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orchestrate inflammatory
networks in antisynthetase
syndrome-associated
interstitial lung disease
Yu Fan 1, Weijin Zhang2, Miaotong Su 1, Shaoyu Zheng2,
Jianqun Lin2, Kedi Zheng2, Fengcai Shen3, Guohong Zhang1*

and Yukai Wang 2*

1Department of Pathology, Shantou University Medical College, Shantou, China, 2Department of
Rheumatology and Immunology, Shantou Central Hospital, Shantou, China, 3Department of
Biomedical Sciences, University of Sassari, Sassari, Italy
Objective: Antisynthetase syndrome-associated interstitial lung disease (ASS-ILD)

exhibits clinical heterogeneity and progression, with unclear immunopathogenic

mechanisms. This study aimed to define the cell type-specific interferon immune

signatures and transcriptional networks underlying ASS-ILD.

Methods: Single-cell RNA sequencing (scRNA-seq) was performed on peripheral

bloodmononuclear cells (PBMCs) from three treatment-naive ASS-ILD patients and

three healthy controls (67,421 cells). A comprehensive analysis was conducted in

conjunction with an external cohort, encompassing 126,026 cells. The analytical

pipelines included the following: AUCell for interferon-stimulated gene (ISG) activity

scoring, Seurat for clustering, Monocle for trajectory inference, and CellChat for

cell–cell communication. The inference of transcription factor activity was

facilitated using decoupleR software.

Results:Monocyte-specific ISG activitywas identified and validated in an integrated

cohort of 126,026 cells. Among the six monocyte subsets, mono2 exhibited

elevated IFNG expressions and a preferential inflammatory trajectory, marked by

upregulated innate and adaptive immune pathways. Cell-cell interaction modeling

revealed dysregulated type II interferon (IFN-II) and tumor necrosis factor (TNF)

signaling, with mono2, NK, and CD8+ T cells as key signal transmitters. Regulatory

network analysis revealed that the transcription factors ETV5, IRF5, IRF7, RORB,

RORC, and SMAD1 drive inflammatory and profibrotic signatures via the IL-17, JAK-

STAT, and TGF-b pathways.

Conclusions: This study identifies monocytes as central orchestrators of immune

dysregulation in ASS-ILD, highlighting IFN/TNF signaling and associated

transcriptional regulators as therapeutic targets.
KEYWORDS

antisynthetase syndrome, interstitial lung disease, monocytes, interferon-gamma,
TNF signaling
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1 Introduction

Antisynthetase syndrome (ASS) is a clinically heterogeneous subset

of idiopathic inflammatory myopathies (IIMs), defined by the presence

of myositis-specific autoantibodies (MSAs) targeting aminoacyl-tRNA

synthetases, including Jo-1, EJ, OJ, PL-7, PL-12, KS, Hs, and Zo (1).

ASS typically presents with a triad of inflammatorymyopathy, arthritis,

and interstitial lung disease (ILD), though phenotypic variability is

considerable (2). Among these manifestations, pulmonary involvement

is both the most frequent and prognostically significant, with ILD

occurring in up to 85% of patients. Histopathological patterns are

commonly nonspecific interstitial pneumonia (NSIP) or organizing

pneumonia (OP) (3). ILD may precede, coincide with, or follow

muscular and articular symptoms, and in many patients, represents

the initial and dominant clinical feature (4).

Despite the high prevalence and clinical burden of ILD in ASS,

the underlying immunopathogenic mechanisms remain poorly

understood, limiting the development of targeted therapies.

Notably, growing evidence implicates interferon (IFN) signaling

in the pathogenesis of IIMs, with disease subtype-specific IFN

signatures emerging as a central theme. For instance, anti-

MDA5+ dermatomyositis is characterized by type I IFN

activation, while ASS and inclusion body myositis more

prominently feature type II IFN responses (5).

The induction of IFNs and subsequent expression of interferon-

stimulated genes (ISGs) are orchestrated by multiple immune and

non-immune cell types, including monocytes, neutrophils,

plasmacytoid dendritic cells, macrophages, and epithelial cells (6).

Dysregulated ISG expression has been associated with disease

severity in various autoimmune contexts (7). However, the cell

type-specific distribution and regulatory dynamics of IFN-related

programs in ASS-ILD—particularly at single-cell resolution—

remain largely undefined.

In this study, we applied single-cell RNA sequencing (scRNA-seq)

to profile peripheral bloodmononuclear cells (PBMCs) from treatment-

naive patients with ASS-ILD. Through integrative computational

analyses, we aimed to identify pathogenic IFN-related signatures and

delineate the cellular and transcriptional networks driving immune

dysregulation in ASS-ILD. By resolving immune heterogeneity and

uncoveringmechanistic insights intomonocyte-mediated inflammatory

programs, our study provides a framework for understanding disease

pathogenesis and informing future therapeutic strategies.
2 Materials and methods

2.1 Patient selection

Single-cell RNA sequencing analysis was conducted on PBMC

samples from three ASS-ILD treatment-naive patients and three

healthy individuals recruited at Shantou Central Hospital. Healthy

individuals were selected to be sex-, ethnicity-, and age-matched.

Informed consent was obtained from all the subjects. The diagnosis of

ASS-ILD was made by a multidisciplinary team comprising an expert

rheumatologist and two experienced radiologists specializing in chest
Frontiers in Immunology 02
CT. ASS was diagnosed in accordance with the criteria proposed by

Solomon et al. (8). Patients with other identifiable causes of ILD,

including those with medication-related lung injury, malignancy, or

environmental and occupational exposures, were excluded from the

study. Supplementary Table 1 provides a detailed description of the

clinical presentation and laboratory characteristics of the patients,

while Supplementary Figure 1 offers a visual representation of the CT

images of the patients. All samples were collected in accordance with

the ethical requirements and regulations of the Ethics Committee of

Shantou Central Hospital. Informed consent was obtained from all

the subjects, and the studies were conducted under approval

(approval number:〔2022〕KY-006).

Furthermore, a single-cell RNA sequencing dataset [GSE190510

(9)] from the Gene Expression Omnibus (GEO, http://

www.ncbi.nlm.nih.gov/geo/) was incorporated, comprising eight

PBMC samples from five ASS-ILD patients and three

healthy individuals.
2.2 Single-cell RNA sequencing

Single-cell sequencing was conducted via the 10x Genomics

platform (1). Preparation of single-cell suspensions: The isolation

of peripheral blood mononuclear cells (PBMCs) from undiluted

human blood was conducted via Histopaque solution (Sigma–

Aldrich, St. Louis, MO). A total of 10 µl of the suspension was

counted under an inverted microscope with a hemocytometer. The

number of live cells was determined via the Trypan blue method (2).

Construction of single-cell libraries: Chromium Single-cell 3’ Reagent

v3 kits were used to prepare barcoded single-cell RNA sequencing

libraries in accordance with the manufacturer’s instructions. The

isolated PBMCs were encapsulated via microfluidics technology and

barcoded with a unique molecular identifier. cDNA was prepared in

accordance with the manufacturer’s specifications (3). Single-cell

RNA sequencing library preparation and sequencing: cDNA

libraries were sequenced on an Illumina HiSeq PE150 system (4).

Raw data processing and quality control: The data were

demultiplexed via Cell Ranger software (version 3.1.0), which

generated FASTQ files, which were aligned to a human reference

genome (GrCh38). The Cell Ranger software generated a unique raw

molecular identifier count matrix, which was subsequently converted

into a Seurat object via the R package Seurat (version 5.0.1). Cells with

doublets and low quality were removed based on the number of

unique molecular identifiers (UMIs) and the proportion of

mitochondrial gene expression. The genes were filtered on the basis

of the number of cells in which they were expressed, and the cells

were filtered based on the number of genes expressed in them. The

data were subsequently normalized by log normalization, and the top

2000 highly variable genes were selected based on mean expression

and variance. All genes were scaled via the ScaleData function, and

principal component analysis (PCA) downscaling was performed.

The cells were subsequently clustered via the FindNeighbors and

FindClusters functions to obtain cell subgroups, and the cells were

subsequently annotated. Batch correction was performed via the

Harmony algorithm.
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2.3 Identification of functional cellular
subsets within the major cell clusters

The identification of differentially expressed genes and

specific marker genes for each cellular subset was achieved by

employing Seurat ’s FindAllMarkers() function with the

parameter “test.use = wilcox” by default under the RNA assay.

The definition of each cell subcluster was based on the expression

of canonical markers.
2.4 Differential expression analysis and
functional enrichment analysis

To identify the genes that were upregulated in different cell

types or different disease states, the FindMarker function

(Logfc.threshold = 0.25, Wilcoxon test) in Seurat was employed.

To investigate the biological functions and pathways associated with

the differentially expressed genes (DEGs, log2-fold change (FC) >

0.25, adjusted p value < 0.05), Gene Ontology Biological Process

(GOBP) (10) functional enrichment and Kyoto Encyclopedia of

Genes and Genomes (KEGG) (11) pathway analyses were

conducted via the clusterProfiler package (version 4.8.3) (12).
2.5 Using AUCell to calculate scores of
interferon-related genes

The DEGs of each cluster were then used as input to generate

ISGs via the Interferome database (https://interferome.org/

interferome/home.jspx). This process yielded 235 ISG gene sets

(Supplementary Table 2), which were subsequently used for ISG

scoring via the AUCell R package (version 1.24.0) (13). The ISG set

was then employed as the input data for the calculation of the area

under the curve (AUC) value. The AUC values were then utilized to

construct gene expression rankings for each cell. The AUC provides

an estimate of the proportion of genes within the gene set that are

highly expressed in each cell. The number of expressed genes in a

cell was positively correlated with the AUC value. Consequently,

cells that express a greater number of genes from the gene set will

have higher AUC values than cells that express fewer genes. The

function “AUCell_exploreThresholds” was employed to ascertain

the threshold that could be utilized to consider the present gene set

active. The cell clustering UMAP embedding was subsequently

colored according to the AUC score of each cell, thereby

indicating which cell clusters were active in the ISG gene set.
2.6 Using gene set variation analysis to
identify the functions of cell subsets

Human gene sets from GOBP were retrieved via the msigdbr

package (version 7.5.1). We subsequently applied GSVA (14) with

the GSVA package (version 1.50.0) to assign pathway activity

estimates to individual cells.
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2.7 Cell–cell interaction analysis

The cell–cell interactions between different cell types were

evaluated via CellChat (version 1.6.0, R package). CellChat

utilizes gene expression data as the fundamental input to model

the probability of cell-to-cell communication by integrating gene

expression data with an existing database comprising known

interactions between signaling ligands, receptors, and their

cofactors (15). Normalized count data from each condition were

used to create a CellChat object, and the recommended

preprocessing functions for the analysis of individual datasets

were applied with default parameters.
2.8 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) of monocytes from ASS-

ILD patients and HCs was performed via the clusterProfiler

(version 4.12.6) R software package to analyze the potential

biological pathways of monocytes in ASS-ILD. Permutations were

set to 10,000 to obtain normalized enrichment scores (NESs) in

GSEA. Gene sets with an adjusted P value <0.05 were considered to

be significantly enriched. The enrichplot (version 1.24.2) and

ggplot2 (version 3.5.1) R packages were employed to display the

enrichment results.
2.9 Transcription factor activity inference
from scRNA-seq

Transcription factor (TF) activity was inferred for monocytes via a

univariate linear model (ULM) in the R package decoupleR (version

2.12.0) (16), with CollecTRI (Collection of Transcriptional Regulatory

Interactions) serving as the reference. CollecTRI is a comprehensive

resource that contains a curated collection of TFs and their

transcriptional targets, compiled from 12 different resources (17).
2.10 Gene expression validation by qRT-
PCR and external dataset analysis

We additionally collected PBMC samples from 5 ASS-ILD

patients and 5 matched healthy controls. RNA was extracted

using the Trizol method, and cDNA was synthesized using

Takara’s reverse transcription kit (cat#RR092A) from Takara Bio

Inc. (Shiga, Japan). Semi-quantitative PCR was performed using

MCE’s SYBR Green qPCRMaster Mix (cat# HY-K0501) fromMCE

(Shanghai, China), and the results were analyzed using the 2−DDCt
method with b-actin as the reference gene for normalization. The

primers for each gene are as follows:
b-act in: Forward: GGGAAATCGTGCGTGACATT,

Reverse: GGAAGGAAGGCTGGAAGAGT.

IFNG: Forward: TCGGTAACTGACTTGAATGTCCA,

Reverse: TCGCTTCCCTGTTTTAGCTGC.
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Fron
TNF : F o rw a r d : GAGGCCAAGCCCTGGTATG ,

Reverse: CGGGCCGATTGATCTCAGC.

IRF7: Forward : GCTGGACGTGACCATCATGTA,

Reverse: GGGCCGTATAGGAACGTGC.

NFKBIZ: Forward: GATTCGTTGTCTGATGGACCTG,

Reverse: CGTTGGTGTTTGAGGTGGT.
Additionally, we incorporated an external bulk RNA-seq

dataset (GSE220915 (18)), which includes muscle biopsy samples

from 18 ASS patients and 33 healthy controls, to validate the

expression of key genes.
2.11 Statistical analyses

All statistical analyses were performed using R software (version

4.3.2) or GraphPad Prism (version 10.4.0). Normally distributed data

are expressed as the mean ± standard deviation and compared using

unpaired t-tests. Non-normally distributed data are presented as

median (interquartile range) and analyzed using the Mann-Whitney

U test. A p value of less than 0.05 was considered statistically significant.
3 Results

3.1 Monocyte subsets in ASS-ILD exhibit
enhanced interferon activation

To elucidate the immunopathological landscape of ASS-ILD, we

first analyzed a discovery scRNA-seq cohort comprising peripheral

blood mononuclear cells (PBMCs) from three treatment-naive ASS-

ILD patients and three healthy controls (HCs), yielding a total of

67,421 cells. Unsupervised clustering followed by UMAP visualization

(Figures 1A, B) identified eight major immune cell types: CD4+ T cells,

CD8+ T cells, monocytes, natural killer (NK) cells, B cells, low-density

granulocytes (LDGs), megakaryocytes (MKs), and dendritic cells

(DCs), confirmed by canonical marker gene expression (Figure 1C).

To assess interferon activity, AUCell scoring based on 235 curated

interferon-stimulated genes (ISGs) from the Interferome database

revealed significantly elevated ISG scores in monocytes compared

with other immune subsets (Figures 1D, E). Gene ontology (GO) and

KEGG pathway enrichment further demonstrated that monocytes

were enriched for pathways associated with innate immune activation

(e.g., IL-6 and TNF production, myeloid cell activation), lysosomal

processing, mycobacterial infection, and autoimmune inflammation

(Figures 1F, G). These findings indicate that monocytes are a key site

of interferon-driven immune activation in ASS-ILD.
3.2 Integrated cross-cohort analysis
uncovers functional heterogeneity among
monocyte subsets

To enhance statistical power, we integrated our dataset with an

external cohort (GSE190510), yielding a total of 126,026 cells for
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analysis. Consistent with our discovery findings, monocytes

displayed the highest ISG activity across all immune lineages in

the integrated dataset (Figures 2A–C). Subsequent subclustering

identified six transcriptionally distinct monocyte subsets (Mono0–

Mono5) (Figure 2D).

Classical monocytes (Mono0/1) expressedCD14 along with genes

related to leukocyte migration (e.g., GRN, LGALS2) and apoptotic

recognition (e.g., CD36, TLR2). Mono2 was characterized by

upregulation of IFNG, STAT4 , and RORA, suggesting a

proinflammatory trajectory involving Th1/Th17 polarization and

NK cell activation. Mono3 showed proliferative signatures via

ribosomal and translational machinery (e.g., RPL5, EEF1B2).

Nonclassical CD16+ monocytes (Mono4/5) displayed IFN-polarized

features: Mono4 was enriched in antigen presentation (e.g., ISG15,

HLA), while Mono5 showed IFN-adaptive potential through

IFNAR1/2 overexpression. Functional heatmap analysis revealed

distinct gene expression and pathway enrichment across subsets,

suggesting specialized roles in ASS-ILD pathogenesis (Figures 2E, F).
3.3 Monocyte pseudotime analysis reveals
skewed inflammatory differentiation in
ASS-ILD

To delineate the developmental trajectory of monocyte

subsets, we applied pseudotime inference using the Monocle

algorithm. The trajectory branched from Mono0 toward two

terminal fates—Mono1 and Mono2. Cells from ASS-ILD

patients showed a preferential trajectory toward Mono2, while

those from HCs were more diffusely distributed toward Mono0

and Mono1 (Figure 3A, C). Notably, ISG scores increased along

the pseudotime axis (Figure 3D), supporting progressive

interferon polarization.

Monocyte subset density across pseudotime revealed early-stage

enrichment of Mono0, Mono3, and Mono4, with later stages

dominated by Mono1, Mono2, and Mono5 (Figure 3E).

Differential gene expression over pseudotime (adjusted p <

0.0001, logFC > 1) clustered into three groups enriched for

leukocyte proliferation/migration, innate immunity, and adaptive

immunity, respectively (Figure 3F). These results suggest that

IFNG+ monocytes (Mono2) accumulate at later pseudotime stages

and may contribute to the transition from basal to inflammatory

immune phenotypes in ASS-ILD.
3.4 IFN-g and TNF signaling mediate
monocyte-centric immune communication
networks

To explore intercellular signaling dynamics, we performed

CellChat analysis to compare ligand–receptor interactions

between ASS-ILD patients and HCs. Although global

communication strength was reduced in ASS-ILD (Figure 4A),

there was selective upregulation of type II interferon (IFN-g) and
tumor necrosis factor (TNF) signaling pathways (Figure 4B).
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Directional analysis revealed that Mono2, NK cells, and CD8+ T

cells were dominant sources of IFN-g and TNF signals, targeting

monocyte subsets (Mono1/2/4/5) (Figures 4C, D).

Network visualization showed that IFN-g signaling from

Mono2, NK, and CD8+ T cells converged on downstream
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monocyte subsets, while TNF signals from Mono1, Mono2, and

Mono5 regulated NK cells, CD8+ T cells, DCs, and other

monocytes (Figures 4E, F). Ligand–receptor profiling indicated

comparable receptor levels between groups but markedly elevated

TNF-a and IFN-g ligand expression in ASS-ILD (Figure 4G).
FIGURE 1

Characterization of PBMC subclusters and interferon activity in ASS-ILD patients compared with healthy controls in the discovery cohort. (A) Schematic
of the study design. Created with BioGDP.com (38). (B) UMAP plot showing eight distinct immune cell populations in PBMCs from three ASS-ILD patients
and three healthy controls (HCs). (C) Violin plots of canonical marker gene expression used for cell type annotation. (D, E) AUCell-based ISG score
analysis shown by violin plots (D) and UMAP projection (E), highlighting monocytes as the immune subset with the highest ISG activity. (F, G) Functional
enrichment of monocyte-specific genes, illustrating the top 10 enriched Gene Ontology Biological Process (GOBP) terms (F) and KEGG pathways (G).
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FIGURE 2

Functional and transcriptional profiling of monocyte subsets. (A–C) UMAP plots colored by (A) disease status, (B) cell type, and (C) ISG scores
following integration of internal and external datasets. (D) Identification of six monocyte subsets (Mono0–Mono5) visualized on UMAP; bar plots
indicate subset proportions across experimental groups. (E) Heatmap of marker gene expression across monocyte subsets. (F) GOBP-based
heatmap highlighting representative biological processes enriched in each subset.
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These data reveal that IFN-g and TNF signaling networks, driven

in part by the Mono2 subset, amplify monocyte–immune crosstalk

and may contribute to sustained inflammatory circuits in

ASS-ILD.
3.5 Pathogenic transcription factor programs
define monocyte subset polarization

To identify regulatory drivers of monocyte subset behavior, we

employed decoupleR-based inference using CollecTRI TF-target

interaction data. Six transcription factors—ETV5, IRF5, IRF7,

RORB, RORC, and SMAD1—showed the highest inferred activity

in ASS-ILD monocytes (Figure 5A). These TFs are linked to

immune polarization, interferon signaling, and fibrosis: ETV5
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promotes Th1/Th17 responses via STAT3/STAT4 activation and

IFN-g/IL-17A production (19); IRF5 and IRF7 are canonical

regulators of IFN pathways and macrophage activation (20, 21);

RORB and RORC regulate autophagy and Th17 cell differentiation

(22–24); SMAD1 mediates TGF-b signaling and contributes to

fibrotic remodeling (25).

Gene set enrichment analysis (GSEA) of these TF targets showed

enrichment in IL-17, T cell receptor, and inflammatory bowel disease

pathways (Figure 5B). Notably, Mono2 exhibited the highest TF

activity among monocyte subsets (Figure 5C). Pathway activity

profiling revealed that Mono1, Mono2, and Mono5 in ASS-ILD

were enriched in innate and adaptive immunity-related pathways,

including IL-17, JAK-STAT, NF-kB, TGF-b, and TNF signaling

(Figure 5D). These results position Mono2 as a transcriptionally

primed subset with proinflammatory and profibrotic potential.
FIGURE 3

Pseudotime analysis of monocyte differentiation trajectories. (A–C) Monocle-inferred pseudotime trajectory of monocytes, colored by
(A) pseudotime, (B) subset identity, and (C) disease state. Each dot represents a single cell. (D, F) Gene expression dynamics over pseudotime,
showing ISG scores (D) and subtype-specific marker genes (F), colored by monocyte subset. (E) Composite analysis: Top, density plots of monocyte
subsets along pseudotime; bottom left, GOBP enrichment of pseudotime-regulated gene clusters; bottom right, heatmap of differentially expressed
genes over pseudotime.
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FIGURE 4

Cell–cell communication networks involving monocyte subsets in ASS-ILD and healthy controls. (A) Global interaction network comparing cell–cell
communication strength between groups; red indicates ASS-ILD, blue indicates HCs; edge width corresponds to interaction strength. (B) Stacked
bar plot displaying the distribution of specific signaling pathways under different conditions. (C, D) Heatmaps of secreted (C) and received (D)
signaling interactions across immune cell types in ASS-ILD versus HCs. (E, F) Network diagrams showing IFN-g (type II interferon) (E) and TNF (F)
signaling pathways activated in ASS-ILD. (G) Dot plot comparing ligand and receptor expression levels for IFN-g and TNF signaling between ASS-ILD
and HC groups.
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3.6 Validation of key genes by qRT-PCR
and an external dataset

To further validate our findings, we assessed the expression of

key genes, including IFNG, TNF, IRF7, and NFKBIZ. The qRT-

PCR results revealed that the expression of these genes was

significantly higher in the PBMCs of ASS-ILD patients

compared to healthy controls (Figure 6A). Additionally, we

incorporated a bulk RNA-seq dataset from muscle biopsy

samples, which included 13 ASS patients and 33 healthy

controls. Similar to the findings in PBMCs, the expression

levels of these four genes were elevated in the muscle tissue of

patients, compared to healthy controls (Figure 6B). This suggests

that these genes are highly expressed not only in peripheral blood

but also in affected tissues, further confirming the reliability of

our results.
4 Discussion

The interferon (IFN) family, comprising critical effector

molecules of the innate immune system, plays a central role in

host defense and immune homeostasis (26). Aberrant activation of

the IFN signaling pathway is a well-established hallmark of

classical autoimmune diseases such as systemic lupus

erythematosus (SLE) and Sjögren’s syndrome (SS) (27), and is

increasingly recognized as a key driver in the pathogenesis of

idiopathic inflammatory myopathy-associated interstitial lung

disease (IIM-ILD) (28). In the present study, we employed

single-cell RNA sequencing (scRNA-seq) to comprehensively

characterize peripheral blood mononuclear cells (PBMCs) in

patients with antisynthetase syndrome-associated interstitial

lung disease (ASS-ILD), with a focus on IFN-related cellular and

molecular alterations.

A cross-cohort analysis of scRNA-seq data revealed that

monocytes exhibited the highest IFN-stimulated gene (ISG)

scores among all immune cell populations. Monocytes, essential

players in innate immunity (29), are frequently dysregulated in

autoimmune diseases (24), a finding supported by our functional

enrichment analyses of monocyte-specific transcriptomes.

Traditionally, monocytes are categorized into classical (CD14+

CD16-), intermediate (CD14+ CD16+), and nonclassical (CD14-

CD16+) subsets based on CD14 and CD16 expression (30).

However, our data further subdivided these into six

transcriptionally distinct clusters: mono0 and mono1 (classical),

mono2 and mono3 (intermediate), and mono4 and mono5

(nonclassical). Notably, mono2, enriched in ASS-ILD patients,

exhibited elevated IFNG expression (Figure 2D). While IFN-g is

classically produced by NK and T cells, accumulating evidence

suggests that monocytes, macrophages, and B cells are also capable

of IFN-g production (31, 32). Our findings thus highlight

monocytes, particularly the mono2 subset, as potential

contributors to IFN-g production in ASS-ILD.
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In parallel, mono5 showed high expression of IFNAR1 and

IFNAR2, suggesting increased sensitivity to type I IFN signaling

and a potential role in bridging innate and adaptive immune

responses (Figures 2E, F). Trajectory analysis using Monocle

further indicated that accumulation of IFNG+ monocytes

(mono2) may drive proinflammatory microenvironment

remodeling in ASS-ILD.

Cell–cell communication analysis revealed significant

alterations in TNF and IFN-g (type II IFN) signaling between

ASS-ILD patients and healthy controls. Monocytes, NK cells, and

T cells were identified as the principal mediators of these signals,

consistent with previous reports (33).Specifically, monocyte subsets

mono1, mono2, and mono5 were the primary transmitters of TNF

signals, interacting with NK cells, T cells, dendritic cells (DCs), and

other monocytes. For IFN-g signaling, mono2 emerged as the

dominant transmitter, targeting DCs and monocytes. Importantly,

monocytes functioned both as senders and receivers in these

signaling cascades.

The biological relevance of these findings is underscored by the

central roles of TNF-a and IFN-g in autoimmune inflammation

and immune regulation. TNF-a promotes apoptosis, enhances

proinflammatory cytokine release, and contributes to epithelial

and vascular injury (34). It also induces M1 macrophage

polarization and IL-6 production, exacerbating inflammatory

responses (35). The dual participation of monocytes in both TNF

and IFN-g signaling suggests a critical role in amplifying cytokine

cascades and driving ILD progression.

To explore the transcriptional regulation underlying these

effects, we identified key transcription factors (TFs) with

elevated activity in ASS-ILD monocytes, including ETV5, IRF5,

IRF7, RORB, RORC, and SMAD1. Notably, ETV5, IRF5, and IRF7

are closely associated with interferon signaling (19–21). In

addition, ETV5 and RORC have been linked to IL-17A

production, a proinflammatory cytokine that bridges innate and

adaptive immunity and is implicated in systemic autoimmunity

(19, 23, 36). SMAD1, activated by TGF-b signaling, promotes

proinflammatory and fibrotic responses by recruiting immune

cells and fibroblasts to the lung parenchyma (37). Consistent with

these roles, GSEA revealed enrichment of IL-17, JAK-STAT, NF-

kB, TGF-b, and TNF pathways in mono1, mono2, and mono5

(Figure 5D), suggesting a regulatory network that sustains

pulmonary inflammation and fibrosis—key pathological features

of ILD.

Taken together, our data identify monocytes as central

orchestrators of immune dysregulation in ASS-ILD, integrating

cytokine signaling and transcriptional reprogramming to drive

disease progression. These findings offer a cellular and molecular

framework for understanding monocyte-driven inflammation and

highlight potential targets for therapeutic intervention.

This study has several limitations. First, although we

incorporated an external dataset to enhance the robustness of

cross-cohort analysis, the overall sample size remains modest,

limiting statistical power and generalizability. Future studies
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should aim to validate these findings in larger, independent cohorts.

Second, while we identified an IFNG+ monocyte subset (mono2)

characterized by CD14lowCD16low expression, functional validation

and mechanistic characterization of this population are warranted.

Third, our analysis was based solely on PBMCs, without access to

lung tissue or bronchoalveolar lavage specimens. This precludes

direct insight into tissue-resident immune responses and local

inflammation. Further studies incorporating in vitro and in vivo
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models, as well as tissue-specific samples, are essential to fully

elucidate the functional roles and signaling programs of monocyte

subsets in ASS-ILD pathogenesis. Although this study is based

solely on scRNA-seq profiling, the convergence of multiple

analytical pipelines including AUCell, Monocle, and CellChat

enhances the robustness of the inferred mechanisms. These

findings provide a rationale for further experimental validation

and the development of targeted therapies.
FIGURE 5

Transcriptional regulatory landscape of monocyte subsets in ASS-ILD. (A) Heatmap showing the top 10 most active transcription factors (TFs) in
monocytes from ASS-ILD and HC samples, ranked by inferred activity. (B) Dot plot of the top 10 pathways enriched or depleted in ASS-ILD monocytes,
identified by gene set enrichment analysis (GSEA). (C) UMAP plots displaying representative TF activity in monocyte subsets Mono1, Mono2, and Mono5.
(D) GSEA enrichment plots showing significant upregulation of innate immune pathways in Mono1, Mono2, and Mono5 in ASS-ILD.
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5 Conclusion

In summary, our study identifies monocytes as the key

immune cell type associated with heightened interferon (IFN)

signaling in the peripheral blood of patients with antisynthetase

syndrome-associated interstitial lung disease (ASS-ILD). These

monocytes, particularly specific transcriptionally defined subsets,

engage in aberrant IFN-g (type II IFN) and TNF signaling, which
Frontiers in Immunology 11
appear to play central roles in the pathogenesis of ASS-ILD.

Beyond delineating pathogenic mechanisms, our findings reveal

potential therapeutic targets and pathways—including IFN-

related transcription factors and cytokine signaling networks—

that may inform the development of precision therapies. These

insights offer a conceptual and molecular framework for future

clinical studies aimed at improving treatment strategies for

ASS-ILD.
FIGURE 6

Validation of key genes by qRT-PCR and an external dataset. (A) Bar plot showing the relative expression levels of IFNG, TNF, IRF7, and NFKBIZ in
PBMCs from ASS-ILD patients and healthy controls (HC) based on qRT-PCR results. (B) Bar plot showing the relative expression levels of IFNG, TNF,
IRF7, and NFKBIZ in muscle tissue from ASS-ILD patients and healthy controls (HC) based on the external dataset GSE220915.
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