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Objective: Antisynthetase syndrome-associated interstitial lung disease (ASS-ILD)
exhibits clinical heterogeneity and progression, with unclear immunopathogenic
mechanisms. This study aimed to define the cell type-specific interferon immune
signatures and transcriptional networks underlying ASS-ILD.

Methods: Single-cell RNA sequencing (scRNA-seq) was performed on peripheral
blood mononuclear cells (PBMCs) from three treatment-naive ASS-ILD patients and
three healthy controls (67,421 cells). A comprehensive analysis was conducted in
conjunction with an external cohort, encompassing 126,026 cells. The analytical
pipelines included the following: AUCell for interferon-stimulated gene (ISG) activity
scoring, Seurat for clustering, Monocle for trajectory inference, and CellChat for
cell-cell communication. The inference of transcription factor activity was
facilitated using decoupleR software.

Results: Monocyte-specific ISG activity was identified and validated in an integrated
cohort of 126,026 cells. Among the six monocyte subsets, mono2 exhibited
elevated IFNG expressions and a preferential inflammatory trajectory, marked by
upregulated innate and adaptive immune pathways. Cell-cell interaction modeling
revealed dysregulated type Il interferon (IFN-1I) and tumor necrosis factor (TNF)
signaling, with mono2, NK, and CD8" T cells as key signal transmitters. Regulatory
network analysis revealed that the transcription factors ETV5, IRF5, IRF7, RORB,
RORC, and SMAD1 drive inflammatory and profibrotic signatures via the IL-17, JAK-
STAT, and TGF-f pathways.

Conclusions: This study identifies monocytes as central orchestrators of immune
dysregulation in ASS-ILD, highlighting IFN/TNF signaling and associated
transcriptional regulators as therapeutic targets.
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1 Introduction

Antisynthetase syndrome (ASS) is a clinically heterogeneous subset
of idiopathic inflammatory myopathies (IIMs), defined by the presence
of myositis-specific autoantibodies (MSAs) targeting aminoacyl-tRNA
synthetases, including Jo-1, EJ, OJ, PL-7, PL-12, KS, Hs, and Zo (1).
ASS typically presents with a triad of inflammatory myopathy, arthritis,
and interstitial lung disease (ILD), though phenotypic variability is
considerable (2). Among these manifestations, pulmonary involvement
is both the most frequent and prognostically significant, with ILD
occurring in up to 85% of patients. Histopathological patterns are
commonly nonspecific interstitial pneumonia (NSIP) or organizing
pneumonia (OP) (3). ILD may precede, coincide with, or follow
muscular and articular symptoms, and in many patients, represents
the initial and dominant clinical feature (4).

Despite the high prevalence and clinical burden of ILD in ASS,
the underlying immunopathogenic mechanisms remain poorly
understood, limiting the development of targeted therapies.
Notably, growing evidence implicates interferon (IFN) signaling
in the pathogenesis of IIMs, with disease subtype-specific IFN
signatures emerging as a central theme. For instance, anti-
MDAS5" dermatomyositis is characterized by type I IFN
activation, while ASS and inclusion body myositis more
prominently feature type II IFN responses (5).

The induction of IFNs and subsequent expression of interferon-
stimulated genes (ISGs) are orchestrated by multiple immune and
non-immune cell types, including monocytes, neutrophils,
plasmacytoid dendritic cells, macrophages, and epithelial cells (6).
Dysregulated ISG expression has been associated with disease
severity in various autoimmune contexts (7). However, the cell
type-specific distribution and regulatory dynamics of IFN-related
programs in ASS-ILD—particularly at single-cell resolution—
remain largely undefined.

In this study, we applied single-cell RNA sequencing (scRNA-seq)
to profile peripheral blood mononuclear cells (PBMCs) from treatment-
naive patients with ASS-ILD. Through integrative computational
analyses, we aimed to identify pathogenic IFN-related signatures and
delineate the cellular and transcriptional networks driving immune
dysregulation in ASS-ILD. By resolving immune heterogeneity and
uncovering mechanistic insights into monocyte-mediated inflammatory
programs, our study provides a framework for understanding disease
pathogenesis and informing future therapeutic strategies.

2 Materials and methods
2.1 Patient selection

Single-cell RNA sequencing analysis was conducted on PBMC
samples from three ASS-ILD treatment-naive patients and three
healthy individuals recruited at Shantou Central Hospital. Healthy
individuals were selected to be sex-, ethnicity-, and age-matched.
Informed consent was obtained from all the subjects. The diagnosis of
ASS-ILD was made by a multidisciplinary team comprising an expert
rheumatologist and two experienced radiologists specializing in chest
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CT. ASS was diagnosed in accordance with the criteria proposed by
Solomon et al. (8). Patients with other identifiable causes of ILD,
including those with medication-related lung injury, malignancy, or
environmental and occupational exposures, were excluded from the
study. Supplementary Table 1 provides a detailed description of the
clinical presentation and laboratory characteristics of the patients,
while Supplementary Figure 1 offers a visual representation of the CT
images of the patients. All samples were collected in accordance with
the ethical requirements and regulations of the Ethics Committee of
Shantou Central Hospital. Informed consent was obtained from all
the subjects, and the studies were conducted under approval
(approval number: [2022) KY-006).

Furthermore, a single-cell RNA sequencing dataset [GSE190510
(9)] from the Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) was incorporated, comprising eight
PBMC samples from five ASS-ILD patients and three
healthy individuals.

2.2 Single-cell RNA sequencing

Single-cell sequencing was conducted via the 10x Genomics
platform (1). Preparation of single-cell suspensions: The isolation
of peripheral blood mononuclear cells (PBMCs) from undiluted
human blood was conducted via Histopaque solution (Sigma-
Aldrich, St. Louis, MO). A total of 10 pl of the suspension was
counted under an inverted microscope with a hemocytometer. The
number of live cells was determined via the Trypan blue method (2).
Construction of single-cell libraries: Chromium Single-cell 3’ Reagent
v3 kits were used to prepare barcoded single-cell RNA sequencing
libraries in accordance with the manufacturer’s instructions. The
isolated PBMCs were encapsulated via microfluidics technology and
barcoded with a unique molecular identifier. cDNA was prepared in
accordance with the manufacturer’s specifications (3). Single-cell
RNA sequencing library preparation and sequencing: cDNA
libraries were sequenced on an Illumina HiSeq PE150 system (4).
Raw data processing and quality control: The data were
demultiplexed via Cell Ranger software (version 3.1.0), which
generated FASTQ files, which were aligned to a human reference
genome (GrCh38). The Cell Ranger software generated a unique raw
molecular identifier count matrix, which was subsequently converted
into a Seurat object via the R package Seurat (version 5.0.1). Cells with
doublets and low quality were removed based on the number of
unique molecular identifiers (UMIs) and the proportion of
mitochondrial gene expression. The genes were filtered on the basis
of the number of cells in which they were expressed, and the cells
were filtered based on the number of genes expressed in them. The
data were subsequently normalized by log normalization, and the top
2000 highly variable genes were selected based on mean expression
and variance. All genes were scaled via the ScaleData function, and
principal component analysis (PCA) downscaling was performed.
The cells were subsequently clustered via the FindNeighbors and
FindClusters functions to obtain cell subgroups, and the cells were
subsequently annotated. Batch correction was performed via the
Harmony algorithm.
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2.3 Identification of functional cellular
subsets within the major cell clusters

The identification of differentially expressed genes and
specific marker genes for each cellular subset was achieved by
employing Seurat’s FindAllMarkers() function with the
parameter “test.use = wilcox” by default under the RNA assay.
The definition of each cell subcluster was based on the expression
of canonical markers.

2.4 Differential expression analysis and
functional enrichment analysis

To identify the genes that were upregulated in different cell
types or different disease states, the FindMarker function
(Logfc.threshold = 0.25, Wilcoxon test) in Seurat was employed.
To investigate the biological functions and pathways associated with
the differentially expressed genes (DEGs, log2-fold change (FC) >
0.25, adjusted p value <0.05), Gene Ontology Biological Process
(GOBP) (10) functional enrichment and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (11) pathway analyses were
conducted via the clusterProfiler package (version 4.8.3) (12).

2.5 Using AUCell to calculate scores of
interferon-related genes

The DEGs of each cluster were then used as input to generate
ISGs via the Interferome database (https://interferome.org/
interferome/home.jspx). This process yielded 235 ISG gene sets
(Supplementary Table 2), which were subsequently used for ISG
scoring via the AUCell R package (version 1.24.0) (13). The ISG set
was then employed as the input data for the calculation of the area
under the curve (AUC) value. The AUC values were then utilized to
construct gene expression rankings for each cell. The AUC provides
an estimate of the proportion of genes within the gene set that are
highly expressed in each cell. The number of expressed genes in a
cell was positively correlated with the AUC value. Consequently,
cells that express a greater number of genes from the gene set will
have higher AUC values than cells that express fewer genes. The
function “AUCell_exploreThresholds” was employed to ascertain
the threshold that could be utilized to consider the present gene set
active. The cell clustering UMAP embedding was subsequently
colored according to the AUC score of each cell, thereby
indicating which cell clusters were active in the ISG gene set.

2.6 Using gene set variation analysis to
identify the functions of cell subsets

Human gene sets from GOBP were retrieved via the msigdbr
package (version 7.5.1). We subsequently applied GSVA (14) with
the GSVA package (version 1.50.0) to assign pathway activity
estimates to individual cells.
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2.7 Cell—cell interaction analysis

The cell-cell interactions between different cell types were
evaluated via CellChat (version 1.6.0, R package). CellChat
utilizes gene expression data as the fundamental input to model
the probability of cell-to-cell communication by integrating gene
expression data with an existing database comprising known
interactions between signaling ligands, receptors, and their
cofactors (15). Normalized count data from each condition were
used to create a CellChat object, and the recommended
preprocessing functions for the analysis of individual datasets
were applied with default parameters.

2.8 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) of monocytes from ASS-
ILD patients and HCs was performed via the clusterProfiler
(version 4.12.6) R software package to analyze the potential
biological pathways of monocytes in ASS-ILD. Permutations were
set to 10,000 to obtain normalized enrichment scores (NESs) in
GSEA. Gene sets with an adjusted P value <0.05 were considered to
be significantly enriched. The enrichplot (version 1.24.2) and
ggplot2 (version 3.5.1) R packages were employed to display the
enrichment results.

2.9 Transcription factor activity inference
from scRNA-seq

Transcription factor (TF) activity was inferred for monocytes via a
univariate linear model (ULM) in the R package decoupleR (version
2.12.0) (16), with CollecTRI (Collection of Transcriptional Regulatory
Interactions) serving as the reference. CollecTRI is a comprehensive
resource that contains a curated collection of TFs and their
transcriptional targets, compiled from 12 different resources (17).

2.10 Gene expression validation by gRT-
PCR and external dataset analysis

We additionally collected PBMC samples from 5 ASS-ILD
patients and 5 matched healthy controls. RNA was extracted
using the Trizol method, and cDNA was synthesized using
Takara’s reverse transcription kit (cat#RR092A) from Takara Bio
Inc. (Shiga, Japan). Semi-quantitative PCR was performed using
MCE’s SYBR Green qPCR Master Mix (cat# HY-K0501) from MCE
(Shanghai, China), and the results were analyzed using the 2-AACt
method with B-actin as the reference gene for normalization. The
primers for each gene are as follows:

B-actin: Forward: GGGAAATCGTGCGTGACATT,
Reverse: GGAAGGAAGGCTGGAAGAGT.

IFNG: Forward: TCGGTAACTGACTTGAATGTCCA,
Reverse: TCGCTTCCCTGTTTTAGCTGC.
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TNF: Forward: GAGGCCAAGCCCTGGTATG,
Reverse: CGGGCCGATTGATCTCAGC.

IRF7: Forward: GCTGGACGTGACCATCATGTA,
Reverse: GGGCCGTATAGGAACGTGC.

NFKBIZ: Forward: GATTCGTTGTCTGATGGACCTG,
Reverse: CGTTGGTGTTTGAGGTGGT.

Additionally, we incorporated an external bulk RNA-seq
dataset (GSE220915 (18)), which includes muscle biopsy samples
from 18 ASS patients and 33 healthy controls, to validate the
expression of key genes.

2.11 Statistical analyses

All statistical analyses were performed using R software (version
4.3.2) or GraphPad Prism (version 10.4.0). Normally distributed data
are expressed as the mean + standard deviation and compared using
unpaired t-tests. Non-normally distributed data are presented as
median (interquartile range) and analyzed using the Mann-Whitney
U test. A p value of less than 0.05 was considered statistically significant.

3 Results

3.1 Monocyte subsets in ASS-ILD exhibit
enhanced interferon activation

To elucidate the immunopathological landscape of ASS-ILD, we
first analyzed a discovery scRNA-seq cohort comprising peripheral
blood mononuclear cells (PBMCs) from three treatment-naive ASS-
ILD patients and three healthy controls (HCs), yielding a total of
67,421 cells. Unsupervised clustering followed by UMAP visualization
(Figures 1A, B) identified eight major immune cell types: CD4" T cells,
CD8" T cells, monocytes, natural killer (NK) cells, B cells, low-density
granulocytes (LDGs), megakaryocytes (MKs), and dendritic cells
(DCs), confirmed by canonical marker gene expression (Figure 1C).

To assess interferon activity, AUCell scoring based on 235 curated
interferon-stimulated genes (ISGs) from the Interferome database
revealed significantly elevated ISG scores in monocytes compared
with other immune subsets (Figures 1D, E). Gene ontology (GO) and
KEGG pathway enrichment further demonstrated that monocytes
were enriched for pathways associated with innate immune activation
(e.g., IL-6 and TNF production, myeloid cell activation), lysosomal
processing, mycobacterial infection, and autoimmune inflammation
(Figures 1F, G). These findings indicate that monocytes are a key site
of interferon-driven immune activation in ASS-ILD.

3.2 Integrated cross-cohort analysis
uncovers functional heterogeneity among
monocyte subsets

To enhance statistical power, we integrated our dataset with an
external cohort (GSE190510), yielding a total of 126,026 cells for
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analysis. Consistent with our discovery findings, monocytes
displayed the highest ISG activity across all immune lineages in
the integrated dataset (Figures 2A-C). Subsequent subclustering
identified six transcriptionally distinct monocyte subsets (Mono0O-
Mono5) (Figure 2D).

Classical monocytes (Mono0/1) expressed CDI14 along with genes
related to leukocyte migration (e.g., GRN, LGALS2) and apoptotic
recognition (e.g., CD36, TLR2). Mono2 was characterized by
upregulation of IFNG, STAT4, and RORA, suggesting a
proinflammatory trajectory involving Th1/Th17 polarization and
NK cell activation. Mono3 showed proliferative signatures via
ribosomal and translational machinery (e.g., RPL5, EEFIB2).
Nonclassical CD16™ monocytes (Mono4/5) displayed IFN-polarized
features: Mono4 was enriched in antigen presentation (e.g., ISG15,
HLA), while Mono5 showed IFN-adaptive potential through
IFNARI/2 overexpression. Functional heatmap analysis revealed
distinct gene expression and pathway enrichment across subsets,
suggesting specialized roles in ASS-ILD pathogenesis (Figures 2E, F).

3.3 Monocyte pseudotime analysis reveals
skewed inflammatory differentiation in
ASS-ILD

To delineate the developmental trajectory of monocyte
subsets, we applied pseudotime inference using the Monocle
algorithm. The trajectory branched from Mono0 toward two
terminal fates—Monol and Mono2. Cells from ASS-ILD
patients showed a preferential trajectory toward Mono2, while
those from HCs were more diffusely distributed toward Mono0
and Monol (Figure 3A, C). Notably, ISG scores increased along
the pseudotime axis (Figure 3D), supporting progressive
interferon polarization.

Monocyte subset density across pseudotime revealed early-stage
enrichment of Mono0O, Mono3, and Mono4, with later stages
dominated by Monol, Mono2, and Mono5 (Figure 3E).
Differential gene expression over pseudotime (adjusted p <
0.0001, logFC > 1) clustered into three groups enriched for
leukocyte proliferation/migration, innate immunity, and adaptive
immunity, respectively (Figure 3F). These results suggest that
IFNG" monocytes (Mono2) accumulate at later pseudotime stages
and may contribute to the transition from basal to inflammatory
immune phenotypes in ASS-ILD.

3.4 IFN-y and TNF signaling mediate
monocyte-centric immune communication
networks

To explore intercellular signaling dynamics, we performed
CellChat analysis to compare ligand-receptor interactions
between ASS-ILD patients and HCs. Although global
communication strength was reduced in ASS-ILD (Figure 4A),
there was selective upregulation of type II interferon (IFN-y) and
tumor necrosis factor (TNF) signaling pathways (Figure 4B).
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FIGURE 1

Characterization of PBMC subclusters and interferon activity in ASS-ILD patients compared with healthy controls in the discovery cohort. (A) Schematic
of the study design. Created with BioGDP.com (38). (B) UMAP plot showing eight distinct immune cell populations in PBMCs from three ASS-ILD patients
and three healthy controls (HCs). (C) Violin plots of canonical marker gene expression used for cell type annotation. (D, E) AUCell-based ISG score
analysis shown by violin plots (D) and UMAP projection (E), highlighting monocytes as the immune subset with the highest ISG activity. (F, G) Functional
enrichment of monocyte-specific genes, illustrating the top 10 enriched Gene Ontology Biological Process (GOBP) terms (F) and KEGG pathways (G).

Directional analysis revealed that Mono2, NK cells, and CD8" T
cells were dominant sources of IFN-y and TNF signals, targeting
monocyte subsets (Monol1/2/4/5) (Figures 4C, D).

Network visualization showed that IFN-y signaling from
Mono2, NK, and CD8" T cells converged on downstream
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monocyte subsets, while TNF signals from Monol, Mono2, and
Mono5 regulated NK cells, CD8" T cells, DCs, and other
monocytes (Figures 4E, F). Ligand-receptor profiling indicated
comparable receptor levels between groups but markedly elevated
TNF-o. and IFN-y ligand expression in ASS-ILD (Figure 4G).
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Pseudotime analysis of monocyte differentiation trajectories. (A—C) Monocle-inferred pseudotime trajectory of monocytes, colored by

(A) pseudotime, (B) subset identity, and (C) disease state. Each dot represents a single cell. (D, F) Gene expression dynamics over pseudotime,
showing ISG scores (D) and subtype-specific marker genes (F), colored by monocyte subset. (E) Composite analysis: Top, density plots of monocyte
subsets along pseudotime; bottom left, GOBP enrichment of pseudotime-regulated gene clusters; bottom right, heatmap of differentially expressed

genes over pseudotime.

These data reveal that IFN-y and TNF signaling networks, driven
in part by the Mono2 subset, amplify monocyte-immune crosstalk
and may contribute to sustained inflammatory circuits in
ASS-ILD.

3.5 Pathogenic transcription factor programs
define monocyte subset polarization

To identify regulatory drivers of monocyte subset behavior, we
employed decoupleR-based inference using CollecTRI TF-target
interaction data. Six transcription factors—ETV5, IRF5, IRF7,
RORB, RORC, and SMADI—showed the highest inferred activity
in ASS-ILD monocytes (Figure 5A). These TFs are linked to
immune polarization, interferon signaling, and fibrosis: ETV5
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promotes Th1/Th17 responses via STAT3/STAT4 activation and
IFN-y/IL-17A production (19); IRF5 and IRF7 are canonical
regulators of IFN pathways and macrophage activation (20, 21);
RORB and RORC regulate autophagy and Th17 cell differentiation
(22-24); SMAD1 mediates TGF- signaling and contributes to
fibrotic remodeling (25).

Gene set enrichment analysis (GSEA) of these TF targets showed
enrichment in IL-17, T cell receptor, and inflammatory bowel disease
pathways (Figure 5B). Notably, Mono2 exhibited the highest TF
activity among monocyte subsets (Figure 5C). Pathway activity
profiling revealed that Monol, Mono2, and Mono5 in ASS-ILD
were enriched in innate and adaptive immunity-related pathways,
including IL-17, JAK-STAT, NF-xB, TGF-B, and TNF signaling
(Figure 5D). These results position Mono2 as a transcriptionally
primed subset with proinflammatory and profibrotic potential.
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3.6 Validation of key genes by qRT-PCR
and an external dataset

To further validate our findings, we assessed the expression of
key genes, including IFNG, TNF, IRF7, and NFKBIZ. The qRT-
PCR results revealed that the expression of these genes was
significantly higher in the PBMCs of ASS-ILD patients
compared to healthy controls (Figure 6A). Additionally, we
incorporated a bulk RNA-seq dataset from muscle biopsy
samples, which included 13 ASS patients and 33 healthy
controls. Similar to the findings in PBMCs, the expression
levels of these four genes were elevated in the muscle tissue of
patients, compared to healthy controls (Figure 6B). This suggests
that these genes are highly expressed not only in peripheral blood
but also in affected tissues, further confirming the reliability of
our results.

4 Discussion

The interferon (IFN) family, comprising critical effector
molecules of the innate immune system, plays a central role in
host defense and immune homeostasis (26). Aberrant activation of
the IFN signaling pathway is a well-established hallmark of
classical autoimmune diseases such as systemic lupus
erythematosus (SLE) and Sjogren’s syndrome (SS) (27), and is
increasingly recognized as a key driver in the pathogenesis of
idiopathic inflammatory myopathy-associated interstitial lung
disease (IIM-ILD) (28). In the present study, we employed
single-cell RNA sequencing (scRNA-seq) to comprehensively
characterize peripheral blood mononuclear cells (PBMCs) in
patients with antisynthetase syndrome-associated interstitial
lung disease (ASS-ILD), with a focus on IFN-related cellular and
molecular alterations.

A cross-cohort analysis of scRNA-seq data revealed that
monocytes exhibited the highest IFN-stimulated gene (ISG)
scores among all immune cell populations. Monocytes, essential
players in innate immunity (29), are frequently dysregulated in
autoimmune diseases (24), a finding supported by our functional
enrichment analyses of monocyte-specific transcriptomes.
Traditionally, monocytes are categorized into classical (CD14"
CD16), intermediate (CD14" CD16"), and nonclassical (CD14"
CD16") subsets based on CD14 and CD16 expression (30).
However, our data further subdivided these into six
transcriptionally distinct clusters: mono0O and monol (classical),
mono2 and mono3 (intermediate), and mono4 and mono5
(nonclassical). Notably, mono2, enriched in ASS-ILD patients,
exhibited elevated IFNG expression (Figure 2D). While IFN-vy is
classically produced by NK and T cells, accumulating evidence
suggests that monocytes, macrophages, and B cells are also capable
of IFN-y production (31, 32). Our findings thus highlight
monocytes, particularly the mono2 subset, as potential
contributors to IFN-y production in ASS-ILD.
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In parallel, mono5 showed high expression of IFNARI and
IFNAR2, suggesting increased sensitivity to type I IFN signaling
and a potential role in bridging innate and adaptive immune
responses (Figures 2E, F). Trajectory analysis using Monocle
further indicated that accumulation of IFNG' monocytes
(mono2) may drive proinflammatory microenvironment
remodeling in ASS-ILD.

Cell-cell communication analysis revealed significant
alterations in TNF and IFN-y (type II IEN) signaling between
ASS-ILD patients and healthy controls. Monocytes, NK cells, and
T cells were identified as the principal mediators of these signals,
consistent with previous reports (33).Specifically, monocyte subsets
monol, mono2, and mono5 were the primary transmitters of TNF
signals, interacting with NK cells, T cells, dendritic cells (DCs), and
other monocytes. For IFN-y signaling, mono2 emerged as the
dominant transmitter, targeting DCs and monocytes. Importantly,
monocytes functioned both as senders and receivers in these
signaling cascades.

The biological relevance of these findings is underscored by the
central roles of TNF-o and IFN-y in autoimmune inflammation
and immune regulation. TNF-o promotes apoptosis, enhances
proinflammatory cytokine release, and contributes to epithelial
and vascular injury (34). It also induces M1 macrophage
polarization and IL-6 production, exacerbating inflammatory
responses (35). The dual participation of monocytes in both TNF
and IFN-v signaling suggests a critical role in amplifying cytokine
cascades and driving ILD progression.

To explore the transcriptional regulation underlying these
effects, we identified key transcription factors (TFs) with
elevated activity in ASS-ILD monocytes, including ETV5, IRF5,
IRF7, RORB, RORC, and SMADI. Notably, ETVS5, IRF5, and IRF7
are closely associated with interferon signaling (19-21). In
addition, ETV5 and RORC have been linked to IL-17A
production, a proinflammatory cytokine that bridges innate and
adaptive immunity and is implicated in systemic autoimmunity
(19, 23, 36). SMADI, activated by TGF-f signaling, promotes
proinflammatory and fibrotic responses by recruiting immune
cells and fibroblasts to the lung parenchyma (37). Consistent with
these roles, GSEA revealed enrichment of IL-17, JAK-STAT, NEF-
kB, TGF-B, and TNF pathways in monol, mono2, and mono5
(Figure 5D), suggesting a regulatory network that sustains
pulmonary inflammation and fibrosis—key pathological features
of ILD.

Taken together, our data identify monocytes as central
orchestrators of immune dysregulation in ASS-ILD, integrating
cytokine signaling and transcriptional reprogramming to drive
disease progression. These findings offer a cellular and molecular
framework for understanding monocyte-driven inflammation and
highlight potential targets for therapeutic intervention.

This study has several limitations. First, although we
incorporated an external dataset to enhance the robustness of
cross-cohort analysis, the overall sample size remains modest,
limiting statistical power and generalizability. Future studies
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FIGURE 5

Transcriptional regulatory landscape of monocyte subsets in ASS-ILD. (A) Heatmap showing the top 10 most active transcription factors (TFs) in
monocytes from ASS-ILD and HC samples, ranked by inferred activity. (B) Dot plot of the top 10 pathways enriched or depleted in ASS-ILD monocytes,
identified by gene set enrichment analysis (GSEA). (C) UMAP plots displaying representative TF activity in monocyte subsets Monol, Mono2, and Mono5.
(D) GSEA enrichment plots showing significant upregulation of innate immune pathways in Monol, Mono2, and Mono5 in ASS-ILD.

should aim to validate these findings in larger, independent cohorts.
Second, while we identified an IFNG* monocyte subset (mono2)
characterized by CD14°"CD16"" expression, functional validation
and mechanistic characterization of this population are warranted.
Third, our analysis was based solely on PBMCs, without access to
lung tissue or bronchoalveolar lavage specimens. This precludes
direct insight into tissue-resident immune responses and local

inflammation. Further studies incorporating in vitro and in vivo
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models, as well as tissue-specific samples, are essential to fully
elucidate the functional roles and signaling programs of monocyte
subsets in ASS-ILD pathogenesis. Although this study is based
solely on scRNA-seq profiling, the convergence of multiple
analytical pipelines including AUCell, Monocle, and CellChat
enhances the robustness of the inferred mechanisms. These
findings provide a rationale for further experimental validation

and the development of targeted therapies.
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FIGURE 6

Validation of key genes by qRT-PCR and an external dataset. (A) Bar plot showing the relative expression levels of IFNG, TNF, IRF7, and NFKBIZ in
PBMCs from ASS-ILD patients and healthy controls (HC) based on gRT-PCR results. (B) Bar plot showing the relative expression levels of IFNG, TNF,
IRF7, and NFKBIZ in muscle tissue from ASS-ILD patients and healthy controls (HC) based on the external dataset GSE220915.

5 Conclusion

In summary, our study identifies monocytes as the key
immune cell type associated with heightened interferon (IFN)
signaling in the peripheral blood of patients with antisynthetase
syndrome-associated interstitial lung disease (ASS-ILD). These
monocytes, particularly specific transcriptionally defined subsets,
engage in aberrant IFN-y (type II IFN) and TNF signaling, which
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appear to play central roles in the pathogenesis of ASS-ILD.
Beyond delineating pathogenic mechanisms, our findings reveal
potential therapeutic targets and pathways—including IFN-
related transcription factors and cytokine signaling networks—
that may inform the development of precision therapies. These
insights offer a conceptual and molecular framework for future
clinical studies aimed at improving treatment strategies for
ASS-ILD.
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