C under pressures up to 220
bar (62). Under these subcritical conditions, hydrogen bonding
between water molecules is reduced, lowering the dielectric
constant. Consequently, changes in temperature and pressure
influence both the dielectric constant and extraction efficiency
(62). Compared to supercritical fluid extraction, subcritical water
extraction is potentially more economical as it utilizes water rather
than organic solvents (63). Subcritical water extraction also
produces rapid extraction, high efficiency, and environmental
sustainability (64). It has been successfully applied to extract
phenolic and natural compounds from materials such as cocoa
bean husks and saffron tepals (62, 64, 65).

Subcritical water extraction offers green, efficient technology for
polyphenol extraction, but has several limitations. A primary
drawback of subcritical water extraction is the requirement for
high temperatures, typically between 100°C and 374°C, which can
cause thermal degradation of heat-sensitive polyphenolic
compounds, thereby reducing their yield and bioactivity (66).

Moreover, at elevated temperatures, subcritical water extraction
tends to be less selective, extracting a wider range of plant matrix
components, which can complicate downstream purification (66).
The use of water as a solvent under subcritical conditions also
necessitates additional steps, such as evaporation or dehydration, to
remove water from the extracts, increasing processing
complexity (66).

Subcritical water extraction equipment requires more rigorous
maintenance and corrosion prevention due to the high reactivity
and corrosiveness of water at elevated temperature and pressure
(66). Lastly, optimization of variables such as temperature,
extraction time, pressure, and solvent-to-solid ratio is critical yet
challenging, as these parameters profoundly influence extraction
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efficiency and compound stability (66). Thus, while subcritical
water extraction is promising and eco-friendly, its limitations in
compound stability, selectivity, and process complexity require
careful management to maximize polyphenol recovery and
bioactivity (66).

3.1.6 Pulsed electric field method

A nonthermal method that employs high-voltage pulses
between two electrodes arranged in a sandwich configuration.
Pulsed electric field is classified into batch (100-300 V/cm) and
continuous (20-80 kV/cm) systems, depending on pulse frequency.
The electric field induces a transmembrane potential in plant cells,
increasing membrane permeability and facilitating the excretion of
phenolic compounds (67). Pulsed electric field effectiveness
depends on the extent, the surrounding medium, and the
physicochemical properties of plant tissues (68, 69). This method
has been used to extract polyphenols from green tea, laurel leaves,
cannabis, and Phyllanthus emblica, with extracts showing anti-
inflammatory and antioxidant activity (70, 71).

Pulsed electric field technology, while promising as a non-
thermal and efficient method for extracting polyphenols, has
several limitations that should be considered. The effectiveness of
pulsed electric field extraction depends on various factors, including
the electric field strength, treatment time, and the specific properties
of the plant tissue, such as cell size, shape, and membrane
composition (72). One key limitation is the challenge of achieving
a uniform electric field distribution throughout the sample, which
can result in inconsistent cell permeabilization and variable
extraction yields. Additionally, pulsed electric field treatment may
cause only reversible electroporation in some cells, limiting the
release of intracellular compounds (72).

Another constraint is related to the physical and chemical
characteristics of the extraction matrix; factors such as solvent
type, solvent conductivity, and polarity significantly influence
extraction efficiency and can complicate optimization (73).
Furthermore, pulsed electric field is typically better suited for
liquid or semi-liquid matrices and may be less effective for solid
or highly fibrous plant materials without prior size reduction or
pretreatment (73). Although considered a non-thermal process,
extended treatment times or high pulse numbers can lead to a rise in
temperature, risking the degradation of sensitive phenolic
compounds (73).

3.1.7 Pressurized liquid extraction method

Also referred to as accelerated solvent extraction (74). It
typically employs organic solvents in the presence of nitrogen to
extract phenolic compounds from solid or semi-solid samples.
Operating at high temperatures and pressures, accelerated solvent
extraction enhances solvent penetration without altering compound
structure, thereby improving phenolic yield (56). This green
extraction method minimizes solvent and energy use while
increasing extraction efficiency. Automation enhances process
reproducibility with minimal manual intervention (75).
Accelerated solvent extraction has been used to extract phenolics
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from strawberry and onion peels, with applications focused on
evaluating their antimicrobial and antibiofilm activities (75, 76).

Pressurized liquid extraction offers efficient recovery of
polyphenols from various plant matrices; however, it also presents
certain limitations. One key challenge is the high operational cost
associated with the specialized equipment and maintenance
requirements (77). Additionally, pressurized liquid extraction
involves the application of elevated temperatures and pressures,
which can potentially lead to the degradation of thermolabile
polyphenolic compounds, thereby reducing the yield and altering
the composition of the extracts (77).

The choice of solvent is critical, as water, often used for its green
credentials, may be inefficient in extracting less polar phenolics,
resulting in lower overall extraction efficiency compared to organic
solvents like ethanol (77). Optimization of operational parameters
such as temperature, solvent composition, solvent-to-feed ratio, and
extraction time is essential but can be complex and sample-specific,
especially when dealing with complex matrices like propolis (77).
Moreover, while pressurized liquid extraction reduces solvent use
and extraction time compared to traditional methods, incomplete
extraction of certain compounds can still occur, necessitating
complementary techniques or further refinement (77). Finally, the
process demands careful balancing between maximizing extraction
efficiency and preventing compound degradation, which remains a
key limitation in fully harnessing pressurized liquid extraction for
polyphenol extraction (77).

3.2 Common methods for polyphenol
quantification

3.2.1 Spectrophotometric methods

Spectrophotometry is a simple and widely used technique for
identifying phenolic compounds in plants (78). Total phenolic content
is commonly assessed using the Folin-Denis and Folin-Ciocalteu
methods. These techniques have recently been applied to evaluate the
phenolic content, antioxidant activity, and total phenolics in broken-
bone twigs (79, 80). Both methods rely on chemical reduction,
typically involving reagents such as molybdenum and tungsten (81).
Additionally, colorimetric assays are used to quantify total flavonoids,
condensed tannins, and phenolics by forming complexes with AlCl;,
with absorbance measured in the 410-423 nm range (82).

Anthocyanins, another important group of phenolics, can be
quantified spectrophotometrically under mildly acidic conditions,
with absorbance measured between 490 and 550 nm (83). These
colorimetric assays are user-friendly and cost-effective; however,
they do not allow for the quantification of individual compounds
and provide only approximate estimates of total phenolics above a
certain threshold (61). Despite this limitation, spectrophotometric
methods remain valuable for the rapid and economical screening of
a wide range of plant-derived bioactive compounds. For instance,
red poppy extracts have recently been used as colorimetric sensors
to detect anthocyanins (84), and similar analyses have been
conducted on grape juice and elderberries (85, 86).
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3.2.2 Gas chromatography method

Gas chromatography is widely used to identify and quantify
polyphenols, including flavonoids, phenolic acids, and tannins (87).
This technique involves the movement of analytes through a
column using carrier gas such as nitrogen (N,), helium (He), or
hydrogen (H,). Gas chromatography operates based on gas-liquid
partitioning or gas-solid adsorption, utilizing a nonvolatile liquid as
the stationary phase and typically employing a flame ionization
detector. Commonly, silica capillary columns are used, typically 30
m in length, with a 0.25 pm film thickness and an inner diameter of
25-32 um (56).

The integration of gas chromatography with mass spectrometry
(GC-MS) has gained attention owing to its improved sensitivity and
selectivity (88). This combination is crucial for analyzing the
degradation patterns of plant-derived bioactive compounds and
for identifying their chemical structures by correlating
chromatographic and mass spectral data (89). Gas
chromatography analysis was used to evaluate the antimicrobial
properties and polyphenol content of Sonneratia caseolaris fruits, as
well as to determine the bioactive compound composition of fast-
growing plant leaves (90).

3.2.3 High-performance liquid chromatography
method

High-performance liquid chromatography (HPLC) remains
one of the most widely used analytical methods for the
identification of phenolic compounds. Generally, following the
purification of phenolics, the samples are analyzed using a C18
column as the stationary phase (91). This technique uses acidified
polar organic solvents as the mobile phase and utilizes photodiode
array detectors for compound detection. With technological
advancements, rapid and refined methods such as
chromatographic fingerprint analysis have been developed for the
characterization of herbal medicines (56). These fingerprint profiles
enable species-specific identification and differentiation from
related species, as they accurately reflect the chemical
composition of the plant material (56).

Several factors affect the sensitivity or effectiveness of HPLC,
including phenolic purification steps, mobile phase composition,
column selection, and pre-concentration procedures (35). The pH
of the mobile phase is particularly critical, as improper pH levels
may lead to the ionization of phenolic compounds, affecting
detection accuracy (35). Column selection is based on polarity
and particle size, with various phenolic classes requiring different
specifications. More sophisticated HPLC systems employ novel
column types with varying particle sizes to optimize separation (35).

HPLC run times typically range from 10 to 150 min. For longer
analyses, maintaining a constant temperature is essential to ensure
reproducibility and stability of results (92). Recent studies using
HPLC have successfully characterized the antioxidant and
antimicrobial properties, metabolomic profiles, and phenolic
components of samples such as apple pomace, grape juice,
Lysimachia nummularia, and Acacia species (93, 94).
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3.2.4 Other methods for polyphenol
quantification

In addition to widely used techniques, several other methods are
employed to identify plant-derived bioactive compounds, including
capillary electrophoresis, paper chromatography, supercritical fluid
chromatography, spectrophotometric assays, HPLC, and gas
chromatography (78). Among these, paper chromatography is a
simple and effective method, particularly for identifying bioactive
compounds in tea leaves (78). Ashraf et al. (95) demonstrated the
application of high-performance thin-layer chromatography in
analyzing caffeine content in green tea leaves. Paper
chromatography has also been applied to assess the biological
activities of medicinal herbal extracts, such as anti-inflammatory,
antimicrobial, and antioxidant properties linked to compounds like
flavonoids and fatty acids (96).

However, paper chromatography is used less frequently than
HPLC and gas chromatography due to its limited sensitivity and
specificity (56). Capillary electrophoresis is a high-efficiency
technique that utilizes thin capillary columns filled with ionic
solutions to separate charged bioactive compounds and low-to-
medium-molecular-weight plant constituents. It requires minimal
sample and reagent volumes and offers rapid and effective analysis
(56). Capillary electrophoresis techniques include micellar
electrokinetic chromatography, capillary electrochromatography,
capillary zone electrophoresis with ultraviolet detection, and
capillary zone electrophoresis coupled with mass spectrometry
(56). Recent applications of capillary electrophoresis include the
quantification of free sulfur dioxide in wine and cider and the
chemical profiling of tobacco samples (97, 98). Additionally,
indirect UV detection with capillary zone electrophoresis has
been used to investigate cassines and spectalines in Senna
spectabilis (99).

Supercritical fluid chromatography is an advanced method
increasingly used for the analysis of complex plant materials
(100). Compared to HPLC and gas chromatography, supercritical
fluid chromatography exhibits higher efficiency, faster analysis
times, environmentally friendly operation, and superior resolution
(56). Its distinguishing feature lies in column design, which
incorporates fully porous particles smaller than 2 pm or
superficially porous particles under 3 um (101). Recent studies
have applied this technique to successfully characterize isomeric
urolithin glucuronides and lignans derived from softwood species
(102, 103).

4 Bioavailability of polyphenols

Bioavailability refers to the proportion of polyphenol-derived
nutrients that are consumed, absorbed, and metabolized (104, 105).
Several factors influence the bioavailability of polyphenols,
including gut microbiota, nutritional matrix, molecule size, sex,
previous dietary habits, transmembrane transport capacity, and
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chemical structure (106, 107). Additionally, polyphenols interact
with gut microbial strains, which can alter their molecular states
and affect their subsequent bioactivity (106).

Polyphenols are also subject to various denaturing conditions
(103), such as heat, light, oxygen, pH variations, and enzymatic
degradation, which reduce their bioavailability and limit their
efficacy as bioactive compounds (108). Their bioavailability varies
depending on their chemical forms, such as esters, glycosides, or
polymers (104). Gao et al. (86) reported that after digestion, the
bioavailability of phenolic compounds in Cannabis sativa L. seeds
was 142.39%, whereas that of flavonoid compounds was 29.47%.

Sanchez-Velazquez et al. (105) revealed that phenolic
compounds from wild blackberries might exhibit greater
bioactivity and bioavailability in the human body than those from
commercial varieties. Similarly, Frazzini et al. (109) examined the
effect of in vitro gastrointestinal digestion on the bioavailability and
stability of polyphenols in commercial and wild Mexican
blackberries. Other studies have demonstrated that polyphenols
are more stable in organic solvents and water than in cell culture
media, where they degrade more rapidly (110). This suggests that
polyphenols are prone to degradation in biological systems,
potentially reducing their bioavailability and biological efficacy
(110-112).

Generally, most dietary polyphenols undergo hydrolysis by
colonic bacteria and are then methylated and conjugated into
glucuronide and sulfate metabolites by the hepatic and other
tissues (106). An increase in plasma antioxidant capacity
following the intake of polyphenol-rich foods, such as apples, tea,
blackcurrants, and red wine, indicates that polyphenols can cross
the intestinal barrier and exert systemic effects (113). Bioavailability
has also been directly assessed by measuring polyphenol
concentrations in plasma and urine after ingestion of purified
compounds or polyphenol-rich foods (114). However, despite
their health benefits, the low absorption rate of polyphenols
(approximately 5-10% via the small intestine) and their rapid
metabolism and excretion significantly limit their ability to reach
target tissues (114). Kou et al. (115) reported that purified blueberry
polyphenol extract exhibited higher antioxidant activity in different
in vitro assays, whereas the crude blueberry extract demonstrated
greater antioxidant effectiveness in in vivo models.

To improve the bioavailability of polyphenols, an investigation
(116) was conducted to evaluate their stability in sports nutritional
products incorporating both plant polyphenols and milk proteins.
A study by van de Langerijt (116) examined the potential of
integrating these components into sports supplements to preserve
polyphenol content and enhance bioavailability during digestion
(116). It showed that anthocyanins remained stable during in vitro
digestion, with enhanced bioavailability observed in milk-
blackberry mixtures, particularly those made with full-cream milk
(116). Another study evaluated the bioavailability of total
polyphenols from coffee silver skin extract using simulated
gastrointestinal digestion and colonic fermentation (117). The
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findings suggested that fermentation enhanced antioxidant activity
and enabled delivery to target sites, supporting potential health
benefits (117).

Heat treatment has also been shown to improve polyphenol
stability and bioactivity. Frankova et al. (118) reported that heat
processing of sweet potatoes enhanced both their antioxidant
capacity and phenolic content. These findings indicate that
thermal processing enhances the bioavailability of polyphenols in
sweet potatoes and may guide advancements in food processing
technologies. Furthermore, nanoencapsulation techniques, such as
incorporating polyphenols into nanoparticles (NPs) or liposomes,
can further improve their bioavailability and biological
activity (108).

Despite significant progress in understanding polyphenol
bioavailability, several gaps and future research priorities remain.
One major limitation is the incomplete knowledge of the metabolic
pathways and transformations that polyphenols undergo after
ingestion, particularly due to interactions with the gut
microbiome and the formation of diverse metabolites whose
biological activities are not well characterized (119). Additionally,
the influence of food processing, individual genetic variability, and
the complex interactions between polyphenols and other dietary or
environmental components on their absorption and bioactivity
requires further exploration (120).

There is also a critical need for well-designed long-term safety
studies addressing the potential side effects of chronic polyphenol
supplementation, as current data are mainly limited to short-term
animal experiments or isolated compounds, and results from these
do not always translate directly to humans (121). While some
polyphenol-rich extracts, such as grape seed extract, have shown
high tolerability in animal and short-term human studies, the safety
of long-term, high-dose intake across a broad population spectrum
remains to be confirmed (122, 123). Special attention should be
given to possible interactions with medications, effects on nutrient
absorption (such as iron), and risks to sensitive populations (121,
124, 125).

Clinical research on polyphenol bioavailability is advancing, but
large-scale intervention trials remain scarce. More chronic, placebo-
controlled human studies are required to evaluate not only the
bioavailability and efficacy of various polyphenol formulations and
delivery systems but also to establish standardized dosages, monitor
potential side effects, and assess inter-individual differences in
responses due to genetics and gut microbiota composition (126,
127). The development and validation of robust biomarkers for
polyphenol intake and metabolism are also needed to improve
accuracy in such studies (127).

Future studies should focus on enhancing the understanding of
the metabolic pathways of polyphenols and the bioactivity of their
metabolites. It is necessary to expand extensive chronic clinical
trials to evaluate the long-term safety, efficacy, and optimal dosing
of polyphenols, examine gene-diet and microbiota-polyphenol
interactions to elucidate inter-individual variability, develop
innovative delivery systems to improve bioavailability and
facilitate clinical translation, and clarify potential drug
interactions and safety in vulnerable populations.
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4.1 Bioavailability of polyphenols
encapsulated in liposomes or NPs and their
functional impact

Encapsulation is a delivery mechanism that incorporates
bioactive compounds, such as drugs or food ingredients, into
carrier systems (108). This approach protects the active
substances from degradation during processing and storage while
increasing their bioactivity by facilitating targeted delivery to
specific organs or tissues (108). Despite their potential,
polyphenols remain underutilized in functional foods and dietary
supplements due to several physicochemical properties, including
low epithelial permeability, poor solubility in gastrointestinal fluids,
structural modifications during digestion, and limited oral bio-
accessibility (128, 129).

To overcome these challenges, various technologies have been
developed to improve the bioavailability of polyphenols, with
nanoencapsulation and liposomal encapsulation considered the
most effective strategies. Effective delivery of bioactive compounds
to target sites requires a reduction in particle size (130).
Nanoencapsulation, typically within a diameter range of 10 to
1000 nm, enhances bioavailability, protects against degradation,
and enables precise delivery of polyphenols to targeted sites (130).
Liposomal encapsulation is an advanced method designed to
stabilize sensitive bioactive compounds (131). It supports the
encapsulation of both hydrophobic and hydrophilic molecules,
thereby optimizing nutrient absorption and biological efficacy.
Lipid- and water-based vesicles enhance solubility and membrane
permeability, facilitating accurate delivery to the target tissues (131).
Furthermore, lipophilic complexes facilitate intestinal absorption
while shielding polyphenols from adverse interactions or
breakdown during the digestive process (131).

These encapsulation technologies have shown promising
potential in improving the bioavailability and biological activity of
polyphenols. Ali et al. (132) demonstrated that grape seed extract
encapsulated in liposomes exhibited anti-aging, skin-brightening,
and moisturizing effects in human skin cells. These findings
advocate the development of more soluble and aesthetically
desirable formulations for a broad range of skincare products
(133). Altan et al. (134) conducted a study to promote bone
wound healing in a rat model using a liposomal formulation of
gallic acid. The study included four groups of rats. The group
treated with gallic acid liposomes showed the greatest improvement
and the lowest infection rate, whereas the negative control group
exhibited the least improvement and the highest infection rate
(134). These findings indicate that liposomal encapsulation
improves the bioavailability and bioactivity of gallic acid
polyphenols (134).

Previous research on polyphenols from various plant sources
encapsulated in nanoliposomes has shown that increased
bioavailability correlates with enhanced antimicrobial activity
(135, 136). For instance, Nateghi et al. (135) assessed the
antimicrobial activity of phenolic compounds from Achillea
millefolium encapsulated in nanoliposomes against Campylobacter
jejuni infection in mice. The study demonstrated that
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nanoencapsulated polyphenols significantly enhanced antioxidant
levels, hepatic function, and food consumption compared to
nonencapsulated treatments (135). Furthermore, the proliferation
of C. jejuni was markedly reduced in mice receiving nano-
encapsulated polyphenols, supporting the potential use of
polyphenol-loaded nanoliposomes as phytobiotics against this
infection (135).

In a similar study, Hassirian et al. (136) investigated the dietary
phytobiotic effects of the phenolic-rich fraction of Alcea rosea
against Escherichia coli infection in mice. The study aimed to
assess the antimicrobial and potential health-promoting
properties of phenolic-rich nanoliposomes, which showed greater
efficacy compared to unencapsulated polyphenols at the same
dosage (136). Furthermore, Shamansoori et al. (137)
demonstrated that an extract of Rheum ribes encapsulated in
nanoliposomes acted as a novel phytogenic antibiotic, effectively
protecting mice from E. coli infection. Encapsulated polyphenols
(10 mg TPC/kg) significantly improved health markers in mice
compared to non-encapsulated forms (137).

Similarly, Mehdizadeh et al. (138) reported comparable results
using Artemisia aucheri phenolic compounds encapsulated in
nanoliposomes to treat C. jejuni infection in mice. In vivo studies
also demonstrated the protective effects of liposome-encapsulated
ferulic acid against oxidative liver damage (139). Encapsulated
ferulic acid exhibited antioxidant properties by reducing CCl,-
induced cytotoxicity in vitro and significantly alleviated
hepatotoxicity, ROS production, and tissue damage in rat liver
following intravenous administration (139).

Another animal study reported that liposome-encapsulated p-
coumaric acid (CA) inhibited osteoclast formation and bone
resorption in a rat model of rheumatoid arthritis, suggesting its
potential to prevent bone degradation and calcium loss (140). A
study on broiler breeder roosters investigated the effect of ellagic
acid-loaded liposomes on post-thaw sperm quality (141). Results
indicated that 1 mM ellagic acid liposomes significantly improved
sperm antioxidant levels and overall quality after thawing.
Furthermore, research on green tea polyphenols in photodynamic
cancer therapy demonstrated that NPs of these polyphenols
induced higher apoptotic rates and more potent inhibition of
cancer cell proliferation than non-NP forms (142). This
underscores the role of nanomedicine in enhancing the ‘anti-
tumor’ bioactivity and bioavailability of green tea polyphenols
(142). Additionally, the anti-cancer effects of silk fibroin NPs
encapsulating rosmarinic acid (RA), a polyphenol with
antimicrobial, antioxidant, and other bioactivities, were
investigated in HeLa and MCF-7 cell lines. The study concluded
that NPs improve the solubility and bioavailability of RA, thereby
augmenting its anti-cancer efficacy (143).

Zhu et al. (144) enhanced the anti-cancer efficacy of curcumin
NPs. Curcumin, a potent phenolic compound, exhibits various
physiological effects, including anti-inflammatory, antioxidant,
and ‘anti-tumor’ properties. However, its application is limited by
volatility and poor buccal bioavailability. Moreover, curcumin was
encapsulated into pea protein using a pH-driven NP method. This
method yielded curcumin-loaded pea protein NPs with significantly
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higher loading efficiency and improved water solubility (144). In a
separate study, potent antioxidative and ‘anti-tumor’ NPs were
synthesized from tea polyphenols using an amino acid-induced
ultrafast method (145). Epigallocatechin gallate (EGCG), a primary
antioxidant in green tea, was used to prepare a therapeutic nano-
agent via a rapid process involving five amino acids: lysine, arginine,
leucine, glycine, and glutamic acid. The study found that lysine and
arginine were depleted within 50 seconds of induction. The
resulting NPs displayed tenfold greater antioxidant activity than
conventional NPs and demonstrated therapeutic efficacy against
cancer in both in vitro and in vivo models (145). Another study
utilized Punica granatum (pomegranate) extract for the green
synthesis of silver NPs (146). Silver NPs synthesized from a
polyphenol-rich fraction exhibited antimicrobial activity against
Staphylococcus aureus, Bacillus subtilis, and Sarcina lutea (146).

These findings suggest that encapsulation enhances the
bioactivity, solubility, and permeability of polyphenols by
increasing their bioavailability. However, further studies are
required to demonstrate that encapsulation improves the
biological efficacy of polyphenols conclusively.

5 Health benefits of polyphenols

The inclusion of polyphenol-rich foods and beverages,
including tea, herbs, fruits, and wine, in the diet is an effective
approach to harness their health-promoting properties (147, 148).
Polyphenols exhibit a wide range of biological activities, including
anti-inflammatory, anti-diabetic, antimicrobial, antioxidant, anti-
aging, anti-cancer, and cytotoxic properties (149, 150). These
properties contribute to the prevention of chronic diseases and
support therapeutic strategies. Furthermore, polyphenols have
demonstrated positive effects on cardiovascular health and
cognitive function, potentially through the prevention of
neurodegenerative disorders (151).

Figure 2 highlights the diverse health advantages of
polyphenols: a visual depiction of their functions in enhancing
antioxidant capacity, mitigating alcohol-related hepatic damage,
obstructing carcinogenic effects, retarding the aging process,
regulating gut microbiota, facilitating weight management and
obesity prevention, reducing blood glucose levels, augmenting
nutritional value, and substituting preservatives by inhibiting
pathogenic bacterial proliferation.

5.1 Antioxidant activity

One of the most extensively studied properties is their
antioxidant activity. A key function of polyphenols is their ability
to reduce or prevent ROS, which are harmful to human health (152,
153). By neutralizing ROS, polyphenols exert protective effects
against oxidative stress and skin degradation (154, 155).
Polyphenols interact with ROS primarily through three
mechanisms governed by their molecular structure: single
electron transfer, hydrogen atom transfer, and transition metal
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FIGURE 2

Comprehensive health advantages of polyphenols: A visual depiction of their functions in enhancing antioxidant capacity, mitigating alcohol-related
liver damage, suppressing carcinogenic effects, countering aging, regulating gut microbiota, facilitating weight management and obesity prevention,
reducing blood glucose levels, augmenting nutritional value, and substituting preservatives by inhibiting pathogenic bacterial proliferation. ROS,

reactive oxygen species.

chelation (156, 157). In the hydrogen atom transfer mechanism,
polyphenols donate a hydrogen atom from their phenolic hydroxyl
group, producing free radicals that neutralize ROS (156). The
efficiency of this reaction is associated with the bond dissociation
enthalpy of the O-H bond; lower bond dissociation enthalpy
corresponds to higher reactivity. For instance, in the reaction R +
ArOH — ArO + RH, a lower bond dissociation enthalpy facilitates
hydrogen donation (158, 159).

In the single electron transfer mechanism, antioxidant capacity
is related to ionization potential; molecules with low ionization
potential values act as efficient electron donors in the reaction R +
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ArOH — R™ + ArOH" — RH + ArO (158). In the transition metal
chelation mechanism, polyphenol anions chelate heavy metals
through the deprotonation of hydroxyl groups, forming metal
complexes and releasing a proton (ArOH — ArO™ + H+) (160).
These three pathways collectively evaluate the antioxidant potential
of polyphenols in protecting human health against oxidative
damage (157).

Different polyphenols exert distinct effects on antioxidant
activity (161, 162). For instance, quercetin has demonstrated
potent antioxidant properties (163). The antioxidant efficacy of
polyphenols has been extensively investigated in both in vivo and in
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vitro studies (164, 165), confirming their preventive role against
various diseases (166, 167). The pharmacological potential of
Rhododendron tomentosum has been linked to its polyphenolic
composition, including chlorogenic acid, caffeic acid, rutin, and
quercetin, as identified by high-performance thin-layer
chromatography (168).

The antioxidant activities of these compounds were confirmed
using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging
assay. Similarly, the DPPH assay was used to evaluate the
antioxidant activity of Zhourat plants (169). Following the
quantification of total phenolic acids, different solvent extractions
were assessed for free radical scavenging capacity. Water/ethanol
extracts often exhibit superior antioxidant activity compared to
pure water or ethanol-only extracts, with two exceptions (169).
Bashmil et al. (170) showed that unripe bananas possessed higher
free radical scavenging ability than ripe ones, highlighting the
influence of polyphenol type, structure, and phenolic ring count
on antioxidant efficacy. Janarny et al. (171) examined the
antioxidant capacity of edible flowers from the family Fabaceae
(171). In Chamanerion angustifolium L. (fireweed) leaves,
antioxidant activity varied with fermentation conditions. Notably,
activity decreased after 24 h of fermentation under both aerobic and
anaerobic conditions; however, it increased after 48 h compared to
unfermented leaves (171).

Bobkova et al. (172) evaluated the antioxidant potential of coffee
using free radical-scavenging methods, revealing that antioxidant
capacity varied with geographical origin due to differences in
polyphenol content (172). Alsaud et al. (173) reported that
Leptospermum scoparium (Manuka) leaves exhibited significant
ferric-reducing antioxidant power (FRAP assay) and free radical
scavenging activity (DPPH assay) (173). The ethanolic extract
outperformed most deep eutectic solvent extracts, though some
deep eutectic solvent extracts exhibited higher ferric-reducing
antioxidant power values. Overall, polyphenols exhibit
antioxidant properties through various pathways, including free
radical scavenging and the augmentation of endogenous
antioxidant enzyme activity (174, 175).

Table 1 illustrates the sources, classifications, antioxidant
efficacy, and modes of action of polyphenols. Figure 3 illustrates
the antioxidant properties of natural compounds, specifically
resveratrol from red wine and curcumin from turmeric, as
therapeutic interventions for oxidative stress-induced chronic
obstructive pulmonary disease caused by exposure to harmful
particles, smoking, and infections.

5.2 Anti-inflammatory activity

The hydroxyl groups and unique aromatic ring structures of
polyphenols allow them to exert regulatory effects on various
inflammatory pathways (225, 226). Polyphenols can suppress the
expression and activity of key pro-inflammatory mediators, such as
nuclear factor-kB (NF-kB), a transcription factor vital to the
regulation of the inflammatory response, as shown in Table 2
(269, 270).
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By inhibiting the activation of NF-kB, polyphenols reduce the
expression of pro-inflammatory genes and the synthesis of
inflammatory cytokines and enzymes (271, 272). Additionally,
polyphenols may modulate the biosynthesis of pro-inflammatory
lipid mediators by affecting the enzymatic activities involved in
inflammation, thereby contributing to their anti-inflammatory
action (270, 273).

Polyphenols also regulate immune cell function by modulating
the activity of dendritic cells, lymphocytes, and macrophages (274,
275). Moreover, they influence immune recruitment and migration
by altering the synthesis of chemokines and adhesion molecules
(271, 276). Synergistic interactions among various polyphenolic
compounds may further enhance their anti-inflammatory effects
(277). A comparative analysis of polyphenols extracted from celery,
coriander, and parsley revealed that celery had the highest total
polyphenol content, followed by coriander and parsley (278).
However, parsley polyphenols demonstrated the most potent
nitric oxide scavenging activity, which is essential in
inflammation due to the overproduction of nitric oxide. When
tested for their ability to prevent the protein denaturation effect,
parsley extract again showed superior activity (278). Similarly, in
membrane stabilization assays, used to assess the protection of
erythrocyte membranes under inflammatory stress, parsley extract
demonstrated superior activity (278). Polyphenolic compounds in
berries have also been extensively studied for their anti-
inflammatory properties (279, 280).

Kim et al. (281) reported that polyphenols from black raspberry
roots significantly inhibited the production of nitric oxide and
prostaglandin E2 in lipopolysaccharide (LPS)-activated
RAW264.7 macrophages in a dose-dependent manner. These root
polyphenols were more eftective than those from unripe fruits in
reducing the levels of pro-inflammatory cytokines and
downregulating the mRNA expression of cyclooxygenase-2
(COX-2) and inducible nitric oxide synthase (281).

Furthermore, these polyphenols exhibited strong antimicrobial
activity against methicillin-resistant Bacillus anthracis, S. aureus
(MRSA), and carbapenem-resistant Acinetobacter baumannii. Peng
et al. (282) demonstrated that polyphenol-rich extracts from rice
wine significantly downregulated inducible nitric oxide synthase
expression and reduced nitric oxide production. The extracts also
suppressed the expression of pro-inflammatory cytokines, including
tumor necrosis factor-alpha (TNF-a), interleukin-6 (IL-6), and
interleukin-1 beta (IL-1B) (282). These effects were associated
with the inhibition of NF-xB nuclear translocation and reduced
phosphorylation of kB and mitogen-activated protein kinases,
including p38, extracellular signal-regulated kinases 1 and 2 (Erk
1/2), and c-Jun N-terminal kinase (282). Zhang et al. (283) found
that polyphenols inhibited nitric oxide production and reduced the
expression of IL-1B, IL-6, TNF-0,, and nitric oxide synthase in LPS-
activated macrophages. These compounds also suppressed NF-kB
activation and mitogen-activated protein kinases phosphorylation
(extracellular signal-regulated kinases 1 and 2 (Erk 1/2), and c-Jun
N-terminal kinase).

A study by de Aratjo (284) involved the determination of
minimum inhibitory concentration (MIC) and agar well-diffusion
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TABLE 1 Diverse sources and types of polyphenols, their antioxidant properties, and modes of action.

Polyphenol o o .
yp Polyphenol/s = Antioxidant activities Mode of action References
sources
Catechins Exhibits vigorous antioxidant activity, scavenging Direct scavenging of reactive oxygen species and
Green tea i R K L K L (176, 177)
(Flavonoids) free radicals and reducing oxidative stress upregulation of antioxidant enzymes
. Resveratrol Demonstrates antioxidant properties, protecting cells = Scavenges reactive oxygen species and modulates
Red wine . L L : (178, 179)
(Stilbene) from oxidative damage antioxidant enzyme expression
. Possesses antioxidant effects, reducing oxidative Neutralizes free radicals and enhances endothelial
Dark chocolate Flavonoids K K R (180, 181)
stress and improving vascular health function
Anthocyanins Exhibits antioxidant activity, protecting against DNA . .
Blueberry Ve P 68 Scavenges free radicals and chelates metal ions (182, 183)
(Flavonoids) damage
C i Sh tent antioxidant ties, protecti 11 Neutralizes fi dicals and enh: the activi
Turmeric u.rcumm ows pf) El"l antioxidant properties, protecting cells eu r' IZ.(:‘S ree radicals and enhances the activity (184-186)
(Diferuloylmethane) = from oxidative damage of antioxidant enzymes
Exhibits antioxidant activity, protecting against Scavenges free radicals and inhibits oxidative
Oat Avenanthramides L ty p & 38 8 (187, 188)
oxidative stress enzymes
G Resveratrol Demonstrates antioxidant properties, protecting cells Scavenges reactive oxygen species and modulates (189, 190)
rape N
P (Stilbene) from oxidative stress antioxidant enzyme expression
Quercetin Exhibits antioxidant activity, reducing oxidative Scavenges free radicals and inhibits lipid
Apple i o (191, 192)
(Flavonoid) stress peroxidation
Punicalagins Shows strong antioxidant properties, protecting cells Scavenges free radicals and inhibits oxidative
Pomegranate . . L (193, 194)
(Ellagitannins) from oxidative damage enzymes
Proanthocyanidins Demonstrates antioxidant activity, reducing oxidative
Cranberry . 4 Rk 8 Scavenges free radicals and chelates metal ions (195, 196)
(Flavonoids) stress
Anthocyanins Exhibits antioxidant properties, protecting against Scavenges free radicals and inhibits lipid
Strawberry ¥ ot properties, p 848 nees P (197, 198)
(Flavonoids) oxidative damage peroxidation
Ellagic acid L L . . Scavenges free radicals and modulates antioxidant
Roseberry . . Shows antioxidant activity, reducing oxidative stress (199, 200)
(Phenolic Acid) enzymes
Anthocyanins Possesses antioxidant properties, protecting cells . .
Blackberry . L Scavenges free radicals and chelates metal ions (201, 202)
(Flavonoids) from oxidative damage
Anthocyanins Demonstrates antioxidant activity, reducing oxidative = Scavenges free radicals and inhibits oxidative
Cherry cye Rk J & (203, 204)
(Flavonoids) stress enzymes
Exhibits antioxidant properties, protecting against Scavenges free radicals and enhances antioxidant
Spinach Flavonoids L prop P 6 38 8 (205, 206)
oxidative damage defenses
Scavenges free radicals and modulates antioxidant
Kale Flavonoids Shows antioxidant activity, reducing oxidative stress & (207, 208)
enzymes
Possesses antioxidant properties, protecting cells Scavenges free radicals and inhibits oxidative
Broccoli Flavonoids L prop P & 8 (209, 210)
from oxidative damage enzymes
. Quercetin Demonstrates antioxidant activity, reducing oxidative = Scavenges free radicals and inhibits lipid
Onion . 1. (211, 212)
(Flavonoid) stress peroxidation
L Exhibits antioxidant ties, protecti inst S fi dicals and enh: tioxidant
Tomato ycopene‘ : i 1.s antioxidant properties, protecting agains cavenges free radicals and enhances antioxidan (13, 214)
(Carotenoid) oxidative damage defenses
Beta-Carotene L . . . Scavenges free radicals and modulates antioxidant
Carrot . Shows antioxidant activity, reducing oxidative stress (215, 216)
(Carotenoid) enzymes
Hesperidin Possesses antioxidant properties, protecting cells Neutralizes free radicals and suppresses oxidative
Orange P L prop P & PP (217, 218)
(Flavanone) from oxidative damage enzymes
Eriocitri D trat tioxidant activity, reduci idati S fi dicals and enh: tioxidant
Lemon riocitrin emonstrates antioxidant activity, reducing oxidative cavenges free radicals and enhances antioxidan (219, 220)
(Flavanone) stress defenses
Exhibits antioxidant properties, protecting against Scavenges free radicals and modulates antioxidant
Soybean Isoflavones L prop P 8 38 8 (221, 222)
oxidative damage enzymes
uercetin Scavenges free radicals and inhibits lipid
Red Onion Q K Shows antioxidant activity, reducing oxidative stress . & . P (223, 224)
(Flavonoid) peroxidation
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FIGURE 3

Antioxidant properties of natural compounds (resveratrol from red wine and curcumin from turmeric) as therapeutic approaches to combat oxidative
stress-induced chronic obstructive pulmonary disease caused by exposure to harmful particles, smoking, and infections.

assays against methicillin-resistant strains of S. aureus, Salmonella
enteritidis, E. coli, Enterococcus faecalis, and Staphylococcus
epidermidis (284). Polyphenols from Psidium guajava exhibited
the largest zones of inhibition in the agar diffusion test. Notably, the
polyphenol extracts were more effective against Gram-positive
bacteria and ineffective against Gram-negative strains (284).

Anti-inflammatory activity was further evaluated using the
carrageenan-induced peritonitis model in mice. Administration of
plant extracts significantly reduced the inflammatory response
induced by carrageenan (284). However, in acetic acid-induced
writhing and analgesic tests, the extracts did not exhibit significant
pain-relieving effects, suggesting selective anti-inflammatory rather
than analgesic activity (284). These findings support the potential of
these plant-derived polyphenols in managing inflammatory
conditions (283, 284).

Fermentation plays a significant role in modifying the
bioactivity of polyphenol-rich plant materials (284, 285). Recent
research by Sim et al. (286) showed that complex fermentation of
Pyrus montana and Maclura tricuspidata using lactic acid bacteria,
yeast, and Aspergillus shirousamii enhanced their phenolic content
and anti-inflammatory activity. Fermented extracts exhibited
increased DPPH and ABTS radical-scavenging capacities and
significantly reduced nitric oxide production from day six of
fermentation. Western blot analysis revealed suppression of TNF-
o, COX-2, and nitric oxide synthase protein expression, indicating
effective inhibition of inflammation-related signaling pathways.
Overall, polyphenols from various plants, algae, and natural
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sources possess notable anti-inflammatory potential and
contribute to the prevention and management of chronic
inflammatory diseases (287, 288). They also offer protective effects
against metabolic disorders through their ability to regulate
inflammatory signaling pathways (289).

Table 2 illustrates various sources and types of polyphenols,
along with their anti-inflammatory properties and modes of action.

5.3 Antimicrobial activity

Antimicrobial activity refers to the ability of a substance to
inhibit or reduce the growth of microorganisms, including bacteria,
viruses, parasites, and fungi (290, 291). Antimicrobial agents are
widely used in medicine, agriculture, and the food industry to
combat microbial infections (292, 293). As shown in Table 3, the
antibacterial properties of plant extracts are attributed mainly to
their phenolic compounds (337, 338).

Numerous polyphenols exhibit antimicrobial properties by
disrupting cell structures and membranes and interfering with
essential enzymatic cellular functions (14, 339). Key determinants
of their antimicrobial activity include the presence of carboxyl
groups and the arrangement of functional subgroups on the
benzene ring (340). Menhem et al. (169) assessed the
antimicrobial activity of Zhourat Shamia herbal tea (mixture of
herbs and dried flowers) using a disk diffusion assay against
foodborne pathogens, including two Gram-positive bacteria (S.
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TABLE 2 Different polyphenol sources, types, anti-inflammatory effects, and modes of action.

Polyphenol
sources

Polyphenol/s

Anti-inflammatory activities

Mode of action

References

Reduces symptoms of inflammatory bowel

Inhibits nuclear transcription factor kappa B (NF-xB)

Turmeric Curcumin disease, stomach ulcers, and Crohn’s activation, and reduces pro-inflammatory cytokine (227, 228)
disease production
Catechins Exhibits anti-inflammatory properties, Reduces oxidative stress and modulates inflammatory
Green tea . . L. K (229-231)
(Flavonoids) aiding in reducing inflammation pathways
Red wine Resveratrol (Stilbene) May offer health beneflts due to its anti- ?nhibits pro—inflamn}atory mediators and modulates (179, 232)
inflammatory properties inflammatory signaling pathways
Oat Avenanthramides Significantly reduces the inflammatory Inhib%ts NF-«B af:tivation, reducing pro-inflammatory (233, 234)
response cytokine production
Elderberry Anthocya.nins Beduces inflammation and supports Modulates inﬂamm'fltory pathw.ays and reduces pro- (235, 236)
(Flavonoids) immune health inflammatory cytokine production
Rich in flavonoids and polyphenols, aidin, Scavenges reactive oxygen species and modulates
Dark chocolate Flavonoids . K v . ! POYP g . vens Ve oxygen spect (237, 238)
in reducing inflammatory stress inflammatory pathways
Contains oleocanthal and
Ol thal (Phenoli Inhibit 1 d red
Olive oil cocanthal (Phenolic monounsaturated fats, beneficial for nhibits cyc'ooxygena?e enzymes and reduces (239, 240)
compound) L R prostaglandin synthesis
reducing inflammation
Inhibits pro-infl to: diators and modulates
Grape Resveratrol (Stilbene) Exhibits anti-inflammatory properties -n 101 pro-in <amn,la Ty mediators and mocuate (241, 242)
inflammatory signaling pathways
Anthocyanins Scavenges reactive oxygen species and inhibits pro-
Berry y. Reduces inflammation and oxidative stress R s R ygen sp R p (243, 244)
(Flavonoids) inflammatory cytokine production
Tomato Lycopene ‘ Rich 'in lycopene, which intensifies with 'Scavenges reactive oxygen species and modulates (13, 245)
(Carotenoid) cooking, perfect for sauces and soups inflammatory pathways
Allicin (O 1f Inhibit: -infl t d ki
Garlic icin (Organosulfur Exhibits anti-inflammatory properties it s‘pro inflammatory enzymes and cytokine (246, 247)
compound) production
Reduces inflammation and supports Inhibits pro-inflammatory enzymes and cytokine
Onion Quercetin (Flavonoid) = | uces 1 : PP b ‘P ! Ty enzy v (248, 249)
immune health production
Sulforaph Activates Nrf2 pathway, enhanci tioxidant
Broccoli . Orflp ane Exhibits anti-inflammatory properties ctivates K r i pathway 'en ancing antioxidant response (250, 251)
(Isothiocyanate) and reducing inflammation
S ti i d modulat
Spinach Flavonoids Reduces inflammation and oxidative stress i cavenges reactive oxygen species and moduiates (205, 206)
inflammatory pathways
S ti i d modulat
Kale Flavonoids Exhibits anti-inflammatory properties . cavenges reactive oxygen species and moduiates (252, 253)
inflammatory pathways
Beta-Carotene Reduces inflammation and supports Scavenge reactive oxygen species and modulates
Sweet potato . i i (254, 255)
(Carotenoid) immune health inflammatory pathways
Anthocyanins Scavenges reactive oxygen species and inhibits pro-
Purple corn Y. Exhibits anti-inflammatory properties . 8 . Ygen sp . P (256, 257)
(Flavonoids) inflammatory cytokine production
S ti i d modulat
Microgreen Flavonoids Reduces inflammation and oxidative stress | | cavenges reactive oxygen species and moduiates (258, 259)
inflammatory pathways
Capsaici Inhibit: -infl: t tid d ki
Pepper apSal(.?ll:l . Exhibits anti-inflammatory properties ot s‘pro inflammatory neuropeptides and cytokine (260, 261)
(Capsaicinoid) production
Ergothionei Red infl ti d t S ti i d modulat
Mushroom rgo- 1<?ne1ne : educes inflammation and supports : cavenges reactive oxygen species and modulates (262, 263)
(Antioxidant) immune health inflammatory pathways
X . .. . Scavenges reactive oxygen species and inhibits pro-
Chayote Flavonoids Exhibits anti-inflammatory properties R R R (263, 264)
inflammatory cytokine production
Avocado Polyphenols Reduces inflammation and supports heart 'Scavenges reactive oxygen species and modulates (265, 266)
health inflammatory pathways
Beta-Carot, S ti ies and modulat
Carrot eta-Carotene Exhibits anti-inflammatory properties cavenges reactive oxygen species and modulates (267, 268)

(Carotenoid)

inflammatory pathways
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TABLE 3 Numerous polyphenol sources, categories, antimicrobial properties, and mechanisms of action.

Polyphenol
sources

Polyphenol/s

Antimicrobial activities

Mechanism of actions

10.3389/fimmu.2025.1653378

References

Catechins Exhibits antibacterial activity against various pathogens, Disruption of bacterial cell membranes
Green tea . . . o s . (294-296)
(Flavonoids) including Escherichia coli and Staphylococcus aureus and inhibition of enzyme activity
Theaflavins Possesses antimicrobial properties that may help prevent Inhibition of bacterial enzymes and
Black tea K X X i R i R R K . (296, 297)
(Flavonoids) diarrhea and influence gut microbiota interference with microbial metabolism
. Curcumin Demonstrates broad-spectrum antimicrobial activity against Disruption of microbial cell membranes
Turmeric . . . . s L . (298, 299)
(Diferuloylmethane)  bacteria, fungi, and viruses and inhibition of nucleic acid synthesis
Proanthocyanidins May reduce the incidence of urinary tract infections by Prevention of bacterial adhesion to
Cranberry A A ) . . (300, 301)
(Flavonoids) inhibiting bacterial adhesion urinary tract walls
Grape Resveratrol (Stilbene) E?‘hibits antifungal activity against pathogens like Botrytis Induction. of .0).(iflative stress in fungal (302, 303)
cinerea cells and inhibition of fungal enzymes
Pine bark Pmantho-cyanidins Shovtrs antimicrobial activity against various bacteria and .Dis.ru'p.tion of rr'licrotljial cell walls and (304, 305)
(Flavonoids) fungi inhibition of microbial enzymes
Ellagitannins Exhibits antibacterial activity against Staphylococcus aureus Disruption of bacterial cell membranes
Pomegranate . . s . (306, 307)
(Tannins) and Escherichia coli and inhibition of bacterial enzymes
Hydroxytyrosol
L yaroxy Demonstrates antimicrobial activity against various bacterial Disruption of bacterial cell membranes
Olive oil (Phenolic . o . (308, 309)
strains and inhibition of bacterial growth
compound)
Disruption of microbial cell b
Red wine Resveratrol (Stilbene) = Exhibits antimicrobial activity against various pathogens 1sr9p 1_0{1 AO miero 1a‘ ce Amem ranAes (310, 311)
and inhibition of nucleic acid synthesis
Anthocyanins Disruption of bacterial cell membranes
Blueberry cy. ! Shows antimicrobial activity against various bacterial strains ! l_lp 1 . ! . (182, 312)
(Flavonoids) and inhibition of bacterial enzymes
- | Inhibition of bacterial
van
Cocoa avano S Exhibits antibacterial activity against Streptococcus mutans glucosyltransferases and prevention of (313, 314)
(Flavonoids) . .
biofilm formation
Inhibition of microbial thiol-containin;
. Allicin (Organosulfur = Demonstrates broad-spectrum antimicrobial activity against o . l ! 1ning
Garlic . . enzymes and disruption of cell (315, 316)
compound) bacteria and fungi
membranes
. Cinnamaldehyde Exhibits antimicrobial activity against various bacterial and Disruption of microbial cell membranes
Cinnamon . P o (317, 318)
(Phenylpropanoid) fungal pathogens and inhibition of enzyme activity
Carvacrol L . . . . . . .
. Shows antimicrobial activity against bacteria such as Disruption of bacterial cell membranes
Oregano (Monoterpenoid o it (319, 320)
Salmonella and Escherichia coli and leakage of cellular contents
phenol)
Clove Eugenol Demonstrates antimicrobial activity against various bacteria Disruption of microbial cell membranes (21, 322)
(Phenylpropanoid) and fungi and inhibition of enzyme activity ’
Thymol
Disruption of microbial cell branes
Thyme (Monoterpenoid Exhibits antimicrobial activity against various pathogens ! n_lp l n fricroblal ce I,ném ran (323, 324)
and inhibition of enzyme activity
Phenol)
Rosmarinic Acid Inhibition of microbial enzymes and
S Sh timicrobial activi inst bacteria and fungi 325, 326
8¢ (Caffeic acid ester) ows antimicrobial activity against bacteria and fungt disruption of cell membranes ( )
Carnosic Acid Demonstrates antimicrobial activity against various bacterial Disrupts bacterial cell membranes and
Rosemary i K o i (327, 328)
(Diterpene) strains inhibits bacterial growth
Gi 1 (Phenoli Disrupts microbial cell b d
Ginger ingerol (Phenolic Exhibits antimicrobial activity against various pathogens . ls,rl{P 3 mlcro‘ lA celt MEMmpranes an (329, 330)
ketone) inhibits the activity of enzymes
. Menthol . . L . . . Disrupts microbial cell membranes and
Peppermint . Shows antimicrobial activity against bacteria and fungi . . (331, 332)
(Monoterpenoid) inhibits the activity of enzymes
Licorice Glycyrr'hizin Derflonstrates antimicrobial activity against various bacterial ‘Dis.ru‘pts bacte.rial cell membranes and (333, 334)
(Saponin) strains inhibits bacterial growth
Azadirachtin . o . - i i Damages bacterial cell membranes and
Neem . . Exhibits antimicrobial activity against various pathogens . (335, 336)
(Triterpenoid) suppresses bacterial growth
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aureus and B. cereus) and two Gram-negative bacteria (E. coli and
Pseudomonas aeruginosa). The phenolic compounds in Zhourat
extracts exhibited antimicrobial activity, though efficacy varied
depending on the extract and microbial species (169).

A separate study by Gutiérrez-Venegas et al. (341) indicated
that rutin, quercetin, and morin had antimicrobial action against
Actinomyces naeslundii and Actinomyces viscosus. While each
flavonoid has antimicrobial capabilities against some strains, no
antimicrobial impacts have been observed against Streptococcus
oralis and Streptococcus sanguinis (341). The number and type of
hydroxyl, carboxyl, and ester groups also play a crucial role by
facilitating interactions between polyphenols and microbial cells,
thereby inhibiting microbial growth (342, 343). Additionally,
polyphenols can interfere with intracellular processes by
impairing the activity of enzymes necessary for microbial survival,
leading to reduced proliferation (344-346).

De Angelis et al. (347) reported that combinations of
polyphenols and micronutrients (A5+) exert antiviral effects
against influenza A and SARS-CoV-2. In this study, resveratrol
demonstrated antiviral efficacy against respiratory viruses, while
polydatin was used as its precursor. Treatment with A5+ and
resveratrol significantly reduced SARS-CoV-2 replication.
Furthermore, both agents suppressed the expression of essential
viral replication proteins and IL-6 in influenza A virus-infected
cells. Singh et al. (348) evaluated polyphenols as natural antiviral
agents against SARS-CoV-2 using in silico analysis, targeting the
RNA-dependent RNA polymerase (RdRp) responsible for viral
RNA replication. The study found that eight different polyphenols
demonstrated favorable binding kinetics, suggesting their potential
to inactivate SARS-CoV-2 RdRp (348).

Therefore, polyphenols are considered promising antiviral
agents. Musarra-Pizzo et al. (349) conducted antiviral and
antimicrobial assays using Prunus dulcis L. against S. aureus and
herpes simplex virus type 1. The antibacterial activity of almonds
was inhibited entirely by polyphenols at a concentration of 0.62 mg/
mL. Furthermore, antiviral assays revealed that 0.4 mg/mL of
almond polyphenols reduced both the expression of viral proteins
and the accumulation of viral DNA (349). Park et al. (350)
demonstrated that the ethanolic extract of Aronia melanocarpa,
rich in polyphenols and flavonoids, exhibits antiviral activity. A
0.0625 mg sample of the extract significantly inhibited viral surface
proteins in 70% of tested influenza strains, including H1 and H3
subtypes. Pagliarulo et al. (351) evaluated the antimicrobial activity
of Punica granatum against S. aureus and E. coli. Pomegranate juice
was extracted and then subjected to ethanolic polyphenol extraction
of pomegranate using a 50% ethanol/water (v/v) solution. The juice,
particularly rich in anthocyanins, was tested in quantities of 1, 2, 4,
8, 10, and 20 mg per disk. The result demonstrated that the extracts
inhibited the growth and survival of the tested bacterial
strains (351).

Certain extracts exhibited no efficacy against several bacteria,
while others exhibited selective antimicrobial effects. Nibir et al.
(352) analyzed the total phenolic and flavonoid levels, as well as the
antioxidant and antimicrobial properties, of four Chinese tea
varieties: broken orange pekoe, black tea, red dust, and green tea.
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The green tea variety had the highest phenolic and flavonoid
content and demonstrated superior antioxidant and antimicrobial
activity. The antimicrobial potential of these teas was tested against
Shigella dysenteriae, Shigella boydii, Vibrio cholerae, Salmonella
paratyphi, Salmonella typhi, Klebsiella pneumoniae, and E. coli
employing agar well-diffusion and MIC assays. These findings
confirm that green tea has greater antimicrobial efficacy than the
other types (352).

Notably, the antimicrobial activity of polyphenols can be
influenced by the extraction procedure and the solvent used (339,
353). Chaudhry et al. (354) examined the effects of extraction
methods and solvent systems on yield. Traditional maceration-
and ultrasound-assisted extraction techniques were compared using
methanol, ethanol, and acetone at 25%, 50%, 75%, and 100%
concentrations. Among these, ultrasound-assisted extraction
yielded the highest polyphenol content from banana peels (354).
Ethanol proved to be the most effective solvent compared to the
alternatives. Solvent concentration significantly influenced the yield
of polyphenols. Ethanol-based extracts demonstrated superior
antioxidant activity, as indicated by the DPPH radical scavenging
assay. In contrast, banana peel extracts at various concentrations
were tested against E. coli, P. aeruginosa, S. aureus, and
Saccharomyces cerevisiae using the agar disk diffusion method.
Measurement of the inhibition zones revealed that ethanol-
containing extracts exerted more substantial antimicrobial effects
than those obtained with other solvents (354).

In the gut, polyphenols linked to indigestible fibers can
contribute to health benefits by releasing bioactive phenolic
compounds through microbial fermentation. Thus, incorporating
fermentable fiber into the diet may support the growth of beneficial
gut microbiota and exert prebiotic effects (355). Although the
antimicrobial properties of phenolic compounds are well
established, these effects may be modified during gastric
digestion (356).

Caponio et al. (357) reported that digestive processes may
influence the free radical-scavenging ability of phenolic
compounds. Antimicrobial activity was assessed based on effects
on the probiotic and pathogenic strains, specifically
Lactiplantibacillus plantarum, Bacillus megaterium, E. coli, and
Listeria monocytogenes. These findings indicated that grape
pomace-derived polyphenols promoted probiotic growth while
inhibiting pathogenic bacteria (357). Similarly, a study on the
antimicrobial and digestive behavior of polyphenols from
Hibiscus sabdariffa showed that these compounds were rapidly
released and metabolized in the human digestive tract (358).
Polyphenols have demonstrated antimicrobial efficacy against
pathogenic bacteria, including L. monocytogenes and S. aureus
(359, 360), making them promising candidates for use as
antimicrobial agents (361, 362).

Several in vivo studies have confirmed the stability and efficacy
of polyphenols following gastrointestinal digestion. For example,
dietary supplementation of polyphenol-rich extracts in animal
models, such as grape seed extract in broiler chickens and pigs,
has been shown to increase the concentration of antioxidant
markers like vitamin E in plasma and tissues, suggesting not only
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the bioavailability but also the effective physiological action of
polyphenols after digestion (363). In another study, grape
pomace-supplemented feed improved the ratio of polyunsaturated
to saturated fatty acids and enhanced the oxidative stability of
animal products, indicating that a considerable portion of
polyphenols retained their bioactivity after digestive processes
(357). Similarly, research has demonstrated that polyphenolic
compounds maintain significant antioxidant effects in vivo, as
evidenced by enhanced plasma antioxidant capacity and reduced
markers of oxidative stress in animals supplemented with
polyphenols (364).

The findings indicate that, despite specific degradation during
digestion, a significant proportion of polyphenols and their
metabolites remain sufficiently stable for absorption, hence
facilitating their potential health-promoting effects in living
organisms post-absorption.

Table 3 shows the various polyphenol sources, kinds,
antimicrobial properties, and their mechanisms of action.
Figure 4 illustrates the antimicrobial mechanisms of polyphenols,
illustrating the disruption of microbial cell structures

10.3389/fimmu.2025.1653378

(lipopolysaccharide cell wall, peptidoglycan cell wall,
phospholipid bilayers, cell membrane proteins) and the
impairment of essential cellular functions (inhibition of DNA
gyrase and RNA synthesis, pore formation causing leakage,
damage to membrane lipid bilayers, inhibition of enzyme activity,
disruption of cell wall biosynthesis, and inactivation of
lipopolysaccharide) in bacteria such as S. aureus, E. coli, and P.
aeruginosa by specific polyphenol compounds (catechin, quercetin,
EGCG, myricetin, ferulic acid, gallic acid, proanthocyanidins,
tannin, and kaempferol-3-rutinoside).

5.4 Anti-diabetic activity

Natural products play a significant role in promoting human
health (365, 366). Plants have long been used in various cultures to
treat diseases and disorders (367, 368). Accordingly, research
continues to explore plant-derived compounds for managing type
2 diabetes mellitus, a metabolic disorder increasingly prevalent due
to modern lifestyle changes (369, 370). Type 2 diabetes mellitus is

The antimicrobial properties of polyphenols involve damaging microbial cell structures and
impairing vital cellular functions
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The antimicrobial mechanisms of polyphenols involve the disruption of microbial cell structures, including lipopolysaccharide cell walls,
peptidoglycan cell walls, phospholipid bilayers, and cell membrane proteins, as well as the impairment of essential cellular functions such as
inhibition of DNA gyrase and RNA synthesis, pore formation causing leakage, damage to membrane lipid bilayers, inhibition of enzyme activity,
suppression of cell wall biosynthesis, and inactivation of lipopolysaccharides in bacteria like Staphylococcus aureus, Escherichia coli, and
Pseudomonas aeruginosa by specific polyphenol compounds, including catechin, quercetin, epigallocatechin gallate, myricetin, ferulic acid, gallic

acid, proanthocyanidins, tannin, and kaempferol-3-rutinoside.
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characterized by chronic hyperglycemia resulting from insulin
resistance, amyloid deposition, pancreatic B-cell dysfunction, and
impaired glucose regulation (371, 372).

Current studies indicate that insulin regulation involves several
mechanisms, including pancreatic cell protection, modulation of
cell proliferation and apoptosis, oxidative stress reduction, insulin
signaling activation, increased insulin secretion, inhibition of
glucose uptake, gut microbiome regulation, and attenuation of
inflammatory responses (16, 373). Therefore, dietary polyphenols
hold the potential for managing type 2 diabetes mellitus (374, 375).
Additionally, compounds such as resveratrol, curcumin, and
quercetin have shown that they can lower oxidative stress and
inflammation by modulating key insulin-related signaling pathways
(14, 376). Numerous studies have reported the anti-diabetic effects
of tea polyphenols in experimental diabetes models, demonstrating
their ability to lower blood glucose levels, improve insulin
sensitivity, and reduce oxidative stress and inflammation
associated with type 2 diabetes mellitus (377, 378).

Sabu et al. (377) found that administration of 500 mg/kg green
tea polyphenols significantly inhibited the increase in serum glucose
levels at 60 min. Similarly, polyphenols extracted from spicate
eugenia (Syzygium zeylanicum L.) exhibited anti-diabetic
influences in 2.5-3-month-old diabetic zebrafish subjected to
overfeeding and hyperglycemic conditions. The findings suggest
these polyphenols may regulate genes involved in lipid and glucose
metabolism and influence glucose absorption and utilization,
contributing to the normalization of fasting blood glucose levels
(379). Animal studies have also demonstrated the anti-diabetic
effects of flax (Linum usitatissimum) in 8-12-week-old female
rats, with consistent reductions in blood glucose levels and body
weight (380). Histological analyses revealed partial improvement in
pancreatic, hepatic, and renal tissues following treatment with the
plant extract (380).

Zuo et al. (381) investigated the anti-diabetic properties of
Phaseolus vulgaris L. in 5-6-week-old male rats. In this study,
type 2 diabetes mellitus rats were fed either a high-fat diet or a
standard diet with detailed macronutrient compositions. The results
showed that P. vulgaris L. could regulate blood glucose and
cholesterol levels, reduce insulin resistance, and increase gut
short-chain fatty acid production, thereby mitigating pancreatic
and hepatic damage and restoring intestinal microbiota balance
(381). Another study assessed the anti-diabetic properties of yellow
and green papaya (Carica papaya), revealing lipid-lowering activity
and enhanced hepatic glucose metabolism, suggesting its
therapeutic potential in diabetes management (382).

Similarly, Pieczykolan et al. (383) revealed that Aerva lanata L.
has been shown to possess anti-diabetic, antioxidant, and anti-
inflammatory properties via inhibition of o-amylase and o-
glucosidase, enzymes associated with glucose metabolism. Further
investigations have explored the anti-diabetic potential of ethanolic
propolis extracts under in vitro and in vivo conditions (384). In one
experiment, diabetic rats were administered a 0.5 mL/100 g dose of
either 15% or 30% propolis extract for 4 weeks, resulting in
significant blood glucose reduction (384). A separate study
investigated the therapeutic effects of vinegar extract from
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Zhenjiang aromatic vinegar in diabetic mice. The extract
improved body weight, lowered blood glucose, enhanced glucose
and insulin tolerance, and reduced liver inflammation. These effects
were partly attributed to the modulation of the gut microbiota and
short-chain fatty acid levels, indicating a potential role in diabetes
therapy (385).

Vaithiyalingam et al. (386) investigated the pharmacokinetic
characteristics of curcumin from Curcuma longa, highlighting its
strong ligand-binding interactions with key protein targets,
including o-amylase, o-glucosidase, DPP-4, PPAR, and SGLT-2.
These findings position curcumin as a promising candidate for
diabetes treatment. Jahan et al. (387) examined the functional
potential of haustoria from coconut (Cocos nucifera) and palmyra
palm (Borassus flabellifer) for anti-diabetic applications. B.
flabellifer demonstrated superior antioxidant capacity through
DPPH and H,O, scavenging and lipid peroxidation inhibition
compared to C. nucifera. Additionally, oi-amylase and o-
glucosidase inhibition assays showed greater enzyme inhibitory
activity in B. flabellifer (387).

The anti-diabetic efficacy of diverse polyphenols has been
demonstrated in both in vivo and in vitro studies, supporting
their potential as therapeutic agents (388, 389). However, despite
promising findings, current research remains insufficient, and
further investigations are needed to validate these compounds for
future clinical applications.

Figure 5 illustrates the antidiabetic mechanism of polyphenols
in the human body, showing deconjugation in the gastrointestinal
tract, absorption, hepatic portal circulation, reconjugation in the
liver, biliary excretion, renal excretion, and microbial deconjugation
in the colon, ultimately leading to fecal excretion.

5.5 Application in skin and hair health

The skin, the body’s largest organ, acts as a dynamic interface
with the environment, playing essential roles in protection against
UV radiation, pathogens, and extreme temperatures (390, 391). Its
constant exposure to environmental stressors, combined with its
complex functions, contributes to the development of various
dermatological conditions (392). Similarly, hair follicles—extensions
of the epidermis—are influenced by both internal and external
factors. Hair follows a cyclical growth pattern encompassing the
anagen, catagen, and telogen phases. Disruptions in this cycle can
lead to hair thinning or loss, adversely affecting an individual’s
psychosocial well-being, self-esteem, and mental health, often
leading to social anxiety and depression (392).

A range of factors—genetic predisposition, hormonal imbalances,
infections, stress, and psychological disorders—contribute to both skin
and hair disorders. While conventional pharmaceutical and treatments
are available, many synthetic drugs pose limitations or adverse effects,
fueling growing interest in natural alternatives (391). Among these,
plant-derived polyphenols have garnered attention for their broad
therapeutic potential, including anti-inflammatory, antioxidant, anti-
aging, anti-carcinogenic, antimicrobial, and depigmenting
properties (393).
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Several studies have highlighted the potential of polyphenols in
dermatological applications. For example, grape seed extract, applied
to normal human melanocyte and dermal fibroblast cells, was shown
to enhance skin youthfulness by stimulating collagen and elastin
production (133). It also reduced UVB-induced inflammation and
DNA damage, while promoting skin hydration and reducing melanin
production—key factors in diminishing wrinkle formation (133).

Similarly, Caralluma europaea extracts demonstrated both anti-
tumor and wound-healing effects. These extracts inhibited leukemia
and hepatocellular carcinoma cell lines in vitro, while topical
application in rats accelerated wound healing (394). Ethanolic
extracts of Acacia nilotica showed potent free radical scavenging
activity due to their hydroxyl group content, indicating their
potential as natural antioxidants (393).

In a clinical trial by Montenegro et al. (395), the topical application of
resveratrol-loaded lipid nanocarriers significantly improved skin
hydration, emphasizing the potential of lipid-based delivery systems in
skincare. Other studies showed that combining polyphenols with
sunscreen components provided synergistic UV protection (377).
Notably, naringenin-loaded NPs exhibited superior antioxidant activity
and sustained skin retention compared to the native compounds (395).

Curcumin-loaded nanocubosomal hydrogels were found to
reduce signs of skin irritation (e.g., erythema and edema) in rats
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and displayed enhanced antibacterial activity against E. coli (396).
Likewise, a hydrophilic extract of Rhus coriaria promoted collagen
production, accelerated wound healing, and showed antimicrobial
activity against several pathogenic bacteria (397). A liposome-based
extract from Hibiscus sabdariffa L. calyx showed no irritation in
rabbit skin models and was effective as an anti-aging skincare
product due to its antioxidative properties (398). Polyphenols
from Malpighia emarginata DC also demonstrated skin-
lightening effects by reducing UVB-induced pigmentation and
melanin synthesis (399). Similarly, strawberry extracts protected
against UVA-induced skin damage by reducing ROS and
inflammatory markers (400).

Other findings revealed that Penthorum chinense extracts
possess anti-aging and moisturizing properties (383), and
green tea polyphenols exhibit anti-inflammatory effects
against acne vulgaris (401). In another study, Coffee arabica
L. hydrogels—especially those from green beans—promoted
skin regeneration and reduced oxidative stress in wound areas
(402). Overall, polyphenols offer significant potential in
promoting skin and hair health (402). However, more
comprehensive studies are needed to optimize their
application and explore their full therapeutic potential
in dermatology.
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5.6 Neuroprotective effect

Polyphenols are increasingly recognized for their
neuroprotective properties, primarily attributed to their potent
antioxidant and anti-inflammatory activities (377, 403). These
compounds can neutralize free radicals and reduce oxidative
stress, mechanisms implicated in the pathogenesis of several
neurodegenerative diseases, including Alzheimer’s disease and
Parkinson’s disease (404, 405).

Curcumin, a polyphenol derived from C. longa, has
demonstrated anti-inflammatory, antioxidant, and anti-amyloid
effects in various Alzheimer’s disease models (388). For instance,
curcumin-loaded lipid-core nanocapsules mitigated AB-induced
behavioral changes and synaptotoxicity in rats. The purified
polyphenols from pomace significantly reduced paralysis in
Caenorhabditis elegans Alzheimer’s disease and showed
antioxidant effects compared to non-purified forms (388).

In Alzheimer’s disease, the accumulation of B-amyloid (AP)
peptides and tau protein aggregates disrupts neuronal function
(406). Blends of polyphenols—including resveratrol and grape juice
—have been shown to reduce amyloid neuropathology and improve
cognitive deficits in animal models (406). Resveratrol, in particular,
activates the Sirtl gene, enhances glutathione and superoxide
dismutase levels, and reduces oxidative stress (407). Grape leaf
polyphenols also exhibited neurotrophic, anti-inflammatory, and
antioxidant effects in aluminum chloride-induced Alzheimer’s
disease rat models, suggesting a potential therapeutic role (408).

Parkinson’s disease, characterized by the degeneration of
dopaminergic neurons and the aggregation of a-synuclein,
polyphenols again show promise (409). EGCG from green tea has
been shown to inhibit a-synuclein aggregation and prevent
mitochondrial dysfunction (410, 411). A unique polyphenol-
micronutrient blend, A5+, was found to block apoptotic
pathways, reduce oxidative stress, and suppress pro-inflammatory
cytokines in Parkinson’s disease models (387). In addition,
nanosheet polyphenolic fractions from propolis demonstrated
enhanced antioxidant effects in vitro and in vivo (412). Olive-
derived polyphenols improved locomotor ability and lifespan in
C. elegans Parkinson’s disease models (405). In Huntington’s
disease, caused by polyglutamine expansions in the Huntingtin
protein, curcumin reduced photoreceptor degradation and motor
impairment in Drosophila models (413).

Despite promising evidence, challenges remain (414, 415). The
mechanisms underlying the neuroprotective effects of polyphenols
are not fully understood, and issues with their bioavailability persist
(416, 417). Future research is essential to elucidate these mechanisms,
improve delivery systems, and determine effective therapeutic
dosages for preventing and managing neurodegenerative diseases.

5.7 Anti-tumor and anti-cancer activity
Researchers have long been interested in exploring the anti-

tumor and anti-cancer potential of polyphenols (418, 419). These
natural chemicals exhibit chemo-preventive benefits against
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multiple cancer types, as shown in Table 4 (465, 466). Research
suggests that polyphenols may significantly limit tumor growth and
prevent cancer formation due to their anti-inflammatory,
antioxidant, and antiproliferative effects (467, 468). Multiple
methodologies exist to evaluate the antiproliferative, and anti-
cancer properties of polyphenols (469, 470). One strategy entails
performing in vitro research using cancer cell lines (471, 472).
Researchers can examine the effects of polyphenols derived from
various sources or using different quantities on tumor cells, and
their effects on cellular growth and proliferation (473, 474).

Zhang et al. (456) indicated that Cerasus humilis fruit,
recognized for its high polyphenol content, demonstrated
considerable inhibitory effects on hepatic, colon, and stomach
tumor cells. A modern experiment demonstrated that the
phenolic component of Cerasus europaea extracts displayed ‘anti-
tumor’ potential versus human leukemia (K562 and HL60) and
hepatic tumor (Huh-7) cell lines (394). Yi et al. (475) showed that
the purified polyphenols possess antiproliferative properties on
distinct cancer cell lines in the human colon tumor stem cell line
(LOVO cell line), the pure polyphenols acquired in this research
may be utilized to manufacture functional meals.

Furthermore, Yi et al. (476) conducted a study demonstrating
that isolated polyphenols from Pinus koraiensis pinecones have an
anti-cancer impact on colon cancer cells via stimulating death via
caspase activation. Huang et al. (477) indicated that the extracted
polyphenols from the bark of P. koraiensis have a significant
inhibitory effect on colon cancer cells via augmenting the quantity
of apoptotic cells (477). The investigation examined the use of
several polyphenols to mitigate the side impacts of tumor, beside
their direct impacts on tumor cells (478-480).

Another method to examine these impacts is by performing in
vivo experiments with animal models (481, 482). These
investigations often entail observing cancer progression in affected
animals via the supply of polyphenols using diverse approaches
(482, 483). Extensive research may include both in vitro and in vivo
trials (484, 485).

These findings clarify the molecular mechanisms influenced by
polyphenols (472, 486, 487). The fundamental purpose of these
investigations is to study the impacts of polyphenols on apoptosis,
angiogenesis, cell cycle regulation, and metastasis (488, 489). Wu
et al. (488) revealed a notable reduction in cell viability
corresponding to elevated dosages of polyphenols derived from
Hippophae rhamnoides labeled as HPs60, showing an inactivation
impact of HPs60 on tumor cell proliferation. The modification of
miRNA expression patterns resulting from HPs60 therapy
influenced the alterations in cell viability through modulating cell
cycle progression as well as apoptosis (488). In vivo investigations
on mice indicated no discernible poisonousness throughout HPs60
therapy, as demonstrated by the lack of substantial changes in body
weight across the groups (488). In contrast, there was a notable
decrease in cancer volume following HPs60 therapy relative to the
control, demonstrating its anti-tumor efficacy in inhibiting cancer
growth in vivo. Moreover, HPs60 therapy was demonstrated to
influence the expression of microRNAs (miRNAs) in cancer-
bearing animals (488).
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TABLE 4 Sources, types, anti-cancer and antitumor properties, and the mechanism of action of polyphenols.

Polyphenol

sources

Polyphenols

Anti-cancer and anti-tumor
activities

Mode of action

References

Green tea Epigallocatechin Inhibits cancer cell proliferation and induces Modulates signaling pathways such as MAPK, inhibits (230, 420)
gallate (EGCG) apoptosis in various cancer cell lines angiogenesis, and induces epigenetic changes ?
Theaflavin-3,3’- Exhibits antioxidant properties and inhibits Scavenges reactive oxygen species and inhibits
Black tea X X i i K (421, 422)
digallate (TFDG) cancer cell growth angiogenesis by reducing VEGF production
Red grape Resveratrol Suppress-es tumor initiation, promotion, and Modulates géne eprres?ioAn relafed to CF].[ proliferation (423, 424)
progression and apoptosis, and inhibits angiogenesis
Turmeric Curcumin .Inhibits the grov‘vth of various cancer cells and = Modulates multiple cell signaling.pathvtrays, incll.lding (425, 426)
induces apoptosis NF-«B and STAT3, and alters epigenetic regulation
Modulates est tor signali d inhibit:
Soybean Genistein Inhibits cancer cell growth and metastasis ° u ! es. o roger'l %‘ecep oF signaiing and inhibits (286, 427)
tyrosine kinase activity
Apple Phloretin .Inhibits the prol'iferation of cancer cells and Inhibits glucose transporters and modulates cell cycle (428, 429)
induces apoptosis regulators
Berry Anthocyanins Sup]:fresses the growt-h of various cancer cells Inhibits oxidative stress and modulates signaling (430, 431)
and induces apoptosis pathways such as PI3K/Akt
L Inhibits cancer cell proliferation and induces Modulates cell cycle regulators and inhibits
Pomegranate Ellagic acid R K X (432, 433)
apoptosis angiogenesis
Olive oil Hydroxytyrosol .Inhibits the prol.iferation of cancer cells and S.caver‘lges reactive oxygen species and modulates (434, 435)
induces apoptosis signaling pathways
i . L Inhibits cancer cell growth and induces Modulates signaling pathways such as MAPK and
Citrus fruit Hesperidin . o K X (436, 437)
apoptosis inhibits angiogenesis
Garlic Quercetin Fnhibits the prol‘iferation of cancer cells and Modulates signaling pathways and inhibits oxidative (438, 439)
induces apoptosis stress
Broccoli Sulforaphane Inhibits 'cancer cell growth and induces Modulates epiger-letic regulation and inhibits histone (440, 441)
apoptosis deacetylase activity
Tomato Lycopene 'Inhibits the prol.iferation of cancer cells and Modulates signaling pathways and inhibits oxidative (13, 442)
induces apoptosis stress
Chili pepper Capsaicin .Inhibits the gro@ of various cancer cells and Modulates 'singaling pathways such as NF-xB and (443, 444)
induces apoptosis induces oxidative stress
Ginger 6-Gingerol Fnhibits the prolAiferation of cancer cells and Modulates signaling pathways and inhibits oxidative (445, 446)
induces apoptosis stress
. Inhibit the growth of various cancer cells and Inhibit oxidative stress and modulate signaling
Cranberry Proanthocyanidins . . (447, 448)
induce apoptosis pathways
Spinach Lutein .Inhibits the prol.iferation of cancer cells and S.caver‘lges reactive oxygen species and modulates (449, 450)
induces apoptosis signaling pathways
Carrot Beta-carotene Inhibits 'cancer cell growth and induces Scavenges reactive oxygen species and modulates gene 51, 452)
apoptosis expression
Secoisolariciresinol Inhibits the proliferation of cancer cells and Modulates estrogen receptor signaling and inhibits
Flaxseed K K i K . (453, 454)
diglucoside (SDG) induces apoptosis oxidative stress
. Inhibits the growth of various cancer cells and  Inhibits oxidative stress and modulates signaling
Cheery Cyanidin . . (455, 456)
induces apoptosis pathways
Peanut Prerostilbene 'Inhibits the prol.iferation of cancer cells and Modulates signaling pathways and inhibits oxidative (457, 458)
induces apoptosis stress
Parsley Apigenin Inhibits 'cancer cell growth and induces %\/Io'dl'llates s'ignaling pathways such as NF-xB and (459, 460)
apoptosis inhibits angiogenesis
Thyme Luteolin Fnhibits the prolAiferation of cancer cells and Modulates signaling pathways and inhibits oxidative (461, 462)
induces apoptosis stress
L Inhibits the growth of various cancer cells and =~ Modulates signaling pathways and inhibits oxidative
Rosemary Carnosic acid (463, 464)
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Moreover, the group receiving the blueberry anthocyanin and
crude polyphenol extract demonstrates the most significant cancer
suppressor impacts, presumably due to synergistic interactions
between the components (490, 491). Furthermore, the extract
improved the overall health of mice by augmenting cellular
immunological action, enhancing antioxidant enzymatic activities,
and diminishing lipid peroxidation (492, 493). To conclude, various
studies indicate that polyphenols might substantially affect cancer
prevention, influencing disease progression and perhaps improving
treatment methods such as radiotherapy and chemotherapy (483,
492, 493). Table 4 delineates the sources, classifications, anti-cancer
and antitumor characteristics, as well as the mechanisms of action
of polyphenols.

5.8 Other effects

The influence of polyphenols on health encompasses multiple
aspects (494, 495). A study approved by de Jesis Romero-Prado
et al. (496) indicates a significant reduction in both systolic as well
as diastolic blood pressure, as well as decreases in whole cholesterol,
LDL cholesterol, as well as triglyceride levels after the inclusion of
dietary flavonoids. The incorporation of flavonoids into
pharmacological antihypertensive treatment demonstrates
supplementary advantages for blood pressure, lipid profile, leptin
levels, obesity, and inflammation (496). Polyphenols contribute to
reducing obesity through a variety of interrelated mechanisms.
They can inhibit adipogenesis by regulating key signaling
pathways and transcription factors such as PPARy and C/EBPo,
thereby limiting the formation and differentiation of new adipocytes
(497). Polyphenols also promote the browning of white adipose
tissue and enhance thermogenesis, which increases energy
expenditure and fat burning (497). Additionally, these
compounds stimulate 3-oxidation of fatty acids, promote lipolysis,
and suppress lipogenesis, collectively improving lipid metabolism
and reducing fat accumulation (498).

Moreover, a notable reduction in levels of C-reactive protein
was seen, suggesting a possible role in reducing the hazard of
cardiovascular disorders. Bogolitsyn et al. (276) observed that
polyphenols elevated the quantity of sticky leukocytes in the
bloodstream of both leukemia cases and healthy people.
Moreover, leukocytes from leukemia cases exhibited a reduced
propensity to attach to surfaces relative to those from healthy
people, suggesting that algal polyphenols regulated the adhesive
activities of leukocytes in a dose-reliant methods. Moreover,
polyphenols augmented the adhesion and contact capabilities of
cells by stimulating defensive mechanisms against malignant
cells (276).

Figure 6 outlines the various health benefits of polyphenols
within the human body, highlighting their antioxidant, anticancer,
antibacterial, dermatological, neuroprotective, anti-inflammatory,
and anti-diabetic properties, as well as their modes of action at both
cellular and systemic levels.
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6 Polyphenols and nutritional aspects

Research indicates that the intake of polyphenol-rich foods can
promote health, chiefly owing to their antioxidant, anti-
inflammatory, anticarcinogenic, and several other qualities (499,
500). Moreover, these qualities are believed to support intestinal
health by fostering the proliferation of good bacteria (495). These
attributes promote the intake of foods abundant in polyphenols
(501), yielding numerous beneficial consequences (502, 503).

Figure 7 illustrates the impact of malnutrition (high-fat, high-
sugar diet) in contrast to a nutritious diet (fruits and vegetables) on
metabolism, gut microbiota composition (dysbiosis vs. eubiosis),
intestinal barrier integrity, systemic inflammation, insulin
resistance, dyslipidemia, adipose tissue accumulation, and
immune cell responses (TLR4, TLR2, Treg, Thl, Th2, Thl7),
culminating in adverse obesity rather than a healthy
metabolic condition.

6.1 Role of nutrition and gut microbiota in
maternal and infant health

The early stage of life is crucial for the growth of the infant’s
gastrointestinal microbiome. The maturation of the gastrointestinal
microbiome throughout infancy and early childhood can affect
health and the likelihood of disorders in later life (504).
Alterations in the gut microbiota throughout this time precipitate
the onset of chronic disorders such as asthma, allergies, and obesity
in both adulthood and childhood (505, 506). Studies indicate that
human milk plays a crucial role in establishing an infant’s gut
microbiome and serves as a significant source. Consequently, the
mother’s breastfeeding practices safeguard the infant versus
gastrointestinal as well as respiratory pathogens, while also
mitigating the dangers of inflammatory deterioration (507).

Maternal microbial components are believed to be transmitted
to the newborn via human milk, along with the transfer of non-
microbial molecules (508). Consequently, research elucidating the
connection between nutrition and gastrointestinal microbiome in
adults has sought to demonstrate a correlation with postpartum
mothers (508, 509). The dietary habits of postpartum mothers,
modifications to these habits, and the variety of food types ingested
influence the mother’s microbiota, thus altering the human milk
microbiota. This may subsequently influence the gut flora of the
newborns (508).

Polyphenols, chemicals essential for plant defense, are prevalent
in individual foods. Polyphenols obtained from diverse food sources
exert advantageous impacts on various metabolic problems,
cognitive decline, and offer protection against conditions such as
tumors and aging (510). Among these, beneficial effects such as
antioxidant and anti-inflammatory qualities, as well as modulation
of hormonal and mitochondrial functions, polyphenols may
enhance mother milk production, as well as nursing efficacy
(510). The nature and composition of the mother’s food are
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FIGURE 6

The numerous health advantages of polyphenols in the human body demonstrate their antioxidant, anti-cancer, antibacterial, dermatological,
neuroprotective, anti-inflammatory, and anti-diabetic properties, as well as their modes of action at both cellular and systemic levels.

crucial for the infant’s health, both throughout pregnancy and
throughout the breastfeeding period, including the time before
and after this phase (510). Consequently, a Mediterranean diet-
style regimen, abundant in polyphenols and fiber, enhances the
mother’s nutritional profile and is beneficial for maternal and
newborn health (511). Limited research with dairy animals, like
goats and cows, have shown that polyphenols from fenugreek
(Trigonella foenum-graecum L.) enhance milk output and
improve the quality and content of milk lipid (511, 512).
Fenugreek is predominantly utilized to enhance the quality of
milk production in postpartum mothers (513).

Fenugreek encompass several polyphenols, including quercetin,
isovitexin, rutin, vitexin, diosgenin, and saponins (514).
Additionally, other research indicates that fenugreek significantly
enhances milk flow, yield, oxytocin expression, and lipid level in
pregnant rats (515, 516). Scholars have shown that Moringa oleifera,
which contains various flavonoids such as kaempferol, myricetin,
quercetin, and phenolic acid, influences milk level and enhances the
macronutrient content, involving protein and lipid, in dairy animals
(517, 518). In contrast, Olvera-Aguirre et al. (519) indicated no
impact on milk supply or quality on dairy animals utilizing the
same herb.

In vitro studies suggest that extracts or leaves of the M. oleifera
can diminish ROS, and enhance glutathione levels and casein gene
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expression in bovine mammary cells. M. oleifera exhibits a
preventive function versus induced ROS in vitro (520, 521).
Additionally, various herbal formulations, such as fenugreek,
Sauropus androgynus, and M. oleifera, were evaluated for their
lactation-enhancing effects on lactating rats (522, 523). The study’s
findings indicated an increase in milk output. Furthermore, several
animal experiments, including female rats and Balb/c mice,
demonstrated the lactation hormone-stimulating effect of milk
thistle and S. androgynus (524, 525). These research findings
indicate that the prolactin hormone’s expression, linked to
enhanced breast milk production in postpartum women, and the
oxytocin hormone, recognized as the milk-ejecting hormone, were
elevated (526, 527).

Sani et al. (528) investigated the impact of the polyphenol
resveratrol from the Launaea taraxacifolia on milk yield and
serum levels of oxytocin and prolactin in rats. The study’s results
demonstrate that resveratrol may enhance milk production and
elevate prolactin and serum oxytocin levels (528). One study
indicated that quercetin polyphenols enhance prolactin formation
in the pituitary gland, while another study showed that the same
polyphenol from the Ligustrum lucidum could diminish the
inflammation of the mammary gland (529, 530). Zhao et al. (531)
showed that orange peel extract increases milk output among dairy
animals, and Ceballos-Sanchez et al. (511) demonstrated that this
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cell responses (TLR4, TLR2, Treg, Thl, Th2, Th17) resulting in detrimental obesity as opposed to a healthy metabolic state.

fiber and polyphenol-rich diet supplemented exerted a trophic
impact on both the pregnant rats and their newborns.
Nevertheless, additional research is required to clarify the
mechanisms (511).

6.2 Role of polyphenols from childhood to
the elderly

The intake of polyphenol-rich foods is essential for people
across all age groups, including children, adults, and the elderly.
Integrating polyphenol-rich meals can improve growth and
development in children and adolescents (532). Moreover,
polyphenols may be ingested to improve cognitive action and
overall health, especially in adults and the elderly (533, 534).

Moreover, incorporating polyphenols into the diet of adults and
the elderly can enhance overall health, diminish the hazard of
chronic disorders, and promote cardiovascular well-being (535,
536). Ziauddeen et al. (532) analyzed documents from the
National Diet and Nutrition Survey Rolling Programme (NDNS
RP) 2008-2014 to evaluate polyphenol consumption among the UK
population. The study results suggested that polyphenol
consumption escalated with age, with a more pronounced
increase observed in male subjects. In children, the principal
sources of polyphenols were potatoes, legumes, fruit juice, and
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tea. The primary sources of polyphenols for adults include
chocolate, tea, fruits, wine, and vegetables (532).

Corbo et al. (537) indicated that sweet cherry polyphenol
extracts suppressed spontaneous osteoclastogenesis in obese
youngsters by diminishing the development of multinucleated
TRAP+ osteoclasts in peripheral blood mononuclear cell cultures
(537). Moreover, the polyphenol extracts diminished the capacity of
peripheral blood mononuclear cells to create extensive resorption
zones on calcium phosphate film-coated Millenium slides,
consequently impeding the bone resorption functions of
osteoclasts and reducing TNFoo mRNA levels (537). Conversely,
the evaluation of polyphenol extracts on cell viability in peripheral
blood mononuclear cell cultures, conducted via the MTT assay,
revealed that these extracts were non-toxic and promoted the
preservation of healthy cells (537). The research findings indicate
that sweet cherry extracts abundant in polyphenols can aid in the
prevention and/or enhancement of bone health issues related to
obesity (537).

A separate study by Whyte and Williams (538) noted that
blueberry anthocyanins positively influenced some memory actions
in youngsters, however, this impact did not encompass all cognitive
domains. Moreover, participants who ingested the blueberry
beverage exhibited superior performance relative to people who
took a placebo, especially in long-delay recall tasks of children in 10-
year-olds (538). A study including 400 children aged 4 to 12 aimed
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to examine the correlation between dietary polyphenol intake and
the risk of attention deficit hyperactivity disorder (539).
Polyphenols may offer protection against attention deficit
hyperactivity disorder by altering membrane fluidity and
adrenergic receptors, demonstrating antioxidant properties,
inducing vasodilation, and regulating catecholamine
metabolism (539).

Mengfa et al. (540) examined the correlation between
polyphenol consumption and the incidence of type 2 diabetes.
The results indicated that a higher consumption of polyphenols
correlated with a diminished risk of type 2 diabetes. Guo et al. (541)
indicated that polyphenol consumption may decrease obesity risk in
elderly adults with elevated cardiovascular risk. Guglielmetti et al.
(542) indicated that a diet high in polyphenols positively influenced
gut permeability in ageing, leading to reduced serum zonulin levels.
Decreases were noted in inflammatory markers like IL-6, C-reactive
protein, and TNF-o, ROS indicators involving DNA injury, and
measures of vascular action. Moreover, polyphenol-rich diets help
preserve metabolomic profiles and microbiome equilibrium in the
elderly (542).

6.3 Role of polyphenols on athlete health

One advantageous outcome of addressing the athlete’s
nutritional requirements is enhancing athletic performance.
Environmental, endocrine, muscular fiber relationships, athletic
objectives, dietary, and genetic factors create individual variances
that may also influence athletic performance (543). Genetic and
dietary combinations can influence nutritional availability and
bodily systems associated with athletic performance (544). The
amount and composition of macronutrients, lipids, carbohydrates,
and proteins in a person’s dietary regimen significantly influence
athletes’ muscular functions and performance (544). Recent
evidence indicates that the kind and amount of protein are
essential for muscle hypertrophy and athletic performance, with
individual differences in protein consumption and amino acid
absorption-metabolism associated with both protein quantity and
quality, as well as genetic variances between persons (545).

Genetic differences might change the quantity of bioactive
peptides obtained from protein resources, hence influencing
muscle function and development (546). Consequently, daily
nutritional guidance includes tailored nutritional suggestions for
each athlete throughout training and pre-, intra-, and post-
competition periods (546). Alongside these macronutrients, it is
advisable to daily ingest foods abundant in manganese, butyrate,
omega-3, and polyphenols, and to contemplate incorporating
supplements such as antioxidants and anti-inflammatories (546).
Moreover, nourishment supplies energy to the body and helps
maintain physiological equilibrium. Furthermore, diet is crucial in
enhancing the body’s reaction to exercise-induced stress (547).

Consequently, an athlete must regulate the homeostasis of
oxidative stress while training. Oxidative stress, resulting from the
generation of ROS, can lead to inflammation and cellular
destruction and impede muscle recovery if it coincides with
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training adaptations (548). Antioxidant supplementation during
exercise influences athletic performance, but mitochondrial
adenosine triphosphate generation is not entirely effective,
forming superoxide radicals. The increased oxygen consumption
leads to a higher generation of superoxide radicals that require
neutralization (548). Muscle injury results in excessive free radical
production, hindering recovery, and the body's intrinsic systems for
eliminating these radical species are inadequate (548).

Plant-based diets are garnering interest in contemporary sports
nutrition because of their substantial nutrients of bioactive
compounds (549). Polyphenols offer several benefits for athletes,
including anti-inflammatory, antioxidant, and antimicrobial
characteristics, promoting overall wellness (550). These
advantages have linked some polyphenols, such as resveratrol,
quercetin, and curcumin, to muscle health (551). Numerous
studies on sports nutrition and polyphenols are now underway.
Many of these studies encompass the significant impacts of
polyphenolic materials on post-exercise muscle destruction as
well as their influence on enhancing physical performance (552).
Polyphenol compounds have been investigated under various
situations employing diverse supplementation regimens for
differing periods and dosages (503). Polyphenols, extensively
researched for their numerous beneficial effects. Consequently,
diets rich in polyphenols were examined to mitigate oxidative
stress induced by physical performance (553, 554).

Additionally, the impact of quercetin polyphenol supply on
athletic performance was examined. Quercetin, a flavonoid
polyphenol, plays a crucial function in muscle remodeling by
inhibiting muscle loss by controlling protein catabolism and
promoting muscular anabolism via increased phosphorylation
(555). A study of top cyclists revealed enhancements in aerobic
performance among athletes consuming 1200 mg of the supplement
daily for six weeks (556). Sgro et al. (557) indicated that the group
administered 1 g of quercetin daily for two weeks exhibited reduced
plasma markers of eccentric muscle injury relative to the placebo
group. This indicates that quercetin facilitates the regeneration of
muscle injury (557). A study by Martin-Rincon et al. (558),
including 24 female and 33 male active athletes, attempted to
assess their conditions following long-distance running
performances of five and ten kilometers (558). The results
indicated that the blend of Zynamite and quercetin mitigates
muscle discomfort and injury while expediting the therapy of
muscular performance. The advantages of quercetin supply are
believed to be enhanced with elevated levels (558). Additionally,
polyphenols such as resveratrol, which are predominantly found in
red wine and grape skin, can stimulate anabolic muscle metabolism
by augmenting signaling pathway components (545). de Sousa et al.
(559) indicated that the grape juice supplement enhanced the
athletes’ endurance times.

A separate study by de Lima Tavares Toscano et al. (560)
observed that one dose of purple grape juice demonstrated an
ergogenic impact in recreational runners via prolonging duration to
exhaustion throughout running and enhancing antioxidant (560).
In addition to this, animal research are also incorporated in the
literature (561, 562). Nonetheless, the limited sample sizes in
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resveratrol studies and the application of numerous unspecified
supplement dosages hinder the establishment of a definitive safety
and efficacy range for this supplement in athletes; thus, further
research is required (562).

Besides the advantages of resveratrol administration for
athletes, it may also regulate glucose and insulin sensitivity (563).
For athletes, it is crucial that the body utilizes insulin with optimal
efficiency throughout a physical change. A study investigating the
impact of resveratrol on glucose revealed that resveratrol can
enhance glucose regulation and insulin sensitivity in diabetic
rats (564).

Consequently, many findings indicate that resveratrol may
serve as a potent bioactive agent for athletes experiencing
hyperglycemic swings and insulin resistance. Moreover,
curcumin, a principal bioactive polyphenol found in the spice
turmeric, exhibits notable antioxidant and anti-inflammatory
activities. Due to its antioxidant properties, it effectively mitigates
oxidative stress and promotes muscle regeneration through
enhanced myofibrillar proliferation, hence decreasing muscle loss
in an animal model of induced muscular atrophy (545). In human
studies, curcumin supply resulted in a decrease in muscle damage
and inflammatory biomarkers, with an approximate dosage of 150-
1500 mg/day administered pre-, post-, and during exercise,
potentially enhancing athletic performance and muscle repair by
mitigating exercise-induced muscle injury and modulating the
inflammatory reaction (565, 566).

Nevertheless, further investigation is required regarding the
potential effects of curcumin supply on the molecular pathways
that regulate muscle growth caused by resistance training.
Furthermore, the advantages of curcumin are associated with its
interaction with the gut bacteria. In animal studies, curcumin and
resveratrol have anti-carcinogenic and anti-inflammatory
properties on microbiota by altering the Firmicutes/Bacteroidetes
ratio (567, 568). Curcumin enhances beneficial microbiome,
involving lactobacilli, bifidobacteria, and butyrate-forming
bacteria, while promoting intestinal barrier integrity through
immunomodulatory effects (569, 570).

In a single-blind parallel-design clinical trial, Atan et al. (571)
found that hardaliye ingestion increased total serum antioxidant
capacity and decreased oxidative stress index and nitric oxide levels
compared to the placebo group (571). The intake of hardaliye
among young soccer players shows antioxidative properties (571).
A distinct investigation comprising two sub-studies investigated the
effects of sugar-polyphenol-rich diluted hazy apple juice on the
intestinal barrier of ultra-marathon runners (572). The study
findings indicated substantial impacts on indicators of intestinal
inflammation and permeability in the serum of participants who
took the test drink after exercise, yielding positive outcomes
compared to those who ingested the placebo drink (572). Diluted
apple juice was recognized for its rehydration properties post-
exercise and can also positively influence the intestinal barrier
and immunity following physical activities (572). Mengfan et al.
(540) also indicate that polyphenolic substances from Lonicera
caerulea may alleviate swimming fatigue at ambient and low
temperatures. Moreover, the buildup of metabolites, energy
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metabolism, and the downregulation of inflammatory factor
production were enhanced (540).

Tropospheric ozone, an element of urban air contamination, is
generated via photochemical processes that involve nitrogen oxides,
hydrocarbons, and volatile organic substances. Ozone exposure
impacts the central nervous system, leading to neurological
illnesses including Alzheimer’s and Parkinson’s diseases, cognitive
deficits, and neuroinflammation (573). Both human and animal
research demonstrate the neurotoxic consequences of ozone in this
setting. These impacts encompass the diminution of dopaminergic
neurons, the buildup of pathogenic proteins, and similar
phenomena (573).

The hippocampus, a specific brain area, is susceptible to ozone
exposure for multiple reasons. This area contains brain-derived
neurotrophic factors and other elements important in neural
growth, differentiation, memory, as well as learning (573).
Research on brain-derived neurotrophic factors in humans and
animals has demonstrated that short episodes of exercise enhance
neuronal function, brain vascularization, and neuronal synthesis by
increasing levels of derived neurotrophic factors, hence fostering
improved mood and enhanced cognition (573). Nevertheless,
exercising in contaminated air was demonstrated to suppress
acute exercise-induced brain-derived neurotrophic factor release
(573). Consequently, contact with contaminated air is believed to
impede cognitive health and the repair of the central nervous
system. A trial on high-intensity bikers showed that polyphenol
supply elevated contaminated levels in those exercising in
contaminated air (573).

Figure 8 illustrates the fate of dietary polyphenols within the
human digestive system, beginning with their natural occurrence in
fruits and vegetables as aglycones, glycosides, or bound forms.
Mechanical processing in the stomach liberates these compounds,
facilitating absorption in the small intestine, while unabsorbed
fractions reach the large intestine for microbial metabolism,
generating bioactive metabolites that subsequently enter systemic
circulation. This metabolic journey has a direct impact on athletes’
health, as polyphenols exert antioxidant, anti-inflammatory, and
regulatory effects on muscle metabolism, oxidative stress, and
recovery. Thus, effective digestion and biotransformation of
polyphenols underpins their capacity to enhance performance,
endurance, and post-exercise repair.

6.4 Heart diseases and polyphenols

Globally, cardiovascular diseases are the leading cause of
mortality, according to data from the World Health Organization
(WHO). About 20 million fatalities annually, or 31% of all deaths,
were attributed to cardiovascular diseases (574). Heart attacks and
strokes account for around 85% of the fatalities listed above.
Approximately 75% of worldwide cardiovascular disease-related
mortality occurs in low- and middle-income nations (574). In
accordance with the most current heart disease and stroke
statistics published by the American Heart Association, it is
estimated that more than 100 million people in the USA, which is
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Polyphenol digestion and absorption in the human digestive system, depicting the natural forms of polyphenols (aglycones, glycosides, bound to
extracellular matrix) found in fruits and vegetables, their mechanical breakdown and release in the stomach, absorption in the small intestine,
microbial metabolism and metabolite absorption in the large intestine, and subsequent systemic circulation.

equivalent to more than 50% of all people over the age of 18, have
hypertension. Numerous health advantages and cardiovascular
disease have been linked to polyphenols found in numerous
dietary sources, for instance, apples, coffee, tea, and cocoa
(575, 576).

Epidemiological research strongly suggests consuming
polyphenols because it is unmistakably associated with a lower
incidence of cardiovascular diseases (577, 578). Researchers now
think that polyphenolic substances work at the molecular level to
improve endothelial function and lower platelet aggregation
because they can stop blood clots, reduce inflammation, and stop
platelets from sticking together (401). Thus, polyphenolic
substances are significant in the prevention and treatment of
cardiovascular disease. According to some research, those who
consume more flavonoids in their diets than those who consume
the least have a 47% increased risk of cardiovascular disease (579).

Research has shown that consuming flavan-3-ol from various
food sources may have positive effects on cardiometabolic outcomes
and reduce the risk of diabetes and cardiovascular-related outcomes
(such as blood pressure, cholesterol, and myocardial infarction).
Flavan-3-ols, a well-recognized polyphenol, are found in significant
concentrations in a number of frequently eaten foods, including tea,
almonds, cocoa (chocolate), grapes, and legumes (580-582). Red
and blue fruits and vegetables, including blueberries, raspberries,
strawberries, bilberries, red grapes, and cherries, are rich sources of
anthocyanins, a kind of flavonoid (583). Like other polyphenols,
anthocyanins that are consumed through diet are metabolized by
the microbiome and the host to create active metabolites that have
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anti-inflammatory properties, improve vascular outcomes, reduce
the risk of myocardial infarction in both men and women, and have
additional positive effects on cardiovascular risk factors (583, 584).

Stilbene is mainly found in berries, red wine, and grapes. In
addition to its antioxidant and anti-inflammatory properties, it also
stimulates sirtuins, which slow down the aging process (407).
Resveratrol supplements are said to significantly reduce fasting
blood sugar, total cholesterol, C-reactive protein, and both
systolic and diastolic blood pressure (585). Apple flavonol
quercetin has been shown to lower systolic blood pressure,
improve endothelial function, and lessen the risk of
cardiovascular disease (585-587).

6.5 Polyphenols and Alzheimer’s disease

Alzheimer’s disease is a catastrophic neurodegenerative
condition that affects elderly people worldwide (588). Damage to
neuron structure and function is the primary cause, which
ultimately results in the death of nerve cells in the human brain
(588). WHO has disclosed that over 50 million people globally
suffer from dementias, including Alzheimer’s disease, and that it is
expected to rise to over 152 million by the year 2050. Approximately
60% of dementia patients globally originate from low- or middle-
income nations (589).

Alzheimer’s disease is thought to be at risk due to both genetic
and environmental factors (590). Free radicals are very reactive
chemical groups that arise from both physiological and pathological
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processes. They have an odd number of electrons. At normal
concentrations, ROS participate in many cellular and signaling
pathways, including phagocytosis, enzyme activation, and cell
cycle control (591). However, excessive ROS generation may lead
to harmful consequences, such as damage to proteins, lipids, and
DNA (591). Cell damage may result from an imbalance in the status
of oxidants and antioxidants. It has been proposed that oxidative
damage, a consequence of ROS, plays a role in the pathogenesis—
the formation, process, and advancement of neurodegenerative
diseases and disorders, cancer, diabetes, and aging (592).

Extensive scholarly research has shown that nitric oxide,
hydrogen peroxide, hydroxyl radicals, and superoxide anion are
essential components of oxidative stress, which ultimately results in
Alzheimer’s disease (593). However, the defensive systems known
as enzymatic and non-enzymatic antioxidants eliminate ROS.
Polyphenolic chemicals have antioxidant properties and are
primarily involved in neuroprotection. Pomegranate juice, dates,
and figs are all high in polyphenols and should be added to the diet
to help with behavioral problems and brain damage by keeping the
balance between oxidants and antioxidants in transgenic APPs w/T
g 2576 animals (594). Additionally, researchers found that extract
from walnuts, whose polyphenols are the most effective among all
nuts, has a remarkable ability to shield PC12 cells from oxidative
stress caused by amyloid beta peptide (594).

6.6 Polyphenols’ anti-cariogenic properties

Tooth decay, or dental caries, affects 60-90% of children and
most adults worldwide and is one of the most common and serious
oral health issues (595). Teeth, oral flora, and nutritional factors all
have an impact on dental caries disease. Dental plaque absorbs
dietary carbohydrates like sucrose or sugars, which bacteria (found
in dental plaque on the outside of teeth) then convert into organic
acids like lactic acid (595). Demineralization, or the net loss of
mineral structure on the tooth’s surface, is the result of the acid
produced gradually removing calcium and phosphate from the
tooth’s surface (595).

Polyphenols, which are present in tea, coffee, red grape seeds,
and cocoa, have antibacterial properties that may help prevent
cariogenic processes. They may slow down the growth of bacteria,
protect the tooth surface, and inhibit the activity of enzymes like
glucosyltransferase and amylase. Flavonoids are also effective anti-
cariogenic compounds (596).

Two categories can delineate the anti-cariogenic properties of
phenolic compounds: (I) plant extracts rich in polyphenols without
recognized constituents; and (II) antibacterial polyphenolic agents.
It has been shown that extracts derived from unfermented cocoa,
green tea, and red grape seeds that include a high polyphenol
concentration are effective against Streptococcus mutants and
periodontal disorders. A flavonoid called quercetin-3-O-o.-L-
arabinose-pyranoside (guaijaverin) stops the growth of S.
mutants, which is likely an anti-plaque effect (597, 598).
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7 Possible negative impact of
polyphenols

People use polyphenols, an essential component of plant-
derived food with numerous health benefits, to prevent and cure
multiple diseases (599). Tragically, like any chemical substance,
polyphenols may be harmful depending on dosage, circumstances,
and environmental interactions. One of the important negative
consequences of polyphenols is their ability to block iron uptake in
the human body (599). Despite being a trace element that is
necessary for human survival, iron deficiency is a widespread
ailment that affects people all over the globe (599). Polyphenols
have the capacity to bind to transition metal ions such as iron and
copper. This stops free radicals from being produced by the Fenton
and Haber-Weiss reactions (600). In addition to the polyphenolic
compound’s structure, the pH or ion form (Fe** and Fe’")
influences both binding strength and total ion concentration.
Anemia occurs when an individual consumes a diet rich in
polyphenols or takes supplements containing these compounds
(600). Polyphenols bind to iron in the gastrointestinal tract,
inhibiting its absorption. Additionally, they may influence the
regulation of iron homeostasis (599, 600).

Flavonoids can form complexes of proteins by both nonspecific
mechanisms such as hydrogen bonding and hydrophobic effects, as
well as with covalent bond formation. Polyphenols form complexes
with proteins, which may be either soluble or insoluble. These
complexes alter the structure, isoelectric point, hydrophobicity,
solubility, and susceptibility of the proteins to enzymes (601).
Polyphenols may have detrimental effects on the digestive
system’s function by impacting the composition of the intestinal
flora and inhibiting digestive enzymes (602).

8 Conclusions and future perspective

Polyphenols, a diverse class of natural compounds, exhibit a
wide range of biological activities largely determined by the number
and position of their hydroxyl groups. Abundant in herbs and
prevalent in traditional Asian and Mediterranean diets, these
compounds have attracted significant scientific interest for their
potential health benefits. Despite extensive research highlighting
their neuroprotective, antioxidant, anti-inflammatory, antibacterial,
dermatological, antitumor, and antidiabetic properties, the
underlying mechanisms remain only partially understood.

A key limitation in translating these benefits into clinical
practice lies in the low bioavailability of polyphenols. The
practical improvement of daily polyphenol intake can be achieved
through several strategies. Consuming a diverse range of
polyphenol-rich foods, such as fruits, vegetables, whole grains,
nuts, tea, coffee, and certain herbs across meals throughout the
day, ensures both variety and a steady supply of these bioactive
compounds. Choosing minimally processed foods and combining
different sources may enhance overall intake and synergistic effects.
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Additionally, adopting preparation methods that preserve
polyphenol content, such as steaming instead of boiling, and
consuming polyphenol-rich foods with healthy fats may
improve absorption.

Additionally, polyphenols that benefit most from nano-delivery
systems are those with inherently poor water solubility, instability in
the gastrointestinal tract, or rapid metabolism, factors that limit
their absorption and therapeutic potential. Notably, curcumin,
quercetin, resveratrol, tea polyphenols such as EGCG, and
catechins have shown significant improvements in bioavailability,
biological activity, and stability when encapsulated in nanoscale
carriers. Nano-delivery approaches also enhance the performance
of lignans and tannic acid, as well as complex polyphenolic extracts
from sources like grape seed and propolis. By protecting these
compounds from degradation and promoting controlled, targeted
release, nano-delivery systems make these polyphenols more
effective for use in health and disease management applications.

Many are rapidly metabolized or degraded before reaching their
target tissues, reducing their therapeutic potential. To address this,
advanced drug delivery systems such as liposomes and nanocarriers
have been widely investigated. However, a universally effective
delivery method applicable across different polyphenol classes is yet
to be established, highlighting the need for further targeted research.
Polyphenols continue to be an important focus in nutritional science,
with growing evidence supporting their role in health maintenance
across various populations, including athletes. Yet, current literature
lacks consensus on optimal intake levels, and comprehensive studies
encompassing all polyphenol subclasses are still limited.

Looking forward, enhancing the bioavailability and targeted
delivery of polyphenols could open new avenues in drug
development for metabolic disorders, dermatological applications,
and the formation of functional foods aimed at improving physical
performance and overall well-being. Bridging current knowledge
gaps and integrating polyphenols into daily dietary practices may
contribute significantly to promoting healthier lifestyles and
improving performance outcomes, particularly among
future generations.
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