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Background: Management of juvenile idiopathic arthritis (JIA) relies heavily on

long-term pharmacotherapy, yet an increasing number of case reports suggest

that some drugs may themselves precipitate or worsen the disease. But

systematic methods for detecting these safety signals in pediatric cohorts are

still lacking.

Methods: We screened 10,012,438 reports from the FAERS database using four

disproportionality algorithms (ROR, PRR, EBGM, and BCPNN) to identify potential

drug and JIA associations. Three complementary machine learning models were

developed, including DMPNN, GCN, and SVM, trained on molecular descriptors,

chemical fingerprints, and structural graphs to stratify high-risk compounds.

Toxicogenomic profiles were generated using ProTox-3.0, and drug–disease

target overlap and pathway enrichment were assessed using the CTD and

GeneCards databases. External validation relied on our own newly generated

transcriptomic data: (i) our newly generated bulk RNA-seq dataset from 47

individuals (39 JIA patients and 8 controls) and (ii) a multi-center single-cell

RNA-seq compendium that combined 21 in-house PBMC profiles obtained at

four Chinese pediatric hospitals with 9 publicly available systemic juvenile

idiopathic arthritis (sJIA) samples. Two of the in-house sJIA patients were

sampled longitudinally, before and one month after IL-6-receptor-inhibitor

therapy permitting assessment of treatment-induced transcriptomic shifts.

Drug-signature activity was quantified with single-sample GSEA for the bulk

data and AddModuleScore for the single-cell data.

Results: We identified drugs with consistent positive signals across all four

FAERS-based disproportionality algorithms. Machine learning models (DMPNN,

GCN, SVM) independently confirmed 23 high-risk compounds, with 22

overlapping across all models and predicted risk scores >0.60. Among these,

lansoprazole and aripiprazole showed strong signals in both pharmacovigilance

and DMPNN predictions. Further toxicogenomic analysis revealed immune

toxicity patterns overlapping with JIA-related gene targets and pathways.
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Notably, bulk RNA-seq and single-cell RNA-seq validation demonstrated that

lansoprazole signatures were significantly enriched in monocyte from sJIA

patients. This multi-level convergence supports the hypothesis that certain

non-antirheumatic drugs may aggravate JIA-like inflammation, particularly

within the systemic subtype.

Conclusions: In this study, we identify lansoprazole as a likely instigator of

systemic juvenile idiopathic arthritis, underscoring that proton-pump inhibitors

should be used judiciously in children at autoimmune risk and providing a

generalizable playbook for rare-disease pharmacovigilance.
KEYWORDS

juvenile idiopathic arthritis, machine learning models, FAERS, toxicogenomic,
pharmacovigilance, systems immunology, multicenter study
Introduction

Medication use in children with Juvenile Idiopathic Arthritis

(JIA) is widespread, with most patients requiring long-term

pharmacologic therapy involving immunosuppressants,

nonsteroidal anti-inflammatory drugs (NSAIDs), glucocorticoids,

and biologic agents (1–3). While these medications are essential for

disease control, growing attention has been drawn to the possibility

that certain drugs may themselves act as environmental triggers for

the onset or exacerbation of JIA in genetically or immunologically

predisposed individuals (4, 5).

Evidence from pharmacovigilance systems and published

literature has implicated a wide range of drug classes, including

vaccines, biologics, antimicrobials, and neuropsychiatric agents, in

the development of idiopathic arthritis (IA), including JIA (6–8).

These effects may be mediated through mechanisms such as

molecular mimicry, immune activation, and gut microbiota

disruption. Among vaccines, the rubella component of MMR is

well known to cause transient arthritis in patients (9), and case

reports have linked immune-mediated arthritic reactions to

hepatitis B and COVID-19 vaccines (8, 10). Biologic agents such

as TNF-a inhibitors and immune checkpoint inhibitors have also

been associated with paradoxical inflammatory arthritis, supported

by safety signals from the FAERS and VigiBase databases (11–15).

Additional suspected triggers include interferon-a, repeated early-

life exposure to broad-spectrum antibiotics, and certain

psychotropic agents (13, 16, 17). However, the precise causal

relationships between these pharmacological exposures and JIA

remain to be fully elucidated.

However, existing evidence remains fragmented, often derived

from isolated case reports or underpowered observational studies.

And, preclinical models frequently fail to capture pediatric-specific

immune dynamics, and real-world ADR data in children with JIA

are sparse and delayed due to disease rarity and underreporting.
02
These limitations underscore the urgent need for comprehensive,

data-driven approaches to systematically identify and evaluate

drugs that may not only treat but also induce or worsen JIA.

Artificial intelligence-driven frameworks are increasingly being

applied across diverse biomedical fields. In arthritis and immune-

mediated diseases, recent advances demonstrate their promise as

systematic tools for integrating pharmacovigilance, multi-omics,

and clinical datasets to improve the assessment of drug safety and

therapeutic efficacy (18, 19).

In this study, we extracted JIA-related ADR reports from the U.S.

Food and Drug Administration’s Adverse Event Reporting System

(FAERS), explored multiple data preprocessing strategies, and

compared three classification approaches for stratifying high-risk

versus low-risk drugs. Predictive models were developed using

various drug representation techniques—including 2D molecular

descriptors, molecular fingerprints (ECFP4 and MACCS), and

molecular graphs—and were trained using both classical machine

learning algorithms and deep learning architectures. To enable

external validation, we also leveraged data from an independent

cohort of JIA patients from 5 centers. Drug-specific gene signature

enrichment scores were computed to further support the model’s

predictive capacity. This AI-driven framework provides a valuable

tool for systematically identifying medications with the potential to

induce JIA, thereby enhancing drug safety assessments and guiding

informed decision-making in pediatric rheumatology

and pharmacovigilance.

Methods

The process of constructing an AI-based predictive model for

the identification of JIA encompasses multiple essential stages,

including data acquisition and preprocessing, computational

analysis of molecular features, model development. A schematic

overview of these procedures is provided in Figure 1.
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Data acquisition

Data analyzed in this study were collected from the FAERS

database (https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-

QDE-FAERS.html), where adverse drug reactions (ADRs) are

systematically categorized according to the MedDRA standard

terminology (20). To enable a comprehensive assessment, all

adverse event reports pertaining to JIA were consolidated. As part

of the FAERS data preprocessing, duplicate entries were removed,

and only the latest records were retained, yielding a dataset

comprising 10012438 adverse event reports recorded between

January 2004 and December 2024. The associated drugs were

determined, and their generic names were retrieved from the

PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Various

analytical strategies were applied to distinguish drugs associated

with higher versus lower risk for JIA-related adverse reactions

across different hierarchical levels.

All compounds included in the dataset were restricted to small-

molecule drugs, with their molecular structures retrieved from the

PubChem database and represented as Simplified Molecular Input

Line Entry System (SMILES) strings. Drugs lacking available

SMILES information were excluded from further analysis. To

maintain structural consistency and enhance accuracy, all

molecular structures were standardized using the “wash” protocol

implemented in the Molecular Operating Environment (MOE)

software (version 2022.02, Chemical Computing Group,

Montreal, QC, Canada). Standardization procedures involved the

removal of salts and minor components, deprotonation of strong

acids and bases, and the addition of explicit hydrogen atoms,

thereby facilitating the calculation of molecular descriptors and

the construction of molecular graphs.
Frontiers in Immunology 03
External validation relied on our own newly generated

transcriptomic data: For bulk RNA-seq, PBMCs were collected

from 39 patients with non-systemic juvenile idiopathic arthritis

(non-sJIA), 16 patients with systemic juvenile idiopathic arthritis

(sJIA), and 8 healthy controls conducted at the Children’s Hospital of

Chongqing Medical University. All patients enrolled in the study

were diagnosed based on the classification criteria established by the

International League of Associations for Rheumatology (ILAR) (21).

For single-cell RNA sequencing (scRNA-seq), PBMCs were

prospectively collected from 27 patients with sJIA across five

centers and 6 healthy controls. In addition, paired PBMC samples

were obtained from 2 sJIA patients before and one month after IL-6

inhibitor treatment. Clinical samples obtained from the following

institutions: Children’s Hospital of Chongqing Medical University

(10 sJIA), Peking Union Medical College Hospital (1 sJIA),

Children’s Hospital of Nanjing Medical University (3 sJIA),

Shenzhen Children’s Hospital (4 sJIA), and Cincinnati Children’s

Hospital Medical Center (9 sJIA) (GSE207633). All patients

enrolled in the study were diagnosed based on the classification

criteria established by the ILAR (21).
Methods for classifying drugs into high-risk
and low-risk categories

Signal detection of ADRs within spontaneous reporting systems

commonly relies on Bayesian-based approaches, such as the

BCPNN, and frequency-based metrics, including the ROR, PRR

and EBGM. In the present study, four analytical methods were

utilized to evaluate the risk of JIA-associated ADRs across different

drugs (22).
FIGURE 1

The technology roadmap is included in this study.
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Time-to-onset

The time-to-onset (TTO) of ADE is analyzed, TTO is defined as

the time period between the date the ADE occurred (EVENT_DT in

the DEMO file) and the date the medication started (START_DT in

the THER file). To ensure accuracy and reliability, any inaccurate

date entries, missing data, or input errors (such as instances where

EVENT_DT appears before START_DT) are removed from the

analysis. The median, interquartile distance (IQR), and Weibull

shape parameter (WSP) are utilized to evaluate the TTO (22, 23).

The Weibull distribution is a statistical model that characterizes the

shape of failure or event time data. It is defined by two parameters:

scale (a) and shape (b). The Weibull shape parameter (b) is

particularly relevant for evaluating TTO patterns. Different values

of b correspond to different failure types: Early failure types: b < 1,

with a 95% confidence interval (CI) also less than 1. These types

exhibit a diminishing ADE risk over time, indicating that the

occurrence of ADE decreases as time progresses. Random failure

types: b equals or approximates 1, with its 95% CI encompassing the

value 1. These types entail a consistent ADE hazard rate over time,

suggesting a relatively stable risk of ADE occurrence. Wear failure

types: b > 1%, with a 95% CI also greater than 1. These types

indicate an escalating ADE risk as time progresses, meaning that the

likelihood of experiencing an ADE increases over time. In

simulations of Weibull distribution, the Kolmogorov-Smirnov

(KS) test, which involves D statistics and P-value, is a widely used

technique to assess the alignment between simulation results and

theoretical or observed distributions.
Molecular structure characterization

In traditional machine learning (ML) frameworks, molecular

structures are typically represented through molecular descriptors

and fingerprints, whereas deep learning (DL) approaches employ

molecular graphs. In the present study, drug structures were

characterized using a combination of 2D molecular descriptors,

two distinct types of fingerprints (ECFP4 and MACCS), and

molecular graphs.
2D molecular descriptors

A total of 83 two-dimensional (2D) molecular descriptors were

computed using the rdkit.Chem.Descriptors function from the

RDKit toolkit (version 2023.9.6). This descriptor set includes

features such as molecular weight, partition coefficient (log P,

calculated via Wildman and Crippen methods), the number of

hydrogen bond donors and acceptors (NumHDonors and

NumHAcceptors), topological parameters (TPSA, kappa indices

1–3, BertzCT), composi t ional at tr ibutes (NumRings ,

NumAromaticRings), and electrotopological state indices (Estate).

The complete list of calculated descriptors is available in the RDKit
Frontiers in Immunology 04
d o c u m e n t a t i o n ( h t t p s : / / w w w . r d k i t . o r g / d o c s /

GettingStartedInPython.html#list-of-available-descriptors) and is

collectively referred to as Des in this study.
Fingerprints

The MACCS fingerprint encodes the presence (1) or absence (0)

of predefined chemical features within a 166-bit binary vector. In

contrast, the Extended Connectivity Fingerprint (ECFP4) addresses

molecular isomorphism by decomposing molecules into circular

fragments and encoding each atom based on its environment. The

ECFP4 fingerprint, characterized by a radius of 2, is typically

represented as a 1024-bit binary vector. Both MACCS and ECFP4

fingerprints were generated using the RDKit package

(version 2023.9.6).
Molecular graphs

Graph-based molecular representation methods apply

convolutional operations to capture structural features. In this

framework, a molecule is abstracted as a graph G = (V, E), where

nodes (V) correspond to atoms, each associated with a feature

vector (Xv), and edges (E) represent bonds with feature vectors

(Ekm), denoting connections between atoms k and m. Thus,

molecules are modeled as interconnected nodes and edges. Deep

learning (DL) techniques leverage convolutional transformations

over these graphs to learn latent molecular representations, which

are subsequently utilized during the readout phase to predict

various molecular properties.
Model construction

The evaluation of model performance for JIA-associated

adverse drug reactions (ADRs) encompassed both traditional

machine learning (ML) and deep learning (DL) strategies.

Descriptor-based models were generated utilizing one ML

algorithms: support vector machines (SVM). Concurrently, deep

learning frameworks were established based on two graph neural

network (GNN) architectures: the graph convolutional network

(GCN) and t h e d i r e c t e d me s s a g e p a s s i n g n eu r a l

network (DMPNN).
Descriptor-based models

Descriptor-based models were established using two types of

molecular fingerprints, ECFP4 and MACCS, along with a set of 2D

molecular descriptors generated via RDKit. For the support vector

machine (SVM) model, a radial basis function (RBF) kernel

was applied.
frontiersin.org
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Graph convolutional network model

The GCN model applied a scalable semi-supervised learning

strategy designed for graph-structured datasets. It leveraged a

localized first-order approximation of spectral graph convolutions

to enable direct operations on graph representations.

Hyperparameters were optimized during model construction,

including the number of hidden units per GCN layer, the use of

residual connections (enabled), application of batch normalization

(enabled), dropout rate, hidden dimensions for the multilayer

perceptron (MLP) predictor, and predictor dropout rate.
Directed message passing neural network
model

The DMPNN model employed bond-centered convolutional

operations to encode molecular structures, thereby avoiding

unnecessary cyclic message propagation. Previous studies have

indicated that combining DMPNN with external molecular features

improves model performance, as 2D molecular descriptors provide

global contextual information while DMPNN captures local structural

features. In this study, DMPNN was enhanced through the integration

of additional feature vectors at the molecular level, resulting in two

variants: DMPNN-Des (with 2Dmolecular descriptors) and DMPNN-

ECFP4 (with ECFP4 fingerprints). Hyperparameter optimization was

conducted following the Chemprop 2.0.4 framework, targeting

variables such as the depth of the message passing phase, hidden

dimension in the encoder, number of layers in the feedforward neural

network module, batch size, activation function for encoding layers,

and dropout probability within the encoder.

The descriptor-based models (SVM) was implemented using the

scikit-learn library (version 0.20.1) in a Python 3.8 environment.

Graph-based models, including the GCN and the GNN, were

developed with the Deep Graph Library (DGL, version 0.4.1) using

PyTorch as the backend. The directed message passing neural

network (DMPNN) was constructed employing the Chemprop

package (version 1.0). All deep learning models were trained using

the Adam optimizer, and hyperparameters were optimized

systematically through Bayesian optimization techniques.
Model evaluation

The dataset was randomly partitioned into training, validation,

and test subsets in an 8:1:1 ratio. To assess model robustness and

generalization ability, a 5-fold cross-validation strategy was

employed during training. Specifically, the dataset was divided

into five equal parts, with four parts used for model training and

the remaining part for validation in each iteration, cycling through

all five partitions. Final model performance was evaluated using the

independent test set. Model discrimination ability was primarily

assessed by calculating the area under the receiver operating

characteristic curve (AUC), which reflects the overall capability of

the model to distinguish between high-risk and low-risk drugs.
Frontiers in Immunology 05
Analysis of substructure alerts

To investigate the relationship between molecular substructures

and JIA-associated ADRs, we employed the fears toolkit developed

by our research group. For each molecule, the model-derived

predictive outcome was used to assess the contribution of its

corresponding substructures to ADR risk, enabling a systematic

and data-driven identification of potential substructure alerts.
FAERS sensitivity analysis for
co-medications

Concomitant use of multiple medications is common in clinical

practice and may influence the occurrence of JIA, thereby affecting

signal detection. To enhance the robustness of our analysis and

minimize potential confounding bias, we performed a sensitivity

analysis by excluding reports that involved concomitant therapies,

thereby improving the reliability of AE signal detection.
Toxicity prediction

To assess the potential toxicity of the investigated compounds,

we employed the ProTox-3.0 webserver (https://tox.charite.de/

protox3/), a publicly available platform for in silico toxicity

prediction. ProTox-3.0 integrates molecular similarity assessment,

fragment-based analysis, and machine learning algorithms to

predict 61 toxicity endpoints, including acute toxicity, organ-

specific toxicity, molecular initiating events, toxicity pathways,

metabolism, and toxicity targets. Canonical SMILES (Simplified

Molecular Input Line Entry System) strings were submitted for each

compound via the ProTox-3.0 interface. Toxicity profiles were

predicted based on structural similarity to known toxicants and

model-derived inference. Outputs included predicted toxicity

classes, LD50 values, and associated confidence scores for each

endpoint. The platform also provided visualization tools such as

toxicity radar plots and interaction network diagrams to aid

interpretation. All predictions were performed using the default

configuration settings of the ProTox-3.0 platform.
Identification of potential mechanistic
targets via intersection analysis

To elucidate the potential mechanistic basis of drugs in the

context of JIA, we performed a target intersection analysis between

drug-associated targets and disease-related genes. First, the

molecular targets of drugs were retrieved from the CTD database

(https://ctdbase.org/). Next, JIA genes were identified using

GeneCards (https://www.genecards.org/) by querying the term

“Juvenile Idiopathic Arthritis”. All genes with a GeneCards

relevance score ≥ 10 were retained as putative disease-related

targets. The intersection of the two gene sets—i.e., shared targets

between drugs and JIA was computed using custom scripts in R.
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The overlapping targets were considered potential mechanistic

mediators and were subjected to further functional enrichment

and pathway analysis.
ssGSEA-based drug signature scoring and
association with JIA subtypes

To quantify the transcriptional activity of drug-specific gene

signatures across patients, we conducted single-sample gene set

enrichment analysis (ssGSEA) using the GSVA packagein R. The

“limma” R package was used to remove the batch effect and

eliminate the sample sets with excessive differences (24). Drug-

associated gene sets were curated from [insert source, e.g., LINCS,

DrugMatrix, or previously published datasets], representing

transcriptional responses to a range of pharmacologic compounds.

For each patient, ssGSEA generated an enrichment score

reflecting the coordinated up- or downregulation of genes within

each drug signature. These scores served as proxies for drug-specific

transcriptional activation at the individual level.

To investigate the relationship between drug signature activity

and clinical heterogeneity, we compared ssGSEA enrichment scores

across major JIA subtypes. Statistical comparisons were performed

using one-way ANOVA tests. Subtype-specific enrichment patterns

were visualized via boxplots to identify compound signatures

preferentially associated with distinct JIA phenotypes.
Data processing and cell clustering of
individual cases

Preprocessed gene expression matrices from each sample were

independently analyzed using RStudio (v4.0.2) and the Seurat

package (v4.1.0). Initial quality control excluded ribosomal genes,

genes expressed in fewer than three cells, and cells expressing fewer

than 200 genes. And cells with >16% mitochondrial gene content,

<3% ribosomal gene content, or >0% hemoglobin gene content were

considered low quality and excluded from further analysis (25).

Monocytes were identified based on high expression of LYZ,

FCN1, AIF1, and S100A12; NK cells by GNLY, KLRD1, NKG7,

KLRB1, and KLRK1; B cells by CD79A, MS4A1, MZB1, and

JCHAIN; megakaryocytes by ITGA2B and GP9; dendritic cells by

TMPO and GIMAP4; and T cells by CD3E, TCF7, RACK1, IL7R,

and IFITM1. Cluster identities were inferred based on the

expression of characteristic markers.
Data integration with batch effect
collection

To normalize and integrate multi-sample scRNA-seq datasets,

we applied SCTransform-based normalization followed by

Harmony batch correction. Specifically, each dataset was

normalized using SCTransform with regularized negative

binomial regression, and the top variable features were used for
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PCA reduction (26). Batch effects across samples (denoted by

orig.ident) were corrected using the Harmony algorithm, yielding

a shared low-dimensional representation. Following Harmony

integration, we performed UMAP (RunUMAP (reduction =

“harmony”)) (27). Graph-based clustering was conducted using

the FindNeighbors and FindClusters functions based on the first 20

Harmony-corrected principal components. To determine the

optimal clustering resolution, we tested a range of resolutions

(0.1–1.0) and evaluated the clustering structure using Clustree.

Based on visual inspection of UMAP plots and cluster tree

topology, we selected resolution = 0.9 for downstream cell

population definition. Clusters with low unique feature counts or

high mitochondrial content were excluded as low-quality or

apoptotic cells. All visualizations were generated using DimPlot.
Scoring and comparison of gene set
activity across single-cell populations

To assess the drug-specific gene at single-cell resolution, we

employed the AddModuleScore function in the Seurat package in R.

This method calculates a relative expression score for each cell by

averaging the expression of genes within the target set and adjusting

for background expression using control gene sets matched by

average expression. Statistical comparisons of gene set activity

across annotated cell populations were performed using Wilcoxon

rank-sum tests. Visualization was carried out using functions from

the Seurat and ggplot2 packages.
Cell-based experimental validation

Human THP-1 monocytes were maintained in RPMI-1640

medium supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin–streptomycin at 37°C in a 5% CO2 incubator.

Differentiation into macrophages was induced by exposure to

phorbol 12-myristate 13-acetate (PMA, 100 ng/mL) for 24h. To

evaluate cytotoxicity, cells were seeded into 96-well plates (1×104

cells/well) and treatedgs with potential candidate drugs at 0, 10, 20, 40,

or 80 mM for 24h, followed by CCK-8 measurement of cell viability at

450 nm. For lysosomal activity, differentiated THP-1 macrophages

(1×106 cells/dish) were exposed to increasing concentrations of

lansoprazole (0–80 mM, 24h), stained with LysoTracker Green and

DAPI, and imaged by laser confocal microscopy. To assess

inflammasome activation, cells were first primed with

lipopolysaccharide (LPS, 1 mg/mL, 3h) to induce baseline expression

of pro-IL-1b and NLRP3, after which lansoprazole (0–80 mM, 24h)

was applied; supernatants were collected and IL-1b and IL-18 levels

quantified by ELISA according to manufacturer instructions.
Ethical considerations

Ethical clearance was obtained from the Institutional Review

Board of the Children’s Hospital of Chongqing Medical University
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(Approval No. (2023)IRB(STUDY) No.351). As a retrospective

analysis based solely on existing medical records from prior

clinical visits, the study posed no additional risk to the participants.
Results

Descriptive results of pharmacovigilance
analysis

A total of 1125 ADE associated with JIA were documented in

the FAERS database from Q1–2004 to Q4 2023 (Figure 2). Notably,

the incidence of reported JIA peaked in 2020, accounting for 144

cases (Figure 2A). Subsequently, there was a decline in reports

starting from 2020, although an overall upward trend persisted

throughout the specified period. Examining the chronological

pattern of ADR reports, peak activity for JIA cases was observed

in the years 2020, 2021, 2023 and 2024. And, The majority of

patients mentioned in ADE reports were over the age of 6-12

(Figures 2B, G). Patient weights ranged from 5kg to nearly 100kg,

with a median of ~38 kg and an inter-quartile range of roughly

28–60 kg. The violin plot reveals two density peaks, one around

30–35 kg (younger school-age children) and another near 55–65 kg

(older adolescents), mirroring the bimodal age structure of the

cohort (Figure 2C). Figure 2D reveals a markedly right-skewed TTO

distribution, and half of the reported reactions occurred within

roughly the first four months of drug exposure (Figures 2D, J)

Geographically, Canada (35.02%) and the United States (24.62%)

contributed the largest shares, followed by Germany, the United

Kingdom and Japan (Figure 2E). Gender distribution analysis

revealed that among the reported cases excluding those lacking

gender details, females accounted for 69.24% of the cases, while

males represented 27.73% (Figure 2F). Concurrently, out of 1125

ADR reports involving hospitalization occurred in approximately

23.60% of cases, deaths were recorded at a rate of 0.73%, and

disability were rare, evident in 7.32% of cases (Figure 2H).

Physicians submitted the plurality of cases (36.89%), while

consumers and pharmacists accounted for 29.33% and 20.44%,

respectively; contributions from other health professionals, lawyers

and unknown reporters were minor (Figure 2I).
Data mining on a JIA-inducing drug

Signal detection analysis identified a total of 40 drug entities

with consistent positive associations with JIA across all four

disproportionality algorithms (ROR, PRR, EBGM, and BCPNN).

Notably, ciclosporin, aripiprazole, fluoxetine hydrochloride,

lorazepam, clobazam, duloxetine, gabapentin, methadose,

cetirizine, cetirizine hydrochloride, and lansoprazole showed

strong and recurrent signals, indicating a close association with

JIA risk (Supplementary Table S1).
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AI-based risk prediction

To evaluate compound-level risk prediction for JIA, we

compared three distinct modeling approaches: a directed message

passing neural network (DMPNN), a graph convolutional network

(GCN), and a support vector machine (SVM). All three models

demonstrated strong discriminatory performance and collectively

identified a set of drugs potentially associated with the risk of JIA.

The DMPNN model generated compound-level risk scores for

22 candidate drugs potentially associated with JIA (Supplementary

Table S2, Figure 3), with excellent performance supported by a high

area under the receiver operating characteristic curve (AUC=0.98)

(Figure 4A). Similarly, the GCN model identified the same set of 22

high-risk compounds (Supplementary Table S3), achieving a

predictive performance of AUC=0.88 (Figure 4B). The SVM

model also yielded consistent results, detecting 23 compounds

closely linked to JIA occurrence (Supplementary Table S4), with

an AUC of 0.91 (Figure 4C), further confirming the robustness and

agreement across modeling approaches.

Subsequent intersection of the outputs from the three models

revealed a shared subset of 22 overlapping drugs, each consistently

predicted to be associated with JIA. Notably, all 22 drugs received

predicted risk scores above 0.60 across all three models

(Figure 4D, Table 1), underscoring their strong prioritization

and potential clinical relevance in the context of JIA-related

adverse drug events.

To further characterize the 22 high-confidence drugs identified

by all three models, we conducted a comprehensive review of the

existing literature and official prescribing information. We found

that only a small subset, most notably aripiprazole and lansoprazole

have previously been reported in association with joint-related

adverse events (Table 2). Aripiprazole has been linked to

arthralgia and joint stiffness in post-marketing surveillance, while

lansoprazole has been implicated in drug-induced lupus

erythematosus (DILE), which may present with arthritis-like

symptoms. For the remaining drugs, no published evidence or

product labeling currently supports a role in exacerbating arthritis

or triggering systemic inflammatory responses resembling JIA.

These findings highlight the potential of our predictive

framework to uncover previously unrecognized safety signals and

re inforce the need for further pharmacologica l and

mechanistic investigation.

Concomitant use of multiple medications is common in clinical

practice and may influence the occurrence of JIA, thereby affecting

signal detection. To enhance the robustness of our analysis and

minimize potential confounding bias, we conducted a sensitivity

analysis by excluding reports that involved concomitant therapies.

The excluded drug categories comprised nonsteroidal anti-

inflammatory drugs (naproxen, diclofenac, celecoxib, ibuprofen,

acetaminophen), conventional synthetic DMARDs (methotrexate,

leflunomide, sulfasalazine, hydroxychloroquine, penicillamine),

glucocorticoids (hydrocortisone, prednisone, dexamethasone,
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methylprednisolone, triamcinolone, prednisolone, budesonide,

betamethasone, cortisone), biologics and targeted therapies

(adalimumab, etanercept, tocilizumab, infliximab, canakinumab,

anakinra, ruxolitinib, golimumab, secukinumab, tofacitinib,

abatacept, sarilumab, rituximab, ustekinumab, certolizumab), and
Frontiers in Immunology 08
other immunosuppressants (tacrolimus, cyclosporine). After

applying these exclusions, 221AE reports remained eligible for

analysis, from which 16 drugs were still identified as being

as soc i a t ed wi th J IA based on the c r i t e r i a o f f our

disproportionality algorithms (Supplementary Figure S1).
FIGURE 2

Baseline clinical characteristics of FAERS reports involving JIA. (A) Annual number of JIA-related reports (2004–2024), with a surge in 2020. (B) Age
distribution of patients (violin plot). (C) Weight distribution of patients (violin plot). (D) Time-to-onset (TTO) from drug initiation to first JIA report
(boxplot, Weibull b inset). (E) Country of origin of reports (top 10 + Other). (F) Sex distribution. (G) Age sub-groups (0–2, 3–5, 6–11, 12–17 years).
(H) Clinical outcomes (Hospitalisation, Disability, Life-threatening, Death, Other). (I) Reporter roles (Physician, Consumer, Pharmacist, Other). (J) TTO
grouped as ≤30 d, 31–180 d, >180d.
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FIGURE 3

Risk prediction based on artificial intelligence and molecular formula of drugs related to JIA.
FIGURE 4

Receiver operating characteristic curve (ROC) demonstrating the predictive performance of different models for drug-associated JIA risk. (A) ROC
curve of the DMPNN model. (B) ROC curve of the GCN model. (C) ROC curve of the SVM model. (D) Overlap of drug predictions (Venn diagram).
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TABLE 1 AI-Based risk prediction.

cid Drugname Labels DMPNN_pred GCN_pred SVM_pred

3883 LANSPORAZOLE 1 0.6304 0.9691 1

126941
METHOTREXATE|METHOTREXATE.|METHOTREXATE (TRADE NAME
UNKNOWN)

1 0.7057 0.9809 1

31307 TRIAMCINOLONE 1 0.7293 0.9849 1

5284373 CICLOSPORIN 1 0.7445 0.9886 1

60795 ARIPIPRAZOLE|ARIPIPRAZOLE. 1 0.7541 0.9599 1

3446 GABAPENTIN 1 0.8049 0.9878 1

2662 CELECOXIB.|CELECOXIB 1 0.8107 0.9936 1

156391 NAPROXEN.|NAPROXEN 1 0.8202 0.908 1

3899 LEFLUNOMIDE.|LEFLUNOMIDE 1 0.8328 0.9871 1

6436 TRIAMCINOLONE ACETONIDE.|TRIAMCINOLONE ACETONIDE 1 0.8481 0.9893 1

3958 LORAZEPAM 1 0.8713 0.9724 1

11329481 METHOTREXATE SODIUM.|METHOTREXATE SODIUM 1 0.8752 0.9976 1

62857 FLUOXETINE HYDROCHLORIDE 1 0.9193 0.9875 1

23681059 NAPROXEN SODIUM ({= 220 MG)|NAPROXEN SODIUM 1 0.9301 0.9871 1

2678 CETIRIZINE 1 0.9376 0.9678 1

55182 CETIRIZINE HYDROCHLORIDE 1 0.9423 0.9675 1

60835 DULOXETINE. 1 0.9584 0.9007 1

2789 CLOBAZAM 1 0.96 0.9534 1

14184 METHADOSE 1 0.9762 0.9791 1

3100 DIPHENHYDRAMINE 1 0.9861 0.977 1

5865 PREDNISONE. 1 0.6362 0.9457 1

3652 HYDROXYCHLOROQUINE 1 0.6249 0.9778 1
F
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TABLE 2 Review of literature and drug instructions for aripiprazole and lansoprazole.

Drug
name

Used for
treatment
treat JIA

Reported
Inducing/
increase
JIA?

Main sources of evidence Cite

Aripiprazole NO MAY
Post-marketing surveillance has identified arthralgia (1–10%) and joint stiffness
(0.1–1%) as uncommon adverse events. Although arthritis-like symptoms have been
observed, the exact pathogenic mechanism remains unclear.

based on drug side effect data
(https://www.drugs.com/sfx/
abilify-side-effects.html#:~:
text=,syndrome%2C%
20sciatica%2C%20skeletal%
20injury%2C%20stiffness)

Lansoprazole NO MAY

Lansoprazole itself is not an antirheumatic agent, but proton-pump inhibitors (PPIs)
have been reported to induce drug-induced lupus erythematosus (DILE), a condition
that can manifest with fever, arthralgia, and even frank arthritis. Current hypotheses
suggest a loss of immune tolerance in genetically susceptible individuals, yet the
precise mechanism is still unknown.

based on drug side effect data
(https://www.mayoclinic.org/
drugs-supplements/
lansoprazole-oral-route/
description/drg-20067214)
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Toxicity prediction of aripiprazole and
lansoprazole

In silico toxicity predictions using ProTox-3.0 revealed

multiple organ-specific toxicities associated with Lansoprazole

and Aripiprazole. Computational toxicity screening of

Lansoprazole using the ProTox-3.0 platform revealed a complex

multi-system profile. The compound was predicted to be active for

hepatotoxicity (probability = 0.53) and respiratory toxicity (0.75),

with additional activity noted for blood–brain barrier permeability

(0.84) and nutritional toxicity (0.80). Although nephrotoxicity and

cardiotoxicity were predicted as inactive, their probabilities (0.83

and 0.72, respectively) suggest potential off-target effects in renal

and cardiovascular systems (Supplementary Table S5). At the

mechanistic level, Lansoprazole was predicted to be active

toward the aryl hydrocarbon receptor (AhR) (probability = 1.00)

and to interact with androgen and estrogen receptors (e.g., AR:

0.90; ER-LBD: 0.90), implying possible endocrine-disrupting

properties. Additionally, the compound was flagged as active in

the hERG (human Ether-à-go-go-Related Gene) channel (0.65)

and cytochrome P450 inhibition was noted, particularly for

CYP1A2 (0.83) and CYP3A4 (0.77)—suggesting potential for

metabolic interaction and QT prolongation risk (Supplementary

Table S5).

And, Aripiprazole exhibits a broad and high-confidence multi-

system toxicity signature. The compound was predicted to be active

for neurotoxicity (probability = 0.96), respiratory toxicity (0.89),

and notably, immunotoxicity (0.98). It also demonstrated high

probabilities for blood–brain barrier permeability (0.96) and

clinical toxicity (0.90), suggesting systemic exposure and potential

for CNS-related adverse events (Supplementary Table S6).

Mechanistically, Aripiprazole was predicted to interact with

several key targets relevant to immune and nervous system

function. It showed strong activity toward the N-methyl-D-

aspartate receptor (NMDAR; 0.94) and voltage-gated sodium

channels (VGSC; 0.65)—both of which are implicated in

neuroinflammation and excitotoxicity. In addition, it activated

multiple cellular stress response pathways, including the heat

shock element (HSE; 0.92) and ATPase-related stress signaling

(0.98), indicating potential for mitochondrial and proteostatic

stress. While interactions with nuclear hormone receptors

(estrogen or androgen receptors) were largely inactive, metabolic

pathway predictions indicated inhibition of CYP1A2 (0.83) and

CYP2D6 (0.75) (Supplementary Table S6).
Target intersection and network analysis

To elucidate potential mechanistic links between aripiprazole,

lansoprazole and JIA, we performed a target intersection analysis.

Aripiprazole and lansoprazole-associated targets were retrieved

from the ChEMBL database (Supplementary Tables S7, S8), while

disease-related genes were identified using GeneCards. The overlap

between the two sets yielded 43 and 31 intersecting genes between

aripiprazole, lansoprazole and JIA, suggesting shared molecular
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relevance (Supplementary Tables S9, S10). For Aripiprazole,

network mapping revealed interactions with a core set of

inflammation-related genes, including TNF, IL6, CXCL8, IL1B,

and CASP3. These genes are known mediators of innate immune

activation and cytokine signaling in JIA. Aripiprazole also

intersected with TP53, RELA, and MAPK1, suggesting a potential

role in modulating apoptotic and NF-kB pathways (Figure 5A).

Similarly, Lansoprazole was linked to a highly overlapping

immune-inflammation axis. Key nodes included IL6, IL1B, TNF,

CXCL8, and NFKBIA, alongside regulators of oxidative stress and

immune resolution such as PTGS2 and CASP3 (Figure 5B). These

interactions support a plausible immunotoxic profile, particularly in

genetically predisposed individuals.
Association of candidate drugs with JIA
subtypes

To further delineate the potential associations between the

identified candidate drugs and specific subtypes of JIA, we

performed bulk RNA-seq analysis on a cohort of 68 patients,

stratified into sJIA and non-sJIA. Using ssGSEA, we quantified

drug-specific gene expression signatures. Among the compounds

analyzed, lansoprazole exhibited significantly higher enrichment

scores in sJIA patients compared to healthy controls (P<0.05),

suggesting a potential transcriptional association with the sJIA

(Figures 6A, C). In contrast, aripiprazole and other compounds

did not show significant enrichment in either sJIA or non-sJIA

patients (Figure 6B).
Single-cell transcriptomic validation of
drug–subtype associations

To thoroughly characterize the transcriptional landscape of

sJIA patients, we conducted scRNA-seq on 27 samples from sJIA

(5 centers) and 6 samples from controls, 2 paired samples from sJIA

patients (n=2) before and after one month of treatment with IL-6

inhibitors. After stringent quality filtering and batch effect

correction of scRNA-seq data, 273671 cells were clustered into 54

clusters with an unsupervised approach, defined by well-established

canonical marker genes (Figure 7A). These clusters were grouped

into the main cellular categories: monocyte, NK cell, B cell, plasma

cell, Megakaryocytes, dendritic cell, T cell (Figure 7B).

Ce l l - type–spec ific enr ichment ana lys i s us ing the

AddModuleScore method revealed that lansoprazole-associated

inflammatory gene signatures were preferentially enriched in

monocytes and dendritic cells from sJIA patients, implicating

these innate immune compartments as potential mediators of

lansoprazole-driven transcriptional responses (Figure 7C).

Furthermore, gene set scores related to lansoprazole were

significantly elevated in both the internal and external sJIA

cohorts, as well as in patients following IL-6 blockade therapy,

compared to controls (Figure 7D). These single-cell–level findings

reinforce the hypothesis that lansoprazole may influence disease-
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relevant immune pathways in sJIA, particularly through effects on

monocytes activation.

To experimentally validate the predicted mechanism, we

performed cell-based assays in THP-1. CCK-8 analysis showed

that lansoprazole at 80 mM significantly reduced cell viability

compared with untreated controls, whereas 10–40 mM had no

significant cytotoxic effect (Figure 8A). LysoTracker confocal

imaging demonstrated a concentration-dependent increase in

lysosomal activity after 24h exposure to lansoprazole, with

progressively stronger fluorescence signals observed from 10 to 80

mM (Figure 8B). To assess inflammasome activation, cells were

primed with LPS to induce baseline expression of pro-IL-1b and

NLRP3, followed by lansoprazole treatment. ELISA quantification

revealed that lansoprazole markedly enhanced IL-1b and IL-18

secretion in a dose-dependent manner, with significant increases

detected at 20, 40, and 80 mM compared to LPS alone (Figures 8C–

D). These findings provide functional support that lansoprazole

promotes lysosomal stress and inflammasome-driven

cytokine release.
Discussion

In this study we combined large-scale pharmacovigilance

mining, machine learning, and multi-center transcriptomic

validation to uncover drugs that may precipitate or exacerbate

juvenile idiopathic arthrit is . In FAERS reports , four

disproportionality algorithms converged on 40 candidate drugs;

three orthogonal prediction models (DMPNN, GCN and SVM)

further refined this list to 22 high-confidence compounds. Of these,
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lansoprazole and aripiprazole received the strongest and most

consistent signals. Toxicogenomic predictions implicated both

drugs in innate-immune and stress-response pathways, and

lansoprazole-associated signatures were selectively enriched in

systemic JIA (sJIA) bulk RNA-seq samples as well as monocyte-

and dendritic-cell clusters from single-cell datasets. Collectively,

these multi-tier data identify lansoprazole as a plausible

pharmacological trigger in sJIA and illustrate the utility of AI-

dr i ven f rameworks fo r drug sa f e ty surve i l l ance in

pediatric rheumatology.

Lansoprazole is a proton-pump inhibitor (PPI) that has been

widely prescribed since its approval in 1995 for gastro-esophageal

reflux disease, peptic-ulcer disease, Helicobacter pylori eradication

regimens and Zollinger-Ellison syndrome (28, 29). After protonation

in the acidic gastric milieu, the pro-drug is converted to an active

sulfenamide that covalently binds the parietal-cell H+/K+-ATPase,

thereby blocking the final step of gastric acid secretion (30). Following

oral administration, the drug reaches Cmax at approximately and

displays 80–85% bioavailability; it is metabolized mainly by CYP2C19

and CYP3A4. Although its plasma half-life is only ~1.5 h, acid

suppression persists for ≥ 24h. Common adverse effects include

headache, abdominal bloating, diarrhea or constipation, and rash;

long-term or high-dose therapy has been linked to hypomagnesaemia,

vitamin-B12 deficiency, fractures and Clostridioides difficile infection

(31, 32). Isolated case reports further implicate PPIs—including

lansoprazole—in DILE, whose hallmark triad of persistent fever,

malar rash and arthralgia/arthritis closely mirrors the febrile and

arthritic phenotype of sJIA (1, 33). Our multi-modal analyses—

comprising FAERS pharmacovigilance signals, high-risk scores from

AI prediction models, and significant enrichment of lansoprazole gene
FIGURE 5

Target intersection and network analysis. (A) Aripiprazole and JIA interaction network in this study. (B) Lansoprazole and JIA interaction network in
this study.
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signatures in sJIA monocyte and dendritic-cell populations in both

bulk and single-cell RNA-seq—provide convergent evidence that

lansoprazole may trigger or exacerbate sJIA-like inflammatory

responses in predisposed children. Clinicians should therefore weigh

benefits against potential risks when prescribing lansoprazole to

patients with underlying autoimmune tendencies or those requiring

long-term PPI therapy, monitor electrolytes, bone density and
Frontiers in Immunology 13
inflammatory markers, and reassess treatment if rashes or joint

symptoms arise.

Although the molecular connection between lansoprazole and

the pathogenesis of sJIA has yet to be fully defined, accumulating

evidence indicates that this drug can disrupt innate-immune

homeostasis through multiple convergent routes and precipitate

an amplified inflammatory cascade. First, in human myeloid cells
FIGURE 6

Transcriptomic activity of aripiprazole- and lansoprazole-responsive gene signatures in distinct JIA sub-types. (A) ssGSEA of the lansoprazole
signature in sJIA versus controls. (B) ssGSEA of the lansoprazole signature in non-sJIA versus controls. (C) ROC curves for drug-induced sJIA
classifiers.
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the drug inhibits lysosomal V-ATPase activity by ~70%, thereby

alkalinizing autophago-lysosomal compartments, blocking cargo

degradation and licensing cathepsin-mediated NLRP3-

inflammasome assembly and IL-1b/IL-18 maturation.

Concomitantly, the same lysosomal stress triggers PERK, IRE1

and ATF6 activation, launching a CHOP-dominated unfolded-

protein response that further amplifies pro-inflammatory cytokine

release (34). Second, chronic PPI therapy precipitates systemic

hypomagnesaemia; murine studies show that Mg2+ depletion

alone primes monocytes and dendritic cells for exaggerated

NLRP3 activation and elevates circulating IL-1b, identifying

electrolyte imbalance as an independent feed-forward amplifier of

inflammasome signaling (35, 36). Third, sustained acid suppression

reshapes the gut microbiota towards Gram-negative, LPS-rich taxa,

a dysbiosis epidemiologically linked to Clostridioides difficile

infection and experimentally associated with higher systemic IL-6

and IL-1 family cytokines (37). Finally, these lysosomal, ER-stress,

electrolyte and microbiome insults converge on an NLRP3-

dependent IL-1/IL-18 surge coupled to IL-6/STAT3 trans-

activation—the canonical cytokine axis driving systemic JIA flares

—thus providing a coherent molecular rationale for our multi-

omics evidence that implicates lansoprazole as a plausible
Frontiers in Immunology 14
pharmacological trigger of sJIA-like inflammation in genetically

susceptible children.

In addition to pharmacovigilance and multi-omics evidence,

our cell-based experiments provide direct molecular support for

the proposed mechanism. Using THP-1 cell, we confirmed that

non-cytotoxic concentrations of lansoprazole enhanced

lysosomal activity and significantly increased IL-1b and IL-18

secretion in LPS-primed cells. These findings are consistent with

a model in which lansoprazole perturbs lysosomal V-ATPase

function, induces lysosomal stress, and thereby licenses NLRP3

inflammasome activation. Importantly, the observed cytokine

release occurred only after LPS priming, highlighting

lansoprazole as a secondary trigger that amplifies pre-existing

inflammato ry s i gna l s . Taken toge the r w i th FAERS

disproport ional i ty s ignals , AI-based predict ions, and

transcriptomic enrichment in sJIA monocytes, the wet-lab

validation strengthens the link between lansoprazole exposure

and inflammasome-driven inflammation. While further studies

are required to directly assess V-ATPase activity and NLRP3/

caspase-1 cleavage in primary patient samples, our integrated

framework provides convergent evidence that lansoprazole may

act as a pharmacological trigger in sJIA.
FIGURE 7

Single-cell validation of the lansoprazole–sJIA signal. (A) UMAP projection of PBMCs from patients and controls. (B) Dot plot of canonical marker
genes for immune cell annotation. (C) Violin plots of lansoprazole signature enrichment across immune cell types. (D) Violin plots of signature
scores in discovery/external cohorts, controls, and post-IL-6 blockade samples.
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Nevertheless, our current validation was restricted to THP-1,

which represent the most relevant immune cell model for sJIA

pathogenesis. Broader applicability should be assessed in diverse

cellular systems, such as hepatoma lines (HepG2.2.15, Huh7) and

normal liver cells (LO2), which have been widely used to evaluate

drug-induced immunotoxicity and hepatotoxicity (38).

In summary, Given the widespread use of PPIs in children for

gastro-esophageal reflux or steroid-induced gastritis, our data

suggest that lansoprazole should be prescribed judiciously in

patients with, or at risk for, sJIA. Prospective monitoring of

musculoskeletal symptoms and inflammatory markers after PPI

initiation may help clarify temporal relationships. Integration of AI-

based screening into routine pharmacovigilance pipelines could

enable earlier detection of similar subtype-specific safety signals,

informing shared decision-making between clinicians and families.

Our work leverages three major strengths: (i) comprehensiveness,

drawing on FAERS records; (ii) methodological triangulation, with

concordant predictions from descriptor-based ML and graph-based

DL; and (iii) external validation across bulk and single-cell cohorts

from five centers. Nevertheless, several limitations warrant caution.
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First, FAERS is subject to under-reporting, indication bias and

confounding by co-medication; disproportionality signals do not

prove causality. Second, the RNA-seq cohorts were modest in size

and lacked direct drug-exposure information; consequently, ssGSEA

and AddModuleScore analyses capture transcriptional convergence

compatible with drug signatures rather than confirming actual intake.

Future studies should integrate real-world prescription records with

paired transcriptomic datasets. Finally, toxicity predictions were

supported by complementary cell-based assays, but further

validation in primary immune cells and detailed molecular

exper iments wi l l be required to fu l ly e luc idate the

underlying mechanisms.

By integrating pharmacovigilance analytics, machine-learning

prediction, and multi-layer transcriptomics, we provide convergent

evidence that lansoprazole is preferentially linked to sJIA and

outline a generalizable roadmap for uncovering hidden drug–

disease interactions in rare pediatric disorders. These insights

highlight the importance of cross-disciplinary data integration for

safeguarding vulnerable patient populations while optimizing

therapeutic outcomes.
FIGURE 8

Cell-based validation of lansoprazole-induced inflammasome activation in THP-1 cell. (A) Cell viability measured by CCK-8 after 24h exposure to
increasing concentrations of lansoprazole (0–80 mM). Lansoprazole at 80 mM significantly reduced viability, whereas ≤40 mM was non-cytotoxic.
(B) Representative confocal images of THP-1 stained with LysoTracker (green) and DAPI (blue). Lansoprazole enhanced lysosomal activity in a
concentration-dependent manner. Scale bar: 20 mm. (C-D), ELISA quantification of IL-1b (C) and IL-18 (D) secretion in LPS-primed THP-1
macrophages following lansoprazole treatment. Lansoprazole significantly increased cytokine release at 20–80 mM compared with LPS alone. Data
are shown as mean ± SEM. *P < 0.05; ns, not significant.
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