
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jing Gao,
National Engineering Research Center for Oil
Tea, China

REVIEWED BY

Jhon Carlos Castaño,
University of Quindı́o, Colombia
Md. Sakhawot Hossain,
Jashore University of Science and Technology,
Bangladesh

*CORRESPONDENCE

Synan F. AbuQamar

sabuqamar@uaeu.ac.ae

Khaled A. El-Tarabily

ktarabily@uaeu.ac.ae

RECEIVED 24 June 2025

ACCEPTED 29 September 2025
PUBLISHED 03 November 2025

CITATION

Saad AM, Mohammed DM, Alkafaas SS,
Ghosh S, Negm SH, Salem HM, Fahmy MA,
Semary HE, Ibrahim EH, AbuQamar SF,
El-Tarabily KA and El-Saadony MT (2025)
Dietary polyphenols and human health:
sources, biological activities, nutritional
and immunological aspects, and
bioavailability– a comprehensive review.
Front. Immunol. 16:1653378.
doi: 10.3389/fimmu.2025.1653378

COPYRIGHT

© 2025 Saad, Mohammed, Alkafaas, Ghosh,
Negm, Salem, Fahmy, Semary, Ibrahim,
AbuQamar, El-Tarabily and El-Saadony. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 03 November 2025

DOI 10.3389/fimmu.2025.1653378
Dietary polyphenols and human
health: sources, biological
activities, nutritional and
immunological aspects,
and bioavailability– a
comprehensive review
Ahmed M. Saad1, Dina Mostafa Mohammed2,
Samar Sami Alkafaas3, Soumya Ghosh4,5, Shaimaa H. Negm6,
Heba M. Salem7, Mohamed A. Fahmy8, Hatem E. Semary9,
Essam H. Ibrahim10, Synan F. AbuQamar11*,
Khaled A. El-Tarabily11* and Mohamed T. El-Saadony8

1Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt, 2Nutrition and
Food Sciences Department, National Research Centre, Giza, Egypt, 3Molecular Cell Biology Unit,
Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt,
4Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman, 5Department of
Genetics, University of the Free State, Bloemfontein, South Africa, 6Department of Home Economics,
Specific Education Faculty, Port Said University, Port Said, Egypt, 7Department of Poultry Diseases,
Faculty of Veterinary Medicine, Cairo University, Giza, Egypt, 8Department of Agricultural
Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt, 9Department of Mathematics
and Statistics, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh, Saudi
Arabia, 10Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia,
11Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
Dietary polyphenols, particularly flavonoids, have been extensively recognized

for their role as a source of bioactive molecules that contribute to the prevention

of various diseases, including cancer. This review aims to provide a

comprehensive overview of dietary polyphenols by examining their sources,

classification, mechanisms of action, and biological effects, with a particular

emphasis on their nutritional and immunological roles. It also highlights the need

for ongoing research into preventive strategies and the development of

improved therapeutic options. Despite their broad spectrum of antioxidant,

anti-inflammatory, neuroprotective, antimicrobial, anti-diabetic, and anti-

cancer activities, the therapeutic application of polyphenols is significantly

hindered by their inherently poor bioavailability. This limitation poses a

substantial challenge, as it prevents polyphenols from achieving the systemic

concentration necessary to elicit a therapeutic effect. This review critically

evaluates current strategies, including nano- and liposomal-based delivery

systems. Liposomal systems play a crucial role in enhancing the bioavailability

of polyphenols by encapsulating these compounds in lipid bilayers. This

encapsulation improves the solubility and stability of polyphenols, protects

them from environmental degradation and rapid metabolism, and facilitates

their controlled release and absorption in the body. Liposomes enable

polyphenols to better traverse biological membranes and protect them from

unfavorable conditions in the gastrointestinal tract, resulting in greater systemic
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availability and improved therapeutic efficacy compared to non-encapsulated

forms. The current review also explores the modulatory impact of polyphenols

on the immune system, their influence on gut microbiota, and their implications

across various life stages, from infancy to aging, as well as in athletic performance

and dermatological health. Future directions are proposed to optimize their

clinical utility, including standardized dosing, improved delivery technologies,

and targeted nutritional interventions. Ultimately, integrating polyphenols into

daily dietary practices may offer promising avenues for enhancing immune

resilience and preventing chronic diseases.
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1 Introduction

Life expectancy in developing nations is increasing in tandem

with socioeconomic progress. As a result of this shifting lifestyle, age-

related illnesses, such as cancer, diabetes, cardiovascular disease,

metabolic disorders, hepatitis, and neurological conditions, are on

the rise (1). The absence of early detection technologies or effective

treatments has prompted researchers to focus on preventive measures

(1). In this context, attention has turned to dietary and nutritional

strategies, such as the Mediterranean diet. These dietary habits may

mitigate the risk of age-related disorders associated with lifestyle

changes (1). Predominantly based on plant-derived foods such as

vegetables, fruits, legumes, and herbs, the Mediterranean diet

highlights the potential role of natural polyphenols, plant-based

bioactive compounds, in preventing disease and aging while

promoting overall health and well-being (2).

Polyphenols are naturally occurring, water-soluble compounds

derived from plants, with molecular weights ranging from 500 to

4000 Da. They are abundant in plant-based foods, including fruits,

vegetables, cereals, and beverages, and comprise a complex group of

over 8000 known compounds (3). These compounds are classified

as secondary metabolites (4), which are produced to defend against

biotic stressors (e.g., bacteria, fungi, and insects) and abiotic

stressors (e.g., environmental stress, free radicals, and metabolic

disorders) (5, 6).

Based on the number of phenolic rings and structural linkages,

they are commonly categorized into five main classes: tannins,

lignans, phenolic acids, flavonoids, and stilbenes (7). They exhibit a

wide range of biological activities, including anti-inflammatory,

anti-cancer, antimicrobial, and anti-aging effects, due to their

structural properties and biological interactions (8, 9).

Consequently, they have shown great potential in the

management of various diseases, including cancers and

neurological, cardiovascular, and metabolic conditions (8, 10).

This review highlights the major classes of polyphenols,

evaluated as secondary metabolites, along with methods used for

their extraction and characterization. It also outlines their
02
bioavailability and diverse health benefits, as reported in previous

studies. In addition, the advantages of polyphenol consumption

across different population groups, including athletes, mothers,

infants, children, adults, and the elderly, are discussed.
2 Types of polyphenols

The basic phenolic structure of polyphenols is exemplified by

these naturally occurring compounds, which are classified

according to their chemical composition, particularly the number

of aromatic rings, the substituent groups on these rings, and the

structural linkages between them (7).

Figure 1 depicts the chemical structures of essential polyphenol

subclasses (lignans, phenolic acids, flavonoids, tannins, coumarins,

and stilbenes) along with their respective plant-based food sources,

highlighting dietary consumption sources.
2.1 Phenolic acids and flavonoids

Phenolic acids differ from other acids in that they contain a

single phenolic ring, characterized by the presence of one carboxylic

acid group and one or more hydroxyl groups (11). Phenolic acids

are structurally similar to other phenolic compounds. As a result,

phenolic acids are commonly associated with esters, amides, and

glycosides (11).

They are generally divided into two major subgroups:

hyd roxybenzo i c ac id s and hydroxyc innamic ac id s .

Hydroxybenzoic acid, derived from benzoic acid, possesses a C6-

C1 carbon structure, while hydroxycinnamic acids, derived from

cinnamic acid, typically occur in plants as simple esters with quinic

acid or glucose (12). Phenolic acids are widely distributed in various

foods, particularly cereals, fruits, legumes, vegetables, herbs, and

beverages (13).

Flavonoids are the most well-known and extensively studied

class of polyphenols (13). Their basic structure consists of two
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aromatic rings connected by a three-carbon bridge, forming an

oxygen-containing heterocyclic ring. Based on the degree of

oxidation of the central carbon ring, flavonoids are categorized

into six major subclasses: flavonols, flavanones, flavones, flavanols,

isoflavones, and anthocyanidins (13, 14). Flavonoids, identified as

secondary metabolites in specific plant structures such as seeds and

fruits, play a crucial role in contributing to the color, flavor, and

aroma of plants. This structurally diverse group of polyphenols that

exists in various forms is among the most thoroughly investigated in

plant science (13).

Phenolic acids could donate hydrogen atoms, suggesting their

antioxidant properties (13). Additionally, they are notable for their

therapeutic properties in managing several chronic conditions,

including diabetes, cardiovascular diseases, cancer, and

neurodegenerative conditions (15, 16). Their fundamental

structural features, the aromatic rings, hydroxyl groups (-OH) at

specific positions, and the unsaturated side chains, contribute to a
Frontiers in Immunology 03
range of biological activities, with particular emphasis on anti-

cancer effects (17).

On the other hand, flavonoids contribute to activating defense

responses by modulating the production of reactive oxygen species

(ROS) under stress conditions (18, 19). Accordingly, flavonoids

demonstrate a wide range of bioactive properties beneficial to

human health, including anti-inflammatory, antioxidant,

cardioprotective, neuroprotective, anti-cancer, and anti-aging

effects (20, 21).
2.2 Stilbenes

This class of polyphenols represents a distinct group of non-

flavonoid phytochemicals characterized by two aromatic rings

linked by a methylene bridge (13). Stilbenes are structurally

defined by a 1,2-diphenylethylene core, distinguishing them as a
FIGURE 1

Chemical structures of principal polyphenol subclasses (lignans, phenolic acids, flavonoids, tannins, coumarins, and stilbenes) alongside their
respective plant-based food sources exemplifying dietary consumption.
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subclass of phenylpropanoids. Resveratrol, the most prominent

stilbene, is naturally found in peanuts and grapes and is present

in high concentrations in red wine (14, 22).

The abundance of resveratrol in red wine has contributed to

hypotheses regarding its potential role in preventing chronic

diseases (23). Additionally, resveratrol has been reported to

possess anti-inflammatory and antioxidant properties (14, 24). It

has also been suggested to contribute to wine preservation (25).

Previous studies reported the development of a wine quality index

based on the concentration and composition of stilbenes (26).
2.3 Lignans

Lignans are another class of polyphenols that share structural

similarities with phenolic acids (14). Their diphenolic structure

includes a carbon-carbon bond formed between two phenylpropane

units, which polymerize to produce compounds commonly found

in plant seeds, roots, and leaves (27). Lignans are classified into

eight subgroups based on their cyclization pattern, the

incorporation of oxygen atoms, and carbon skeleton structures.

These subclasses include furofurans, furans, aryltetralins,

arylnaphthalenes, dibenzylbutyrolactones, dibenzylbutanes,

dibenzybutyrolactols, and dibenzocyclooctadienes (27). Li et al.

(27) reported that the position of the oxygen atom also plays a

key role in the classification of lignans.

Lignans are primarily found in vegetables, cereals, and legumes.

Diets rich in lignans have been associated with various health-

promoting effects. Notably, lignans exhibit anti-cancer activity

through multiple regulatory pathways (28, 29). Furthermore, they

possess anti-inflammatory, antioxidant, and anti-menopausal

properties, providing protective effects against cardiovascular and

bone diseases, as well as antimicrobial effects (30, 31).
3 Factors affecting the appropriate
extraction methods for phenolic
compounds

Polyphenols comprise a broad array of chemical structures,

resulting in varied chemical and physical properties (32). This

structural heterogeneity necessitates the application of extraction

techniques specifically designed for the distinct properties of each

compound and the nature of the sample matrix (32). The selection

of an efficient extraction method depends on various aspects,

including the chemical structure of the target polyphenols, the

sample’s particle size, and the existence of other coexisting

chemicals that may interfere or interact during the extraction

process (33).

Furthermore, extraction efficiency is highly sensitive to

operational parameters such as pH, type of solvent employed,

solvent-to-sample ratio, and duration of the extraction process

(34). Despite considerable technological progress in extraction

techniques, significant challenges remain in precisely identifying
Frontiers in Immunology 04
and quantifying polyphenols. Obtaining accurate and reproducible

data on the composition and concentration of polyphenols is

critical for substantiating their health-promoting properties and

ensuring the reliability of related scientific assessments (35).
3.1 Extraction methods of phenolic
compounds

3.1.1 Ultrasound-assisted extraction method
Ultrasound-assisted extraction is a widely used and efficient

technique for isolating phenolic compounds, offering high yields in

a relatively short time (36). Ultrasonic radiation with frequencies

above 20 kHz enhances the extraction of inorganic and organic

substances using liquid solvents. This method is considered

environmentally sustainable as it reduces extraction time, solvent

consumption, and energy requirements (37).

The process relies on acoustic cavitation, wherein ultrasonic

waves disrupt plant cell walls by inducing rapid expansion and

contraction of solid surfaces (38), increasing cell wall permeability,

facilitating solvent penetration, and promoting the release of water-

soluble compounds from the plant matrix (37). In recent years,

ultrasound-assisted extraction has been applied to extract

polyphenols from various plant parts, including pecan nutshells,

Randia monantha, mango seed kernels, olive pomace, and pine

needles (36, 39). Studies have focused on optimizing extraction

conditions and evaluating the antioxidant and antifungal properties

of the resulting polyphenol-rich extracts (36, 37, 39).

Ultrasound-assisted extraction provides notable advantages for

the extraction of polyphenols. This technique significantly enhances

yield and efficiency compared to conventional methods, allowing

for higher concentrations of bioactive compounds in a much

shorter extraction time (40). Ultrasound-assisted extraction

reduces both solvent and energy consumption, making the

process more environmentally friendly and cost-effective. The

operation at lower temperatures also helps preserve the structural

integrity of heat-sensitive polyphenols, minimizing their thermal

degradation during extraction (40). These benefits are reflected in

various studies, which demonstrate that the ultrasound-assisted

extraction delivers superior extraction performance while aligning

with green chemistry principles (40).

However, the ultrasound-assisted extraction also has its

limitations (41). Excessive ultrasound intensity or prolonged

application can lead to the generation of free radicals and high

local temperatures, potentially causing the degradation or

modification of certain sensitive polyphenolic compounds (41).

The method’s efficacy is highly dependent on the careful

optimization of operating parameters, such as ultrasound power,

extraction time, solvent type, and temperature, as suboptimal

conditions may reduce extraction yields or lead to inconsistent

results (41). Additionally, scaling up the ultrasound-assisted

extraction from laboratory to industrial production remains

challenging due to equipment limitations and the need to

replicate the cavitation effects that drive the process

consistently (41).
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3.1.2 Microwave-assisted extraction method
Microwave-assisted extraction is an environmentally friendly

technique used to isolate polyphenols from plants, herbs, and plant-

based products (42). Water is commonly used as the solvent due to

its efficiency, cost-effectiveness, and reliability compared to other

extraction media. Optimizing operational parameters is essential, as

the heat generated during microwave exposure influences the

release of targeted polyphenols (42). Extraction efficiency depends

on factors such as solvent type and ratio, microwave power, and

extraction time (43). These conditions must be maintained and

optimized to obtain the highest yield. Depending on the plant

sample, the solvent can be water, ethanol, or a combination (43).

Microwave-assisted extraction is frequently employed to

recover polyphenols from agricultural by-products and processed

wastes, such as pomace, leaves, and peels (44). Extracted

polyphenols by the microwave-assisted extraction method have

demonstrated various biological activities, including antimicrobial,

antioxidant, and anti-cancer activities (44, 45). These bioactive

compounds have potential applications in pharmaceuticals and

nutraceuticals (43, 46, 47).

This technique significantly reduces extraction time and energy

consumption compared to conventional methods. Microwave-

assisted extraction enhances extraction efficiency by rapidly

heating the sample and solvent, which disrupts plant cell walls

and allows better solvent penetration, leading to higher yields of

polyphenolic compounds (41). The method also offers improved

selectivity and precise control of temperature, helping preserve the

integrity of thermosensitive compounds (41).

Nonetheless, microwave-assisted extraction possesses

limitations. Excessive microwave power or prolonged exposure

can lead to the degradation of heat-sensitive or volatile phenolics,

thus reducing the quality and quantity of the extracted compounds

(48). Additionally, optimization is required for each plant matrix

and polyphenol type, as extraction parameters such as microwave

power, temperature, solvent composition, and sample-to-solvent

ratio can significantly influence outcomes (48). Some specialized

equipment and careful calibration are needed to ensure

reproducibility and scalability for industrial applications (48).

3.1.3 Microwave-assisted ultrasound extraction
method

Microwave-assisted ultrasound extraction presents notable

advantages for extracting polyphenols (49). Microwave-assisted

ultrasound extraction is a hybrid method that combines

microwave and ultrasonic treatments to enhance the yield of

phenolic compounds, reduce extraction time, and minimize

solvent usage compared to ultrasound-assisted extraction and

microwave-assisted extraction alone (49). This method employs

microwave heating to extract compounds through dielectric

heating, while ultrasound enhances cell wall permeability and

facilitates solvent penetration. A comparative study reported that

microwave-assisted extraction yielded higher polyphenol content

and antioxidant activity than ultrasound-assisted extraction (50).

While microwave-assisted extraction required less extraction

time, ultrasound-assisted extraction demonstrated greater energy
Frontiers in Immunology 05
efficiency and environmental sustainability (51). When both

techniques were combined, the resulting method improved

extraction efficiency and polyphenol yield. For instance, a study

comparing enzyme-assisted ultrasound extraction and ultrasound-

microwave-assisted extraction from mangosteen peels found that

the enzyme-assisted ultrasound method produced a higher

polyphenol yield (51). Nonetheless, both extraction approaches

yielded polyphenol-rich extracts with promising applications as

functional food additives and in pharmaceutical formulations (51).

By combining microwave and ultrasound energies, microwave-

assisted ultrasound extraction disrupts plant cell walls more

efficiently, allowing improved release of polyphenols with reduced

solvent consumption and lower energy usage (51). Additionally, the

process can preserve the antioxidant activities of the extracted

compounds and is considered both cost-effective and

environmentally friendly (48).

However, there are some limitations. Precise control of

operational parameters—such as power, temperature, and

extraction duration—is essential, as excessive energy input or

prolonged treatment can degrade sensitive polyphenolic

structures, potentially lowering yield or altering compound

profiles (52). Variability in sample characteristics and the risk of

free radical generation during ultrasound application can also

influence extraction efficiency and product quality (52). Despite

these challenges, when carefully optimized, microwave-assisted

ultrasound extraction remains a powerful, green technology for

extracting high-value polyphenols from complex plant

matrices (52).

3.1.4 Supercritical fluid extraction method
Supercritical fluid extraction is an alternative two-step

technique. First, soluble phenolic compounds are extracted from

the herbal cell matrix using a supercritical fluid, followed by

depressurization to separate the bioactive components, converting

the supercritical fluid into a gas phase (53, 54). Supercritical fluids

are generated when pressure (10–35 MPa) and temperature (40–80

°C) exceed critical values. This method enhances safety by using less

hazardous solvents, such as methyl tert-butyl ether, methanol,

hexane, and dichloromethane (55).

Supercritical fluid extraction is considered a green technology,

frequently employing gases like CO2, CH3, C2H6, C2H6O, C3H8,

C6H6, and NH3 during depressurization (56). Additionally,

compared to conventional methods, supercritical fluid extraction

protects bioactive compounds from air and light, reducing

degradation and minimizing contamination risk from impure

solvents (57). This technique has recently been applied to extract

polyphenols from sources such as chestnut shells, Ailanthus excelsa,

and Dunaliella salina (54, 55, 58).

Supercritical fluid extraction, particularly with supercritical

carbon dioxide (CO2), offers several advantages for the extraction

of polyphenols (59). It is an environmentally friendly “green”

technology that uses non-toxic, non-flammable CO2, resulting in

solvent-free extracts that are safe for food, pharmaceutical, and

cosmetic uses. This method operates at moderate temperatures,

which helps preserve the structural integrity and bioactivity of heat-
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sensitive polyphenols (59). Supercritical fluid extraction also

features tunable selectivity; by adjusting pressure, temperature,

and the use of co-solvents such as ethanol or water, it can be

optimized for higher purity and targeted extraction of diverse

phenolic compounds (59). Additionally, supercritical fluid

extraction minimizes solvent residue and maintains high extract

quality, thus supporting the production of high-purity

polyphenols (59).

However, supercritical fluid extraction also has limitations. The

high initial cost and technical complexity of the required equipment

are significant barriers to large-scale industrial application (60).

Extraction efficiency can be lower for highly polar compounds

unless co-solvents are used to enhance solubility (60). The

method typically requires longer extraction times compared to

some alternative techniques, and optimizing operational

parameters such as pressure, temperature, and co-solvent

composition can be challenging. Furthermore, scaling up the

process for industrial throughput poses logistical and operational

hurdles, and energy consumption is relatively high due to the need

to maintain supercritical conditions (60).

3.1.5 Subcritical water extraction method
Also known as hot liquid or superheated water extraction (61).

In subcritical water extraction, water remains in a liquid state at

temperatures between 100°C and 347°C under pressures up to 220

bar (62). Under these subcritical conditions, hydrogen bonding

between water molecules is reduced, lowering the dielectric

constant. Consequently, changes in temperature and pressure

influence both the dielectric constant and extraction efficiency

(62). Compared to supercritical fluid extraction, subcritical water

extraction is potentially more economical as it utilizes water rather

than organic solvents (63). Subcritical water extraction also

produces rapid extraction, high efficiency, and environmental

sustainability (64). It has been successfully applied to extract

phenolic and natural compounds from materials such as cocoa

bean husks and saffron tepals (62, 64, 65).

Subcritical water extraction offers green, efficient technology for

polyphenol extraction, but has several limitations. A primary

drawback of subcritical water extraction is the requirement for

high temperatures, typically between 100°C and 374°C, which can

cause thermal degradation of heat-sensitive polyphenolic

compounds, thereby reducing their yield and bioactivity (66).

Moreover, at elevated temperatures, subcritical water extraction

tends to be less selective, extracting a wider range of plant matrix

components, which can complicate downstream purification (66).

The use of water as a solvent under subcritical conditions also

necessitates additional steps, such as evaporation or dehydration, to

remove water from the extracts, increasing processing

complexity (66).

Subcritical water extraction equipment requires more rigorous

maintenance and corrosion prevention due to the high reactivity

and corrosiveness of water at elevated temperature and pressure

(66). Lastly, optimization of variables such as temperature,

extraction time, pressure, and solvent-to-solid ratio is critical yet

challenging, as these parameters profoundly influence extraction
Frontiers in Immunology 06
efficiency and compound stability (66). Thus, while subcritical

water extraction is promising and eco-friendly, its limitations in

compound stability, selectivity, and process complexity require

careful management to maximize polyphenol recovery and

bioactivity (66).

3.1.6 Pulsed electric field method
A nonthermal method that employs high-voltage pulses

between two electrodes arranged in a sandwich configuration.

Pulsed electric field is classified into batch (100–300 V/cm) and

continuous (20–80 kV/cm) systems, depending on pulse frequency.

The electric field induces a transmembrane potential in plant cells,

increasing membrane permeability and facilitating the excretion of

phenolic compounds (67). Pulsed electric field effectiveness

depends on the extent, the surrounding medium, and the

physicochemical properties of plant tissues (68, 69). This method

has been used to extract polyphenols from green tea, laurel leaves,

cannabis, and Phyllanthus emblica, with extracts showing anti-

inflammatory and antioxidant activity (70, 71).

Pulsed electric field technology, while promising as a non-

thermal and efficient method for extracting polyphenols, has

several limitations that should be considered. The effectiveness of

pulsed electric field extraction depends on various factors, including

the electric field strength, treatment time, and the specific properties

of the plant tissue, such as cell size, shape, and membrane

composition (72). One key limitation is the challenge of achieving

a uniform electric field distribution throughout the sample, which

can result in inconsistent cell permeabilization and variable

extraction yields. Additionally, pulsed electric field treatment may

cause only reversible electroporation in some cells, limiting the

release of intracellular compounds (72).

Another constraint is related to the physical and chemical

characteristics of the extraction matrix; factors such as solvent

type, solvent conductivity, and polarity significantly influence

extraction efficiency and can complicate optimization (73).

Furthermore, pulsed electric field is typically better suited for

liquid or semi-liquid matrices and may be less effective for solid

or highly fibrous plant materials without prior size reduction or

pretreatment (73). Although considered a non-thermal process,

extended treatment times or high pulse numbers can lead to a rise in

temperature, risking the degradation of sensitive phenolic

compounds (73).
3.1.7 Pressurized liquid extraction method
Also referred to as accelerated solvent extraction (74). It

typically employs organic solvents in the presence of nitrogen to

extract phenolic compounds from solid or semi-solid samples.

Operating at high temperatures and pressures, accelerated solvent

extraction enhances solvent penetration without altering compound

structure, thereby improving phenolic yield (56). This green

extraction method minimizes solvent and energy use while

increasing extraction efficiency. Automation enhances process

reproducibility with minimal manual intervention (75).

Accelerated solvent extraction has been used to extract phenolics
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from strawberry and onion peels, with applications focused on

evaluating their antimicrobial and antibiofilm activities (75, 76).

Pressurized liquid extraction offers efficient recovery of

polyphenols from various plant matrices; however, it also presents

certain limitations. One key challenge is the high operational cost

associated with the specialized equipment and maintenance

requirements (77). Additionally, pressurized liquid extraction

involves the application of elevated temperatures and pressures,

which can potentially lead to the degradation of thermolabile

polyphenolic compounds, thereby reducing the yield and altering

the composition of the extracts (77).

The choice of solvent is critical, as water, often used for its green

credentials, may be inefficient in extracting less polar phenolics,

resulting in lower overall extraction efficiency compared to organic

solvents like ethanol (77). Optimization of operational parameters

such as temperature, solvent composition, solvent-to-feed ratio, and

extraction time is essential but can be complex and sample-specific,

especially when dealing with complex matrices like propolis (77).

Moreover, while pressurized liquid extraction reduces solvent use

and extraction time compared to traditional methods, incomplete

extraction of certain compounds can still occur, necessitating

complementary techniques or further refinement (77). Finally, the

process demands careful balancing between maximizing extraction

efficiency and preventing compound degradation, which remains a

key limitation in fully harnessing pressurized liquid extraction for

polyphenol extraction (77).
3.2 Common methods for polyphenol
quantification

3.2.1 Spectrophotometric methods
Spectrophotometry is a simple and widely used technique for

identifying phenolic compounds in plants (78). Total phenolic content

is commonly assessed using the Folin–Denis and Folin–Ciocalteu

methods. These techniques have recently been applied to evaluate the

phenolic content, antioxidant activity, and total phenolics in broken-

bone twigs (79, 80). Both methods rely on chemical reduction,

typically involving reagents such as molybdenum and tungsten (81).

Additionally, colorimetric assays are used to quantify total flavonoids,

condensed tannins, and phenolics by forming complexes with AlCl3,

with absorbance measured in the 410–423 nm range (82).

Anthocyanins, another important group of phenolics, can be

quantified spectrophotometrically under mildly acidic conditions,

with absorbance measured between 490 and 550 nm (83). These

colorimetric assays are user-friendly and cost-effective; however,

they do not allow for the quantification of individual compounds

and provide only approximate estimates of total phenolics above a

certain threshold (61). Despite this limitation, spectrophotometric

methods remain valuable for the rapid and economical screening of

a wide range of plant-derived bioactive compounds. For instance,

red poppy extracts have recently been used as colorimetric sensors

to detect anthocyanins (84), and similar analyses have been

conducted on grape juice and elderberries (85, 86).
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3.2.2 Gas chromatography method
Gas chromatography is widely used to identify and quantify

polyphenols, including flavonoids, phenolic acids, and tannins (87).

This technique involves the movement of analytes through a

column using carrier gas such as nitrogen (N2), helium (He), or

hydrogen (H2). Gas chromatography operates based on gas-liquid

partitioning or gas-solid adsorption, utilizing a nonvolatile liquid as

the stationary phase and typically employing a flame ionization

detector. Commonly, silica capillary columns are used, typically 30

m in length, with a 0.25 µm film thickness and an inner diameter of

25–32 µm (56).

The integration of gas chromatography with mass spectrometry

(GC-MS) has gained attention owing to its improved sensitivity and

selectivity (88). This combination is crucial for analyzing the

degradation patterns of plant-derived bioactive compounds and

for identifying their chemical structures by correlating

chromatographic and mass spec t ra l da ta (89) . Gas

chromatography analysis was used to evaluate the antimicrobial

properties and polyphenol content of Sonneratia caseolaris fruits, as

well as to determine the bioactive compound composition of fast-

growing plant leaves (90).
3.2.3 High-performance liquid chromatography
method

High-performance liquid chromatography (HPLC) remains

one of the most widely used analytical methods for the

identification of phenolic compounds. Generally, following the

purification of phenolics, the samples are analyzed using a C18

column as the stationary phase (91). This technique uses acidified

polar organic solvents as the mobile phase and utilizes photodiode

array detectors for compound detection. With technological

advancemen t s , r ap id and refined methods such as

chromatographic fingerprint analysis have been developed for the

characterization of herbal medicines (56). These fingerprint profiles

enable species-specific identification and differentiation from

related species, as they accurately reflect the chemical

composition of the plant material (56).

Several factors affect the sensitivity or effectiveness of HPLC,

including phenolic purification steps, mobile phase composition,

column selection, and pre-concentration procedures (35). The pH

of the mobile phase is particularly critical, as improper pH levels

may lead to the ionization of phenolic compounds, affecting

detection accuracy (35). Column selection is based on polarity

and particle size, with various phenolic classes requiring different

specifications. More sophisticated HPLC systems employ novel

column types with varying particle sizes to optimize separation (35).

HPLC run times typically range from 10 to 150 min. For longer

analyses, maintaining a constant temperature is essential to ensure

reproducibility and stability of results (92). Recent studies using

HPLC have successfully characterized the antioxidant and

antimicrobial properties, metabolomic profiles, and phenolic

components of samples such as apple pomace, grape juice,

Lysimachia nummularia, and Acacia species (93, 94).
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3.2.4 Other methods for polyphenol
quantification

In addition to widely used techniques, several other methods are

employed to identify plant-derived bioactive compounds, including

capillary electrophoresis, paper chromatography, supercritical fluid

chromatography, spectrophotometric assays, HPLC, and gas

chromatography (78). Among these, paper chromatography is a

simple and effective method, particularly for identifying bioactive

compounds in tea leaves (78). Ashraf et al. (95) demonstrated the

application of high-performance thin-layer chromatography in

analyzing caffeine content in green tea leaves. Paper

chromatography has also been applied to assess the biological

activities of medicinal herbal extracts, such as anti-inflammatory,

antimicrobial, and antioxidant properties linked to compounds like

flavonoids and fatty acids (96).

However, paper chromatography is used less frequently than

HPLC and gas chromatography due to its limited sensitivity and

specificity (56). Capillary electrophoresis is a high-efficiency

technique that utilizes thin capillary columns filled with ionic

solutions to separate charged bioactive compounds and low-to-

medium-molecular-weight plant constituents. It requires minimal

sample and reagent volumes and offers rapid and effective analysis

(56). Capillary electrophoresis techniques include micellar

electrokinetic chromatography, capillary electrochromatography,

capillary zone electrophoresis with ultraviolet detection, and

capillary zone electrophoresis coupled with mass spectrometry

(56). Recent applications of capillary electrophoresis include the

quantification of free sulfur dioxide in wine and cider and the

chemical profiling of tobacco samples (97, 98). Additionally,

indirect UV detection with capillary zone electrophoresis has

been used to investigate cassines and spectalines in Senna

spectabilis (99).

Supercritical fluid chromatography is an advanced method

increasingly used for the analysis of complex plant materials

(100). Compared to HPLC and gas chromatography, supercritical

fluid chromatography exhibits higher efficiency, faster analysis

times, environmentally friendly operation, and superior resolution

(56). Its distinguishing feature lies in column design, which

incorporates fully porous particles smaller than 2 µm or

superficially porous particles under 3 µm (101). Recent studies

have applied this technique to successfully characterize isomeric

urolithin glucuronides and lignans derived from softwood species

(102, 103).
4 Bioavailability of polyphenols

Bioavailability refers to the proportion of polyphenol-derived

nutrients that are consumed, absorbed, and metabolized (104, 105).

Several factors influence the bioavailability of polyphenols,

including gut microbiota, nutritional matrix, molecule size, sex,

previous dietary habits, transmembrane transport capacity, and
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chemical structure (106, 107). Additionally, polyphenols interact

with gut microbial strains, which can alter their molecular states

and affect their subsequent bioactivity (106).

Polyphenols are also subject to various denaturing conditions

(103), such as heat, light, oxygen, pH variations, and enzymatic

degradation, which reduce their bioavailability and limit their

efficacy as bioactive compounds (108). Their bioavailability varies

depending on their chemical forms, such as esters, glycosides, or

polymers (104). Gao et al. (86) reported that after digestion, the

bioavailability of phenolic compounds in Cannabis sativa L. seeds

was 142.39%, whereas that of flavonoid compounds was 29.47%.

Sánchez-Velázquez et al. (105) revealed that phenolic

compounds from wild blackberries might exhibit greater

bioactivity and bioavailability in the human body than those from

commercial varieties. Similarly, Frazzini et al. (109) examined the

effect of in vitro gastrointestinal digestion on the bioavailability and

stability of polyphenols in commercial and wild Mexican

blackberries. Other studies have demonstrated that polyphenols

are more stable in organic solvents and water than in cell culture

media, where they degrade more rapidly (110). This suggests that

polyphenols are prone to degradation in biological systems,

potentially reducing their bioavailability and biological efficacy

(110–112).

Generally, most dietary polyphenols undergo hydrolysis by

colonic bacteria and are then methylated and conjugated into

glucuronide and sulfate metabolites by the hepatic and other

tissues (106). An increase in plasma antioxidant capacity

following the intake of polyphenol-rich foods, such as apples, tea,

blackcurrants, and red wine, indicates that polyphenols can cross

the intestinal barrier and exert systemic effects (113). Bioavailability

has also been directly assessed by measuring polyphenol

concentrations in plasma and urine after ingestion of purified

compounds or polyphenol-rich foods (114). However, despite

their health benefits, the low absorption rate of polyphenols

(approximately 5–10% via the small intestine) and their rapid

metabolism and excretion significantly limit their ability to reach

target tissues (114). Kou et al. (115) reported that purified blueberry

polyphenol extract exhibited higher antioxidant activity in different

in vitro assays, whereas the crude blueberry extract demonstrated

greater antioxidant effectiveness in in vivo models.

To improve the bioavailability of polyphenols, an investigation

(116) was conducted to evaluate their stability in sports nutritional

products incorporating both plant polyphenols and milk proteins.

A study by van de Langerijt (116) examined the potential of

integrating these components into sports supplements to preserve

polyphenol content and enhance bioavailability during digestion

(116). It showed that anthocyanins remained stable during in vitro

digestion, with enhanced bioavailability observed in milk-

blackberry mixtures, particularly those made with full-cream milk

(116). Another study evaluated the bioavailability of total

polyphenols from coffee silver skin extract using simulated

gastrointestinal digestion and colonic fermentation (117). The
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findings suggested that fermentation enhanced antioxidant activity

and enabled delivery to target sites, supporting potential health

benefits (117).

Heat treatment has also been shown to improve polyphenol

stability and bioactivity. Franková et al. (118) reported that heat

processing of sweet potatoes enhanced both their antioxidant

capacity and phenolic content. These findings indicate that

thermal processing enhances the bioavailability of polyphenols in

sweet potatoes and may guide advancements in food processing

technologies. Furthermore, nanoencapsulation techniques, such as

incorporating polyphenols into nanoparticles (NPs) or liposomes,

can further improve their bioavailability and biological

activity (108).

Despite significant progress in understanding polyphenol

bioavailability, several gaps and future research priorities remain.

One major limitation is the incomplete knowledge of the metabolic

pathways and transformations that polyphenols undergo after

ingestion, particularly due to interactions with the gut

microbiome and the formation of diverse metabolites whose

biological activities are not well characterized (119). Additionally,

the influence of food processing, individual genetic variability, and

the complex interactions between polyphenols and other dietary or

environmental components on their absorption and bioactivity

requires further exploration (120).

There is also a critical need for well-designed long-term safety

studies addressing the potential side effects of chronic polyphenol

supplementation, as current data are mainly limited to short-term

animal experiments or isolated compounds, and results from these

do not always translate directly to humans (121). While some

polyphenol-rich extracts, such as grape seed extract, have shown

high tolerability in animal and short-term human studies, the safety

of long-term, high-dose intake across a broad population spectrum

remains to be confirmed (122, 123). Special attention should be

given to possible interactions with medications, effects on nutrient

absorption (such as iron), and risks to sensitive populations (121,

124, 125).

Clinical research on polyphenol bioavailability is advancing, but

large-scale intervention trials remain scarce. More chronic, placebo-

controlled human studies are required to evaluate not only the

bioavailability and efficacy of various polyphenol formulations and

delivery systems but also to establish standardized dosages, monitor

potential side effects, and assess inter-individual differences in

responses due to genetics and gut microbiota composition (126,

127). The development and validation of robust biomarkers for

polyphenol intake and metabolism are also needed to improve

accuracy in such studies (127).

Future studies should focus on enhancing the understanding of

the metabolic pathways of polyphenols and the bioactivity of their

metabolites. It is necessary to expand extensive chronic clinical

trials to evaluate the long-term safety, efficacy, and optimal dosing

of polyphenols, examine gene-diet and microbiota-polyphenol

interactions to elucidate inter-individual variability, develop

innovative delivery systems to improve bioavailability and

facilitate clinical translation, and clarify potential drug

interactions and safety in vulnerable populations.
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4.1 Bioavailability of polyphenols
encapsulated in liposomes or NPs and their
functional impact

Encapsulation is a delivery mechanism that incorporates

bioactive compounds, such as drugs or food ingredients, into

carrier systems (108). This approach protects the active

substances from degradation during processing and storage while

increasing their bioactivity by facilitating targeted delivery to

specific organs or tissues (108). Despite their potential,

polyphenols remain underutilized in functional foods and dietary

supplements due to several physicochemical properties, including

low epithelial permeability, poor solubility in gastrointestinal fluids,

structural modifications during digestion, and limited oral bio-

accessibility (128, 129).

To overcome these challenges, various technologies have been

developed to improve the bioavailability of polyphenols, with

nanoencapsulation and liposomal encapsulation considered the

most effective strategies. Effective delivery of bioactive compounds

to target sites requires a reduction in particle size (130).

Nanoencapsulation, typically within a diameter range of 10 to

1000 nm, enhances bioavailability, protects against degradation,

and enables precise delivery of polyphenols to targeted sites (130).

Liposomal encapsulation is an advanced method designed to

stabilize sensitive bioactive compounds (131). It supports the

encapsulation of both hydrophobic and hydrophilic molecules,

thereby optimizing nutrient absorption and biological efficacy.

Lipid- and water-based vesicles enhance solubility and membrane

permeability, facilitating accurate delivery to the target tissues (131).

Furthermore, lipophilic complexes facilitate intestinal absorption

while shielding polyphenols from adverse interactions or

breakdown during the digestive process (131).

These encapsulation technologies have shown promising

potential in improving the bioavailability and biological activity of

polyphenols. Ali et al. (132) demonstrated that grape seed extract

encapsulated in liposomes exhibited anti-aging, skin-brightening,

and moisturizing effects in human skin cells. These findings

advocate the development of more soluble and aesthetically

desirable formulations for a broad range of skincare products

(133). Altan et al. (134) conducted a study to promote bone

wound healing in a rat model using a liposomal formulation of

gallic acid. The study included four groups of rats. The group

treated with gallic acid liposomes showed the greatest improvement

and the lowest infection rate, whereas the negative control group

exhibited the least improvement and the highest infection rate

(134). These findings indicate that liposomal encapsulation

improves the bioavailability and bioactivity of gallic acid

polyphenols (134).

Previous research on polyphenols from various plant sources

encapsulated in nanoliposomes has shown that increased

bioavailability correlates with enhanced antimicrobial activity

(135, 136). For instance, Nateghi et al. (135) assessed the

antimicrobial activity of phenolic compounds from Achillea

millefolium encapsulated in nanoliposomes against Campylobacter

jejuni infection in mice. The study demonstrated that
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nanoencapsulated polyphenols significantly enhanced antioxidant

levels, hepatic function, and food consumption compared to

nonencapsulated treatments (135). Furthermore, the proliferation

of C. jejuni was markedly reduced in mice receiving nano-

encapsulated polyphenols, supporting the potential use of

polyphenol-loaded nanoliposomes as phytobiotics against this

infection (135).

In a similar study, Hassirian et al. (136) investigated the dietary

phytobiotic effects of the phenolic-rich fraction of Alcea rosea

against Escherichia coli infection in mice. The study aimed to

assess the antimicrobial and potential health-promoting

properties of phenolic-rich nanoliposomes, which showed greater

efficacy compared to unencapsulated polyphenols at the same

dosage (136). Furthermore, Shamansoori et al . (137)

demonstrated that an extract of Rheum ribes encapsulated in

nanoliposomes acted as a novel phytogenic antibiotic, effectively

protecting mice from E. coli infection. Encapsulated polyphenols

(10 mg TPC/kg) significantly improved health markers in mice

compared to non-encapsulated forms (137).

Similarly, Mehdizadeh et al. (138) reported comparable results

using Artemisia aucheri phenolic compounds encapsulated in

nanoliposomes to treat C. jejuni infection in mice. In vivo studies

also demonstrated the protective effects of liposome-encapsulated

ferulic acid against oxidative liver damage (139). Encapsulated

ferulic acid exhibited antioxidant properties by reducing CCl4-

induced cytotoxicity in vitro and significantly alleviated

hepatotoxicity, ROS production, and tissue damage in rat liver

following intravenous administration (139).

Another animal study reported that liposome-encapsulated p-

coumaric acid (CA) inhibited osteoclast formation and bone

resorption in a rat model of rheumatoid arthritis, suggesting its

potential to prevent bone degradation and calcium loss (140). A

study on broiler breeder roosters investigated the effect of ellagic

acid-loaded liposomes on post-thaw sperm quality (141). Results

indicated that 1 mM ellagic acid liposomes significantly improved

sperm antioxidant levels and overall quality after thawing.

Furthermore, research on green tea polyphenols in photodynamic

cancer therapy demonstrated that NPs of these polyphenols

induced higher apoptotic rates and more potent inhibition of

cancer cell proliferation than non-NP forms (142). This

underscores the role of nanomedicine in enhancing the ‘anti-

tumor’ bioactivity and bioavailability of green tea polyphenols

(142). Additionally, the anti-cancer effects of silk fibroin NPs

encapsulating rosmarinic acid (RA), a polyphenol with

antimicrobial, antioxidant, and other bioactivities, were

investigated in HeLa and MCF-7 cell lines. The study concluded

that NPs improve the solubility and bioavailability of RA, thereby

augmenting its anti-cancer efficacy (143).

Zhu et al. (144) enhanced the anti-cancer efficacy of curcumin

NPs. Curcumin, a potent phenolic compound, exhibits various

physiological effects, including anti-inflammatory, antioxidant,

and ‘anti-tumor’ properties. However, its application is limited by

volatility and poor buccal bioavailability. Moreover, curcumin was

encapsulated into pea protein using a pH-driven NP method. This

method yielded curcumin-loaded pea protein NPs with significantly
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higher loading efficiency and improved water solubility (144). In a

separate study, potent antioxidative and ‘anti-tumor’ NPs were

synthesized from tea polyphenols using an amino acid-induced

ultrafast method (145). Epigallocatechin gallate (EGCG), a primary

antioxidant in green tea, was used to prepare a therapeutic nano-

agent via a rapid process involving five amino acids: lysine, arginine,

leucine, glycine, and glutamic acid. The study found that lysine and

arginine were depleted within 50 seconds of induction. The

resulting NPs displayed tenfold greater antioxidant activity than

conventional NPs and demonstrated therapeutic efficacy against

cancer in both in vitro and in vivo models (145). Another study

utilized Punica granatum (pomegranate) extract for the green

synthesis of silver NPs (146). Silver NPs synthesized from a

polyphenol-rich fraction exhibited antimicrobial activity against

Staphylococcus aureus, Bacillus subtilis, and Sarcina lutea (146).

These findings suggest that encapsulation enhances the

bioactivity, solubility, and permeability of polyphenols by

increasing their bioavailability. However, further studies are

required to demonstrate that encapsulation improves the

biological efficacy of polyphenols conclusively.
5 Health benefits of polyphenols

The inclusion of polyphenol-rich foods and beverages,

including tea, herbs, fruits, and wine, in the diet is an effective

approach to harness their health-promoting properties (147, 148).

Polyphenols exhibit a wide range of biological activities, including

anti-inflammatory, anti-diabetic, antimicrobial, antioxidant, anti-

aging, anti-cancer, and cytotoxic properties (149, 150). These

properties contribute to the prevention of chronic diseases and

support therapeutic strategies. Furthermore, polyphenols have

demonstrated positive effects on cardiovascular health and

cognitive function, potentially through the prevention of

neurodegenerative disorders (151).

Figure 2 highlights the diverse health advantages of

polyphenols: a visual depiction of their functions in enhancing

antioxidant capacity, mitigating alcohol-related hepatic damage,

obstructing carcinogenic effects, retarding the aging process,

regulating gut microbiota, facilitating weight management and

obesity prevention, reducing blood glucose levels, augmenting

nutritional value, and substituting preservatives by inhibiting

pathogenic bacterial proliferation.
5.1 Antioxidant activity

One of the most extensively studied properties is their

antioxidant activity. A key function of polyphenols is their ability

to reduce or prevent ROS, which are harmful to human health (152,

153). By neutralizing ROS, polyphenols exert protective effects

against oxidative stress and skin degradation (154, 155).

Polyphenols interact with ROS primarily through three

mechanisms governed by their molecular structure: single

electron transfer, hydrogen atom transfer, and transition metal
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chelation (156, 157). In the hydrogen atom transfer mechanism,

polyphenols donate a hydrogen atom from their phenolic hydroxyl

group, producing free radicals that neutralize ROS (156). The

efficiency of this reaction is associated with the bond dissociation

enthalpy of the O–H bond; lower bond dissociation enthalpy

corresponds to higher reactivity. For instance, in the reaction R +

ArOH → ArO + RH, a lower bond dissociation enthalpy facilitates

hydrogen donation (158, 159).

In the single electron transfer mechanism, antioxidant capacity

is related to ionization potential; molecules with low ionization

potential values act as efficient electron donors in the reaction R +
Frontiers in Immunology 11
ArOH → R– + ArOH+ → RH + ArO (158). In the transition metal

chelation mechanism, polyphenol anions chelate heavy metals

through the deprotonation of hydroxyl groups, forming metal

complexes and releasing a proton (ArOH → ArO– + H+) (160).

These three pathways collectively evaluate the antioxidant potential

of polyphenols in protecting human health against oxidative

damage (157).

Different polyphenols exert distinct effects on antioxidant

activity (161, 162). For instance, quercetin has demonstrated

potent antioxidant properties (163). The antioxidant efficacy of

polyphenols has been extensively investigated in both in vivo and in
FIGURE 2

Comprehensive health advantages of polyphenols: A visual depiction of their functions in enhancing antioxidant capacity, mitigating alcohol-related
liver damage, suppressing carcinogenic effects, countering aging, regulating gut microbiota, facilitating weight management and obesity prevention,
reducing blood glucose levels, augmenting nutritional value, and substituting preservatives by inhibiting pathogenic bacterial proliferation. ROS,
reactive oxygen species.
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vitro studies (164, 165), confirming their preventive role against

various diseases (166, 167). The pharmacological potential of

Rhododendron tomentosum has been linked to its polyphenolic

composition, including chlorogenic acid, caffeic acid, rutin, and

quercetin, as identified by high-performance thin-layer

chromatography (168).

The antioxidant activities of these compounds were confirmed

using a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging

assay. Similarly, the DPPH assay was used to evaluate the

antioxidant activity of Zhourat plants (169). Following the

quantification of total phenolic acids, different solvent extractions

were assessed for free radical scavenging capacity. Water/ethanol

extracts often exhibit superior antioxidant activity compared to

pure water or ethanol-only extracts, with two exceptions (169).

Bashmil et al. (170) showed that unripe bananas possessed higher

free radical scavenging ability than ripe ones, highlighting the

influence of polyphenol type, structure, and phenolic ring count

on antioxidant efficacy. Janarny et al. (171) examined the

antioxidant capacity of edible flowers from the family Fabaceae

(171). In Chamanerion angustifolium L. (fireweed) leaves,

antioxidant activity varied with fermentation conditions. Notably,

activity decreased after 24 h of fermentation under both aerobic and

anaerobic conditions; however, it increased after 48 h compared to

unfermented leaves (171).

Bobkova et al. (172) evaluated the antioxidant potential of coffee

using free radical-scavenging methods, revealing that antioxidant

capacity varied with geographical origin due to differences in

polyphenol content (172). Alsaud et al. (173) reported that

Leptospermum scoparium (Manuka) leaves exhibited significant

ferric-reducing antioxidant power (FRAP assay) and free radical

scavenging activity (DPPH assay) (173). The ethanolic extract

outperformed most deep eutectic solvent extracts, though some

deep eutectic solvent extracts exhibited higher ferric-reducing

antioxidant power values. Overall, polyphenols exhibit

antioxidant properties through various pathways, including free

radical scavenging and the augmentation of endogenous

antioxidant enzyme activity (174, 175).

Table 1 illustrates the sources, classifications, antioxidant

efficacy, and modes of action of polyphenols. Figure 3 illustrates

the antioxidant properties of natural compounds, specifically

resveratrol from red wine and curcumin from turmeric, as

therapeutic interventions for oxidative stress-induced chronic

obstructive pulmonary disease caused by exposure to harmful

particles, smoking, and infections.
5.2 Anti-inflammatory activity

The hydroxyl groups and unique aromatic ring structures of

polyphenols allow them to exert regulatory effects on various

inflammatory pathways (225, 226). Polyphenols can suppress the

expression and activity of key pro-inflammatory mediators, such as

nuclear factor-kB (NF-kB), a transcription factor vital to the

regulation of the inflammatory response, as shown in Table 2

(269, 270).
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By inhibiting the activation of NF-kB, polyphenols reduce the
expression of pro-inflammatory genes and the synthesis of

inflammatory cytokines and enzymes (271, 272). Additionally,

polyphenols may modulate the biosynthesis of pro-inflammatory

lipid mediators by affecting the enzymatic activities involved in

inflammation, thereby contributing to their anti-inflammatory

action (270, 273).

Polyphenols also regulate immune cell function by modulating

the activity of dendritic cells, lymphocytes, and macrophages (274,

275). Moreover, they influence immune recruitment and migration

by altering the synthesis of chemokines and adhesion molecules

(271, 276). Synergistic interactions among various polyphenolic

compounds may further enhance their anti-inflammatory effects

(277). A comparative analysis of polyphenols extracted from celery,

coriander, and parsley revealed that celery had the highest total

polyphenol content, followed by coriander and parsley (278).

However, parsley polyphenols demonstrated the most potent

nitric oxide scavenging activity, which is essential in

inflammation due to the overproduction of nitric oxide. When

tested for their ability to prevent the protein denaturation effect,

parsley extract again showed superior activity (278). Similarly, in

membrane stabilization assays, used to assess the protection of

erythrocyte membranes under inflammatory stress, parsley extract

demonstrated superior activity (278). Polyphenolic compounds in

berries have also been extensively studied for their anti-

inflammatory properties (279, 280).

Kim et al. (281) reported that polyphenols from black raspberry

roots significantly inhibited the production of nitric oxide and

prostaglandin E2 in lipopolysaccharide (LPS)-activated

RAW264.7 macrophages in a dose-dependent manner. These root

polyphenols were more effective than those from unripe fruits in

reducing the levels of pro-inflammatory cytokines and

downregulating the mRNA expression of cyclooxygenase-2

(COX-2) and inducible nitric oxide synthase (281).

Furthermore, these polyphenols exhibited strong antimicrobial

activity against methicillin-resistant Bacillus anthracis, S. aureus

(MRSA), and carbapenem-resistant Acinetobacter baumannii. Peng

et al. (282) demonstrated that polyphenol-rich extracts from rice

wine significantly downregulated inducible nitric oxide synthase

expression and reduced nitric oxide production. The extracts also

suppressed the expression of pro-inflammatory cytokines, including

tumor necrosis factor-alpha (TNF-a), interleukin-6 (IL-6), and

interleukin-1 beta (IL-1b) (282). These effects were associated

with the inhibition of NF-kB nuclear translocation and reduced

phosphorylation of kB and mitogen-activated protein kinases,

including p38, extracellular signal-regulated kinases 1 and 2 (Erk

1/2), and c-Jun N-terminal kinase (282). Zhang et al. (283) found

that polyphenols inhibited nitric oxide production and reduced the

expression of IL-1b, IL-6, TNF-a, and nitric oxide synthase in LPS-

activated macrophages. These compounds also suppressed NF-kB
activation and mitogen-activated protein kinases phosphorylation

(extracellular signal-regulated kinases 1 and 2 (Erk 1/2), and c-Jun

N-terminal kinase).

A study by de Araújo (284) involved the determination of

minimum inhibitory concentration (MIC) and agar well-diffusion
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TABLE 1 Diverse sources and types of polyphenols, their antioxidant properties, and modes of action.

Polyphenol
sources

Polyphenol/s Antioxidant activities Mode of action References

Green tea
Catechins
(Flavonoids)

Exhibits vigorous antioxidant activity, scavenging
free radicals and reducing oxidative stress

Direct scavenging of reactive oxygen species and
upregulation of antioxidant enzymes

(176, 177)

Red wine
Resveratrol
(Stilbene)

Demonstrates antioxidant properties, protecting cells
from oxidative damage

Scavenges reactive oxygen species and modulates
antioxidant enzyme expression

(178, 179)

Dark chocolate Flavonoids
Possesses antioxidant effects, reducing oxidative
stress and improving vascular health

Neutralizes free radicals and enhances endothelial
function

(180, 181)

Blueberry
Anthocyanins
(Flavonoids)

Exhibits antioxidant activity, protecting against DNA
damage

Scavenges free radicals and chelates metal ions (182, 183)

Turmeric
Curcumin
(Diferuloylmethane)

Shows potent antioxidant properties, protecting cells
from oxidative damage

Neutralizes free radicals and enhances the activity
of antioxidant enzymes

(184–186)

Oat Avenanthramides
Exhibits antioxidant activity, protecting against
oxidative stress

Scavenges free radicals and inhibits oxidative
enzymes

(187, 188)

Grape
Resveratrol
(Stilbene)

Demonstrates antioxidant properties, protecting cells
from oxidative stress

Scavenges reactive oxygen species and modulates
antioxidant enzyme expression

(189, 190)

Apple
Quercetin
(Flavonoid)

Exhibits antioxidant activity, reducing oxidative
stress

Scavenges free radicals and inhibits lipid
peroxidation

(191, 192)

Pomegranate
Punicalagins
(Ellagitannins)

Shows strong antioxidant properties, protecting cells
from oxidative damage

Scavenges free radicals and inhibits oxidative
enzymes

(193, 194)

Cranberry
Proanthocyanidins
(Flavonoids)

Demonstrates antioxidant activity, reducing oxidative
stress

Scavenges free radicals and chelates metal ions (195, 196)

Strawberry
Anthocyanins
(Flavonoids)

Exhibits antioxidant properties, protecting against
oxidative damage

Scavenges free radicals and inhibits lipid
peroxidation

(197, 198)

Roseberry
Ellagic acid
(Phenolic Acid)

Shows antioxidant activity, reducing oxidative stress
Scavenges free radicals and modulates antioxidant
enzymes

(199, 200)

Blackberry
Anthocyanins
(Flavonoids)

Possesses antioxidant properties, protecting cells
from oxidative damage

Scavenges free radicals and chelates metal ions (201, 202)

Cherry
Anthocyanins
(Flavonoids)

Demonstrates antioxidant activity, reducing oxidative
stress

Scavenges free radicals and inhibits oxidative
enzymes

(203, 204)

Spinach Flavonoids
Exhibits antioxidant properties, protecting against
oxidative damage

Scavenges free radicals and enhances antioxidant
defenses

(205, 206)

Kale Flavonoids Shows antioxidant activity, reducing oxidative stress
Scavenges free radicals and modulates antioxidant
enzymes

(207, 208)

Broccoli Flavonoids
Possesses antioxidant properties, protecting cells
from oxidative damage

Scavenges free radicals and inhibits oxidative
enzymes

(209, 210)

Onion
Quercetin
(Flavonoid)

Demonstrates antioxidant activity, reducing oxidative
stress

Scavenges free radicals and inhibits lipid
peroxidation

(211, 212)

Tomato
Lycopene
(Carotenoid)

Exhibits antioxidant properties, protecting against
oxidative damage

Scavenges free radicals and enhances antioxidant
defenses

(213, 214)

Carrot
Beta-Carotene
(Carotenoid)

Shows antioxidant activity, reducing oxidative stress
Scavenges free radicals and modulates antioxidant
enzymes

(215, 216)

Orange
Hesperidin
(Flavanone)

Possesses antioxidant properties, protecting cells
from oxidative damage

Neutralizes free radicals and suppresses oxidative
enzymes

(217, 218)

Lemon
Eriocitrin
(Flavanone)

Demonstrates antioxidant activity, reducing oxidative
stress

Scavenges free radicals and enhances antioxidant
defenses

(219, 220)

Soybean Isoflavones
Exhibits antioxidant properties, protecting against
oxidative damage

Scavenges free radicals and modulates antioxidant
enzymes

(221, 222)

Red Onion
Quercetin
(Flavonoid)

Shows antioxidant activity, reducing oxidative stress
Scavenges free radicals and inhibits lipid
peroxidation

(223, 224)
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assays against methicillin-resistant strains of S. aureus, Salmonella

enteritidis, E. coli, Enterococcus faecalis, and Staphylococcus

epidermidis (284). Polyphenols from Psidium guajava exhibited

the largest zones of inhibition in the agar diffusion test. Notably, the

polyphenol extracts were more effective against Gram-positive

bacteria and ineffective against Gram-negative strains (284).

Anti-inflammatory activity was further evaluated using the

carrageenan-induced peritonitis model in mice. Administration of

plant extracts significantly reduced the inflammatory response

induced by carrageenan (284). However, in acetic acid-induced

writhing and analgesic tests, the extracts did not exhibit significant

pain-relieving effects, suggesting selective anti-inflammatory rather

than analgesic activity (284). These findings support the potential of

these plant-derived polyphenols in managing inflammatory

conditions (283, 284).

Fermentation plays a significant role in modifying the

bioactivity of polyphenol-rich plant materials (284, 285). Recent

research by Sim et al. (286) showed that complex fermentation of

Pyrus montana and Maclura tricuspidata using lactic acid bacteria,

yeast, and Aspergillus shirousamii enhanced their phenolic content

and anti-inflammatory activity. Fermented extracts exhibited

increased DPPH and ABTS radical-scavenging capacities and

significantly reduced nitric oxide production from day six of

fermentation. Western blot analysis revealed suppression of TNF-

a, COX-2, and nitric oxide synthase protein expression, indicating

effective inhibition of inflammation-related signaling pathways.

Overall, polyphenols from various plants, algae, and natural
Frontiers in Immunology 14
sources possess notable anti-inflammatory potential and

contribute to the prevention and management of chronic

inflammatory diseases (287, 288). They also offer protective effects

against metabolic disorders through their ability to regulate

inflammatory signaling pathways (289).

Table 2 illustrates various sources and types of polyphenols,

along with their anti-inflammatory properties and modes of action.
5.3 Antimicrobial activity

Antimicrobial activity refers to the ability of a substance to

inhibit or reduce the growth of microorganisms, including bacteria,

viruses, parasites, and fungi (290, 291). Antimicrobial agents are

widely used in medicine, agriculture, and the food industry to

combat microbial infections (292, 293). As shown in Table 3, the

antibacterial properties of plant extracts are attributed mainly to

their phenolic compounds (337, 338).

Numerous polyphenols exhibit antimicrobial properties by

disrupting cell structures and membranes and interfering with

essential enzymatic cellular functions (14, 339). Key determinants

of their antimicrobial activity include the presence of carboxyl

groups and the arrangement of functional subgroups on the

benzene ring (340). Menhem et al. (169) assessed the

antimicrobial activity of Zhourat Shamia herbal tea (mixture of

herbs and dried flowers) using a disk diffusion assay against

foodborne pathogens, including two Gram-positive bacteria (S.
FIGURE 3

Antioxidant properties of natural compounds (resveratrol from red wine and curcumin from turmeric) as therapeutic approaches to combat oxidative
stress-induced chronic obstructive pulmonary disease caused by exposure to harmful particles, smoking, and infections.
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TABLE 2 Different polyphenol sources, types, anti-inflammatory effects, and modes of action.

Polyphenol
sources

Polyphenol/s Anti-inflammatory activities Mode of action References

Turmeric Curcumin
Reduces symptoms of inflammatory bowel
disease, stomach ulcers, and Crohn’s
disease

Inhibits nuclear transcription factor kappa B (NF-kB)
activation, and reduces pro-inflammatory cytokine
production

(227, 228)

Green tea
Catechins
(Flavonoids)

Exhibits anti-inflammatory properties,
aiding in reducing inflammation

Reduces oxidative stress and modulates inflammatory
pathways

(229–231)

Red wine Resveratrol (Stilbene)
May offer health benefits due to its anti-
inflammatory properties

Inhibits pro-inflammatory mediators and modulates
inflammatory signaling pathways

(179, 232)

Oat Avenanthramides
Significantly reduces the inflammatory
response

Inhibits NF-kB activation, reducing pro-inflammatory
cytokine production

(233, 234)

Elderberry
Anthocyanins
(Flavonoids)

Reduces inflammation and supports
immune health

Modulates inflammatory pathways and reduces pro-
inflammatory cytokine production

(235, 236)

Dark chocolate Flavonoids
Rich in flavonoids and polyphenols, aiding
in reducing inflammatory stress

Scavenges reactive oxygen species and modulates
inflammatory pathways

(237, 238)

Olive oil
Oleocanthal (Phenolic
compound)

Contains oleocanthal and
monounsaturated fats, beneficial for
reducing inflammation

Inhibits cyclooxygenase enzymes and reduces
prostaglandin synthesis

(239, 240)

Grape Resveratrol (Stilbene) Exhibits anti-inflammatory properties
Inhibits pro-inflammatory mediators and modulates
inflammatory signaling pathways

(241, 242)

Berry
Anthocyanins
(Flavonoids)

Reduces inflammation and oxidative stress
Scavenges reactive oxygen species and inhibits pro-
inflammatory cytokine production

(243, 244)

Tomato
Lycopene
(Carotenoid)

Rich in lycopene, which intensifies with
cooking, perfect for sauces and soups

Scavenges reactive oxygen species and modulates
inflammatory pathways

(213, 245)

Garlic
Allicin (Organosulfur
compound)

Exhibits anti-inflammatory properties
Inhibits pro-inflammatory enzymes and cytokine
production

(246, 247)

Onion Quercetin (Flavonoid)
Reduces inflammation and supports
immune health

Inhibits pro-inflammatory enzymes and cytokine
production

(248, 249)

Broccoli
Sulforaphane
(Isothiocyanate)

Exhibits anti-inflammatory properties
Activates Nrf2 pathway, enhancing antioxidant response
and reducing inflammation

(250, 251)

Spinach Flavonoids Reduces inflammation and oxidative stress
Scavenges reactive oxygen species and modulates
inflammatory pathways

(205, 206)

Kale Flavonoids Exhibits anti-inflammatory properties
Scavenges reactive oxygen species and modulates
inflammatory pathways

(252, 253)

Sweet potato
Beta-Carotene
(Carotenoid)

Reduces inflammation and supports
immune health

Scavenge reactive oxygen species and modulates
inflammatory pathways

(254, 255)

Purple corn
Anthocyanins
(Flavonoids)

Exhibits anti-inflammatory properties
Scavenges reactive oxygen species and inhibits pro-
inflammatory cytokine production

(256, 257)

Microgreen Flavonoids Reduces inflammation and oxidative stress
Scavenges reactive oxygen species and modulates
inflammatory pathways

(258, 259)

Pepper
Capsaicin
(Capsaicinoid)

Exhibits anti-inflammatory properties
Inhibits pro-inflammatory neuropeptides and cytokine
production

(260, 261)

Mushroom
Ergothioneine
(Antioxidant)

Reduces inflammation and supports
immune health

Scavenges reactive oxygen species and modulates
inflammatory pathways

(262, 263)

Chayote Flavonoids Exhibits anti-inflammatory properties
Scavenges reactive oxygen species and inhibits pro-
inflammatory cytokine production

(263, 264)

Avocado Polyphenols
Reduces inflammation and supports heart
health

Scavenges reactive oxygen species and modulates
inflammatory pathways

(265, 266)

Carrot
Beta-Carotene
(Carotenoid)

Exhibits anti-inflammatory properties
Scavenges reactive oxygen species and modulates
inflammatory pathways

(267, 268)
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TABLE 3 Numerous polyphenol sources, categories, antimicrobial properties, and mechanisms of action.

Polyphenol
sources

Polyphenol/s Antimicrobial activities Mechanism of actions References

Green tea
Catechins
(Flavonoids)

Exhibits antibacterial activity against various pathogens,
including Escherichia coli and Staphylococcus aureus

Disruption of bacterial cell membranes
and inhibition of enzyme activity

(294–296)

Black tea
Theaflavins
(Flavonoids)

Possesses antimicrobial properties that may help prevent
diarrhea and influence gut microbiota

Inhibition of bacterial enzymes and
interference with microbial metabolism

(296, 297)

Turmeric
Curcumin
(Diferuloylmethane)

Demonstrates broad-spectrum antimicrobial activity against
bacteria, fungi, and viruses

Disruption of microbial cell membranes
and inhibition of nucleic acid synthesis

(298, 299)

Cranberry
Proanthocyanidins
(Flavonoids)

May reduce the incidence of urinary tract infections by
inhibiting bacterial adhesion

Prevention of bacterial adhesion to
urinary tract walls

(300, 301)

Grape Resveratrol (Stilbene)
Exhibits antifungal activity against pathogens like Botrytis
cinerea

Induction of oxidative stress in fungal
cells and inhibition of fungal enzymes

(302, 303)

Pine bark
Proanthocyanidins
(Flavonoids)

Shows antimicrobial activity against various bacteria and
fungi

Disruption of microbial cell walls and
inhibition of microbial enzymes

(304, 305)

Pomegranate
Ellagitannins
(Tannins)

Exhibits antibacterial activity against Staphylococcus aureus
and Escherichia coli

Disruption of bacterial cell membranes
and inhibition of bacterial enzymes

(306, 307)

Olive oil
Hydroxytyrosol
(Phenolic
compound)

Demonstrates antimicrobial activity against various bacterial
strains

Disruption of bacterial cell membranes
and inhibition of bacterial growth

(308, 309)

Red wine Resveratrol (Stilbene) Exhibits antimicrobial activity against various pathogens
Disruption of microbial cell membranes
and inhibition of nucleic acid synthesis

(310, 311)

Blueberry
Anthocyanins
(Flavonoids)

Shows antimicrobial activity against various bacterial strains
Disruption of bacterial cell membranes
and inhibition of bacterial enzymes

(182, 312)

Cocoa
Flavanols
(Flavonoids)

Exhibits antibacterial activity against Streptococcus mutans
Inhibition of bacterial
glucosyltransferases and prevention of
biofilm formation

(313, 314)

Garlic
Allicin (Organosulfur
compound)

Demonstrates broad-spectrum antimicrobial activity against
bacteria and fungi

Inhibition of microbial thiol-containing
enzymes and disruption of cell
membranes

(315, 316)

Cinnamon
Cinnamaldehyde
(Phenylpropanoid)

Exhibits antimicrobial activity against various bacterial and
fungal pathogens

Disruption of microbial cell membranes
and inhibition of enzyme activity

(317, 318)

Oregano
Carvacrol
(Monoterpenoid
phenol)

Shows antimicrobial activity against bacteria such as
Salmonella and Escherichia coli

Disruption of bacterial cell membranes
and leakage of cellular contents

(319, 320)

Clove
Eugenol
(Phenylpropanoid)

Demonstrates antimicrobial activity against various bacteria
and fungi

Disruption of microbial cell membranes
and inhibition of enzyme activity

(321, 322)

Thyme
Thymol
(Monoterpenoid
Phenol)

Exhibits antimicrobial activity against various pathogens
Disruption of microbial cell membranes
and inhibition of enzyme activity

(323, 324)

Sage
Rosmarinic Acid
(Caffeic acid ester)

Shows antimicrobial activity against bacteria and fungi
Inhibition of microbial enzymes and
disruption of cell membranes

(325, 326)

Rosemary
Carnosic Acid
(Diterpene)

Demonstrates antimicrobial activity against various bacterial
strains

Disrupts bacterial cell membranes and
inhibits bacterial growth

(327, 328)

Ginger
Gingerol (Phenolic
ketone)

Exhibits antimicrobial activity against various pathogens
Disrupts microbial cell membranes and
inhibits the activity of enzymes

(329, 330)

Peppermint
Menthol
(Monoterpenoid)

Shows antimicrobial activity against bacteria and fungi
Disrupts microbial cell membranes and
inhibits the activity of enzymes

(331, 332)

Licorice
Glycyrrhizin
(Saponin)

Demonstrates antimicrobial activity against various bacterial
strains

Disrupts bacterial cell membranes and
inhibits bacterial growth

(333, 334)

Neem
Azadirachtin
(Triterpenoid)

Exhibits antimicrobial activity against various pathogens
Damages bacterial cell membranes and
suppresses bacterial growth

(335, 336)
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aureus and B. cereus) and two Gram-negative bacteria (E. coli and

Pseudomonas aeruginosa). The phenolic compounds in Zhourat

extracts exhibited antimicrobial activity, though efficacy varied

depending on the extract and microbial species (169).

A separate study by Gutiérrez-Venegas et al. (341) indicated

that rutin, quercetin, and morin had antimicrobial action against

Actinomyces naeslundii and Actinomyces viscosus. While each

flavonoid has antimicrobial capabilities against some strains, no

antimicrobial impacts have been observed against Streptococcus

oralis and Streptococcus sanguinis (341). The number and type of

hydroxyl, carboxyl, and ester groups also play a crucial role by

facilitating interactions between polyphenols and microbial cells,

thereby inhibiting microbial growth (342, 343). Additionally,

polyphenols can interfere with intracellular processes by

impairing the activity of enzymes necessary for microbial survival,

leading to reduced proliferation (344–346).

De Angelis et al. (347) reported that combinations of

polyphenols and micronutrients (A5+) exert antiviral effects

against influenza A and SARS-CoV-2. In this study, resveratrol

demonstrated antiviral efficacy against respiratory viruses, while

polydatin was used as its precursor. Treatment with A5+ and

resveratrol significantly reduced SARS-CoV-2 replication.

Furthermore, both agents suppressed the expression of essential

viral replication proteins and IL-6 in influenza A virus-infected

cells. Singh et al. (348) evaluated polyphenols as natural antiviral

agents against SARS-CoV-2 using in silico analysis, targeting the

RNA-dependent RNA polymerase (RdRp) responsible for viral

RNA replication. The study found that eight different polyphenols

demonstrated favorable binding kinetics, suggesting their potential

to inactivate SARS-CoV-2 RdRp (348).

Therefore, polyphenols are considered promising antiviral

agents. Musarra-Pizzo et al. (349) conducted antiviral and

antimicrobial assays using Prunus dulcis L. against S. aureus and

herpes simplex virus type 1. The antibacterial activity of almonds

was inhibited entirely by polyphenols at a concentration of 0.62 mg/

mL. Furthermore, antiviral assays revealed that 0.4 mg/mL of

almond polyphenols reduced both the expression of viral proteins

and the accumulation of viral DNA (349). Park et al. (350)

demonstrated that the ethanolic extract of Aronia melanocarpa,

rich in polyphenols and flavonoids, exhibits antiviral activity. A

0.0625 mg sample of the extract significantly inhibited viral surface

proteins in 70% of tested influenza strains, including H1 and H3

subtypes. Pagliarulo et al. (351) evaluated the antimicrobial activity

of Punica granatum against S. aureus and E. coli. Pomegranate juice

was extracted and then subjected to ethanolic polyphenol extraction

of pomegranate using a 50% ethanol/water (v/v) solution. The juice,

particularly rich in anthocyanins, was tested in quantities of 1, 2, 4,

8, 10, and 20 mg per disk. The result demonstrated that the extracts

inhibited the growth and survival of the tested bacterial

strains (351).

Certain extracts exhibited no efficacy against several bacteria,

while others exhibited selective antimicrobial effects. Nibir et al.

(352) analyzed the total phenolic and flavonoid levels, as well as the

antioxidant and antimicrobial properties, of four Chinese tea

varieties: broken orange pekoe, black tea, red dust, and green tea.
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The green tea variety had the highest phenolic and flavonoid

content and demonstrated superior antioxidant and antimicrobial

activity. The antimicrobial potential of these teas was tested against

Shigella dysenteriae, Shigella boydii, Vibrio cholerae, Salmonella

paratyphi, Salmonella typhi, Klebsiella pneumoniae, and E. coli

employing agar well-diffusion and MIC assays. These findings

confirm that green tea has greater antimicrobial efficacy than the

other types (352).

Notably, the antimicrobial activity of polyphenols can be

influenced by the extraction procedure and the solvent used (339,

353). Chaudhry et al. (354) examined the effects of extraction

methods and solvent systems on yield. Traditional maceration-

and ultrasound-assisted extraction techniques were compared using

methanol, ethanol, and acetone at 25%, 50%, 75%, and 100%

concentrations. Among these, ultrasound-assisted extraction

yielded the highest polyphenol content from banana peels (354).

Ethanol proved to be the most effective solvent compared to the

alternatives. Solvent concentration significantly influenced the yield

of polyphenols. Ethanol-based extracts demonstrated superior

antioxidant activity, as indicated by the DPPH radical scavenging

assay. In contrast, banana peel extracts at various concentrations

were tested against E. coli, P. aeruginosa, S. aureus, and

Saccharomyces cerevisiae using the agar disk diffusion method.

Measurement of the inhibition zones revealed that ethanol-

containing extracts exerted more substantial antimicrobial effects

than those obtained with other solvents (354).

In the gut, polyphenols linked to indigestible fibers can

contribute to health benefits by releasing bioactive phenolic

compounds through microbial fermentation. Thus, incorporating

fermentable fiber into the diet may support the growth of beneficial

gut microbiota and exert prebiotic effects (355). Although the

antimicrobial properties of phenolic compounds are well

established, these effects may be modified during gastric

digestion (356).

Caponio et al. (357) reported that digestive processes may

influence the free radical-scavenging ability of phenolic

compounds. Antimicrobial activity was assessed based on effects

on the probiot ic and pathogenic strains , specifical ly

Lactiplantibacillus plantarum, Bacillus megaterium, E. coli, and

Listeria monocytogenes. These findings indicated that grape

pomace-derived polyphenols promoted probiotic growth while

inhibiting pathogenic bacteria (357). Similarly, a study on the

antimicrobial and digestive behavior of polyphenols from

Hibiscus sabdariffa showed that these compounds were rapidly

released and metabolized in the human digestive tract (358).

Polyphenols have demonstrated antimicrobial efficacy against

pathogenic bacteria, including L. monocytogenes and S. aureus

(359, 360), making them promising candidates for use as

antimicrobial agents (361, 362).

Several in vivo studies have confirmed the stability and efficacy

of polyphenols following gastrointestinal digestion. For example,

dietary supplementation of polyphenol-rich extracts in animal

models, such as grape seed extract in broiler chickens and pigs,

has been shown to increase the concentration of antioxidant

markers like vitamin E in plasma and tissues, suggesting not only
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the bioavailability but also the effective physiological action of

polyphenols after digestion (363). In another study, grape

pomace-supplemented feed improved the ratio of polyunsaturated

to saturated fatty acids and enhanced the oxidative stability of

animal products, indicating that a considerable portion of

polyphenols retained their bioactivity after digestive processes

(357). Similarly, research has demonstrated that polyphenolic

compounds maintain significant antioxidant effects in vivo, as

evidenced by enhanced plasma antioxidant capacity and reduced

markers of oxidative stress in animals supplemented with

polyphenols (364).

The findings indicate that, despite specific degradation during

digestion, a significant proportion of polyphenols and their

metabolites remain sufficiently stable for absorption, hence

facilitating their potential health-promoting effects in living

organisms post-absorption.

Table 3 shows the various polyphenol sources, kinds,

antimicrobial properties, and their mechanisms of action.

Figure 4 illustrates the antimicrobial mechanisms of polyphenols,

illustrating the disruption of microbial cell structures
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(l ipopolysaccharide cell wall , peptidoglycan cell wall ,

phospholipid bilayers, cell membrane proteins) and the

impairment of essential cellular functions (inhibition of DNA

gyrase and RNA synthesis, pore formation causing leakage,

damage to membrane lipid bilayers, inhibition of enzyme activity,

disruption of cell wall biosynthesis, and inactivation of

lipopolysaccharide) in bacteria such as S. aureus, E. coli, and P.

aeruginosa by specific polyphenol compounds (catechin, quercetin,

EGCG, myricetin, ferulic acid, gallic acid, proanthocyanidins,

tannin, and kaempferol-3-rutinoside).
5.4 Anti-diabetic activity

Natural products play a significant role in promoting human

health (365, 366). Plants have long been used in various cultures to

treat diseases and disorders (367, 368). Accordingly, research

continues to explore plant-derived compounds for managing type

2 diabetes mellitus, a metabolic disorder increasingly prevalent due

to modern lifestyle changes (369, 370). Type 2 diabetes mellitus is
FIGURE 4

The antimicrobial mechanisms of polyphenols involve the disruption of microbial cell structures, including lipopolysaccharide cell walls,
peptidoglycan cell walls, phospholipid bilayers, and cell membrane proteins, as well as the impairment of essential cellular functions such as
inhibition of DNA gyrase and RNA synthesis, pore formation causing leakage, damage to membrane lipid bilayers, inhibition of enzyme activity,
suppression of cell wall biosynthesis, and inactivation of lipopolysaccharides in bacteria like Staphylococcus aureus, Escherichia coli, and
Pseudomonas aeruginosa by specific polyphenol compounds, including catechin, quercetin, epigallocatechin gallate, myricetin, ferulic acid, gallic
acid, proanthocyanidins, tannin, and kaempferol-3-rutinoside.
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characterized by chronic hyperglycemia resulting from insulin

resistance, amyloid deposition, pancreatic b-cell dysfunction, and
impaired glucose regulation (371, 372).

Current studies indicate that insulin regulation involves several

mechanisms, including pancreatic cell protection, modulation of

cell proliferation and apoptosis, oxidative stress reduction, insulin

signaling activation, increased insulin secretion, inhibition of

glucose uptake, gut microbiome regulation, and attenuation of

inflammatory responses (16, 373). Therefore, dietary polyphenols

hold the potential for managing type 2 diabetes mellitus (374, 375).

Additionally, compounds such as resveratrol, curcumin, and

quercetin have shown that they can lower oxidative stress and

inflammation by modulating key insulin-related signaling pathways

(14, 376). Numerous studies have reported the anti-diabetic effects

of tea polyphenols in experimental diabetes models, demonstrating

their ability to lower blood glucose levels, improve insulin

sensitivity, and reduce oxidative stress and inflammation

associated with type 2 diabetes mellitus (377, 378).

Sabu et al. (377) found that administration of 500 mg/kg green

tea polyphenols significantly inhibited the increase in serum glucose

levels at 60 min. Similarly, polyphenols extracted from spicate

eugenia (Syzygium zeylanicum L.) exhibited anti-diabetic

influences in 2.5–3-month-old diabetic zebrafish subjected to

overfeeding and hyperglycemic conditions. The findings suggest

these polyphenols may regulate genes involved in lipid and glucose

metabolism and influence glucose absorption and utilization,

contributing to the normalization of fasting blood glucose levels

(379). Animal studies have also demonstrated the anti-diabetic

effects of flax (Linum usitatissimum) in 8–12-week-old female

rats, with consistent reductions in blood glucose levels and body

weight (380). Histological analyses revealed partial improvement in

pancreatic, hepatic, and renal tissues following treatment with the

plant extract (380).

Zuo et al. (381) investigated the anti-diabetic properties of

Phaseolus vulgaris L. in 5–6-week-old male rats. In this study,

type 2 diabetes mellitus rats were fed either a high-fat diet or a

standard diet with detailed macronutrient compositions. The results

showed that P. vulgaris L. could regulate blood glucose and

cholesterol levels, reduce insulin resistance, and increase gut

short-chain fatty acid production, thereby mitigating pancreatic

and hepatic damage and restoring intestinal microbiota balance

(381). Another study assessed the anti-diabetic properties of yellow

and green papaya (Carica papaya), revealing lipid-lowering activity

and enhanced hepatic glucose metabolism, suggesting its

therapeutic potential in diabetes management (382).

Similarly, Pieczykolan et al. (383) revealed that Aerva lanata L.

has been shown to possess anti-diabetic, antioxidant, and anti-

inflammatory properties via inhibition of a-amylase and a-
glucosidase, enzymes associated with glucose metabolism. Further

investigations have explored the anti-diabetic potential of ethanolic

propolis extracts under in vitro and in vivo conditions (384). In one

experiment, diabetic rats were administered a 0.5 mL/100 g dose of

either 15% or 30% propolis extract for 4 weeks, resulting in

significant blood glucose reduction (384). A separate study

investigated the therapeutic effects of vinegar extract from
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Zhenjiang aromatic vinegar in diabetic mice. The extract

improved body weight, lowered blood glucose, enhanced glucose

and insulin tolerance, and reduced liver inflammation. These effects

were partly attributed to the modulation of the gut microbiota and

short-chain fatty acid levels, indicating a potential role in diabetes

therapy (385).

Vaithiyalingam et al. (386) investigated the pharmacokinetic

characteristics of curcumin from Curcuma longa, highlighting its

strong ligand-binding interactions with key protein targets,

including a-amylase, a-glucosidase, DPP-4, PPAR, and SGLT-2.

These findings position curcumin as a promising candidate for

diabetes treatment. Jahan et al. (387) examined the functional

potential of haustoria from coconut (Cocos nucifera) and palmyra

palm (Borassus flabellifer) for anti-diabetic applications. B.

flabellifer demonstrated superior antioxidant capacity through

DPPH and H2O2 scavenging and lipid peroxidation inhibition

compared to C. nucifera. Additionally, a-amylase and a-
glucosidase inhibition assays showed greater enzyme inhibitory

activity in B. flabellifer (387).

The anti-diabetic efficacy of diverse polyphenols has been

demonstrated in both in vivo and in vitro studies, supporting

their potential as therapeutic agents (388, 389). However, despite

promising findings, current research remains insufficient, and

further investigations are needed to validate these compounds for

future clinical applications.

Figure 5 illustrates the antidiabetic mechanism of polyphenols

in the human body, showing deconjugation in the gastrointestinal

tract, absorption, hepatic portal circulation, reconjugation in the

liver, biliary excretion, renal excretion, and microbial deconjugation

in the colon, ultimately leading to fecal excretion.
5.5 Application in skin and hair health

The skin, the body’s largest organ, acts as a dynamic interface

with the environment, playing essential roles in protection against

UV radiation, pathogens, and extreme temperatures (390, 391). Its

constant exposure to environmental stressors, combined with its

complex functions, contributes to the development of various

dermatological conditions (392). Similarly, hair follicles—extensions

of the epidermis—are influenced by both internal and external

factors. Hair follows a cyclical growth pattern encompassing the

anagen, catagen, and telogen phases. Disruptions in this cycle can

lead to hair thinning or loss, adversely affecting an individual’s

psychosocial well-being, self-esteem, and mental health, often

leading to social anxiety and depression (392).

A range of factors—genetic predisposition, hormonal imbalances,

infections, stress, and psychological disorders—contribute to both skin

and hair disorders. While conventional pharmaceutical and treatments

are available, many synthetic drugs pose limitations or adverse effects,

fueling growing interest in natural alternatives (391). Among these,

plant-derived polyphenols have garnered attention for their broad

therapeutic potential, including anti-inflammatory, antioxidant, anti-

aging, anti-carcinogenic, antimicrobial, and depigmenting

properties (393).
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Several studies have highlighted the potential of polyphenols in

dermatological applications. For example, grape seed extract, applied

to normal human melanocyte and dermal fibroblast cells, was shown

to enhance skin youthfulness by stimulating collagen and elastin

production (133). It also reduced UVB-induced inflammation and

DNA damage, while promoting skin hydration and reducing melanin

production—key factors in diminishing wrinkle formation (133).

Similarly, Caralluma europaea extracts demonstrated both anti-

tumor and wound-healing effects. These extracts inhibited leukemia

and hepatocellular carcinoma cell lines in vitro, while topical

application in rats accelerated wound healing (394). Ethanolic

extracts of Acacia nilotica showed potent free radical scavenging

activity due to their hydroxyl group content, indicating their

potential as natural antioxidants (393).

In a clinical trial byMontenegro et al. (395), the topical application of

resveratrol-loaded lipid nanocarriers significantly improved skin

hydration, emphasizing the potential of lipid-based delivery systems in

skincare. Other studies showed that combining polyphenols with

sunscreen components provided synergistic UV protection (377).

Notably, naringenin-loaded NPs exhibited superior antioxidant activity

and sustained skin retention compared to the native compounds (395).

Curcumin-loaded nanocubosomal hydrogels were found to

reduce signs of skin irritation (e.g., erythema and edema) in rats
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and displayed enhanced antibacterial activity against E. coli (396).

Likewise, a hydrophilic extract of Rhus coriaria promoted collagen

production, accelerated wound healing, and showed antimicrobial

activity against several pathogenic bacteria (397). A liposome-based

extract from Hibiscus sabdariffa L. calyx showed no irritation in

rabbit skin models and was effective as an anti-aging skincare

product due to its antioxidative properties (398). Polyphenols

from Malpighia emarginata DC also demonstrated skin-

lightening effects by reducing UVB-induced pigmentation and

melanin synthesis (399). Similarly, strawberry extracts protected

against UVA-induced skin damage by reducing ROS and

inflammatory markers (400).

Other findings revealed that Penthorum chinense extracts

possess anti-aging and moisturizing properties (383), and

green tea polyphenols exhibit anti-inflammatory effects

against acne vulgaris (401). In another study, Coffee arabica

L. hydrogels—especially those from green beans—promoted

skin regeneration and reduced oxidative stress in wound areas

(402). Overall, polyphenols offer significant potential in

promoting skin and hair health (402). However, more

comprehensive studies are needed to opt imize their

application and explore their full therapeutic potential

in dermatology.
FIGURE 5

Antidiabetic mechanism of polyphenols in the human body, illustrating deconjugation in the gastrointestinal tract, absorption, hepatic portal
circulation, reconjugation in the liver, biliary excretion, renal excretion, and microbial deconjugation in the colon, resulting in fecal excretion.
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5.6 Neuroprotective effect

Polyphenols are increasingly recognized for their

neuroprotective properties, primarily attributed to their potent

antioxidant and anti-inflammatory activities (377, 403). These

compounds can neutralize free radicals and reduce oxidative

stress, mechanisms implicated in the pathogenesis of several

neurodegenerative diseases, including Alzheimer’s disease and

Parkinson’s disease (404, 405).

Curcumin, a polyphenol derived from C. longa, has

demonstrated anti-inflammatory, antioxidant, and anti-amyloid

effects in various Alzheimer’s disease models (388). For instance,

curcumin-loaded lipid-core nanocapsules mitigated Ab-induced
behavioral changes and synaptotoxicity in rats. The purified

polyphenols from pomace significantly reduced paralysis in

Caenorhabditis elegans Alzheimer’s disease and showed

antioxidant effects compared to non-purified forms (388).

In Alzheimer’s disease, the accumulation of b-amyloid (Ab)
peptides and tau protein aggregates disrupts neuronal function

(406). Blends of polyphenols—including resveratrol and grape juice

—have been shown to reduce amyloid neuropathology and improve

cognitive deficits in animal models (406). Resveratrol, in particular,

activates the Sirt1 gene, enhances glutathione and superoxide

dismutase levels, and reduces oxidative stress (407). Grape leaf

polyphenols also exhibited neurotrophic, anti-inflammatory, and

antioxidant effects in aluminum chloride-induced Alzheimer’s

disease rat models, suggesting a potential therapeutic role (408).

Parkinson’s disease, characterized by the degeneration of

dopaminergic neurons and the aggregation of a-synuclein,
polyphenols again show promise (409). EGCG from green tea has

been shown to inhibit a-synuclein aggregation and prevent

mitochondrial dysfunction (410, 411). A unique polyphenol-

micronutrient blend, A5+, was found to block apoptotic

pathways, reduce oxidative stress, and suppress pro-inflammatory

cytokines in Parkinson’s disease models (387). In addition,

nanosheet polyphenolic fractions from propolis demonstrated

enhanced antioxidant effects in vitro and in vivo (412). Olive-

derived polyphenols improved locomotor ability and lifespan in

C. elegans Parkinson’s disease models (405). In Huntington’s

disease, caused by polyglutamine expansions in the Huntingtin

protein, curcumin reduced photoreceptor degradation and motor

impairment in Drosophila models (413).

Despite promising evidence, challenges remain (414, 415). The

mechanisms underlying the neuroprotective effects of polyphenols

are not fully understood, and issues with their bioavailability persist

(416, 417). Future research is essential to elucidate these mechanisms,

improve delivery systems, and determine effective therapeutic

dosages for preventing and managing neurodegenerative diseases.
5.7 Anti-tumor and anti-cancer activity

Researchers have long been interested in exploring the anti-

tumor and anti-cancer potential of polyphenols (418, 419). These

natural chemicals exhibit chemo-preventive benefits against
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multiple cancer types, as shown in Table 4 (465, 466). Research

suggests that polyphenols may significantly limit tumor growth and

prevent cancer formation due to their anti-inflammatory,

antioxidant, and antiproliferative effects (467, 468). Multiple

methodologies exist to evaluate the antiproliferative, and anti-

cancer properties of polyphenols (469, 470). One strategy entails

performing in vitro research using cancer cell lines (471, 472).

Researchers can examine the effects of polyphenols derived from

various sources or using different quantities on tumor cells, and

their effects on cellular growth and proliferation (473, 474).

Zhang et al. (456) indicated that Cerasus humilis fruit,

recognized for its high polyphenol content, demonstrated

considerable inhibitory effects on hepatic, colon, and stomach

tumor cells. A modern experiment demonstrated that the

phenolic component of Cerasus europaea extracts displayed ‘anti-

tumor’ potential versus human leukemia (K562 and HL60) and

hepatic tumor (Huh-7) cell lines (394). Yi et al. (475) showed that

the purified polyphenols possess antiproliferative properties on

distinct cancer cell lines in the human colon tumor stem cell line

(LOVO cell line), the pure polyphenols acquired in this research

may be utilized to manufacture functional meals.

Furthermore, Yi et al. (476) conducted a study demonstrating

that isolated polyphenols from Pinus koraiensis pinecones have an

anti-cancer impact on colon cancer cells via stimulating death via

caspase activation. Huang et al. (477) indicated that the extracted

polyphenols from the bark of P. koraiensis have a significant

inhibitory effect on colon cancer cells via augmenting the quantity

of apoptotic cells (477). The investigation examined the use of

several polyphenols to mitigate the side impacts of tumor, beside

their direct impacts on tumor cells (478–480).

Another method to examine these impacts is by performing in

vivo experiments with animal models (481, 482). These

investigations often entail observing cancer progression in affected

animals via the supply of polyphenols using diverse approaches

(482, 483). Extensive research may include both in vitro and in vivo

trials (484, 485).

These findings clarify the molecular mechanisms influenced by

polyphenols (472, 486, 487). The fundamental purpose of these

investigations is to study the impacts of polyphenols on apoptosis,

angiogenesis, cell cycle regulation, and metastasis (488, 489). Wu

et al. (488) revealed a notable reduction in cell viability

corresponding to elevated dosages of polyphenols derived from

Hippophae rhamnoides labeled as HPs60, showing an inactivation

impact of HPs60 on tumor cell proliferation. The modification of

miRNA expression patterns resulting from HPs60 therapy

influenced the alterations in cell viability through modulating cell

cycle progression as well as apoptosis (488). In vivo investigations

on mice indicated no discernible poisonousness throughout HPs60

therapy, as demonstrated by the lack of substantial changes in body

weight across the groups (488). In contrast, there was a notable

decrease in cancer volume following HPs60 therapy relative to the

control, demonstrating its anti-tumor efficacy in inhibiting cancer

growth in vivo. Moreover, HPs60 therapy was demonstrated to

influence the expression of microRNAs (miRNAs) in cancer-

bearing animals (488).
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TABLE 4 Sources, types, anti-cancer and antitumor properties, and the mechanism of action of polyphenols.

Polyphenol
sources

Polyphenols
Anti-cancer and anti-tumor
activities

Mode of action References

Green tea
Epigallocatechin
gallate (EGCG)

Inhibits cancer cell proliferation and induces
apoptosis in various cancer cell lines

Modulates signaling pathways such as MAPK, inhibits
angiogenesis, and induces epigenetic changes

(230, 420)

Black tea
Theaflavin-3,3’-
digallate (TFDG)

Exhibits antioxidant properties and inhibits
cancer cell growth

Scavenges reactive oxygen species and inhibits
angiogenesis by reducing VEGF production

(421, 422)

Red grape Resveratrol
Suppresses tumor initiation, promotion, and
progression

Modulates gene expression related to cell proliferation
and apoptosis, and inhibits angiogenesis

(423, 424)

Turmeric Curcumin
Inhibits the growth of various cancer cells and
induces apoptosis

Modulates multiple cell signaling pathways, including
NF-kB and STAT3, and alters epigenetic regulation

(425, 426)

Soybean Genistein Inhibits cancer cell growth and metastasis
Modulates estrogen receptor signaling and inhibits
tyrosine kinase activity

(286, 427)

Apple Phloretin
Inhibits the proliferation of cancer cells and
induces apoptosis

Inhibits glucose transporters and modulates cell cycle
regulators

(428, 429)

Berry Anthocyanins
Suppresses the growth of various cancer cells
and induces apoptosis

Inhibits oxidative stress and modulates signaling
pathways such as PI3K/Akt

(430, 431)

Pomegranate Ellagic acid
Inhibits cancer cell proliferation and induces
apoptosis

Modulates cell cycle regulators and inhibits
angiogenesis

(432, 433)

Olive oil Hydroxytyrosol
Inhibits the proliferation of cancer cells and
induces apoptosis

Scavenges reactive oxygen species and modulates
signaling pathways

(434, 435)

Citrus fruit Hesperidin
Inhibits cancer cell growth and induces
apoptosis

Modulates signaling pathways such as MAPK and
inhibits angiogenesis

(436, 437)

Garlic Quercetin
Inhibits the proliferation of cancer cells and
induces apoptosis

Modulates signaling pathways and inhibits oxidative
stress

(438, 439)

Broccoli Sulforaphane
Inhibits cancer cell growth and induces
apoptosis

Modulates epigenetic regulation and inhibits histone
deacetylase activity

(440, 441)

Tomato Lycopene
Inhibits the proliferation of cancer cells and
induces apoptosis

Modulates signaling pathways and inhibits oxidative
stress

(213, 442)

Chili pepper Capsaicin
Inhibits the growth of various cancer cells and
induces apoptosis

Modulates signaling pathways such as NF-kB and
induces oxidative stress

(443, 444)

Ginger 6-Gingerol
Inhibits the proliferation of cancer cells and
induces apoptosis

Modulates signaling pathways and inhibits oxidative
stress

(445, 446)

Cranberry Proanthocyanidins
Inhibit the growth of various cancer cells and
induce apoptosis

Inhibit oxidative stress and modulate signaling
pathways

(447, 448)

Spinach Lutein
Inhibits the proliferation of cancer cells and
induces apoptosis

Scavenges reactive oxygen species and modulates
signaling pathways

(449, 450)

Carrot Beta-carotene
Inhibits cancer cell growth and induces
apoptosis

Scavenges reactive oxygen species and modulates gene
expression

(451, 452)

Flaxseed
Secoisolariciresinol
diglucoside (SDG)

Inhibits the proliferation of cancer cells and
induces apoptosis

Modulates estrogen receptor signaling and inhibits
oxidative stress

(453, 454)

Cheery Cyanidin
Inhibits the growth of various cancer cells and
induces apoptosis

Inhibits oxidative stress and modulates signaling
pathways

(455, 456)

Peanut Pterostilbene
Inhibits the proliferation of cancer cells and
induces apoptosis

Modulates signaling pathways and inhibits oxidative
stress

(457, 458)

Parsley Apigenin
Inhibits cancer cell growth and induces
apoptosis

Modulates signaling pathways such as NF-kB and
inhibits angiogenesis

(459, 460)

Thyme Luteolin
Inhibits the proliferation of cancer cells and
induces apoptosis

Modulates signaling pathways and inhibits oxidative
stress

(461, 462)

Rosemary Carnosic acid
Inhibits the growth of various cancer cells and
induces apoptosis

Modulates signaling pathways and inhibits oxidative
stress

(463, 464)
F
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Moreover, the group receiving the blueberry anthocyanin and

crude polyphenol extract demonstrates the most significant cancer

suppressor impacts, presumably due to synergistic interactions

between the components (490, 491). Furthermore, the extract

improved the overall health of mice by augmenting cellular

immunological action, enhancing antioxidant enzymatic activities,

and diminishing lipid peroxidation (492, 493). To conclude, various

studies indicate that polyphenols might substantially affect cancer

prevention, influencing disease progression and perhaps improving

treatment methods such as radiotherapy and chemotherapy (483,

492, 493). Table 4 delineates the sources, classifications, anti-cancer

and antitumor characteristics, as well as the mechanisms of action

of polyphenols.
5.8 Other effects

The influence of polyphenols on health encompasses multiple

aspects (494, 495). A study approved by de Jesús Romero‐Prado

et al. (496) indicates a significant reduction in both systolic as well

as diastolic blood pressure, as well as decreases in whole cholesterol,

LDL cholesterol, as well as triglyceride levels after the inclusion of

dietary flavonoids. The incorporation of flavonoids into

pharmacological antihypertensive treatment demonstrates

supplementary advantages for blood pressure, lipid profile, leptin

levels, obesity, and inflammation (496). Polyphenols contribute to

reducing obesity through a variety of interrelated mechanisms.

They can inhibit adipogenesis by regulating key signaling

pathways and transcription factors such as PPARg and C/EBPa,
thereby limiting the formation and differentiation of new adipocytes

(497). Polyphenols also promote the browning of white adipose

tissue and enhance thermogenesis, which increases energy

expenditure and fat burning (497). Additionally, these

compounds stimulate b-oxidation of fatty acids, promote lipolysis,

and suppress lipogenesis, collectively improving lipid metabolism

and reducing fat accumulation (498).

Moreover, a notable reduction in levels of C-reactive protein

was seen, suggesting a possible role in reducing the hazard of

cardiovascular disorders. Bogolitsyn et al. (276) observed that

polyphenols elevated the quantity of sticky leukocytes in the

bloodstream of both leukemia cases and healthy people.

Moreover, leukocytes from leukemia cases exhibited a reduced

propensity to attach to surfaces relative to those from healthy

people, suggesting that algal polyphenols regulated the adhesive

activities of leukocytes in a dose-reliant methods. Moreover,

polyphenols augmented the adhesion and contact capabilities of

cells by stimulating defensive mechanisms against malignant

cells (276).

Figure 6 outlines the various health benefits of polyphenols

within the human body, highlighting their antioxidant, anticancer,

antibacterial, dermatological, neuroprotective, anti-inflammatory,

and anti-diabetic properties, as well as their modes of action at both

cellular and systemic levels.
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6 Polyphenols and nutritional aspects

Research indicates that the intake of polyphenol-rich foods can

promote health, chiefly owing to their antioxidant, anti-

inflammatory, anticarcinogenic, and several other qualities (499,

500). Moreover, these qualities are believed to support intestinal

health by fostering the proliferation of good bacteria (495). These

attributes promote the intake of foods abundant in polyphenols

(501), yielding numerous beneficial consequences (502, 503).

Figure 7 illustrates the impact of malnutrition (high-fat, high-

sugar diet) in contrast to a nutritious diet (fruits and vegetables) on

metabolism, gut microbiota composition (dysbiosis vs. eubiosis),

intestinal barrier integrity, systemic inflammation, insulin

resistance, dyslipidemia, adipose tissue accumulation, and

immune cell responses (TLR4, TLR2, Treg, Th1, Th2, Th17),

culminating in adverse obesity rather than a healthy

metabolic condition.
6.1 Role of nutrition and gut microbiota in
maternal and infant health

The early stage of life is crucial for the growth of the infant’s

gastrointestinal microbiome. The maturation of the gastrointestinal

microbiome throughout infancy and early childhood can affect

health and the likelihood of disorders in later life (504).

Alterations in the gut microbiota throughout this time precipitate

the onset of chronic disorders such as asthma, allergies, and obesity

in both adulthood and childhood (505, 506). Studies indicate that

human milk plays a crucial role in establishing an infant’s gut

microbiome and serves as a significant source. Consequently, the

mother’s breastfeeding practices safeguard the infant versus

gastrointestinal as well as respiratory pathogens, while also

mitigating the dangers of inflammatory deterioration (507).

Maternal microbial components are believed to be transmitted

to the newborn via human milk, along with the transfer of non-

microbial molecules (508). Consequently, research elucidating the

connection between nutrition and gastrointestinal microbiome in

adults has sought to demonstrate a correlation with postpartum

mothers (508, 509). The dietary habits of postpartum mothers,

modifications to these habits, and the variety of food types ingested

influence the mother’s microbiota, thus altering the human milk

microbiota. This may subsequently influence the gut flora of the

newborns (508).

Polyphenols, chemicals essential for plant defense, are prevalent

in individual foods. Polyphenols obtained from diverse food sources

exert advantageous impacts on various metabolic problems,

cognitive decline, and offer protection against conditions such as

tumors and aging (510). Among these, beneficial effects such as

antioxidant and anti-inflammatory qualities, as well as modulation

of hormonal and mitochondrial functions, polyphenols may

enhance mother milk production, as well as nursing efficacy

(510). The nature and composition of the mother’s food are
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crucial for the infant’s health, both throughout pregnancy and

throughout the breastfeeding period, including the time before

and after this phase (510). Consequently, a Mediterranean diet-

style regimen, abundant in polyphenols and fiber, enhances the

mother’s nutritional profile and is beneficial for maternal and

newborn health (511). Limited research with dairy animals, like

goats and cows, have shown that polyphenols from fenugreek

(Trigonella foenum-graecum L.) enhance milk output and

improve the quality and content of milk lipid (511, 512).

Fenugreek is predominantly utilized to enhance the quality of

milk production in postpartum mothers (513).

Fenugreek encompass several polyphenols, including quercetin,

isovitexin, rutin, vitexin, diosgenin, and saponins (514).

Additionally, other research indicates that fenugreek significantly

enhances milk flow, yield, oxytocin expression, and lipid level in

pregnant rats (515, 516). Scholars have shown thatMoringa oleifera,

which contains various flavonoids such as kaempferol, myricetin,

quercetin, and phenolic acid, influences milk level and enhances the

macronutrient content, involving protein and lipid, in dairy animals

(517, 518). In contrast, Olvera-Aguirre et al. (519) indicated no

impact on milk supply or quality on dairy animals utilizing the

same herb.

In vitro studies suggest that extracts or leaves of the M. oleifera

can diminish ROS, and enhance glutathione levels and casein gene
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expression in bovine mammary cells. M. oleifera exhibits a

preventive function versus induced ROS in vitro (520, 521).

Additionally, various herbal formulations, such as fenugreek,

Sauropus androgynus, and M. oleifera, were evaluated for their

lactation-enhancing effects on lactating rats (522, 523). The study’s

findings indicated an increase in milk output. Furthermore, several

animal experiments, including female rats and Balb/c mice,

demonstrated the lactation hormone-stimulating effect of milk

thistle and S. androgynus (524, 525). These research findings

indicate that the prolactin hormone’s expression, linked to

enhanced breast milk production in postpartum women, and the

oxytocin hormone, recognized as the milk-ejecting hormone, were

elevated (526, 527).

Sani et al. (528) investigated the impact of the polyphenol

resveratrol from the Launaea taraxacifolia on milk yield and

serum levels of oxytocin and prolactin in rats. The study’s results

demonstrate that resveratrol may enhance milk production and

elevate prolactin and serum oxytocin levels (528). One study

indicated that quercetin polyphenols enhance prolactin formation

in the pituitary gland, while another study showed that the same

polyphenol from the Ligustrum lucidum could diminish the

inflammation of the mammary gland (529, 530). Zhao et al. (531)

showed that orange peel extract increases milk output among dairy

animals, and Ceballos-Sánchez et al. (511) demonstrated that this
FIGURE 6

The numerous health advantages of polyphenols in the human body demonstrate their antioxidant, anti-cancer, antibacterial, dermatological,
neuroprotective, anti-inflammatory, and anti-diabetic properties, as well as their modes of action at both cellular and systemic levels.
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fiber and polyphenol-rich diet supplemented exerted a trophic

impact on both the pregnant rats and their newborns.

Nevertheless, additional research is required to clarify the

mechanisms (511).
6.2 Role of polyphenols from childhood to
the elderly

The intake of polyphenol-rich foods is essential for people

across all age groups, including children, adults, and the elderly.

Integrating polyphenol-rich meals can improve growth and

development in children and adolescents (532). Moreover,

polyphenols may be ingested to improve cognitive action and

overall health, especially in adults and the elderly (533, 534).

Moreover, incorporating polyphenols into the diet of adults and

the elderly can enhance overall health, diminish the hazard of

chronic disorders, and promote cardiovascular well-being (535,

536). Ziauddeen et al. (532) analyzed documents from the

National Diet and Nutrition Survey Rolling Programme (NDNS

RP) 2008–2014 to evaluate polyphenol consumption among the UK

population. The study results suggested that polyphenol

consumption escalated with age, with a more pronounced

increase observed in male subjects. In children, the principal

sources of polyphenols were potatoes, legumes, fruit juice, and
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tea. The primary sources of polyphenols for adults include

chocolate, tea, fruits, wine, and vegetables (532).

Corbo et al. (537) indicated that sweet cherry polyphenol

extracts suppressed spontaneous osteoclastogenesis in obese

youngsters by diminishing the development of multinucleated

TRAP+ osteoclasts in peripheral blood mononuclear cell cultures

(537). Moreover, the polyphenol extracts diminished the capacity of

peripheral blood mononuclear cells to create extensive resorption

zones on calcium phosphate film-coated Millenium slides,

consequently impeding the bone resorption functions of

osteoclasts and reducing TNFa mRNA levels (537). Conversely,

the evaluation of polyphenol extracts on cell viability in peripheral

blood mononuclear cell cultures, conducted via the MTT assay,

revealed that these extracts were non-toxic and promoted the

preservation of healthy cells (537). The research findings indicate

that sweet cherry extracts abundant in polyphenols can aid in the

prevention and/or enhancement of bone health issues related to

obesity (537).

A separate study by Whyte and Williams (538) noted that

blueberry anthocyanins positively influenced some memory actions

in youngsters, however, this impact did not encompass all cognitive

domains. Moreover, participants who ingested the blueberry

beverage exhibited superior performance relative to people who

took a placebo, especially in long-delay recall tasks of children in 10-

year-olds (538). A study including 400 children aged 4 to 12 aimed
FIGURE 7

The effects of malnutrition (high-fat, high-sugar diet) compared to a healthy diet (fruits and vegetables) on metabolism, gut microbiota composition
(dysbiosis vs. eubiosis), intestinal barrier integrity, systemic inflammation, insulin resistance, dyslipidemia, adipose tissue accumulation, and immune
cell responses (TLR4, TLR2, Treg, Th1, Th2, Th17) resulting in detrimental obesity as opposed to a healthy metabolic state.
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to examine the correlation between dietary polyphenol intake and

the risk of attention deficit hyperactivity disorder (539).

Polyphenols may offer protection against attention deficit

hyperactivity disorder by altering membrane fluidity and

adrenergic receptors, demonstrating antioxidant properties,

inducing vasodi lat ion, and regulat ing catecholamine

metabolism (539).

Mengfa et al. (540) examined the correlation between

polyphenol consumption and the incidence of type 2 diabetes.

The results indicated that a higher consumption of polyphenols

correlated with a diminished risk of type 2 diabetes. Guo et al. (541)

indicated that polyphenol consumption may decrease obesity risk in

elderly adults with elevated cardiovascular risk. Guglielmetti et al.

(542) indicated that a diet high in polyphenols positively influenced

gut permeability in ageing, leading to reduced serum zonulin levels.

Decreases were noted in inflammatory markers like IL-6, C-reactive

protein, and TNF-a, ROS indicators involving DNA injury, and

measures of vascular action. Moreover, polyphenol-rich diets help

preserve metabolomic profiles and microbiome equilibrium in the

elderly (542).
6.3 Role of polyphenols on athlete health

One advantageous outcome of addressing the athlete’s

nutritional requirements is enhancing athletic performance.

Environmental, endocrine, muscular fiber relationships, athletic

objectives, dietary, and genetic factors create individual variances

that may also influence athletic performance (543). Genetic and

dietary combinations can influence nutritional availability and

bodily systems associated with athletic performance (544). The

amount and composition of macronutrients, lipids, carbohydrates,

and proteins in a person’s dietary regimen significantly influence

athletes’ muscular functions and performance (544). Recent

evidence indicates that the kind and amount of protein are

essential for muscle hypertrophy and athletic performance, with

individual differences in protein consumption and amino acid

absorption-metabolism associated with both protein quantity and

quality, as well as genetic variances between persons (545).

Genetic differences might change the quantity of bioactive

peptides obtained from protein resources, hence influencing

muscle function and development (546). Consequently, daily

nutritional guidance includes tailored nutritional suggestions for

each athlete throughout training and pre-, intra-, and post-

competition periods (546). Alongside these macronutrients, it is

advisable to daily ingest foods abundant in manganese, butyrate,

omega-3, and polyphenols, and to contemplate incorporating

supplements such as antioxidants and anti-inflammatories (546).

Moreover, nourishment supplies energy to the body and helps

maintain physiological equilibrium. Furthermore, diet is crucial in

enhancing the body’s reaction to exercise-induced stress (547).

Consequently, an athlete must regulate the homeostasis of

oxidative stress while training. Oxidative stress, resulting from the

generation of ROS, can lead to inflammation and cellular

destruction and impede muscle recovery if it coincides with
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training adaptations (548). Antioxidant supplementation during

exercise influences athletic performance, but mitochondrial

adenosine triphosphate generation is not entirely effective,

forming superoxide radicals. The increased oxygen consumption

leads to a higher generation of superoxide radicals that require

neutralization (548). Muscle injury results in excessive free radical

production, hindering recovery, and the body's intrinsic systems for

eliminating these radical species are inadequate (548).

Plant-based diets are garnering interest in contemporary sports

nutrition because of their substantial nutrients of bioactive

compounds (549). Polyphenols offer several benefits for athletes,

including anti-inflammatory, antioxidant, and antimicrobial

characteristics, promoting overall wellness (550). These

advantages have linked some polyphenols, such as resveratrol,

quercetin, and curcumin, to muscle health (551). Numerous

studies on sports nutrition and polyphenols are now underway.

Many of these studies encompass the significant impacts of

polyphenolic materials on post-exercise muscle destruction as

well as their influence on enhancing physical performance (552).

Polyphenol compounds have been investigated under various

situations employing diverse supplementation regimens for

differing periods and dosages (503). Polyphenols, extensively

researched for their numerous beneficial effects. Consequently,

diets rich in polyphenols were examined to mitigate oxidative

stress induced by physical performance (553, 554).

Additionally, the impact of quercetin polyphenol supply on

athletic performance was examined. Quercetin, a flavonoid

polyphenol, plays a crucial function in muscle remodeling by

inhibiting muscle loss by controlling protein catabolism and

promoting muscular anabolism via increased phosphorylation

(555). A study of top cyclists revealed enhancements in aerobic

performance among athletes consuming 1200 mg of the supplement

daily for six weeks (556). Sgrò et al. (557) indicated that the group

administered 1 g of quercetin daily for two weeks exhibited reduced

plasma markers of eccentric muscle injury relative to the placebo

group. This indicates that quercetin facilitates the regeneration of

muscle injury (557). A study by Martin-Rincon et al. (558),

including 24 female and 33 male active athletes, attempted to

assess their conditions following long-distance running

performances of five and ten kilometers (558). The results

indicated that the blend of Zynamite and quercetin mitigates

muscle discomfort and injury while expediting the therapy of

muscular performance. The advantages of quercetin supply are

believed to be enhanced with elevated levels (558). Additionally,

polyphenols such as resveratrol, which are predominantly found in

red wine and grape skin, can stimulate anabolic muscle metabolism

by augmenting signaling pathway components (545). de Sousa et al.

(559) indicated that the grape juice supplement enhanced the

athletes’ endurance times.

A separate study by de Lima Tavares Toscano et al. (560)

observed that one dose of purple grape juice demonstrated an

ergogenic impact in recreational runners via prolonging duration to

exhaustion throughout running and enhancing antioxidant (560).

In addition to this, animal research are also incorporated in the

literature (561, 562). Nonetheless, the limited sample sizes in
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1653378
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Saad et al. 10.3389/fimmu.2025.1653378
resveratrol studies and the application of numerous unspecified

supplement dosages hinder the establishment of a definitive safety

and efficacy range for this supplement in athletes; thus, further

research is required (562).

Besides the advantages of resveratrol administration for

athletes, it may also regulate glucose and insulin sensitivity (563).

For athletes, it is crucial that the body utilizes insulin with optimal

efficiency throughout a physical change. A study investigating the

impact of resveratrol on glucose revealed that resveratrol can

enhance glucose regulation and insulin sensitivity in diabetic

rats (564).

Consequently, many findings indicate that resveratrol may

serve as a potent bioactive agent for athletes experiencing

hyperglycemic swings and insulin resistance. Moreover,

curcumin, a principal bioactive polyphenol found in the spice

turmeric, exhibits notable antioxidant and anti-inflammatory

activities. Due to its antioxidant properties, it effectively mitigates

oxidative stress and promotes muscle regeneration through

enhanced myofibrillar proliferation, hence decreasing muscle loss

in an animal model of induced muscular atrophy (545). In human

studies, curcumin supply resulted in a decrease in muscle damage

and inflammatory biomarkers, with an approximate dosage of 150–

1500 mg/day administered pre-, post-, and during exercise,

potentially enhancing athletic performance and muscle repair by

mitigating exercise-induced muscle injury and modulating the

inflammatory reaction (565, 566).

Nevertheless, further investigation is required regarding the

potential effects of curcumin supply on the molecular pathways

that regulate muscle growth caused by resistance training.

Furthermore, the advantages of curcumin are associated with its

interaction with the gut bacteria. In animal studies, curcumin and

resveratrol have anti-carcinogenic and anti-inflammatory

properties on microbiota by altering the Firmicutes/Bacteroidetes

ratio (567, 568). Curcumin enhances beneficial microbiome,

involving lactobacilli, bifidobacteria, and butyrate-forming

bacteria, while promoting intestinal barrier integrity through

immunomodulatory effects (569, 570).

In a single-blind parallel-design clinical trial, Atan et al. (571)

found that hardaliye ingestion increased total serum antioxidant

capacity and decreased oxidative stress index and nitric oxide levels

compared to the placebo group (571). The intake of hardaliye

among young soccer players shows antioxidative properties (571).

A distinct investigation comprising two sub-studies investigated the

effects of sugar-polyphenol-rich diluted hazy apple juice on the

intestinal barrier of ultra-marathon runners (572). The study

findings indicated substantial impacts on indicators of intestinal

inflammation and permeability in the serum of participants who

took the test drink after exercise, yielding positive outcomes

compared to those who ingested the placebo drink (572). Diluted

apple juice was recognized for its rehydration properties post-

exercise and can also positively influence the intestinal barrier

and immunity following physical activities (572). Mengfan et al.

(540) also indicate that polyphenolic substances from Lonicera

caerulea may alleviate swimming fatigue at ambient and low

temperatures. Moreover, the buildup of metabolites, energy
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metabolism, and the downregulation of inflammatory factor

production were enhanced (540).

Tropospheric ozone, an element of urban air contamination, is

generated via photochemical processes that involve nitrogen oxides,

hydrocarbons, and volatile organic substances. Ozone exposure

impacts the central nervous system, leading to neurological

illnesses including Alzheimer’s and Parkinson’s diseases, cognitive

deficits, and neuroinflammation (573). Both human and animal

research demonstrate the neurotoxic consequences of ozone in this

setting. These impacts encompass the diminution of dopaminergic

neurons, the buildup of pathogenic proteins, and similar

phenomena (573).

The hippocampus, a specific brain area, is susceptible to ozone

exposure for multiple reasons. This area contains brain-derived

neurotrophic factors and other elements important in neural

growth, differentiation, memory, as well as learning (573).

Research on brain-derived neurotrophic factors in humans and

animals has demonstrated that short episodes of exercise enhance

neuronal function, brain vascularization, and neuronal synthesis by

increasing levels of derived neurotrophic factors, hence fostering

improved mood and enhanced cognition (573). Nevertheless,

exercising in contaminated air was demonstrated to suppress

acute exercise-induced brain-derived neurotrophic factor release

(573). Consequently, contact with contaminated air is believed to

impede cognitive health and the repair of the central nervous

system. A trial on high-intensity bikers showed that polyphenol

supply elevated contaminated levels in those exercising in

contaminated air (573).

Figure 8 illustrates the fate of dietary polyphenols within the

human digestive system, beginning with their natural occurrence in

fruits and vegetables as aglycones, glycosides, or bound forms.

Mechanical processing in the stomach liberates these compounds,

facilitating absorption in the small intestine, while unabsorbed

fractions reach the large intestine for microbial metabolism,

generating bioactive metabolites that subsequently enter systemic

circulation. This metabolic journey has a direct impact on athletes’

health, as polyphenols exert antioxidant, anti-inflammatory, and

regulatory effects on muscle metabolism, oxidative stress, and

recovery. Thus, effective digestion and biotransformation of

polyphenols underpins their capacity to enhance performance,

endurance, and post-exercise repair.
6.4 Heart diseases and polyphenols

Globally, cardiovascular diseases are the leading cause of

mortality, according to data from the World Health Organization

(WHO). About 20 million fatalities annually, or 31% of all deaths,

were attributed to cardiovascular diseases (574). Heart attacks and

strokes account for around 85% of the fatalities listed above.

Approximately 75% of worldwide cardiovascular disease-related

mortality occurs in low- and middle-income nations (574). In

accordance with the most current heart disease and stroke

statistics published by the American Heart Association, it is

estimated that more than 100 million people in the USA, which is
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equivalent to more than 50% of all people over the age of 18, have

hypertension. Numerous health advantages and cardiovascular

disease have been linked to polyphenols found in numerous

dietary sources, for instance, apples, coffee, tea, and cocoa

(575, 576).

Epidemiological research strongly suggests consuming

polyphenols because it is unmistakably associated with a lower

incidence of cardiovascular diseases (577, 578). Researchers now

think that polyphenolic substances work at the molecular level to

improve endothelial function and lower platelet aggregation

because they can stop blood clots, reduce inflammation, and stop

platelets from sticking together (401). Thus, polyphenolic

substances are significant in the prevention and treatment of

cardiovascular disease. According to some research, those who

consume more flavonoids in their diets than those who consume

the least have a 47% increased risk of cardiovascular disease (579).

Research has shown that consuming flavan-3-ol from various

food sources may have positive effects on cardiometabolic outcomes

and reduce the risk of diabetes and cardiovascular-related outcomes

(such as blood pressure, cholesterol, and myocardial infarction).

Flavan-3-ols, a well-recognized polyphenol, are found in significant

concentrations in a number of frequently eaten foods, including tea,

almonds, cocoa (chocolate), grapes, and legumes (580–582). Red

and blue fruits and vegetables, including blueberries, raspberries,

strawberries, bilberries, red grapes, and cherries, are rich sources of

anthocyanins, a kind of flavonoid (583). Like other polyphenols,

anthocyanins that are consumed through diet are metabolized by

the microbiome and the host to create active metabolites that have
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anti-inflammatory properties, improve vascular outcomes, reduce

the risk of myocardial infarction in both men and women, and have

additional positive effects on cardiovascular risk factors (583, 584).

Stilbene is mainly found in berries, red wine, and grapes. In

addition to its antioxidant and anti-inflammatory properties, it also

stimulates sirtuins, which slow down the aging process (407).

Resveratrol supplements are said to significantly reduce fasting

blood sugar, total cholesterol, C-reactive protein, and both

systolic and diastolic blood pressure (585). Apple flavonol

quercetin has been shown to lower systolic blood pressure,

improve endothelial function, and lessen the risk of

cardiovascular disease (585–587).
6.5 Polyphenols and Alzheimer’s disease

Alzheimer’s disease is a catastrophic neurodegenerative

condition that affects elderly people worldwide (588). Damage to

neuron structure and function is the primary cause, which

ultimately results in the death of nerve cells in the human brain

(588). WHO has disclosed that over 50 million people globally

suffer from dementias, including Alzheimer’s disease, and that it is

expected to rise to over 152 million by the year 2050. Approximately

60% of dementia patients globally originate from low- or middle-

income nations (589).

Alzheimer’s disease is thought to be at risk due to both genetic

and environmental factors (590). Free radicals are very reactive

chemical groups that arise from both physiological and pathological
FIGURE 8

Polyphenol digestion and absorption in the human digestive system, depicting the natural forms of polyphenols (aglycones, glycosides, bound to
extracellular matrix) found in fruits and vegetables, their mechanical breakdown and release in the stomach, absorption in the small intestine,
microbial metabolism and metabolite absorption in the large intestine, and subsequent systemic circulation.
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processes. They have an odd number of electrons. At normal

concentrations, ROS participate in many cellular and signaling

pathways, including phagocytosis, enzyme activation, and cell

cycle control (591). However, excessive ROS generation may lead

to harmful consequences, such as damage to proteins, lipids, and

DNA (591). Cell damage may result from an imbalance in the status

of oxidants and antioxidants. It has been proposed that oxidative

damage, a consequence of ROS, plays a role in the pathogenesis—

the formation, process, and advancement of neurodegenerative

diseases and disorders, cancer, diabetes, and aging (592).

Extensive scholarly research has shown that nitric oxide,

hydrogen peroxide, hydroxyl radicals, and superoxide anion are

essential components of oxidative stress, which ultimately results in

Alzheimer’s disease (593). However, the defensive systems known

as enzymatic and non-enzymatic antioxidants eliminate ROS.

Polyphenolic chemicals have antioxidant properties and are

primarily involved in neuroprotection. Pomegranate juice, dates,

and figs are all high in polyphenols and should be added to the diet

to help with behavioral problems and brain damage by keeping the

balance between oxidants and antioxidants in transgenic APPs w/T

g 2576 animals (594). Additionally, researchers found that extract

from walnuts, whose polyphenols are the most effective among all

nuts, has a remarkable ability to shield PC12 cells from oxidative

stress caused by amyloid beta peptide (594).
6.6 Polyphenols’ anti-cariogenic properties

Tooth decay, or dental caries, affects 60–90% of children and

most adults worldwide and is one of the most common and serious

oral health issues (595). Teeth, oral flora, and nutritional factors all

have an impact on dental caries disease. Dental plaque absorbs

dietary carbohydrates like sucrose or sugars, which bacteria (found

in dental plaque on the outside of teeth) then convert into organic

acids like lactic acid (595). Demineralization, or the net loss of

mineral structure on the tooth’s surface, is the result of the acid

produced gradually removing calcium and phosphate from the

tooth’s surface (595).

Polyphenols, which are present in tea, coffee, red grape seeds,

and cocoa, have antibacterial properties that may help prevent

cariogenic processes. They may slow down the growth of bacteria,

protect the tooth surface, and inhibit the activity of enzymes like

glucosyltransferase and amylase. Flavonoids are also effective anti-

cariogenic compounds (596).

Two categories can delineate the anti-cariogenic properties of

phenolic compounds: (I) plant extracts rich in polyphenols without

recognized constituents; and (II) antibacterial polyphenolic agents.

It has been shown that extracts derived from unfermented cocoa,

green tea, and red grape seeds that include a high polyphenol

concentration are effective against Streptococcus mutants and

periodontal disorders. A flavonoid called quercetin-3-O-a-L-
arabinose-pyranoside (guaijaverin) stops the growth of S.

mutants, which is likely an anti-plaque effect (597, 598).
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7 Possible negative impact of
polyphenols

People use polyphenols, an essential component of plant-

derived food with numerous health benefits, to prevent and cure

multiple diseases (599). Tragically, like any chemical substance,

polyphenols may be harmful depending on dosage, circumstances,

and environmental interactions. One of the important negative

consequences of polyphenols is their ability to block iron uptake in

the human body (599). Despite being a trace element that is

necessary for human survival, iron deficiency is a widespread

ailment that affects people all over the globe (599). Polyphenols

have the capacity to bind to transition metal ions such as iron and

copper. This stops free radicals from being produced by the Fenton

and Haber-Weiss reactions (600). In addition to the polyphenolic

compound’s structure, the pH or ion form (Fe2+ and Fe3+)

influences both binding strength and total ion concentration.

Anemia occurs when an individual consumes a diet rich in

polyphenols or takes supplements containing these compounds

(600). Polyphenols bind to iron in the gastrointestinal tract,

inhibiting its absorption. Additionally, they may influence the

regulation of iron homeostasis (599, 600).

Flavonoids can form complexes of proteins by both nonspecific

mechanisms such as hydrogen bonding and hydrophobic effects, as

well as with covalent bond formation. Polyphenols form complexes

with proteins, which may be either soluble or insoluble. These

complexes alter the structure, isoelectric point, hydrophobicity,

solubility, and susceptibility of the proteins to enzymes (601).

Polyphenols may have detrimental effects on the digestive

system’s function by impacting the composition of the intestinal

flora and inhibiting digestive enzymes (602).
8 Conclusions and future perspective

Polyphenols, a diverse class of natural compounds, exhibit a

wide range of biological activities largely determined by the number

and position of their hydroxyl groups. Abundant in herbs and

prevalent in traditional Asian and Mediterranean diets, these

compounds have attracted significant scientific interest for their

potential health benefits. Despite extensive research highlighting

their neuroprotective, antioxidant, anti-inflammatory, antibacterial,

dermatological, antitumor, and antidiabetic properties, the

underlying mechanisms remain only partially understood.

A key limitation in translating these benefits into clinical

practice lies in the low bioavailability of polyphenols. The

practical improvement of daily polyphenol intake can be achieved

through several strategies. Consuming a diverse range of

polyphenol-rich foods, such as fruits, vegetables, whole grains,

nuts, tea, coffee, and certain herbs across meals throughout the

day, ensures both variety and a steady supply of these bioactive

compounds. Choosing minimally processed foods and combining

different sources may enhance overall intake and synergistic effects.
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Additionally, adopting preparation methods that preserve

polyphenol content, such as steaming instead of boiling, and

consuming polyphenol-rich foods with healthy fats may

improve absorption.

Additionally, polyphenols that benefit most from nano-delivery

systems are those with inherently poor water solubility, instability in

the gastrointestinal tract, or rapid metabolism, factors that limit

their absorption and therapeutic potential. Notably, curcumin,

quercetin, resveratrol, tea polyphenols such as EGCG, and

catechins have shown significant improvements in bioavailability,

biological activity, and stability when encapsulated in nanoscale

carriers. Nano-delivery approaches also enhance the performance

of lignans and tannic acid, as well as complex polyphenolic extracts

from sources like grape seed and propolis. By protecting these

compounds from degradation and promoting controlled, targeted

release, nano-delivery systems make these polyphenols more

effective for use in health and disease management applications.

Many are rapidly metabolized or degraded before reaching their

target tissues, reducing their therapeutic potential. To address this,

advanced drug delivery systems such as liposomes and nanocarriers

have been widely investigated. However, a universally effective

delivery method applicable across different polyphenol classes is yet

to be established, highlighting the need for further targeted research.

Polyphenols continue to be an important focus in nutritional science,

with growing evidence supporting their role in health maintenance

across various populations, including athletes. Yet, current literature

lacks consensus on optimal intake levels, and comprehensive studies

encompassing all polyphenol subclasses are still limited.

Looking forward, enhancing the bioavailability and targeted

delivery of polyphenols could open new avenues in drug

development for metabolic disorders, dermatological applications,

and the formation of functional foods aimed at improving physical

performance and overall well-being. Bridging current knowledge

gaps and integrating polyphenols into daily dietary practices may

contribute significantly to promoting healthier lifestyles and

improving performance outcomes, particularly among

future generations.
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Optimizing the extraction of the polyphenolic fraction from defatted strawberry seeds
for tiliroside isolation using accelerated solvent extraction combined with a Box–
Behnken design. Molecules. (2024) 29:3051. doi: 10.3390/molecules29133051

77. Sanches Contieri L, Mendes de Souza Mesquita L, Ferreira VC, Moreno JA,
Pizani RS, Forster Carneiro T, et al. Sustainable and innovative method for real-time
extraction and analysis of polyphenols from green propolis by pressurized liquid
extraction coupled inline with photodiode array detection (PLE-PDA). ACS Sustain
Chem Eng. (2024) 12:18735–47. doi: 10.1021/acssuschemeng.4c08602

78. Naczk M, Shahidi F. Phenolics in cereals, fruits and vegetables: Occurrence,
extraction and analysis. J Pharm BioMed Anal. (2006) 41:1523–42. doi: 10.1016/
j.jpba.2006.04.002

79. Hordiei K, Gontova T, Trumbeckaite S, Yaremenko M, Raudone L. Phenolic
composition and antioxidant activity of Tanacetum parthenium cultivated in different
regions of Ukraine: insights into the flavonoids and hydroxycinnamic acids profile.
Plants. (2023) 12:2940. doi: 10.3390/plants12162940

80. Zulfisa Z, Fika R, Agusfina M, Yonrizon Y, Muhsanah A. Determination of total
phenolic content of ethanol extract of broken bone twigs (Euphorbia tirucalli Linn.) by
Folin-Ciocalteu method spectrophotometrically. J Eduhealth. (2023) 14:1326–31.
doi: 10.54209/jurnaleduhealth.v14i3.2603

81. Stalikas CD. Extraction, separation, and detection methods for phenolic acids
and flavonoids. J Sep Sci. (2007) 30:3268–95. doi: 10.1002/jssc.200700261

82. Fernandes AJD, Ferreira MRA, Randau KP, de Souza TP, Soares LAL. Total
flavonoids content in the raw material and aqueous extractives from Bauhinia
monandra Kurz (Caesalpiniaceae). Sci World J. (2012) 2012:923462. doi: 10.1100/
2012/923462

83. Welch CR, Wu Q, Simon JE. Recent advances in anthocyanin analysis and
characterization. Curr Anal Chem. (2008) 4:75–101. doi: 10.2174/157341108784587795

84. Tavassoli M, Khezerlou A, Firoozy S, Ehsani A, Punia Bangar S. Chitosan-based
film incorporated with anthocyanins of red poppy (Papaver rhoeas L.) as a colorimetric
sensor for the detection of shrimp freshness. Int J Food Sci Technol. (2023) 58:3050–7.
doi: 10.1111/ijfs.16432
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derivatives for anti-proliferative, anti-apoptotic and anti-migrative activities in human
breast cancer cell lines MCF-7. Chem Biodivers. (2023) 20:e202200872. doi: 10.1002/
cbdv.202200872

468. Wu W, Xiang F, He F. Polyphenols from Artemisia argyi leaves:
Environmentally friendly extraction under high hydrostatic pressure and biological
activities. Ind Crops Prod. (2021) 171:113951. doi: 10.1016/j.indcrop.2021.113951

469. Mechchate H, Costa de Oliveira R, Es-Safi I, Vasconcelos Mourao EM,
Bouhrim M, Kyrylchuk A, et al. Antileukemic activity and molecular docking study
Frontiers in Immunology 41
of a polyphenolic extract from coriander seeds. Pharmaceutics. (2021) 14:770.
doi: 10.3390/ph14080770

470. Girardelo JR, Munari EL, Dallorsoleta JC, Cechinel G, Goetten AL, Sales LR,
et al. Bioactive compounds, antioxidant capacity and ‘anti-tumor’ al activity of
ethanolic extracts from fruits and seeds of Eugenia involucrata DC. Food Res Int.
(2020) 137:109615. doi: 10.1016/j.foodres.2020.109615

471. Wu Z, Gao R, Li H, Wang Y, Luo Y, Zou J, et al. New insight into the joint
significance of dietary jujube polysaccharides and 6-gingerol in antioxidant and ‘anti-
tumor’ activities. RSC Adv. (2021) 11:33219–34. doi: 10.1039/D1RA03640H

472. Chen BH, Hsieh CH, Tsai SY, Wang CY, Wang CC. Anti-cancer effects of
epigallocatechin-3-gallate nanoemulsion on lung cancer cells through the activation of
AMP-activated protein kinase signaling pathway. Sci Rep. (2020) 10:5163. doi: 10.1038/
s41598-020-62136-2

473. Kato K, Nagane M, Aihara N, Kamiie J, Miyanabe M, Hiraki S, et al. Lipid-
soluble polyphenols from sweet potato exert ‘anti-tumor’ activity and enhance
chemosensitivity in breast cancer. J Clin Biochem Nutr. (2021) 68:193–200.
doi: 10.3164/jcbn.20-73

474. Gomez-Cadena A, Urueña C, Prieto K, Martinez-Usatorre A, Donda A, Barreto
A, et al. Immune-system-dependent anti-tumor activity of a plant-derived polyphenol
rich fraction in a melanoma mouse model. Cell Death Dis. (2016) 7:e2243–3.
doi: 10.1038/cddis.2016.134

475. Yi J, Wang Z, Bai H, Yu X, Jing J, Zuo L. Optimization of purification,
identification and evaluation of the in vitro ‘anti-tumor’ activity of polyphenols from
Pinus koraiensis pinecones. Molecules. (2015) 20:10450–67. doi: 10.3390/
molecules200610450

476. Yi J, Wang Z, Bai H, Li L, Zhao H, Cheng C, et al. Polyphenols from pinecones
of Pinus koraiensis induce apoptosis in colon cancer cells through the activation of
caspase in vitro. RSC Adv. (2016) 6:5278–87. doi: 10.1039/C5RA24913A

477. Huang Y, Zhu X, Zhu Y, Wang Z. Pinus koraiensis polyphenols: Structural
identification, in vitro antioxidant activity, immune function and inhibition of cancer
cell proliferation. Food Funct. (2021) 12:4176–98. doi: 10.1039/D0FO03347B

478. Xu P, Yan F, Zhao Y, Chen X, Sun S, Wang Y, et al. Green tea polyphenol
EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-
canonical pathways in a 4T1 murine breast cancer model. Nutrients. (2020) 12:1042.
doi: 10.3390/nu12041042
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