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and Al-based framework
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Background: Management of juvenile idiopathic arthritis (JIA) relies heavily on
long-term pharmacotherapy, yet an increasing number of case reports suggest
that some drugs may themselves precipitate or worsen the disease. But
systematic methods for detecting these safety signals in pediatric cohorts are
still lacking.

Methods: We screened 10,012,438 reports from the FAERS database using four
disproportionality algorithms (ROR, PRR, EBGM, and BCPNN) to identify potential
drug and JIA associations. Three complementary machine learning models were
developed, including DMPNN, GCN, and SVM, trained on molecular descriptors,
chemical fingerprints, and structural graphs to stratify high-risk compounds.
Toxicogenomic profiles were generated using ProTox-3.0, and drug—disease
target overlap and pathway enrichment were assessed using the CTD and
GeneCards databases. External validation relied on our own newly generated
transcriptomic data: (i) our newly generated bulk RNA-seq dataset from 47
individuals (39 JIA patients and 8 controls) and (i) a multi-center single-cell
RNA-seq compendium that combined 21 in-house PBMC profiles obtained at
four Chinese pediatric hospitals with 9 publicly available systemic juvenile
idiopathic arthritis (sJIA) samples. Two of the in-house sJIA patients were
sampled longitudinally, before and one month after IL-6-receptor-inhibitor
therapy permitting assessment of treatment-induced transcriptomic shifts.
Drug-signature activity was quantified with single-sample GSEA for the bulk
data and AddModuleScore for the single-cell data.

Results: We identified drugs with consistent positive signals across all four
FAERS-based disproportionality algorithms. Machine learning models (DMPNN,
GCN, SVM) independently confirmed 23 high-risk compounds, with 22
overlapping across all models and predicted risk scores >0.60. Among these,
lansoprazole and aripiprazole showed strong signals in both pharmacovigilance
and DMPNN predictions. Further toxicogenomic analysis revealed immune
toxicity patterns overlapping with JIA-related gene targets and pathways.
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Notably, bulk RNA-seq and single-cell RNA-seq validation demonstrated that
lansoprazole signatures were significantly enriched in monocyte from sJIA
patients. This multi-level convergence supports the hypothesis that certain
non-antirheumatic drugs may aggravate JIA-like inflammation, particularly
within the systemic subtype.

Conclusions: In this study, we identify lansoprazole as a likely instigator of
systemic juvenile idiopathic arthritis, underscoring that proton-pump inhibitors
should be used judiciously in children at autoimmune risk and providing a
generalizable playbook for rare-disease pharmacovigilance.

juvenile idiopathic arthritis, machine learning models, FAERS, toxicogenomic,
pharmacovigilance, systems immunology, multicenter study

Introduction

Medication use in children with Juvenile Idiopathic Arthritis
(JIA) is widespread, with most patients requiring long-term
pharmacologic therapy involving immunosuppressants,
nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids,
and biologic agents (1-3). While these medications are essential for
disease control, growing attention has been drawn to the possibility
that certain drugs may themselves act as environmental triggers for
the onset or exacerbation of JIA in genetically or immunologically
predisposed individuals (4, 5).

Evidence from pharmacovigilance systems and published
literature has implicated a wide range of drug classes, including
vaccines, biologics, antimicrobials, and neuropsychiatric agents, in
the development of idiopathic arthritis (IA), including JIA (6-8).
These effects may be mediated through mechanisms such as
molecular mimicry, immune activation, and gut microbiota
disruption. Among vaccines, the rubella component of MMR is
well known to cause transient arthritis in patients (9), and case
reports have linked immune-mediated arthritic reactions to
hepatitis B and COVID-19 vaccines (8, 10). Biologic agents such
as TNF-o inhibitors and immune checkpoint inhibitors have also
been associated with paradoxical inflammatory arthritis, supported
by safety signals from the FAERS and VigiBase databases (11-15).
Additional suspected triggers include interferon-o, repeated early-
life exposure to broad-spectrum antibiotics, and certain
psychotropic agents (13, 16, 17). However, the precise causal
relationships between these pharmacological exposures and JIA
remain to be fully elucidated.

However, existing evidence remains fragmented, often derived
from isolated case reports or underpowered observational studies.
And, preclinical models frequently fail to capture pediatric-specific
immune dynamics, and real-world ADR data in children with JIA
are sparse and delayed due to disease rarity and underreporting.
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These limitations underscore the urgent need for comprehensive,
data-driven approaches to systematically identify and evaluate
drugs that may not only treat but also induce or worsen JIA.
Artificial intelligence-driven frameworks are increasingly being
applied across diverse biomedical fields. In arthritis and immune-
mediated diseases, recent advances demonstrate their promise as
systematic tools for integrating pharmacovigilance, multi-omics,
and clinical datasets to improve the assessment of drug safety and
therapeutic efficacy (18, 19).

In this study, we extracted JIA-related ADR reports from the U.S.
Food and Drug Administration’s Adverse Event Reporting System
(FAERS), explored multiple data preprocessing strategies, and
compared three classification approaches for stratifying high-risk
versus low-risk drugs. Predictive models were developed using
various drug representation techniques—including 2D molecular
descriptors, molecular fingerprints (ECFP4 and MACCS), and
molecular graphs—and were trained using both classical machine
learning algorithms and deep learning architectures. To enable
external validation, we also leveraged data from an independent
cohort of JIA patients from 5 centers. Drug-specific gene signature
enrichment scores were computed to further support the model’s
predictive capacity. This Al-driven framework provides a valuable
tool for systematically identifying medications with the potential to
induce JIA, thereby enhancing drug safety assessments and guiding
informed decision-making in pediatric rheumatology
and pharmacovigilance.

Methods

The process of constructing an Al-based predictive model for
the identification of JIA encompasses multiple essential stages,
including data acquisition and preprocessing, computational
analysis of molecular features, model development. A schematic
overview of these procedures is provided in Figure 1.
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FIGURE 1
The technology roadmap is included in this study.

Data acquisition

Data analyzed in this study were collected from the FAERS
database (https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-
QDE-FAERS.html), where adverse drug reactions (ADRs) are
systematically categorized according to the MedDRA standard
terminology (20). To enable a comprehensive assessment, all
adverse event reports pertaining to JIA were consolidated. As part
of the FAERS data preprocessing, duplicate entries were removed,
and only the latest records were retained, yielding a dataset
comprising 10012438 adverse event reports recorded between
January 2004 and December 2024. The associated drugs were
determined, and their generic names were retrieved from the
PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Various
analytical strategies were applied to distinguish drugs associated
with higher versus lower risk for JIA-related adverse reactions
across different hierarchical levels.

All compounds included in the dataset were restricted to small-
molecule drugs, with their molecular structures retrieved from the
PubChem database and represented as Simplified Molecular Input
Line Entry System (SMILES) strings. Drugs lacking available
SMILES information were excluded from further analysis. To
maintain structural consistency and enhance accuracy, all
molecular structures were standardized using the “wash” protocol
implemented in the Molecular Operating Environment (MOE)
software (version 2022.02, Chemical Computing Group,
Montreal, QC, Canada). Standardization procedures involved the
removal of salts and minor components, deprotonation of strong
acids and bases, and the addition of explicit hydrogen atoms,
thereby facilitating the calculation of molecular descriptors and
the construction of molecular graphs.
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External validation relied on our own newly generated
transcriptomic data: For bulk RNA-seq, PBMCs were collected
from 39 patients with non-systemic juvenile idiopathic arthritis
(non-sJIA), 16 patients with systemic juvenile idiopathic arthritis
(sJIA), and 8 healthy controls conducted at the Children’s Hospital of
Chongqing Medical University. All patients enrolled in the study
were diagnosed based on the classification criteria established by the
International League of Associations for Rheumatology (ILAR) (21).

For single-cell RNA sequencing (scRNA-seq), PBMCs were
prospectively collected from 27 patients with sJIA across five
centers and 6 healthy controls. In addition, paired PBMC samples
were obtained from 2 sJIA patients before and one month after IL-6
inhibitor treatment. Clinical samples obtained from the following
institutions: Children’s Hospital of Chongqing Medical University
(10 sJIA), Peking Union Medical College Hospital (1 sJIA),
Children’s Hospital of Nanjing Medical University (3 sJIA),
Shenzhen Children’s Hospital (4 sJIA), and Cincinnati Children’s
Hospital Medical Center (9 sJIA) (GSE207633). All patients
enrolled in the study were diagnosed based on the classification
criteria established by the ILAR (21).

Methods for classifying drugs into high-risk
and low-risk categories

Signal detection of ADRs within spontaneous reporting systems
commonly relies on Bayesian-based approaches, such as the
BCPNN, and frequency-based metrics, including the ROR, PRR
and EBGM. In the present study, four analytical methods were
utilized to evaluate the risk of JIA-associated ADRs across different
drugs (22).
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Time-to-onset

The time-to-onset (TTO) of ADE is analyzed, TTO is defined as
the time period between the date the ADE occurred (EVENT_DT in
the DEMO file) and the date the medication started (START_DT in
the THER file). To ensure accuracy and reliability, any inaccurate
date entries, missing data, or input errors (such as instances where
EVENT_DT appears before START_DT) are removed from the
analysis. The median, interquartile distance (IQR), and Weibull
shape parameter (WSP) are utilized to evaluate the TTO (22, 23).
The Weibull distribution is a statistical model that characterizes the
shape of failure or event time data. It is defined by two parameters:
scale (o) and shape (B). The Weibull shape parameter () is
particularly relevant for evaluating TTO patterns. Different values
of B correspond to different failure types: Early failure types: § < 1,
with a 95% confidence interval (CI) also less than 1. These types
exhibit a diminishing ADE risk over time, indicating that the
occurrence of ADE decreases as time progresses. Random failure
types: B equals or approximates 1, with its 95% CI encompassing the
value 1. These types entail a consistent ADE hazard rate over time,
suggesting a relatively stable risk of ADE occurrence. Wear failure
types: B > 1%, with a 95% CI also greater than 1. These types
indicate an escalating ADE risk as time progresses, meaning that the
likelihood of experiencing an ADE increases over time. In
simulations of Weibull distribution, the Kolmogorov-Smirnov
(KS) test, which involves D statistics and P-value, is a widely used
technique to assess the alignment between simulation results and
theoretical or observed distributions.

Molecular structure characterization

In traditional machine learning (ML) frameworks, molecular
structures are typically represented through molecular descriptors
and fingerprints, whereas deep learning (DL) approaches employ
molecular graphs. In the present study, drug structures were
characterized using a combination of 2D molecular descriptors,
two distinct types of fingerprints (ECFP4 and MACCS), and
molecular graphs.

2D molecular descriptors

A total of 83 two-dimensional (2D) molecular descriptors were
computed using the rdkit.Chem.Descriptors function from the
RDKit toolkit (version 2023.9.6). This descriptor set includes
features such as molecular weight, partition coefficient (log P,
calculated via Wildman and Crippen methods), the number of
hydrogen bond donors and acceptors (NumHDonors and
NumHAcceptors), topological parameters (TPSA, kappa indices
1-3, BertzCT), compositional attributes (NumRings,
NumAromaticRings), and electrotopological state indices (Estate).
The complete list of calculated descriptors is available in the RDKit
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documentation (https://www.rdkit.org/docs/
GettingStartedInPython.html#list-of-available-descriptors) and is

collectively referred to as Des in this study.

Fingerprints

The MACCS fingerprint encodes the presence (1) or absence (0)
of predefined chemical features within a 166-bit binary vector. In
contrast, the Extended Connectivity Fingerprint (ECFP4) addresses
molecular isomorphism by decomposing molecules into circular
fragments and encoding each atom based on its environment. The
ECFP4 fingerprint, characterized by a radius of 2, is typically
represented as a 1024-bit binary vector. Both MACCS and ECFP4
fingerprints were generated using the RDKit package
(version 2023.9.6).

Molecular graphs

Graph-based molecular representation methods apply
convolutional operations to capture structural features. In this
framework, a molecule is abstracted as a graph G = (V, E), where
nodes (V) correspond to atoms, each associated with a feature
vector (X,), and edges (E) represent bonds with feature vectors
(Exm), denoting connections between atoms k and m. Thus,
molecules are modeled as interconnected nodes and edges. Deep
learning (DL) techniques leverage convolutional transformations
over these graphs to learn latent molecular representations, which
are subsequently utilized during the readout phase to predict
various molecular properties.

Model construction

The evaluation of model performance for JIA-associated
adverse drug reactions (ADRs) encompassed both traditional
machine learning (ML) and deep learning (DL) strategies.
Descriptor-based models were generated utilizing one ML
algorithms: support vector machines (SVM). Concurrently, deep
learning frameworks were established based on two graph neural
network (GNN) architectures: the graph convolutional network
(GCN) and the directed message passing neural
network (DMPNN).

Descriptor-based models

Descriptor-based models were established using two types of
molecular fingerprints, ECFP4 and MACCS, along with a set of 2D
molecular descriptors generated via RDKit. For the support vector
machine (SVM) model, a radial basis function (RBF) kernel
was applied.
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Graph convolutional network model

The GCN model applied a scalable semi-supervised learning
strategy designed for graph-structured datasets. It leveraged a
localized first-order approximation of spectral graph convolutions
to enable direct operations on graph representations.
Hyperparameters were optimized during model construction,
including the number of hidden units per GCN layer, the use of
residual connections (enabled), application of batch normalization
(enabled), dropout rate, hidden dimensions for the multilayer
perceptron (MLP) predictor, and predictor dropout rate.

Directed message passing neural network
model

The DMPNN model employed bond-centered convolutional
operations to encode molecular structures, thereby avoiding
unnecessary cyclic message propagation. Previous studies have
indicated that combining DMPNN with external molecular features
improves model performance, as 2D molecular descriptors provide
global contextual information while DMPNN captures local structural
features. In this study, DMPNN was enhanced through the integration
of additional feature vectors at the molecular level, resulting in two
variants: DMPNN-Des (with 2D molecular descriptors) and DMPNN-
ECFP4 (with ECFP4 fingerprints). Hyperparameter optimization was
conducted following the Chemprop 2.0.4 framework, targeting
variables such as the depth of the message passing phase, hidden
dimension in the encoder, number of layers in the feedforward neural
network module, batch size, activation function for encoding layers,
and dropout probability within the encoder.

The descriptor-based models (SVM) was implemented using the
scikit-learn library (version 0.20.1) in a Python 3.8 environment.
Graph-based models, including the GCN and the GNN, were
developed with the Deep Graph Library (DGL, version 0.4.1) using
PyTorch as the backend. The directed message passing neural
network (DMPNN) was constructed employing the Chemprop
package (version 1.0). All deep learning models were trained using
the Adam optimizer, and hyperparameters were optimized
systematically through Bayesian optimization techniques.

Model evaluation

The dataset was randomly partitioned into training, validation,
and test subsets in an 8:1:1 ratio. To assess model robustness and
generalization ability, a 5-fold cross-validation strategy was
employed during training. Specifically, the dataset was divided
into five equal parts, with four parts used for model training and
the remaining part for validation in each iteration, cycling through
all five partitions. Final model performance was evaluated using the
independent test set. Model discrimination ability was primarily
assessed by calculating the area under the receiver operating
characteristic curve (AUC), which reflects the overall capability of
the model to distinguish between high-risk and low-risk drugs.
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Analysis of substructure alerts

To investigate the relationship between molecular substructures
and JIA-associated ADRs, we employed the fears toolkit developed
by our research group. For each molecule, the model-derived
predictive outcome was used to assess the contribution of its
corresponding substructures to ADR risk, enabling a systematic
and data-driven identification of potential substructure alerts.

FAERS sensitivity analysis for
co-medications

Concomitant use of multiple medications is common in clinical
practice and may influence the occurrence of JIA, thereby affecting
signal detection. To enhance the robustness of our analysis and
minimize potential confounding bias, we performed a sensitivity
analysis by excluding reports that involved concomitant therapies,
thereby improving the reliability of AE signal detection.

Toxicity prediction

To assess the potential toxicity of the investigated compounds,
we employed the ProTox-3.0 webserver (https://tox.charite.de/
protox3/), a publicly available platform for in silico toxicity
prediction. ProTox-3.0 integrates molecular similarity assessment,
fragment-based analysis, and machine learning algorithms to
predict 61 toxicity endpoints, including acute toxicity, organ-
specific toxicity, molecular initiating events, toxicity pathways,
metabolism, and toxicity targets. Canonical SMILES (Simplified
Molecular Input Line Entry System) strings were submitted for each
compound via the ProTox-3.0 interface. Toxicity profiles were
predicted based on structural similarity to known toxicants and
model-derived inference. Outputs included predicted toxicity
classes, LDs, values, and associated confidence scores for each
endpoint. The platform also provided visualization tools such as
toxicity radar plots and interaction network diagrams to aid
interpretation. All predictions were performed using the default
configuration settings of the ProTox-3.0 platform.

Identification of potential mechanistic
targets via intersection analysis

To elucidate the potential mechanistic basis of drugs in the
context of JIA, we performed a target intersection analysis between
drug-associated targets and disease-related genes. First, the
molecular targets of drugs were retrieved from the CTD database
(https://ctdbase.org/). Next, JIA genes were identified using
GeneCards (https://www.genecards.org/) by querying the term
“Juvenile Idiopathic Arthritis”. All genes with a GeneCards
relevance score > 10 were retained as putative disease-related
targets. The intersection of the two gene sets—i.e., shared targets
between drugs and JIA was computed using custom scripts in R.
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The overlapping targets were considered potential mechanistic
mediators and were subjected to further functional enrichment
and pathway analysis.

ssGSEA-based drug signature scoring and
association with JIA subtypes

To quantify the transcriptional activity of drug-specific gene
signatures across patients, we conducted single-sample gene set
enrichment analysis (ssGSEA) using the GSVA packagein R. The
“limma” R package was used to remove the batch effect and
eliminate the sample sets with excessive differences (24). Drug-
associated gene sets were curated from [insert source, e.g., LINCS,
DrugMatrix, or previously published datasets], representing
transcriptional responses to a range of pharmacologic compounds.

For each patient, ssGSEA generated an enrichment score
reflecting the coordinated up- or downregulation of genes within
each drug signature. These scores served as proxies for drug-specific
transcriptional activation at the individual level.

To investigate the relationship between drug signature activity
and clinical heterogeneity, we compared ssGSEA enrichment scores
across major JIA subtypes. Statistical comparisons were performed
using one-way ANOVA tests. Subtype-specific enrichment patterns
were visualized via boxplots to identify compound signatures
preferentially associated with distinct JIA phenotypes.

Data processing and cell clustering of
individual cases

Preprocessed gene expression matrices from each sample were
independently analyzed using RStudio (v4.0.2) and the Seurat
package (v4.1.0). Initial quality control excluded ribosomal genes,
genes expressed in fewer than three cells, and cells expressing fewer
than 200 genes. And cells with >16% mitochondrial gene content,
<3% ribosomal gene content, or >0% hemoglobin gene content were
considered low quality and excluded from further analysis (25).

Monocytes were identified based on high expression of LYZ,
FCN1, AIF1, and S100A12; NK cells by GNLY, KLRD1, NKG7,
KLRB1, and KLRKI; B cells by CD79A, MS4A1, MZBI1, and
JCHAIN; megakaryocytes by ITGA2B and GP9; dendritic cells by
TMPO and GIMAP4; and T cells by CD3E, TCF7, RACK1, IL7R,
and IFITM1. Cluster identities were inferred based on the
expression of characteristic markers.

Data integration with batch effect
collection

To normalize and integrate multi-sample scRNA-seq datasets,
we applied SCTransform-based normalization followed by
Harmony batch correction. Specifically, each dataset was
normalized using SCTransform with regularized negative
binomial regression, and the top variable features were used for
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PCA reduction (26). Batch effects across samples (denoted by
orig.ident) were corrected using the Harmony algorithm, yielding
a shared low-dimensional representation. Following Harmony
integration, we performed UMAP (RunUMAP (reduction =
“harmony”)) (27). Graph-based clustering was conducted using
the FindNeighbors and FindClusters functions based on the first 20
Harmony-corrected principal components. To determine the
optimal clustering resolution, we tested a range of resolutions
(0.1-1.0) and evaluated the clustering structure using Clustree.
Based on visual inspection of UMAP plots and cluster tree
topology, we selected resolution = 0.9 for downstream cell
population definition. Clusters with low unique feature counts or
high mitochondrial content were excluded as low-quality or
apoptotic cells. All visualizations were generated using DimPlot.

Scoring and comparison of gene set
activity across single-cell populations

To assess the drug-specific gene at single-cell resolution, we
employed the AddModuleScore function in the Seurat package in R.
This method calculates a relative expression score for each cell by
averaging the expression of genes within the target set and adjusting
for background expression using control gene sets matched by
average expression. Statistical comparisons of gene set activity
across annotated cell populations were performed using Wilcoxon
rank-sum tests. Visualization was carried out using functions from
the Seurat and ggplot2 packages.

Cell-based experimental validation

Human THP-1 monocytes were maintained in RPMI-1640
medium supplemented with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin at 37°C in a 5% CO, incubator.
Differentiation into macrophages was induced by exposure to
phorbol 12-myristate 13-acetate (PMA, 100 ng/mL) for 24h. To
evaluate cytotoxicity, cells were seeded into 96-well plates (1x10*
cells/well) and treatedgs with potential candidate drugs at 0, 10, 20, 40,
or 80 UM for 24h, followed by CCK-8 measurement of cell viability at
450 nm. For lysosomal activity, differentiated THP-1 macrophages
(1x10° cells/dish) were exposed to increasing concentrations of
lansoprazole (0-80 UM, 24h), stained with LysoTracker Green and
DAPI, and imaged by laser confocal microscopy. To assess
inflammasome activation, cells were first primed with
lipopolysaccharide (LPS, 1 pg/mL, 3h) to induce baseline expression
of pro-IL-1B and NLRP3, after which lansoprazole (0-80 UM, 24h)
was applied; supernatants were collected and IL-1f and IL-18 levels
quantified by ELISA according to manufacturer instructions.

Ethical considerations

Ethical clearance was obtained from the Institutional Review
Board of the Children’s Hospital of Chongqing Medical University
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(Approval No. (2023)IRB(STUDY) No.351). As a retrospective
analysis based solely on existing medical records from prior
clinical visits, the study posed no additional risk to the participants.

Results

Descriptive results of pharmacovigilance
analysis

A total of 1125 ADE associated with JIA were documented in
the FAERS database from Q1-2004 to Q4 2023 (Figure 2). Notably,
the incidence of reported JIA peaked in 2020, accounting for 144
cases (Figure 2A). Subsequently, there was a decline in reports
starting from 2020, although an overall upward trend persisted
throughout the specified period. Examining the chronological
pattern of ADR reports, peak activity for JIA cases was observed
in the years 2020, 2021, 2023 and 2024. And, The majority of
patients mentioned in ADE reports were over the age of 6-12
(Figures 2B, G). Patient weights ranged from 5kg to nearly 100kg,
with a median of ~38 kg and an inter-quartile range of roughly
28-60 kg. The violin plot reveals two density peaks, one around
30-35 kg (younger school-age children) and another near 55-65 kg
(older adolescents), mirroring the bimodal age structure of the
cohort (Figure 2C). Figure 2D reveals a markedly right-skewed TTO
distribution, and half of the reported reactions occurred within
roughly the first four months of drug exposure (Figures 2D, )
Geographically, Canada (35.02%) and the United States (24.62%)
contributed the largest shares, followed by Germany, the United
Kingdom and Japan (Figure 2E). Gender distribution analysis
revealed that among the reported cases excluding those lacking
gender details, females accounted for 69.24% of the cases, while
males represented 27.73% (Figure 2F). Concurrently, out of 1125
ADR reports involving hospitalization occurred in approximately
23.60% of cases, deaths were recorded at a rate of 0.73%, and
disability were rare, evident in 7.32% of cases (Figure 2H).
Physicians submitted the plurality of cases (36.89%), while
consumers and pharmacists accounted for 29.33% and 20.44%,
respectively; contributions from other health professionals, lawyers
and unknown reporters were minor (Figure 2I).

Data mining on a JIA-inducing drug

Signal detection analysis identified a total of 40 drug entities
with consistent positive associations with JIA across all four
disproportionality algorithms (ROR, PRR, EBGM, and BCPNN).
Notably, ciclosporin, aripiprazole, fluoxetine hydrochloride,
lorazepam, clobazam, duloxetine, gabapentin, methadose,
cetirizine, cetirizine hydrochloride, and lansoprazole showed
strong and recurrent signals, indicating a close association with
JIA risk (Supplementary Table S1).
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Al-based risk prediction

To evaluate compound-level risk prediction for JIA, we
compared three distinct modeling approaches: a directed message
passing neural network (DMPNN), a graph convolutional network
(GCN), and a support vector machine (SVM). All three models
demonstrated strong discriminatory performance and collectively
identified a set of drugs potentially associated with the risk of JIA.

The DMPNN model generated compound-level risk scores for
22 candidate drugs potentially associated with JIA (Supplementary
Table S2, Figure 3), with excellent performance supported by a high
area under the receiver operating characteristic curve (AUC=0.98)
(Figure 4A). Similarly, the GCN model identified the same set of 22
high-risk compounds (Supplementary Table S3), achieving a
predictive performance of AUC=0.88 (Figure 4B). The SVM
model also yielded consistent results, detecting 23 compounds
closely linked to JIA occurrence (Supplementary Table S4), with
an AUC of 0.91 (Figure 4C), further confirming the robustness and
agreement across modeling approaches.

Subsequent intersection of the outputs from the three models
revealed a shared subset of 22 overlapping drugs, each consistently
predicted to be associated with JIA. Notably, all 22 drugs received
predicted risk scores above 0.60 across all three models
(Figure 4D, Table 1), underscoring their strong prioritization
and potential clinical relevance in the context of JIA-related
adverse drug events.

To further characterize the 22 high-confidence drugs identified
by all three models, we conducted a comprehensive review of the
existing literature and official prescribing information. We found
that only a small subset, most notably aripiprazole and lansoprazole
have previously been reported in association with joint-related
adverse events (Table 2). Aripiprazole has been linked to
arthralgia and joint stiffness in post-marketing surveillance, while
lansoprazole has been implicated in drug-induced lupus
erythematosus (DILE), which may present with arthritis-like
symptoms. For the remaining drugs, no published evidence or
product labeling currently supports a role in exacerbating arthritis
or triggering systemic inflammatory responses resembling JIA.
These findings highlight the potential of our predictive
framework to uncover previously unrecognized safety signals and
reinforce the need for further pharmacological and
mechanistic investigation.

Concomitant use of multiple medications is common in clinical
practice and may influence the occurrence of JIA, thereby affecting
signal detection. To enhance the robustness of our analysis and
minimize potential confounding bias, we conducted a sensitivity
analysis by excluding reports that involved concomitant therapies.
The excluded drug categories comprised nonsteroidal anti-
inflammatory drugs (naproxen, diclofenac, celecoxib, ibuprofen,
acetaminophen), conventional synthetic DMARDs (methotrexate,
leflunomide, sulfasalazine, hydroxychloroquine, penicillamine),
glucocorticoids (hydrocortisone, prednisone, dexamethasone,
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Baseline clinical characteristics of FAERS reports involving JIA. (A) Annual number of JIA-related reports (2004-2024), with a surge in 2020. (B) Age
distribution of patients (violin plot). (C) Weight distribution of patients (violin plot). (D) Time-to-onset (TTO) from drug initiation to first JIA report
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(H) Clinical outcomes (Hospitalisation, Disability, Life-threatening, Death, Other). (I) Reporter roles (Physician, Consumer, Pharmacist, Other). (3) TTO

grouped as <30 d, 31-180 d, >180d.

methylprednisolone, triamcinolone, prednisolone, budesonide,
betamethasone, cortisone), biologics and targeted therapies
(adalimumab, etanercept, tocilizumab, infliximab, canakinumab,
anakinra, ruxolitinib, golimumab, secukinumab, tofacitinib,
abatacept, sarilumab, rituximab, ustekinumab, certolizumab), and
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other immunosuppressants (tacrolimus, cyclosporine). After
applying these exclusions, 221AE reports remained eligible for
analysis, from which 16 drugs were still identified as being
associated with JIA based on the criteria of four
disproportionality algorithms (Supplementary Figure S1).
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TABLE 1 Al-Based risk prediction.

cid Drugname Labels DMPNN_pred GCN_pred SVM_pred
3883 LANSPORAZOLE 1 0.6304 0.9691 1
126941  METHOTREXATE[METHOTREXATE|METHOTREXATE (TRADE NAME . 07057 09809 .
UNKNOWN)
31307 TRIAMCINOLONE 1 0.7293 0.9849 1
5284373  CICLOSPORIN 1 0.7445 0.9886 1
60795 =~ ARIPIPRAZOLE|ARIPIPRAZOLE. 1 0.7541 0.9599 1
3446  GABAPENTIN 1 0.8049 0.9878 1
2662  CELECOXIB.|CELECOXIB 1 0.8107 0.9936 1
156391 = NAPROXEN.[NAPROXEN 1 0.8202 0.908 1
3899  LEFLUNOMIDE.|[LEFLUNOMIDE 1 0.8328 0.9871 1
6436 TRIAMCINOLONE ACETONIDE.|TRIAMCINOLONE ACETONIDE 1 0.8481 0.9893 1
3958 LORAZEPAM 1 0.8713 09724 1
11329481  METHOTREXATE SODIUM.|METHOTREXATE SODIUM 1 0.8752 0.9976 1
62857 = FLUOXETINE HYDROCHLORIDE 1 09193 0.9875 1
23681059 NAPROXEN SODIUM ({= 220 MG)|NAPROXEN SODIUM 1 0.9301 0.9871 1
2678 ~ CETIRIZINE 1 0.9376 0.9678 1
55182  CETIRIZINE HYDROCHLORIDE 1 0.9423 0.9675 1
60835 ~ DULOXETINE. 1 0.9584 0.9007 1
2789  CLOBAZAM 1 0.96 0.9534 1
14184 METHADOSE 1 0.9762 09791 1
3100 DIPHENHYDRAMINE 1 0.9861 0.977 1
5865 PREDNISONE. 1 0.6362 0.9457 1
3652 HYDROXYCHLOROQUINE 1 0.6249 09778 1

TABLE 2 Review of literature and drug instructions for aripiprazole and lansoprazole.

Reported
Inducing/

Used for
treatment
treat JIA

: Main sources of evidence
increase

JIA?

based on drug side effect data
(https://www.drugs.com/sfx/
abilify-side-effects.html#:~:
text=,syndrome%2C%
20sciatica%2C%20skeletal%
20injury%2C%20stiffness)

Post-marketing surveillance has identified arthralgia (1-10%) and joint stiffness
Aripiprazole = NO MAY (0.1-1%) as uncommon adverse events. Although arthritis-like symptoms have been
observed, the exact pathogenic mechanism remains unclear.

Lansoprazole itself is not an antirheumatic agent, but proton-pump inhibitors (PPIs) = based on drug side effect data
have been reported to induce drug-induced lupus erythematosus (DILE), a condition | (https://www.mayoclinic.org/

Lansoprazole = NO MAY that can manifest with fever, arthralgia, and even frank arthritis. Current hypotheses | drugs-supplements/
suggest a loss of immune tolerance in genetically susceptible individuals, yet the lansoprazole-oral-route/
precise mechanism is still unknown. description/drg-20067214)
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Toxicity prediction of aripiprazole and
lansoprazole

In silico toxicity predictions using ProTox-3.0 revealed
multiple organ-specific toxicities associated with Lansoprazole
and Aripiprazole. Computational toxicity screening of
Lansoprazole using the ProTox-3.0 platform revealed a complex
multi-system profile. The compound was predicted to be active for
hepatotoxicity (probability = 0.53) and respiratory toxicity (0.75),
with additional activity noted for blood-brain barrier permeability
(0.84) and nutritional toxicity (0.80). Although nephrotoxicity and
cardiotoxicity were predicted as inactive, their probabilities (0.83
and 0.72, respectively) suggest potential off-target effects in renal
and cardiovascular systems (Supplementary Table S5). At the
mechanistic level, Lansoprazole was predicted to be active
toward the aryl hydrocarbon receptor (AhR) (probability = 1.00)
and to interact with androgen and estrogen receptors (e.g., AR:
0.90; ER-LBD: 0.90), implying possible endocrine-disrupting
properties. Additionally, the compound was flagged as active in
the hERG (human Ether-a-go-go-Related Gene) channel (0.65)
and cytochrome P450 inhibition was noted, particularly for
CYP1A2 (0.83) and CYP3A4 (0.77)—suggesting potential for
metabolic interaction and QT prolongation risk (Supplementary
Table S5).

And, Aripiprazole exhibits a broad and high-confidence multi-
system toxicity signature. The compound was predicted to be active
for neurotoxicity (probability = 0.96), respiratory toxicity (0.89),
and notably, immunotoxicity (0.98). It also demonstrated high
probabilities for blood-brain barrier permeability (0.96) and
clinical toxicity (0.90), suggesting systemic exposure and potential
for CNS-related adverse events (Supplementary Table S6).
Mechanistically, Aripiprazole was predicted to interact with
several key targets relevant to immune and nervous system
function. It showed strong activity toward the N-methyl-D-
aspartate receptor (NMDAR; 0.94) and voltage-gated sodium
channels (VGSC; 0.65)—both of which are implicated in
neuroinflammation and excitotoxicity. In addition, it activated
multiple cellular stress response pathways, including the heat
shock element (HSE; 0.92) and ATPase-related stress signaling
(0.98), indicating potential for mitochondrial and proteostatic
stress. While interactions with nuclear hormone receptors
(estrogen or androgen receptors) were largely inactive, metabolic
pathway predictions indicated inhibition of CYP1A2 (0.83) and
CYP2D6 (0.75) (Supplementary Table S6).

Target intersection and network analysis

To elucidate potential mechanistic links between aripiprazole,
lansoprazole and JIA, we performed a target intersection analysis.
Aripiprazole and lansoprazole-associated targets were retrieved
from the ChEMBL database (Supplementary Tables S7, S8), while
disease-related genes were identified using GeneCards. The overlap
between the two sets yielded 43 and 31 intersecting genes between
aripiprazole, lansoprazole and JIA, suggesting shared molecular
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relevance (Supplementary Tables S9, S10). For Aripiprazole,
network mapping revealed interactions with a core set of
inflammation-related genes, including TNF, IL6, CXCLS8, IL1B,
and CASP3. These genes are known mediators of innate immune
activation and cytokine signaling in JIA. Aripiprazole also
intersected with TP53, RELA, and MAPK1, suggesting a potential
role in modulating apoptotic and NF-«kB pathways (Figure 5A).
Similarly, Lansoprazole was linked to a highly overlapping
immune-inflammation axis. Key nodes included IL6, IL1B, TNF,
CXCL8, and NFKBIA, alongside regulators of oxidative stress and
immune resolution such as PTGS2 and CASP3 (Figure 5B). These
interactions support a plausible immunotoxic profile, particularly in
genetically predisposed individuals.

Association of candidate drugs with JIA
subtypes

To further delineate the potential associations between the
identified candidate drugs and specific subtypes of JIA, we
performed bulk RNA-seq analysis on a cohort of 68 patients,
stratified into sJIA and non-sJIA. Using ssGSEA, we quantified
drug-specific gene expression signatures. Among the compounds
analyzed, lansoprazole exhibited significantly higher enrichment
scores in sJIA patients compared to healthy controls (P<0.05),
suggesting a potential transcriptional association with the sJIA
(Figures 6A, C). In contrast, aripiprazole and other compounds
did not show significant enrichment in either sJIA or non-sJIA
patients (Figure 6B).

Single-cell transcriptomic validation of
drug—subtype associations

To thoroughly characterize the transcriptional landscape of
sJIA patients, we conducted scRNA-seq on 27 samples from sJIA
(5 centers) and 6 samples from controls, 2 paired samples from sJIA
patients (n=2) before and after one month of treatment with IL-6
inhibitors. After stringent quality filtering and batch effect
correction of scRNA-seq data, 273671 cells were clustered into 54
clusters with an unsupervised approach, defined by well-established
canonical marker genes (Figure 7A). These clusters were grouped
into the main cellular categories: monocyte, NK cell, B cell, plasma
cell, Megakaryocytes, dendritic cell, T cell (Figure 7B).

Cell-type-specific enrichment analysis using the
AddModuleScore method revealed that lansoprazole-associated
inflammatory gene signatures were preferentially enriched in
monocytes and dendritic cells from sJIA patients, implicating
these innate immune compartments as potential mediators of
lansoprazole-driven transcriptional responses (Figure 7C).
Furthermore, gene set scores related to lansoprazole were
significantly elevated in both the internal and external sJIA
cohorts, as well as in patients following IL-6 blockade therapy,
compared to controls (Figure 7D). These single-cell-level findings
reinforce the hypothesis that lansoprazole may influence disease-
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relevant immune pathways in sJIA, particularly through effects on
monocytes activation.

To experimentally validate the predicted mechanism, we
performed cell-based assays in THP-1. CCK-8 analysis showed
that lansoprazole at 80 UM significantly reduced cell viability
compared with untreated controls, whereas 10-40 uM had no
significant cytotoxic effect (Figure 8A). LysoTracker confocal
imaging demonstrated a concentration-dependent increase in
lysosomal activity after 24h exposure to lansoprazole, with
progressively stronger fluorescence signals observed from 10 to 80
UM (Figure 8B). To assess inflammasome activation, cells were
primed with LPS to induce baseline expression of pro-IL-1p and
NLRP3, followed by lansoprazole treatment. ELISA quantification
revealed that lansoprazole markedly enhanced IL-1B and IL-18
secretion in a dose-dependent manner, with significant increases
detected at 20, 40, and 80 pM compared to LPS alone (Figures 8C-
D). These findings provide functional support that lansoprazole
promotes lysosomal stress and inflammasome-driven
cytokine release.

Discussion

In this study we combined large-scale pharmacovigilance
mining, machine learning, and multi-center transcriptomic
validation to uncover drugs that may precipitate or exacerbate
juvenile idiopathic arthritis. In FAERS reports, four
disproportionality algorithms converged on 40 candidate drugs;
three orthogonal prediction models (DMPNN, GCN and SVM)
further refined this list to 22 high-confidence compounds. Of these,
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lansoprazole and aripiprazole received the strongest and most
consistent signals. Toxicogenomic predictions implicated both
drugs in innate-immune and stress-response pathways, and
lansoprazole-associated signatures were selectively enriched in
systemic JIA (sJTA) bulk RNA-seq samples as well as monocyte-
and dendritic-cell clusters from single-cell datasets. Collectively,
these multi-tier data identify lansoprazole as a plausible
pharmacological trigger in sJIA and illustrate the utility of Al-
driven frameworks for drug safety surveillance in
pediatric rheumatology.

Lansoprazole is a proton-pump inhibitor (PPI) that has been
widely prescribed since its approval in 1995 for gastro-esophageal
reflux disease, peptic-ulcer disease, Helicobacter pylori eradication
regimens and Zollinger-Ellison syndrome (28, 29). After protonation
in the acidic gastric milieu, the pro-drug is converted to an active
sulfenamide that covalently binds the parietal-cell H'/K"-ATPase,
thereby blocking the final step of gastric acid secretion (30). Following
oral administration, the drug reaches Cmax at approximately and
displays 80-85% bioavailability; it is metabolized mainly by CYP2C19
and CYP3A4. Although its plasma half-life is only ~1.5 h, acid
suppression persists for > 24h. Common adverse effects include
headache, abdominal bloating, diarrhea or constipation, and rash;
long-term or high-dose therapy has been linked to hypomagnesaemia,
vitamin-B,, deficiency, fractures and Clostridioides difficile infection
(31, 32). Isolated case reports further implicate PPIs—including
lansoprazole—in DILE, whose hallmark triad of persistent fever,
malar rash and arthralgia/arthritis closely mirrors the febrile and
arthritic phenotype of sJIA (1, 33). Our multi-modal analyses—
comprising FAERS pharmacovigilance signals, high-risk scores from
Al prediction models, and significant enrichment of lansoprazole gene
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classifiers.

signatures in sJTA monocyte and dendritic-cell populations in both
bulk and single-cell RNA-seq—provide convergent evidence that
lansoprazole may trigger or exacerbate sJIA-like inflammatory
responses in predisposed children. Clinicians should therefore weigh
benefits against potential risks when prescribing lansoprazole to
patients with underlying autoimmune tendencies or those requiring
long-term PPI therapy, monitor electrolytes, bone density and

Frontiers in Immunology

inflammatory markers, and reassess treatment if rashes or joint
symptoms arise.

Although the molecular connection between lansoprazole and
the pathogenesis of sJIA has yet to be fully defined, accumulating
evidence indicates that this drug can disrupt innate-immune
homeostasis through multiple convergent routes and precipitate
an amplified inflammatory cascade. First, in human myeloid cells
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Single-cell validation of the lansoprazole—sJIA signal. (A) UMAP projection of PBMCs from patients and controls. (B) Dot plot of canonical marker
genes for immune cell annotation. (C) Violin plots of lansoprazole signature enrichment across immune cell types. (D) Violin plots of signature
scores in discovery/external cohorts, controls, and post-IL-6 blockade samples.

the drug inhibits lysosomal V-ATPase activity by ~70%, thereby
alkalinizing autophago-lysosomal compartments, blocking cargo
degradation and licensing cathepsin-mediated NLRP3-
inflammasome assembly and IL-1B/IL-18 maturation.
Concomitantly, the same lysosomal stress triggers PERK, IRE1
and ATF6 activation, launching a CHOP-dominated unfolded-
protein response that further amplifies pro-inflammatory cytokine
release (34). Second, chronic PPI therapy precipitates systemic
hypomagnesaemia; murine studies show that Mg>" depletion
alone primes monocytes and dendritic cells for exaggerated
NLRP3 activation and elevates circulating IL-1f, identifying
electrolyte imbalance as an independent feed-forward amplifier of
inflammasome signaling (35, 36). Third, sustained acid suppression
reshapes the gut microbiota towards Gram-negative, LPS-rich taxa,
a dysbiosis epidemiologically linked to Clostridioides difficile
infection and experimentally associated with higher systemic IL-6
and IL-1 family cytokines (37). Finally, these lysosomal, ER-stress,
electrolyte and microbiome insults converge on an NLRP3-
dependent IL-1/IL-18 surge coupled to IL-6/STAT3 trans-
activation—the canonical cytokine axis driving systemic JIA flares
—thus providing a coherent molecular rationale for our multi-
omics evidence that implicates lansoprazole as a plausible
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pharmacological trigger of sJIA-like inflammation in genetically
susceptible children.

In addition to pharmacovigilance and multi-omics evidence,
our cell-based experiments provide direct molecular support for
the proposed mechanism. Using THP-1 cell, we confirmed that
non-cytotoxic concentrations of lansoprazole enhanced
lysosomal activity and significantly increased IL-1f3 and IL-18
secretion in LPS-primed cells. These findings are consistent with
a model in which lansoprazole perturbs lysosomal V-ATPase
function, induces lysosomal stress, and thereby licenses NLRP3
inflammasome activation. Importantly, the observed cytokine
release occurred only after LPS priming, highlighting
lansoprazole as a secondary trigger that amplifies pre-existing
inflammatory signals. Taken together with FAERS
disproportionality signals, AI-based predictions, and
transcriptomic enrichment in sJIA monocytes, the wet-lab
validation strengthens the link between lansoprazole exposure
and inflammasome-driven inflammation. While further studies
are required to directly assess V-ATPase activity and NLRP3/
caspase-1 cleavage in primary patient samples, our integrated
framework provides convergent evidence that lansoprazole may
act as a pharmacological trigger in sJIA.
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(B) Representative confocal images of THP-1 stained with LysoTracker (green) and DAPI (blue). Lansoprazole enhanced lysosomal activity in a
concentration-dependent manner. Scale bar: 20 um. (C-D), ELISA quantification of IL-1f (C) and IL-18 (D) secretion in LPS-primed THP-1
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Nevertheless, our current validation was restricted to THP-1,
which represent the most relevant immune cell model for sJIA
pathogenesis. Broader applicability should be assessed in diverse
cellular systems, such as hepatoma lines (HepG2.2.15, Huh7) and
normal liver cells (LO2), which have been widely used to evaluate
drug-induced immunotoxicity and hepatotoxicity (38).

In summary, Given the widespread use of PPIs in children for
gastro-esophageal reflux or steroid-induced gastritis, our data
suggest that lansoprazole should be prescribed judiciously in
patients with, or at risk for, sJIA. Prospective monitoring of
musculoskeletal symptoms and inflammatory markers after PPI
initiation may help clarify temporal relationships. Integration of AI-
based screening into routine pharmacovigilance pipelines could
enable earlier detection of similar subtype-specific safety signals,
informing shared decision-making between clinicians and families.

Our work leverages three major strengths: (i) comprehensiveness,
drawing on FAERS records; (ii) methodological triangulation, with
concordant predictions from descriptor-based ML and graph-based
DL; and (iii) external validation across bulk and single-cell cohorts
from five centers. Nevertheless, several limitations warrant caution.
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First, FAERS is subject to under-reporting, indication bias and
confounding by co-medication; disproportionality signals do not
prove causality. Second, the RNA-seq cohorts were modest in size
and lacked direct drug-exposure information; consequently, ssGSEA
and AddModuleScore analyses capture transcriptional convergence
compatible with drug signatures rather than confirming actual intake.
Future studies should integrate real-world prescription records with
paired transcriptomic datasets. Finally, toxicity predictions were
supported by complementary cell-based assays, but further
validation in primary immune cells and detailed molecular
experiments will be required to fully elucidate the
underlying mechanisms.

By integrating pharmacovigilance analytics, machine-learning
prediction, and multi-layer transcriptomics, we provide convergent
evidence that lansoprazole is preferentially linked to sJIA and
outline a generalizable roadmap for uncovering hidden drug-
disease interactions in rare pediatric disorders. These insights
highlight the importance of cross-disciplinary data integration for
safeguarding vulnerable patient populations while optimizing
therapeutic outcomes.
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