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Precision medicine with car cells
in acute myeloid leukemia:
where are we?
Larissa C. Zanetti 1*†, Victoria Tomaz1*†,
Ingrid Ferreira de Souza1, Paulo V. Campregher1,2,
Nelson Hamerschlak1* and Lucila N. Kerbauy1*

1Hospital Israelita Albert Einstein, São Paulo, Brazil, 2Genesis Genomics, São Paulo, Brazil
The integration of chimeric antigen receptor (CAR) therapies with precision

medicine holds potential to impact the treatment landscape for acute myeloid

leukemia (AML). Genetic mutations play a role in the efficacy of CAR-T and CAR-

NK cells, influencing their crucial role in determining the effectiveness of these

cells, as well as their proliferation, persistence, resistance, and safety. This review

examines how mutations in FLT3, DNMT3A, NPM1, TP53, TET2, gene fusions

involving RUNX1 and KMT2A and other key genes modulate CAR-based

immunotherapies, highlighting both vulnerabilities and resistance mechanisms.

Recent findings demonstrate that mutations in genes such as DNMT3A and NPM1

enhance antigen expression, thereby improving CAR targeting. In contrast,

mutations in TP53 drive immune escape and resistance to therapy.

Understanding these mutation-specific effects is essential for tailoring CAR

therapies to individual patients, optimizing efficacy while minimizing toxicity.

By leveraging genomic profiling and personalized engineering approaches, CAR

therapies can be refined to overcome resistance and enhance precision in AML

treatment. Future research should focus on integrating multiomic data to

develop mutation-adapted CAR strategies, ensuring that patients receive the

most effective and personalized immunotherapy.
KEYWORDS
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Introduction

Precision medicine in onco-hematology has been revolutionized by the development of

chimeric antigen receptor (CAR) cell therapies, particularly with the use of CAR-modified

T cells (CAR-T) and CAR-modified natural killer cells (CAR-NK). These approaches have

introduced a highly targeted strategy for treating hematologic malignancies, offering new

hope for patients with relapsed or refractory disease, especially in acute lymphoblastic

leukemia (1), non-Hodgkin lymphoma (2), and multiple myeloma (3). Unlike conventional

treatments, which often lack specificity and result in widespread cytotoxicity, CAR

therapies provide a personalized approach by engineering immune cells to recognize and
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eliminate malignant cells based on specific surface antigens (4). The

success of CAR-T cell therapy has been exemplified by FDA-

approved treatments targeting CD19 and BCMA in B-cell

malignancies (5–11).

CAR-T cells are generated by modifying a patient’s T

lymphocytes to express a synthetic receptor specific to an antigen

present on cancer cells (12–14). This modification enhances the

ability of T cells to recognize and kill tumor cells with high

specificity (15). Clinical trials have demonstrated impressive

response rates, including complete remissions in cases previously

resistant to conventional therapies (16). Although immune-effector

cell-associated neurotoxicity syndrome (ICANS) and cytokine

release syndrome (CRS) are now better managed and less

concerning to clinicians, significant challenges persist (17–19),

These include concerns about late adverse effects such as

secondary neoplasias, particularly secondary myeloid neoplasms,

which have been reported in some cases but have not been

definitively proven to be caused by CAR-T cell therapy (20–24).

Additional major challenges include the logistical timeframe from

lymphocyte apheresis to CAR-T cell delivery, patient

lymphodepletion protocols, and the standardization of apheresis

strategies for manufacturing, all of which significantly affect

treatment success and patient management (25–29), Additionally,

tumor escape mechanisms such as antigen loss or downregulation

continue to complicate therapeutic efficacy (19).

To address the limitations of CAR-T therapy, CAR-NK cell

therapy has emerged as a promising alternative. Natural killer (NK)

cells are innate immune effectors capable of directly killing tumor

cells without prior antigen sensitization (30–32). CAR-NK cells can

be derived from multiple sources, including cord blood, peripheral

blood, and established NK cell lines such as NK-92 (33). Compared

to CAR-T cells, CAR-NK cells show a more favorable safety profile,

with a significantly reduced risk of CRS and ICANS due to their

more regulated cytokine secretion (34, 35). Importantly, CAR-NK

cells hold manufacturing advantages as an “off-the-shelf” product:

they can be produced from universal donors without the need for

individualized patient-specific engineering, allowing scalable

manufacturing, rapid availability, and reduced costs (33–37).

Recent advances have also addressed the historical limitation of

NK cell persistence in vivo. Genetic engineering approaches

including co-expression of cytokines like IL-15 have extended

CAR-NK survival and proliferation, enabling detectable

persistence in patients for up to a year in some clinical contexts

(34). Preclinical and early clinical data demonstrate promising anti-

tumor efficacy of CAR-NK cells targeting BCMA, CD19, and other

tumor-associated antigens, with a lower incidence of graft-versus-

host disease (GVHD) relative to allogeneic CAR-T therapies (34,

37–39). Nonetheless, challenges remain, including optimizing in

vivo persistence, improving trafficking to solid tumors, and

remaining vigilant for any off-target or long-term safety effects

(39, 40).

Overall, CAR-NK therapy represents a compelling and

complementary cellular immunotherapy platform that combines

enhanced safety, off-the-shelf manufacturing scalability, and

improving persistence, positioning it as a pivotal option in the
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future immuno-oncology arsenal. However, since CAR-NK trials

are still recent, the literature on the effect of AML mutations on

CAR-NK cell therapy remains scarce.

Among hematologic malignancies, acute myeloid leukemia

(AML) remains a particularly challenging disease due to its high

relapse rates and poor long-term survival outcomes. AML is

characterized by significant genetic and antigenic heterogeneity,

making the identification of universal CAR targets challenging (41–

43). Furthermore, many potential AML-associated antigens, such as

CD33 and CD123, are also expressed on healthy hematopoietic

stem and progenitor cells, increasing the risk of on-target, off-tumor

toxicity (44). Despite these challenges, ongoing research into CAR

therapies for AML has identified promising targets, including CD33

(45), CD123 (46), and CLL-1 (47), among others (48–62).

Additionally, mutations such as FLT3-ITD, NPM1, and

DNMT3A not only contribute to AML pathogenesis but may also

influence responses to CAR-based therapies, emphasizing the need

for molecularly guided treatment strategies.

This review will examine the latest advancements in CAR-T and

CAR-NK therapies, with a particular focus on their application in

precision medicine for AML. We will discuss the influence of

molecular subtypes on therapeutic efficacy, explore the key

challenges in CAR therapy for AML, and highlight future

directions for integrating CAR-based treatments into personalized

treatment frameworks for hematologic malignancies.
The role of molecular alterations in
leukemogenesis

Hematopoietic stem cells (HSCs), due to their long lifespan and

self-renewal capacity, are particularly prone to accumulating

mutations over time, which can drive clonal evolution toward

hematologic malignancies. Although most spontaneous mutations

have minimal clinical impact or are efficiently eliminated by

immune surveillance, specific genetic alterations affecting key

regulators of hematopoiesis can disrupt critical signaling and

transcriptional networks. These changes confer a selective growth

advantage to mutated clones, promoting their expansion and

ultimately contributing to leukemogenesis (63).

The development of AML is commonly explained by a two-class

model of mutations. Class I mutations, also known as activating

lesions, lead to dysregulated signaling cascades that enhance the

proliferation and survival of hematopoietic progenitor cells

(including KIT, FLT3, and NRAS). In contrast, Class II mutations

impair hematopoietic differentiation through loss-of-function

alterations in essential transcription factors or their cofactors,

disrupting normal lineage commitment and maturation processes

(including RUNX1, CBFb, CEBPA, NPM1, MLL, and RARA)

(Figure 1) (64, 65).

FLT3 mutations, particularly FLT3-ITD, lead to the constitutive

activation of tyrosine kinase signaling pathways, driving

uncontrolled proliferation and survival of leukemic cells.

Mutations in RAS oncogenes, present in approximately 10% to

15% of AML cases, include activating alterations in NRAS, KRAS,
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PTPN11, and NF1, which lead to abnormal proliferative signaling

through the MAPK and PI3K pathways. While the prognostic

impact of RAS mutations remains debated, their acquisition or

clonal expansion, much like FLT3 mutations, is frequently observed

during the transition from myelodysplastic syndromes (MDS) to

AML, typically correlating with a poor prognosis (64).

Alterations in NPM1 cause aberrant cytoplasmic localization of

nucleophosmin, which disrupts ribosomal biogenesis and cellular

differentiation. Normally, NPM1 shuttles between the nucleus and

cytoplasm, playing a key role in chromatin remodeling, genomic

stability, and ribosome biogenesis. However, its mutant form

disrupts interaction with ARF, impairing the p53 pathway and

thereby enabling the uncontrolled survival and proliferation of

myeloid cells (66). Similarly, CEBPA encodes a transcription

factor that functions as a tumor suppressor, inhibiting

proliferation and driving neutrophil differentiation. CEBPA

mutations, found in 7-11% of AML cases, occur as either single

mutations (~45%) or double mutations (~55%) (66–68).

Mutations in IDH1 and IDH2 are gain-of-function alterations

that produce the oncometabolite 2-hydroxyglutarate (2-HG). Elevated

2-HG levels inhibit a-ketoglutarate–dependent enzymes, including

the TET family of DNA demethylases, leading to widespread DNA

and histone hypermethylation (66). This epigenetic dysregulation

blocks normal hematopoietic differentiation and contributes to the

expansion of immature myeloid progenitors. Additionally, AML cells
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harboring IDH mutations often show increased dependence on anti-

apoptotic pathways, such as BCL-2 (67). TET2 is an epigenetic

regulator that catalyzes the conversion of 5-methylcytosine to 5-

hydroxymethylcytosine, facilitating DNA demethylation and normal

gene expression during hematopoiesis. Loss-of-function mutations in

TET2, which frequently occur independently of IDH mutations,

disrupt DNA demethylation, resulting in aberrant self-renewal of

hematopoietic stem cells, impaired differentiation, and genomic

instability. This epigenetic alteration contributes to leukemogenesis

and can cooperate with other mutations to drive AML development

(66, 67).

Mutations in DNMT3A and ASXL1 further contribute to AML

pathogenesis. DNMT3A, a DNA methyltransferase, plays an

essential role in maintaining DNA methylation and regulating

gene expression. Loss-of-function mutations in DNMT3A result

in disrupted gene regulation and impaired differentiation, thereby

promoting leukemogenesis (65). ASXL1, encoding a chromatin

remodeling protein, is also frequently mutated in AML. These

loss-of-function mutations affect chromatin regulation, altering

gene expression and cellular differentiation. Both DNMT3A and

ASXL1 mutations are associated with a poor prognosis, as they

drive clonal expansion and disease progression (68).

Although less frequent, TP53 mutations have a significant impact

on AML prognosis. Mutant TP53 leads to defective DNA damage

response, increased genomic instability, and chemoresistance. In
FIGURE 1

Key genetic alterations involved in leukemogenesis of acute myeloid leukemia (AML). Mutations in hematopoietic stem cells can disrupt some
regulatory pathways, conferring a selective advantage that drives clonal expansion. In AML, Class I mutations (KIT, FLT3, N-RAS) increasing
proliferation and survival of the tumor cells and Class II mutations (RUNX1, CBFb, CEBPA, NPM1, MLL, RARA) impairing differentiation. Figure created
with BioRender.com.
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AML, these mutations often produce a truncated, defective p53

protein, impairing cell cycle arrest and apoptosis, allowing

genetically unstable cells to proliferate uncontrollably (67).

Additionally, chromosomal rearrangements such as RUNX1-

RUNX1T1, CBFB-MYH11, and PML-RARA play pivotal roles in

AML subtypes. RUNX1-RUNX1T1, resulting from t (8, 21),

interferes with RUNX1 function, blocking myeloid differentiation

and altering gene expression. Similarly, CBFB-MYH11, formed by

inv (16) or t (16, 16), disrupts the core-binding factor complex,

impairing myeloid maturation and leading to the M4 AML subtype.

PML-RARA, characteristic of acute promyelocytic leukemia (APL),

disrupts the retinoic acid receptor (RAR) pathway, blocking

transcriptional activation required for differentiation (66).

These genetic alterations often interact synergistically, creating a

permissive environment for leukemogenesis through cumulative

disruptions in cell signaling, epigenetic regulation, and differentiation.
Integrating molecular data into the
classification and management of AML

Building on the knowledge of leukemogenic mechanisms and

recurrent somatic mutations, current classification systems aim to

reflect this biological diversity by integrating genomic data into

diagnostic and prognostic criteria. The World Health Organization

(WHO, 2022) classification defines 11 distinct AML subgroups

primarily based on specific genetic abnormalities. The European

LeukemiaNet (ELN, 2022) builds upon this structure, identifying 14

molecularly defined groups with a stronger emphasis on risk

stratification and clinical management. In parallel, the

International Consensus Classification (ICC, 2022) delineates 18

recognized entities, further refining disease categorization (69–72).
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Nowadays, molecular panels and cytogenetic analyses have

become essential components of the diagnostic workup for

myeloid neoplasms. Comprehensive panels that include

recurrently mutated genes associated with AML and other

myeloid malignancies, combined with traditional cytogenetic

assessment, provide critical information for accurate diagnosis,

risk stratification, and therapeutic decision-making (70, 71).

These integrated approaches are now considered mandatory in

routine clinical practice, as they enable the identification of

actionable mutations, guide patient management, and form the

basis for precision medicine strategies in hematologic malignancies.

The mandatory integration of molecular panels and cytogenetic

analyses in myeloid neoplasms not only refines diagnosis but also

guides therapy by identifying actionable mutations. FLT3mutations

can be targeted with midostaurin or gilteritinib, while IDH1/2

mutations respond to ivosidenib or enasidenib, and BCL-2

inhibition with venetoclax is effective in cases with epigenetic

dysregulation. Ongoing trials are exploring therapies directed at

TP53, KIT, and other epigenetic regulators. Importantly, these

molecular insights could also inform the development of

mutation-informed CAR-T cell strategies, enabling the design of

personalized immunotherapies for AML (69, 73).

Currently, there are 75 registered clinical trials of CAR-T cell

therapy for AML, of which 53 (71%) are Phase 1 or early Phase 1

trials, with CD33, CD123, CLL-1, FLT3 and NPM1c being the most

frequently targeted antigens (69), as summarized in Table 1. Despite

this growing number of studies, most of these trials do not

incorporate the patients’ underlying molecular alterations into

their design or analysis. This represents a critical limitation, as

molecular heterogeneity is a defining feature of AML and

significantly influences disease biology, progression, and

therapeutic response. Distinct genetic alterations activate different
TABLE 1 Comparative overview of major AML targets.

AML
target

Expression Safety
Clinical
progress

Resistance Reference

CD33
Expressed in more than 90% of leukemic blasts.
Expressed in normal progenitor cells, myeloid
cells, monocytes, tissue-resident macrophages

Myelosuppression, cytopenia
and CRS

Phase I/II

Expressed in ex vivo
expanded CAR-T cells.
T cell exhaustion and

fratricide

NCT07026942,
NCT03473457 (74–77),

CD123
Overexpressed in FLT3-ITD and NPM1-

mutated AMLs
Expressed in normal hematopoietic cells

Severe CRS, on-target, off-
tumor toxicity and capillary

leak
Phase I

Toxicity limits dose and
common relapse

NCT06420063,
NCT06201247,

NCT04678336 (78–80),

CLL-1

Expressed on 85%–92% of all AML classes.
Expressed in differentiated myeloid cells.

Not expressed in normal hematopoietic stem
cells

Severe pancytopenia Phase I Cytopenias
NCT04219163,
NCT06017258,

NCT06128044 (81, 82),

FLT3

Overexpressed in AML FLT3 mutated (FLT3-
TKD or FLT3-ITD).

Lower levels in normal hematopoietic stem and
progenitor cells

Minimal off-target toxicity Phase I
Clonal evolution and

drug resistance
NCT06786533,

NCT06325748 (83),

NPM1c

A neoepitope result of mutation present in
approximately 35% of AML patients.

NPM1c-HLA-A2 complex presented on
leukemic surface.

Usually co-expression with CD123

Minimal off-tumor risk
No active
trials

Low neoepitope density
and HLA-A2 restriction

No active trials (84–86),
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signaling and epigenetic pathways, which could profoundly affect

CAR-T cell efficacy, persistence, and resistance mechanisms.

Therefore, integrating molecular profiling into CAR-T trial design

is essential to move toward truly personalized and mutation-

informed immunotherapies for AML (Figure 2).
Implications of genetic alterations in
AML for CAR-T and CAR-NK therapies

AML is a highly complex disease, raising the question: How can

CAR-T and CAR-NK therapies be leveraged to combat it? Genetic

alterations in AML significantly influence the effectiveness of these

immunotherapies by affecting antigen expression, immune evasion,

and the tumor microenvironment. Mutations in key genes, such as

FLT3, NPM1, TP53, TET2, DNMT3A, and CEBPA, as well as

rearrangements involving KMT2A and RUNX1, can influence

disease progression and response to treatment. Furthermore,

clonal evolution and antigen loss present major hurdles,

contributing to resistance and limiting the durability of

CAR-based strategies. A deeper understanding of these genetic
Frontiers in Immunology 05
factors is crucial for refining immunotherapies and tailoring

personalized approaches to improve AML outcomes.

Table 2 summarizes genetic alterations reported in the

literature on CAR cell therapies, highlighting their effects on

treatment efficacy and resistance. Systematic evaluation of these

mutations in the context of each patient’s unique genetic profile is

critical for optimizing therapy. Understanding how specific

alterations influence CAR cell responses can guide the

development of safer and more effective strategies, improve

target selection, and inform personalized treatment approaches

for different patient subgroups.
TP53

TP53 mutations are well established as drivers of tumor

suppressor loss, treatment resistance, clonal evolution, and poor

prognosis across hematologic malignancies. Their impact on

cellular immunotherapy—including CAR-T and CAR-NK

therapies—is increasingly recognized, but remains complex and

context-dependent.
FIGURE 2

Comparison between conventional and precision CAR therapy strategies in acute myeloid leukemia (AML). In conventional strategy to CAR-based
therapy, standard diagnostic methods such as morphology and flow cytometry are used, leading to heterogeneous therapeutic responses. In
contrast, precision approaches integrate genomic profiling to identify critical driver mutations (e.g., RUNX1, CBFB, CEBPA, NPM1, FLT3, DNMT3A),
enabling the target-matched CAR constructs, promoting higher treatment specificity and efficacy.
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Patient-derived TP53 mutations can influence immune cell

function and therapeutic efficacy. In AML, single-cell multi-omics

revealed TP53 mutations in T and NK cells, with T cells showing

elevated proliferative markers but reduced cytotoxicity and

increased expression of inhibitory receptors such as PD-1, TIGIT,

and TIM-3. Engineering CAR-T cells to carry clinically relevant

TP53 mutations (e.g., Y220C, R175H) induced exhaustion,

impaired cytokine secretion, and diminished tumor killing both

in vitro and in PDX models. Restoration of mutant p53 to wild-type

conformation rescued CAR-T functionality, reduced exhaustion,

and improved survival, demonstrating that TP53-mutant T cells are

a previously unrecognized driver of immune escape in AML (104).

Similarly, NK cells rely on p53 to maintain cytotoxic function

and homeostasis. TP53 mutations in NK cells—often shared with

malignant myeloid clones in AML or MDS—lead to increased DNA

methylation, reduced expression of perforin, TNF-a, and killer

immunoglobulin-like receptors (KIR), and impaired cytolytic

activity. These alterations may compromise CAR-NK therapies,

particularly autologous approaches, although epigenetic

modulation (e.g., hypomethylating agents) can partially restore

NK function (105). This underscores the importance of carefully

screening NK cell donors in clinical trials to ensure optimal
Frontiers in Immunology 06
therapeutic efficacy and safety, even for off-the-shelf CAR-NK

products. Donor-derived TP53 mutations could impair NK cell

cytotoxicity, persistence, and immune surveillance, potentially

reducing antitumor activity and compromising clinical outcomes.

Systematic genotyping and functional assessment of donor NK cells

can identify such defects, guide selection of optimal donors, and

inform strategies for ex vivo modulation or epigenetic priming to

restore NK cell fitness prior to infusion. Incorporating these

measures is critical for standardizing CAR-NK products and

maximizing their therapeutic potential, particularly in high-risk

patient populations with hematologic malignancies.

Clinical experience also highlights the context-dependent impact

of TP53 mutations. In lymphomas, patients harboring TP53

aberrations have achieved durable responses with multimodal

strategies, including sequential CD19/CD22 CAR-T infusions,

radiotherapy bridging, and maintenance therapy with chidamide,

obinutuzumab, checkpoint inhibitors, and hypomethylating agents

(106). Integration of autologous stem cell transplantation (ASCT)

followed by CAR-T therapy has improved long-term outcomes and

reduced severe toxicities in TP53-mutated cases (107, 108).

The influence of TP53 mutations on CAR-T therapy outcomes

has also been explored in broader cohorts. In a phase 1/2 study of
TABLE 2 AML mutations and their effect on CAR therapies.

Therapy
type

Antigen Mutation Mutation x CAR Reference

CAR-T FLT3 FLT3-ITD, FLT3-TKD
Targeted due to high mutation frequency; safety concerns due to expression in normal

cells
(87–90)

CAR-NK FLT3 FLT3-ITD, FLT3-TKD Allogeneic FLT3-CAR-NK cells show efficacy with lower toxicity (89, 91, 92)

CAR-T CD44v6 FLT3, DNMT3A
Mutation increases CD44v6 expression; HMAs upregulate CD44v6, enhancing CAR-T

efficacy
(87–90, 93–

101)

CAR-T CD123 NPM1, FLT3 High expression in leukemic stem cells; toxicity concern (78, 79)

CAR-NK CD123 NPM1, FLT3 Safer alternative to CAR-T with shorter lifespan (102)

CAR-T CD7
TP53 deletion, FLT3-ITD,

SKAP2-RUNX1
Effective in high-risk AML; bridge to allo-HSCT (103)

CAR-T CD19 TET2
TET2 mutation enhances CAR-T cell efficacy and persistence but increases risk of

hyperproliferation
(98–101 )

CAR-T
CD33,
CD123,
CD117

TP53
TP53-mutant AML cells exhibit resistance; impaired CAR-T proliferation and increased

exhaustion; combinatorial strategies improve responses
(102, 104–

112)

CAR-T CD19 PIK3CD, PIK3R1 Robust responses in preclinical models of leukemia and melanoma (113)

CAR-NK
NPM1

neoepitope
NPM1 Enhanced targeting and metabolic reprogramming; improved persistence (84)

CAR-T CD19
t(8;21) (RUNX1::

RUNX1T1)
CD19 aberrantly expressed in ~78% of t(8;21) AML cases; CAR-T induces high
remission rates but early relapse suggests need for consolidation with allo-HSCT

(114)

CAR-T CD19 KMT2A rearrangements
Effective in inducing remission in CD19+ KMT2A-r leukemias; similar initial response

rates but higher overall mortality; consolidation often required
(115)

CAR-T
CD19×FLT3
(bispecific)

KMT2A rearrangements
Bispecific CAR-Ts demonstrate strong in vitro and in vivo activity and may prevent

antigen escape in KMT2A-r ALL
(116)

CAR-T NKG2D
NRAS G12D, FLT3

N676K (KMT2A-r AML)
Activating mutations enhance NKG2D ligand expression, increasing susceptibility to

NKG2D-CAR T killing; potentiated by panobinostat
(117)

CAR-T CD19 RUNX1 Enhanced cytotoxicity; synergy with imatinib (118)
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115 patients with relapsed or refractory CD19-positive B-cell acute

lymphoblastic leukemia (B-ALL), 93% achieved complete remission

and 87% attained minimal residual disease negativity following

CAR-T infusion (NCT03173417) (102). Among these, 75 patients

underwent subsequent allogeneic stem cell transplantation (allo-

HSCT), resulting in significantly improved leukemia-free survival

(76.9% vs. 11.6%) and overall survival (79.1% vs. 32.0%) compared

with CAR-T therapy alone. Multivariate analysis identified TP53

mutation as an independent predictor of inferior outcomes (hazard

ratio, 0.235; 95% CI, 0.089–0.619) (102). These findings highlight

that while CAR-T therapy achieves high initial response rates, TP53

alterations remain a major determinant of relapse risk and survival.

TP53 mutations can also drive clonal hematopoietic evolution

post–CAR-T therapy, as illustrated by cases of therapy-related

myelodysplasia following CAR-T–induced selective pressures (109).

At the mechanistic level, TP53 deficiency has been shown to impair

CAR-T cell efficacy in AML models. TP53-deficient AML cells exhibit

prolonged interactions with CAR-T cells, leading to CAR-T exhaustion

and inadequate tumor clearance. Transcriptomic analyses revealed

upregulation of the mevalonate pathway in TP53-deficient AML cells

and concurrent downregulation of the Wnt pathway in CAR-T cells

(110). Pharmacologic inhibition of the mevalonate pathway or

activation of Wnt signaling restored CAR-T cytotoxicity, identifying

potential therapeutic strategies to overcome TP53-mediated immune

resistance (110). Consistent with these findings, TP53-mutant AML

and myelodysplastic neoplasms (MDS) show reduced CAR-T

proliferation and increased exhaustion compared to wild-type

counterparts (111). Promisingly, pre-treatment with hypomethylating

agents such as decitabine has demonstratedpotential to enhanceCAR-T

responses in patients with relapsed or refractory acute leukemia and

TP53 mutations. In one report, decitabine priming significantly

improved CAR-T cell efficacy, resulting in complete molecular

remission in six patients (112).

Collectively, these findings underscore a dual role of TP53

mutations in cellular immunotherapy. Patient-derived TP53

alterations impair the fitness, cytotoxicity, and persistence of both

T and NK cells, limiting the efficacy of autologous CAR-T and

CAR-NK therapies. Tumor-intrinsic TP53 loss contributes to

immune evasion and resistance, while clonal hematopoietic

evolution may further challenge long-term outcomes. Conversely,

targeted modulation of TP53—via reactivation or pathway

correction—can restore immune-cell function, reduce exhaustion,

and enhance antitumor potency. Integrating CAR-T/CAR-NK

engineering, transplantation, metabolic or epigenetic modulators,

and rational pathway targeting provides a comprehensive

framework to overcome TP53-driven resistance, improving

efficacy and durability in high-risk hematologic malignancies (119).
DNMT3A

Mutations in DNMT3A within the patient’s hematopoietic

compartment can impact CAR-T therapy by promoting

expansion of progenitor and myeloid cells that chronically

stimulate T cells, ultimately leading to functional impairment and
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reduced activation signatures. While Dnmt3a-deficient murine cells

show enhanced antigen-specific T cell stimulation, chronic antigen

exposure in patients likely drives T cell exhaustion, potentially

compromising autologous CAR-T therapies derived from

DNMT3A-mutant T cells (120).

In AML, DNMT3A mutations also influence therapeutic

targeting. CD44v6 has emerged as a promising CAR-T cell target,

particularly in cases with FLT3 or DNMT3A mutations, where its

expression is markedly elevated. CAR-T cells directed against

CD44v6 selectively lyse CD44v6-positive AML cells while sparing

CD44v6-negative leukemic and normal hematopoietic cells.

Treatment with hypomethylating agents, such as decitabine or

azacitidine, further upregulates CD44v6 on DNMT3A-mutant

AML cells, enhancing CAR-T recognition and cytotoxicity. This

combination represents a promising strategy to improve outcomes

in AML patients harboring DNMT3A or FLT3 mutations (93–95).

DNMT3A also directly regulates CAR-T cell biology. Genetic

disruption of DNMT3A prevents methylation of genes critical for

T cell differentiation, preserving a stem-like phenotype resistant to

exhaustion. These modified CAR-T cells maintain proliferative

capacity and effector function under prolonged antigen

stimulation, resulting in superior tumor control in preclinical

models. DNMT3A-mediated methylation therefore represents a

key determinant of T cell fate, with implications for enhancing

CAR-T persistence and antitumor efficacy by preserving naïve and

memory-associated gene programs (96).

Collectively, DNMT3A plays a dual role in AML CAR-T

therapy: patient-derived DNMT3A mutations can indirectly

reduce CAR-T efficacy through chronic T cell stimulation and

exhaustion, whereas manipulation of DNMT3A within CAR-T

cells themselves can preserve stem-like, functional phenotypes

and improve therapeutic outcomes. Moreover, DNMT3A

mutations create actionable vulnerabilities, such as CD44v6

upregulation, which can be exploited with hypomethylating

agents to optimize CAR-T cell targeting. These insights provide a

rationale for integrating genetic, epigenetic, and combinatorial

strategies to enhance CAR-T efficacy in DNMT3A-mutant AML.
TET2

TET2 encodes a dioxygenase critical for DNA demethylation and

broader epigenetic regulation, playing a central role in hematopoiesis.

Mutations in TET2 occur in 7%–28% of adult AML patients and are

associated with altered epigenetic landscapes that can affect immune

function and therapeutic responses (97).

Patient-derived TET2 mutations can profoundly influence

CAR-T therapy by affecting T cell fitness, differentiation, and

immune surveillance. In a landmark case of chronic lymphocytic

leukemia (CLL), lentiviral integration of the CAR transgene

disrupted the TET2 gene in one T cell, creating a hypomorphic

loss-of-function state (98). This TET2-disrupted T cell underwent

massive clonal expansion, eventually accounting for 94% of the

CD8+ CAR-T cell population at the peak of the response. These cells

predominantly exhibited a central memory phenotype,
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characterized by high proliferative potential and long-term

persistence, which is strongly associated with durable antitumor

activity. The patient achieved complete remission, highlighting that

TET2 disruption can enhance CAR-T efficacy by promoting

memory formation, limiting terminal differentiation, and

sustaining effector function (98). Experimental knockdown of

TET2 in CAR-T cells recapitulated this effect, confirming that

TET2 modulation directly contributes to enhanced proliferation,

persistence, and functional potency of CAR-T cells (99).

In AML, TET2 loss may further influence therapy by altering

the antigenic landscape of malignant cells. Epigenetic dysregulation

driven by TET2 mutations generates a distinct repertoire of

peptides presented on major histocompatibility complex (MHC)

molecules, increasing the immunogenicity of AML cells. These

TET2-associated neoantigens create opportunities for CAR-T cells

to more effectively recognize and eliminate malignant and pre-

malignant cells. Leveraging this increased antigenicity could

improve tumor clearance, reduce relapse risk, and inform the

design of combinatorial immunotherapies or CAR-T engineering

strategies tailored to TET2-mutant AML (100).

Similar to CAR-T cells, TET2 mutations in the patient’s

hematopoietic compartment can also impact the function and

fitness of natural killer (NK) cells, with implications for CAR-NK

therapy. In myelodysplastic syndromes (MDS), TET2-mutated

clones frequently coexist with NK cells harboring the same

mutation. These NK cells exhibit phenotypic defects, including

increased global DNA methylation and reduced expression of

cytolytic effectors such as perforin, TNF-a , and killer

immunoglobulin-like receptors (KIR), resulting in impaired

antitumor activity. In vitro, inhibition of TET2 in NK cells from

healthy donors reproduces these functional defects, while treatment

with hypomethylating agents such as azacitidine partially restores

NK cell cytotoxicity and IFN-g production, highlighting the

reversible nature of these epigenetic impairments (101).

Collectively, these observations highlight the dual relevance of

TET2 in cellular immunotherapy. Patient-derived TET2 mutations

can impair endogenous T and NK cell fitness, reducing immune

surveillance and potentially limiting the efficacy of autologous

CAR-T and CAR-NK therapies. Conversely, targeted modulation

of TET2 within engineered CAR-T cells can enhance memory

differentiation, limit exhaustion, and boost antitumor potency. In

NK cells, pharmacologic interventions such as hypomethylating

agents may restore cytotoxic function, further supporting

therapeutic efficacy. Additionally, TET2-associated neoantigens in

AML represent actionable targets for immunotherapy. Together,

these insights provide a framework for integrating genetic,

epigenetic, and combinatorial strategies to optimize the

performance and durability of CAR-based therapies in TET2-

mutant hematologic malignancies.
FLT3

FMS-like tyrosine kinase 3 (FLT3) is a transmembrane receptor

tyrosine kinase highly expressed in acute myeloid leukemia (AML),
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particularly in cases harboring internal tandem duplication (FLT3-

ITD) or tyrosine kinase domain (FLT3-TKD) mutations, which

occur in approximately 30% of patients. These mutations drive

constitutive signaling that promotes leukemic proliferation and

survival, correlating with poor prognosis (77). Unlike CD19 in

acute lymphoblastic leukemia (ALL), FLT3 is also expressed at

lower levels in normal hematopoietic stem and progenitor cells

(HSPCs), raising concerns about on-target, off-tumor toxicity for

CAR-based therapies. Nonetheless, the strong association between

FLT3 alterations and adverse clinical outcomes makes it a

compelling therapeutic target.

FLT3 inhibitors have demonstrated clinical efficacy, yet relapse

due to clonal evolution and drug resistance remains common. In this

context, FLT3-directed CAR-T and CAR-NK cell therapies have

emerged as promising immunotherapeutic strategies. Preclinical

studies demonstrated that both CD8+ and CD4+ T cells engineered

to express FLT3-specific CARs exhibit potent cytotoxicity against

AML cell lines and primary blasts expressing either wild-type or

mutant FLT3 (87). Notably, treatment with FLT3 inhibitors such as

crenolanib increases FLT3 surface expression on AML cells, thereby

enhancing recognition and killing by FLT3-CAR T cells in vitro and

in vivo. However, these same CAR-T cells also recognize normal

HSCs, disrupting hematopoiesis in preclinical assays—an observation

suggesting that adoptive FLT3-CAR T therapy may need to be

followed by CAR-T cell depletion and subsequent allogeneic HSC

transplantation for marrow reconstitution (87).

Comparative analyses between FLT3-directed CAR-T and

bispecific T-cell engagers (BiTE®) have shown both platforms to

mediate potent cytotoxicity against FLT3+ AML targets. However,

in vivo, FLT3-CAR T cells achieved superior persistence,

proliferation, and overall survival benefit in murine models, likely

due to the integrated co-stimulatory domain within the CAR

construct (88).

Beyond CAR-T, preclinical studies have explored FLT3-

targeted CAR-NK approaches. One study developed off-the-shelf,

allogeneic NK cells engineered with a FLT3-specific CAR and

secreting soluble interleukin-15 (IL-15), demonstrating enhanced

cytotoxicity and interferon-gamma secretion against FLT3+ AML

cell lines compared to NK cells lacking the CAR or IL-15 secretion

(89). Another study reported the preclinical development of a

UniCAR-T platform targeting FLT3, which efficiently eliminated

AML cell lines and primary AML samples in vitro and showed in

vivo efficacy in murine xenotransplant models (90). These findings

underscore the translational potential of both CAR-T and CAR-NK

strategies against FLT3-positive AML.

In clinical translation, early-phase trials are assessing the safety of

anti-FLT3 CAR-T therapy in relapsed or refractory AML, including

both adult and pediatric populations. The study completion is

estimated to be 2027 (NCT06786533). Emerging case reports also

underscore the complex interplay between prior intensive therapies,

clonal hematopoiesis, and the emergence of secondary AML

harboring FLT3-ITD mutations following CAR-T exposure,

emphasizing the need for long-term hematopoietic monitoring (121).

FLT3 has also been successfully targeted using CAR-engineered

NK cells. NK-92 cells expressing a FLT3-specific CAR with a
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CD28–CD3z signaling domain demonstrated strong cytolytic

activity against FLT3+ B-ALL and AML cells in vitro and robust

antileukemic efficacy in xenograft models. Incorporation of an

inducible caspase-9 (iCasp9) suicide switch provided an added

safety layer to mitigate potential off-target hematopoietic toxicity

(91). More recently, SENTI-202, a logic-gated CAR-NK product

designed to target FLT3 and/or CD33 while sparing EMCN+

healthy HSPCs, has shown encouraging preliminary data in a

Phase I trial (NCT06325748). In treated relapsed/refractory AML

patients, SENTI-202 induced deep molecular remissions and

significant reductions in leukemic stem cells (LSCs), while

preserving normal hematopoiesis and enabling immune

reconstitution (92).

Collectively, these data establish FLT3 as a highly relevant but

challenging target for cellular immunotherapy. FLT3-CAR T and

CAR-NK platforms have demonstrated potent preclinical efficacy

and early clinical feasibility, with rational combinatorial strategies—

such as tyrosine kinase inhibition, immune checkpoint blockade,

and logic-gated receptor design—enhancing both selectivity and

persistence. Optimizing safety mechanisms to mitigate HSPC

toxicity and integrating donor or off-the-shelf NK cell platforms

will be critical for translating FLT3-targeted CAR therapies into

durable and safe treatment options for high-risk AML.
NPM1

NPM1 is one of the most frequently mutated genes in AML,

with a four-nucleotide duplication occurring in approximately 30–

35% of adult patients. The cytoplasmic localization of NPM1c

allows presentation of neoepitopes via HLA, particularly HLA-

A*0201, making the NPM1c-HLA complex a potential target for

CAR-T or memory NK cell therapies (86). A limitation of this

approach is the relatively low density of NPM1 neoepitopes

available for recognition by anti-NPM1c/HLA-A2 CAR-T cells,

which may necessitate additional strategies to achieve robust T-

cell activation. One potential solution is the development of dual

CAR-T cells co-expressing an anti-NPM1c/HLA-A2 CAR along

with an anti-CD123 co-stimulatory receptor (CCR) lacking a

signaling domain, designed to enhance T-cell activation without

inducing off-target signaling (122).

Despite the generally favorable outcomes reported in large

cohorts of AML patients harboring NPM1 mutations, disease

relapse and progression ultimately lead to mortality in roughly

half of these individuals (123, 124). Interestingly, a study previously

reported that CD123 is present on leukemic stem cells putatively

harboring NPM1mutations (125). This same group, years later, has

demonstrated that CD123 is prominently displayed on NPM1-

mutated AML cells at both initial diagnosis and relapse, with

particularly elevated expression in cases harboring concurrent

FLT3-ITD mutations. The group concluded that putative NPM1-

mutated CD34+CD38- leukemic stem cells consistently express high

levels of CD123, a pattern further amplified in cases with

concurrent FLT3 mutations, highlighting NPM1-mutated AML as

a particularly promising target for anti-CD123 immunotherapies
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(85). CD123-targeting CAR-T cells have demonstrated potent anti-

leukemic activity; however, they also pose risks of on-target, off-

tumor toxicity, as CD123 is expressed in normal hematopoietic

cells. Clinical trials, such as NCT04318678, have reported

promising responses but also significant myelosuppression,

underscoring the need for strategies to improve safety (46). In

contrast, CD123-CAR-NK cells present a potentially safer

alternative due to their shorter lifespan and lower toxicity

risks (126).

The development of memory-like NK cells with a neoepitope-

specific chimeric antigen receptor (CAR) has emerged as a

promising strategy for targeting AML with NPM1 mutations.

Recent paradigm-shifting studies have demonstrated that NK cells

can acquire innate immunological memory following brief

stimulation with IL-12 and IL-18, resulting in the generation of

cytokine-induced memory-like (CIML) NK cells. hese CIML NK

cells display enhanced cytotoxicity and persistence, showing

encouraging efficacy in early-phase clinical trials for relapsed or

refractory AML (127, 128). In other study, the authors engineered

CIML NK cells with CAR targeting the NPM1 mutation in AML.

The CAR-CIML NK cells demonstrated potent and selective

cytotoxicity against NPM1-mutated AML cells while sparing

healthy hematopoietic cells, thereby minimizing off-target toxicity.

Single-cell RNA sequencing and mass cytometry analyses revealed

that CAR-transduced CIML NK cells upregulate genes involved in

cell proliferation, protein folding, immune activation, and key

metabolic pathways, promoting tumor-specific, CAR-dependent

recognition and cytotoxicity (84). These findings position CAR-

NK therapy as a targeted and potentially safer alternative for

NPM1-mutated AML.
Gene fusions

In addition to recurrent somatic mutations, gene fusions represent

a critical class of genetic alterations in AML, playing a central role in

leukemogenesis by disrupting normal transcriptional programs,

driving aberrant proliferation, and impairing differentiation. These

fusions, such as RUNX1-RUNX1T1 and KMT2A rearrangements, are

key diagnostic markers and are incorporated into contemporary AML

classification systems, including WHO, ELN, and ICC, for risk

stratification and treatment guidance.

Around 78% of AML patients with t (8,21) exhibit CD19

expression, highlighting CD19 as a promising therapeutic target

for CAR-T cell–based strategies. In this context, a prospective

phase II clinical trial (NCT03896854) investigated the safety and

therapeutic efficacy of CD19-directed CAR-T cells in a cohort of

10 patients with relapsed CD19-positive t (8,21) AML. All ten

patients treated with CAR-T cells achieved complete remission,

corresponding to a 100% response rate, and 60% of them reached

molecular MRD-negative remission. Following CAR-T therapy, the

RUNX1::RUNX1T1 fusion transcript levels demonstrated a median

decrease too (114). In another study, 3 R/R t(8;21) AML patients

with aberrant CD19 expression also received autologous CAR-T cell

infusion. All patients achieved CD19 negativity within two weeks
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after CD19 CAR-T cell infusion, confirming the therapy’s short-

term efficacy in relapsed/refractory t(8;21) AML with aberrant

CD19 expression. However, early relapse occurred in some cases,

suggesting that allogeneic hematopoietic stem cell transplantation

(allo-HSCT) should be promptly performed following CAR-T

therapy to sustain remission and minimize relapse risk (129).

Rearrangements involving the KMT2A gene, formerly known

as mixed-lineage leukemia (MLL), represent some of the most

frequent chromosomal alterations found in both AML and ALL,

encompassing a wide range of fusion partners. Leukemias harboring

KMT2A rearrangements typically exhibit an aggressive clinical

course, marked by rapid disease onset and progression, and are

associated with significantly poorer outcomes compared to non–

KMT2A-rearranged cases (130). Immunotherapeutic strategies,

such as CAR-T cell therapy and antibody-drug conjugates, are

being explored to target specific cell surface markers present in

KMT2A rearrangements leukemia cells.

A recent study evaluated the impact of high-risk cytogenetic

abnormalities on the outcomes of children and young adults with

CD19-positive B-cell precursor acute lymphoblastic leukemia (B-

ALL) or lymphoblastic lymphoma treated with CD19-directed

chimeric antigen receptor (CAR) T-cell therapy (NCT01626495,

NCT02435849, NCT02374333, NCT02228096, and NCT02906371)

(115). The analysis included patients with a broad range of

cytogenetic profiles, classified as high-risk (e.g., KMT2A

rearrangements, Ph+, Ph-like, hypodiploidy), standard-risk, or

favorable subtypes (e.g., hyperdiploidy, ETV6-RUNX1). Overall,

94% of patients achieved complete remission following CAR-T

cell infusion, and no statistically significant differences in initial

response rates were observed across cytogenetic subgroups. Patients

with KMT2A rearrangements achieved similar remission rates but

showed higher overall mortality, underscoring their aggressive

disease course. Thus, while CD19 CAR-T therapy can induce

durable responses in high-risk cases, consolidation with allogeneic

stem cell transplantation may be necessary to sustain long-term

remission (115).

Additionally, other study demonstrated that mutations in FLT3

and NRAS have been shown to reshape chromatin accessibility and

transcriptional programs in KMT2A-rearranged AML, directly

influencing immune sensitivity. Notably, NRAS G12D and FLT3

N676K mutations induced immune-related transcriptional programs,

leading to increased expression of NKG2D ligands on leukemia cells,

making them more susceptible to NKG2D-CAR T cell-mediated

killing. Furthermore, treatment with the histone deacetylase inhibitor

LBH589 (panobinostat) upregulated NKG2D ligands, enhancing the

efficacy of CAR T cell therapy, especially in cells expressing NRAS

G12D (117). These findings suggest that activating mutations in

FLT3 and NRAS not only drive leukemogenesis but also create

vulnerabilities that can be targeted by immunotherapies, offering

potential therapeutic strategies for KMT2A-rearranged acute

leukemia. Another study explored an alternative therapeutic

approach for KMT2A-rearranged acute lymphoblastic leukemia

(ALL) by evaluating bispecific CD19xFLT3 CAR-T cells (116). They

observed strong antitumor activity of bispecific CD19xFLT3 CAR-T

cells both in vitro and in vivo against KMT2A-rearranged ALL, and
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propose that this dual-targeting strategy could help mitigate antigen

escape in these high-risk leukemias (116).
Other genetic alterations

A recent study explored the functional impact of single-

nucleotide variants (SNVs) in key T cell signaling genes using

base-editing screens in primary human T cells. High-throughput

base-editing screens have identified gain-of-function (GOF)

mutations in genes such as PIK3CD, PIK3R1, and LCK, which

enhance T-cell signaling, cytokine production, and tumor cell lysis

(113). Introduction of GOF mutations in PIK3CD and PIK3R1

into T cells expressing either tumor-specific T cell receptors or

various generations of CD19-directed CAR-T cells enhanced

antigen-specific signaling, cytokine production, and tumor cell

killing. Notably, CAR-T cells engineered with PIK3CD GOF

variants exhibited superior effector function and leukemia cell

cytotoxicity compared to standard CAR-T cells, highlighting the

potential of precise genomic engineering of T cells to optimize

immunotherapeutic efficacy (113). Through integrated multi-omic

analyses, the CBFA2T3-GLIS2 (C/G) fusion was shown to

drive transformation of cord blood hematopoietic stem and

progenitor cells (HSPCs) into aggressive acute megakaryoblastic

leukemia, recapitulating the transcriptomic, morphological, and

immunophenotypic features of the disease (131). These analyses

also identified fusion-specific targets, including folate receptor a
(FOLR1), which could be leveraged for CAR-T cell-based

therapeutic strategies, although potential off-tumor toxicity

remains a concern.

Since CD7 is expressed in approximately 30% of AML cases while

being absent on normal myeloid and erythroid cells, it represents a

promising target for immunotherapy. A groundbreaking clinical case

demonstrated the first successful use of CD7 CAR-T cell therapy in a

patient with relapsed/refractory acute myeloid leukemia (r/r AML)

carrying high-risk mutations, including TP53 deletion, FLT3-ITD, and

SKAP2-RUNX1 fusion (NCT04762485). Following treatment, the

patient exhibited complete blast clearance, karyotype normalization,

and a significant reduction in mutation burden. Notably, CD7 CAR-T

therapy effectively reduced the leukemic burden. It served as a bridge to

allo-HSCT with manageable toxicity, underscoring its therapeutic

potential for CD7-positive r/r AML (103).

Finally, promising evidence supports the use of CD19 CAR-T cell

therapy in RUNX1-mutated blast-phase chronic myeloid leukemia

(BP-CML), a high-risk condition with poor prognosis. Ex vivo studies

showed that CD19 CAR-T cells efficiently and specifically eliminated

RUNX1-mutated BP-CML blasts, affecting both lymphoid and

myeloid compartments. Notably, these CAR-T cells outperformed

imatinib, including in cases carrying the ABL1-T315I resistance

mutation. Furthermore, the combination of CD19 CAR-T therapy

with imatinib enhanced leukemia cell eradication, suggesting a

synergistic benefit. Overall, these findings highlight CD19 CAR-T

cells as a promising therapeutic strategy for BP-CML patients with

RUNX1 mutations, especially those resistant to standard

treatments (118).
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Some of the key molecular targets, mechanisms of resistance and

therapeutic strategies discussed above are illustrated in Figure 3.
Translational barriers and practical
considerations

While the concept of mutation-informed CAR-based therapy in

AML holds strong scientific and clinical appeal, its translation into

routine clinical practice remains constrained by several practical

limitations. The integration of multi-omic profiling—including

genomic, transcriptomic, and epigenetic data—into patient care is

not yet feasible at scale. AML’s rapid progression often precludes

the time required for comprehensive molecular characterization

and subsequent customized CAR manufacturing. Furthermore,

high sequencing costs, limited access to advanced diagnostic
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platforms, and variability in data interpretation represent

additional barriers, particularly in resource-limited settings.

Manufacturing and logistical challenges are equally significant. The

development of personalized CAR-T or CAR-NK therapies demands

rapid cell procurement, engineering, and quality-controlled release, all

within tight clinical timelines. While innovations such as off-the-shelf

allogeneic CAR platforms, logic-gated designs, and universal donor NK

cells may mitigate some of these constraints, they introduce new safety,

regulatory, and scalability considerations. Ensuring batch consistency,

preventing graft-versus-host effects, and maintaining persistence and

potency remain central challenges.

Effective patient selection represents another key hurdle.

Linking mutational profiles to actionable antigen expression

requires integrated diagnostic pipelines that combine molecular

profiling, flow cytometry, and functional immune assays.

Realistically, precision integration will depend on the
FIGURE 3

Influence of AML-associated mutations on CAR therapies. Mutations in FLT3 and DNMT3A increase CD44v6 antigen expression, enhancing
CAR-T efficacy. Pre-treatment with hypomethylating agents (HMAs), such as decitabine or azacitidine further upregulates CD44v6 levels, improving
anti-leukemic activity. TP53 mutations promote T cell exhaustion and upregulate inhibitory receptors (PD-1, TIGIT), reducing therapeutic efficacy.
Pre-treatment with decitabine can restore tumor suppressor gene activity, improving CAR-T anti-CD33, anti-CD123 and anti-CD117 function. NPM1
and FLT3 mutations increase CD123 expression, but targeting the CD123 CAR-T can cause on-target/off-tumor toxicity and myelosuppression due
to antigen expression on hematopoietic stem cells. CAR-NK anti-CD123 cells represent a safer alternative, reducing lifespan and toxicity risks.
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establishment of streamlined testing frameworks that can identify

eligible patients within clinically relevant timeframes.

Finally, regulatory and ethical frameworks must evolve to

accommodate this new therapeutic paradigm. Personalized,

mutation-informed cellular products challenge conventional approval

models and demand adaptive oversight for manufacturing, safety

monitoring, and long-term follow-up. Harmonized regulatory

pathways and collaborative data-sharing initiatives will be essential to

accelerate responsible clinical translation.

Together, these barriers emphasize that while mutation-informed

CAR therapy represents an exciting frontier, practical implementation

requires parallel innovation in diagnostics, manufacturing, and

regulation. Bridging these gaps will be critical to transform precision

immunotherapy from concept to standard-of-care.
Conclusion and perspectives

From a clinical perspective, car-based therapies are expanding

beyond traditional targets, demonstrating activity in challenging

contexts. these findings reinforce the potential of combinatorial

strategies—integrating car therapywithkinase inhibitors (e.g., imatinib),

immune checkpoint blockade, or allogeneic hsct—to overcome

resistance and improve outcomes.

looking forward, several key priorities should guide the field:
Fron
1. Enhancing persistence and preventing exhaustion through

metabolic and epigenetic modulation, such as DNMT3A-

modified CAR-Ts or reprogrammed ML-NK cells.

2. Improving precision and safety by developing neoepitope-

specific CAR constructs (e.g., NPM1c-HLA-A2 CAR-T)

that spare normal hematopoiesis.

3. Expanding combinatorial and multimodal approaches that

leverage small-molecule inhibitors, checkpoint blockade, or

cytokine support to augment CAR efficacy.

4. Optimizing translation and accessibility, emphasizing

scalable, allogeneic, and cost-effective CAR platforms

supported by rapid molecular diagnostics.
Collectively, these efforts define a realistic roadmap for the next

generation of precision CAR-T and CAR-NK therapies in AML.

Although the field remains in its early stages and many translational

questions persist, growing evidence supports the feasibility and

transformative potential of mutation-guided cellular immunotherapy.

Continued integration of genomic insight, rational engineering, and

clinical innovation will be key to achieving durable, safe, and accessible

treatments for high-risk hematologic malignancies.
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