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Tumor necrosis factor (TNF) causes a lethal systemic inflammatory response
syndrome (SIRS) which is characterized by significant metabolic alterations.
Based on liver RNA sequencing, we found that TNF impairs the malate-aspartate
shuttle (MAS), an essential redox shuttle that transfers reducing equivalents across
the inner mitochondrial membrane thereby recycling cytosolic NAD". This
downregulation of MAS genes in TNF-induced SIRS likely results from loss of
HNF40. function, which appears to be the key transcription factor involved. Using
Slc25a13™~ mice lacking citrin — a crucial MAS component — we demonstrate that
MAS dysfunction exacerbates TNF-induced metabolic dysregulations and lethality.
Disruptive NAD™ regeneration leads to diminished mitochondrial B-oxidation,
leading to elevated levels of circulating free fatty acids (FFAs) and to hepatic lipid
accumulation. Simultaneously, MAS dysfunction promotes glycolysis coupled to
lactate production and reduces lactate-mediated gluconeogenesis, culminating in
severe hyperlactatemia that triggers VEGF-induced vascular leakage. Overall, MAS
dysfunction contributes to metabolic failure and lethality in TNF-induced SIRS,
highlighting its potential as a promising, therapeutic target.

KEYWORDS

malate aspartate shuttle, citrin, TNF-induced SIRS, lipid metabolism,
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Introduction

Systemic inflammatory response syndrome (SIRS) is marked by an uncontrolled and
unbalanced inflammatory response caused by a variety of sterile triggers (e.g. burns, trauma
or acute pancreatitis) or upon infection (1, 2). It is associated with a ‘cytokine storm’ in the
circulation, involving the secretion of pro-inflammatory cytokines such as tumor necrosis
factor (TNF) (3).
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TNF is a multifunctional, pro-inflammatory cytokine involved
in a plethora of biological processes, including immune function,
cellular proliferation, cell death and energy metabolism, as well as in
diseases such as inflammatory bowel disease and rheumatoid
arthritis (4-6). TNF signaling is mediated through binding and
activation of two different transmembrane receptors, TNF receptor
1 (TNFR1 or p55) and TNF receptor 2 (TNFR2 or p75), with
TNFR1 being primarily responsible for TNF’s versatile
proinflammatory effects via AP1 or NF-xB pathway activation
(7). As one of the first cytokines discovered, and based on its
impressive anticancer effect, TNF biology has been studied very
intensely (8). Yet, key factors involved in the development of SIRS
by TNF remain to be discovered. Exogenous TNF administration is
a well-known experimental model to induce lethal SIRS as it triggers
an acute inflammatory response marked by excessive release of
several toxic mediators such as interleukins (e.g. IL-1, IL-6, IL-17),
type I interferons and matrix metalloproteinases (3, 9-13). TNF-
induced lethal SIRS is characterized by hypothermia, hypotension,
tissue damage, multiple organ failure and significant metabolic
reprogramming, which is similarly observed in human patients
following surgery, trauma, infection, burns or pancreatitis (3, 9).

Studies have shown that TNF signaling has a prominent effect
on carbohydrate and lipid metabolism. Many in vitro studies
demonstrate that TNF treatment diminishes oxidative metabolism
and mitochondrial function while inducing glycolytic flux, leading
to a shift towards a Warburg-like metabolism in, for instance,
epithelial cells, fibroblasts, hepatocytes and skeletal muscle cells
(14-19). This is characterized by increased glycogenolysis and
glucose consumption, upregulated expression of glycolytic
enzymes, lactate secretion, elevated glycolytic ATP production
and decreased mitochondrial oxygen consumption. Similar effects
have been observed in in vivo studies, confirming that TNF
signaling plays a crucial role in shifting towards glycolytic
metabolism in the liver, spleen and monocytic cells of mice upon
infection (18, 20).

TNF signaling has also an impact on lipid metabolism (6, 21,
22). TNF reduces fatty acid uptake and lipogenesis, but it promotes
lipolysis in human and rodent adipocytes leading to the release and
accumulation of circulating free fatty acids (FFAs) and glycerol (23—
27). However, the conversion of FFA into acetyl-CoA via
mitochondrial FFA B-oxidation is severely impaired by TNF in
epithelial cells or isolated hepatocytes (28-31). These disruptions
contribute to dyslipidemia resulting in severe complications such as
ectopic lipid accumulation (6). Indeed, many studies highlight an
important role of TNF in hepatic steatosis and lipotoxicity as
blocking TNF signaling via TNFRI significantly improved fat
accumulation in mouse models of metabolic dysfunction-
associated steatotic liver disease (32-34).

In all cells, adequate levels of NAD™ and NADH are essential for
maintaining energy metabolism during homeostasis (35, 36).
Metabolism involves cellular oxidation reactions (e.g. glycolysis,
TCA cycle, B-oxidation), in which NAD" serves as an electron
acceptor, resulting in the production of NADH. The formed NADH
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transfers these electrons to the mitochondrial electron transport
chain (ETC), on the one hand driving ATP synthesis, and on the
other hand regenerating NAD™. Since the inner mitochondrial
membrane is impermeable to NADH, this electron transfer from
cytosolic NADH to the mitochondrial matrix is mediated by NAD*/
NADH redox shuttles, i.e. the malate-aspartate shuttle (MAS) and
the glycerol-3-phosphate shuttle. The MAS is the primary redox
shuttle and consists of four enzymes: (1) cytosolic and (2)
mitochondrial malate dehydrogenase 1/2 (resp. MDH1 &
MDH2), (3) cytosolic and (4) mitochondrial aspartate
aminotransferase (resp. GOT1 & GOT2), and two mitochondrial
transporters: the oxoglutarate (i.e. o-ketoglutarate)-malate carrier
(OGC; SLC25A11) and the aspartate-glutamate carrier (AGC;
SLC25A13), also known as citrin (37). MAS activity results in
both cytosolic NAD" and mitochondrial NADH regeneration
needed for the continuation of cytosolic oxidative pathways (e.g.
glycolysis) and for maintaining mitochondrial oxidative
phosphorylation, respectively (37-40). Impairment of MAS
activity could therefore lead to profound metabolic alterations.
For instance, citrin deficiency is a rare autosomal recessive
metabolic disease caused by mutations in the Slc25a13 gene.
Citrin is located in the inner mitochondrial membrane and is
responsible for cytosolic glutamate import while simultaneously
exporting aspartate from the mitochondria (41, 42). Patients with
citrin deficiency exhibit a MAS disruption affecting metabolic
pathways including glycolysis, gluconeogenesis (GNEO), lipid
metabolism and the TCA cycle, resulting in hypoglycemia,
dyslipidemia, hepatic steatosis and an energy deficit (43).
However, the presence of MAS inactivity and its potential
crosstalk with metabolic dysregulations in TNF-induced SIRS
remains to be explored.

As one of the major hepatocyte identity-determining
transcription factors, hepatocyte nuclear factor alpha (HNF40.) is
involved in the transcription of numerous genes and HNF4o was
found to lose function during metabolic diseases and sepsis, and is
related to several metabolic abnormalities, such as FFA-induced
steatosis (44, 45).

We report that TNF causes an impaired MAS activity, which
might result from HNF4o loss-of-function and contributes to
profound metabolic alterations in TNF-induced SIRS. To
investigate this in more detail, we utilized SIc25a13”" mice, which
lack citrin, an essential component of the MAS. Our findings
demonstrate that citrin loss-of-function exacerbates TNF-induced
metabolic dysfunctions and lethality by depleting NAD" and
NADH levels. This results in (1) impaired mitochondrial B-
oxidation leading to elevated FFA levels and ectopic lipid droplet
formation, and (2) enhanced glycolysis combined with more lactate
production and diminished lactate-mediated gluconeogenesis,
resulting in severe hyperlactatemia driving VEGF-mediated
vascular permeability. Together, these metabolic disruptions
contribute to lethality in TNF-induced SIRS. Our data thus
unfold a previously unrecognized important pathophysiological
change, induced by TNF and directly related to its lethal nature.
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Results

TNF-induced SIRS is characterized by
significant metabolic reprogramming

To corroborate the presence of metabolic alterations in TNF-
induced SIRS, functional enrichment analyses were performed on a
liver bulk RNA sequencing (RNASeq) dataset retrieved 18h after
injection of a lethal TNF dose in mice (viz. 25 ug), i.e. during the
acute phase of TNF-induced SIRS (46). TNF challenge resulted in
1502 upregulated genes (log fold change (LFC) > 1 and p < 0.05)
and 1310 downregulated genes (LFC < -1 and p < 0.05) (Figure 1A).
As expected, Enrichr and Metascape analyses of the upregulated
genes demonstrated a clear enrichment related to pro-inflammatory
transcription factors and immune responses (Supplementary
Figures S1IA-D). Notably, Enrichr analysis of the downregulated
genes identified metabolism as the top hit, clearly suggesting the
presence of impaired metabolic processes in TNF-induced
SIRS (Figure 1B).

Further analysis specifically exhibited a significant
downregulation of lipid metabolism, as indicated by the
association of downregulated genes with retinoid X receptor
(RXR), peroxisome proliferator-activated receptor alpha (PPARo)
and liver X receptor (LXR), three transcription factors involved in
regulating lipid metabolism (Figure 1C), and their enrichment for
pathways like metabolism of lipids and fatty acid metabolism
(Figure 1B). To validate these transcriptome findings, we
measured several lipid metabolic parameters 18h after TNF
injection (Figure 1A). Both plasma FFA and glycerol levels were
significantly elevated in TNF-treated mice compared to the PBS
controls, suggesting the presence of increased white adipose tissue
(WAT) lipolysis and/or reduced FFA oxidation (Figures 1D, E).
However, no significant decrease in body weight nor inguinal WAT
(iWAT) weight of TNF-treated mice could be observed
(Supplementary Figures S1E, F), implying that the normally
observed TNF-induced lipolysis is not markedly activated at that
time point or is too limited to be detected by weight of the WAT
(23-25). Examination of the relative expression levels of genes
involved in FFA oxidation revealed a surprising upregulation of
genes specifically associated with fatty acid uptake and
mitochondrial import (e.g. Cd36 and Slc25a20), whereas
mitochondrial FFA B-oxidation genes (e.g. Acsll) were
significantly downregulated upon TNF challenge (Figure 1A). This
suggests a potential impairment in FFA oxidation, particularly at the
mitochondrial B-oxidation level. We next performed Seahorse
analysis to assess the FFA PB-oxidation capacity of isolated liver
mitochondria from PBS- and TNF-treated mice (Figure 1G).
Palmitoylcarnitine-driven oxygen consumption rate (OCR) in
TNF mitochondria was severely impaired compared to PBS
mitochondria (Figure 1H, Supplementary Figure S1G). These
findings support that TNF-induced SIRS is characterized by
compromised fatty acid metabolism, reflected by diminished FFA
[-oxidation leading to elevated FFA levels.

To affirm the Enrichr results, we next performed Metascape
analysis on the downregulated genes, which interestingly identified
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monocarboxylic acid metabolic process as the top enriched term
(Figure 11). This encompasses all chemical reactions and pathways
involving monocarboxylic acids, including subprocesses such as
fatty acid metabolism, but also pyruvate and lactate metabolism.
This potentially suggests a disruption in carbohydrate metabolism,
consistent with previous studies showing the presence of Warburg-
like metabolism upon TNF treatment (14, 18, 19). We substantiate
this finding, noting significantly diminished relative expression
levels of genes involved in pyruvate-driven TCA cycle capacity
and demonstrating reduced pyruvate-driven OCR in mitochondria
after a lethal TNF dose (Figures 1A, ], K, Supplementary Figure
S1H). This goes along with the presence of an increased glycolytic
flux, suggested by enhanced relative expression levels of glycolytic
genes upon TNF challenge (Figures 1A, L). This was further
supported by the presence of profound hyperlactatemia,
hypoglycemia and depleted liver glycogen stores, proving
enhanced glucose utilization through glycolysis after a lethal TNF
dose (Figures 1A, M-0). Additionally, the relative expression levels
of genes encoding enzymes in the lactate-mediated GNEO pathway
(Ldhb, Pckl and G6Pc) were significantly diminished upon TNF
injection (Figures 1A, L). This suggests that the observed severe
hypoglycemia and hyperlactatemia are not only driven by increased
glucose consumption and lactate production via glycolysis, but also
by impaired glucose production and lactate usage through the
GNEO pathway.

Overall, TNF-induced SIRS is marked by profound metabolic
reprogramming characterized by diminished mitochondrial FFA -
oxidation, increased glycolysis, impaired GNEO and reduced
mitochondrial respiration.

TNF impairs the malate aspartate shuttle
leading to a NAD* and NADH deficit

To identify a potential, coherent mechanism underlying all
metabolic disturbances in TNF-induced SIRS, we focused on the
‘Elsevier Pathway Collection’ in Enrichr for TNF-downregulated
genes (1310, LFC < -1 and p < 0.05). Remarkably, this revealed a
clear hit for citrullinemia (Figures 2A, B). Citrullinemia is a rare
autosomal recessive urea cycle disorder caused by mutations in
either ASS1 (type 1), encoding argininosuccinate synthetase which
is an urea cycle enzyme, or SLC25A13 (type 2, also called citrin
deficiency), encoding the aspartate-glutamate carrier (citrin) which
results in insufficient aspartate supply to the urea cycle (47). Since
citrin is a crucial component of the MAS, citrin deficiency is also
characterized by impaired MAS activity, disrupting the cytosolic
and mitochondrial NAD" and NADH levels and affecting multiple
NAD'/NADH dependent metabolic pathways, including glycolysis,
GNEO, TCA cycle and FFA B-oxidation (Figure 2C), all pathways
that we found to be significantly affected in TNF-induced SIRS
(Figure 1) (43).

With this, further Enrichr analyses displayed that the TNE-
downregulated genes (1310, LFC < -1 and p < 0.05) were also related
to key metabolites, including NADP", NAD", ATP and ADP,
coenzyme A, and to the mitochondrial matrix as the most
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affected cellular component (Figures 2D, E). This implies
diminished NADP* and NAD" levels and impaired mitochondrial
energy homeostasis. Combined with the association of the
downregulated genes with citrullinemia, this proposes the
presence of citrin deficiency leading to MAS inactivity and
disrupted NAD" and NADH levels. Indeed, the relative
expression levels of the MAS genes were markedly diminished,
with Slc25a13 showing the most significant downregulation upon
TNF challenge (Figures 2F, G). This was associated with
significantly diminished liver SLC25A13 and SLC25A11 protein
levels (Figures 2H, I, Supplementary Figures S2A-C). Moreover,
NAD" and NADH levels in total liver lysates were significantly
diminished after a lethal TNF dose (Figures 2], K). Since the
cytosolic fraction contains significantly more NAD™ of the total
NAD™ pool and the mitochondrial fraction contains significantly
more NADH of the total NADH pool, these reductions likely reflect
diminished cytosolic NAD" and mitochondrial NADH levels.
Hence, these findings demonstrate that TNF-induced SIRS is
characterized by impaired MAS activity resulting in a deficit of
NAD" and NADH, which eventually could lead to
metabolic disturbances.

On the other hand, to identify the mechanism underlying
Sle25a13 downregulation in TNF-induced SIRS, we focused on
the ‘transcription factor - loss of function (LOF)’ dataset in
Enrichr for TNF-downregulated genes (1310, LFC < -1 and p <
0.05). This identified HNF4a, a key nuclear transcription factor, as
the top hit (Figure 2L), very far beyond other factors. Moreover, the
promoter regions of these downregulated genes were significantly
more enriched for the HNF4o motif (Figure 2M). This clearly
shows the presence of HNF40. LOF in TNF-induced SIRS.
Moreover, hepatocyte-specific HNF4a: knockout (Hnf4o Ve -K0)
mice were significantly more sensitive to a TNF dose that was
sublethal in Hnf4o"" (control) mice (Figure 2N), demonstrating
the crucial role of hepatic HNF4a. in surviving TNF-induced SIRS.
Interestingly, Slc25a13 is among the genes associated with HNF4o.
LOF, and GeneCards indicates that its promoter region contains a
HNF4o binding site. This was confirmed by HNF4o. CHIP-Seq
identifying a distinct HNF4a: peak in the Slc25a13 promoter region
(Supplementary Figure S2D). Additionally, exploring the liver
mRNA counts of Slc25al3 in a previously published liver
Hnf40Mv* KO dataset (GSE260635; Van Dender et al. (44))
showed significantly reduced liver Slc25a13 mRNA counts in
Hnf40 ™0 livers compared to Hnf4o""

that Slc25a13 expression is HNF40, dependent (Supplementary

mouse livers proving

Figure S2E). Hence, this strongly suggests that Slc25a13
downregulation is mediated by HNF4o. LOF in TNF-induced SIRS.

Citrin knockout results in acute lethality
and enhanced metabolic dysfunctions in
TNF-induced SIRS

To investigate the potential role of MAS dysfunction in
metabolic reprogramming and lethality in TNF-induced SIRS, we
generated Slc25a13”" mice. Full knockout validation was performed
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by measuring liver SLC25A13 protein levels via western blotting,
confirming the total absence of SLC25A13 protein in Slc25a13"
mice (Supplementary Figures S3A, B). Strikingly, Slc25a13”" mice
showed acute lethality in response to a TNF dose that was sublethal
in Slc25a13""* mice (Figures 3A, B). This was accompanied by more
pronounced hypothermia and hyperlactatemia over time in
Slc25a13”" mice after TNF injection (Supplementary Figures S3C,
D). Moreover, both NAD" and NADH levels in total liver lysates
were already significantly reduced in Slc25a13”" mice 8h post-TNF
injection, a difference that was not yet detected in Slc25a13** mice
(Figures 3C, D). Interestingly, no basal differences in liver NAD"
and NADH levels are notable between Slc25a13*'* and Slc25a13"
mice as during homeostasis this is compensated by glycerol-3-
phosphate shuttle activity, as evidenced by other studies (48, 49).
Overall, this shows that citrin deficiency impairs MAS activity
leading to a more rapid NAD" and NADH depletion in TNE-
induced SIRS, and more importantly, this emphasizes a crucial role
of MAS in resisting TNF lethality.

To examine the mechanisms underlying the increased TNF
sensitivity of Slc25a13”" mice, RNASeq was performed on livers of
Slc25a13*"* and Slc25a13”" mice 8h after PBS or TNF injection, a
timepoint chosen based on the NAD" and NADH effects
(Figure 3A). Citrin deficiency alone resulted in only four
significantly differentially expressed genes (Slc25a13, Mapla, Asns
and Zbed), indicating no notable baseline differences between
Slc25a13*"* and Slc25a13”" mice. When plotting the log fold
changes (LFCs) of all significantly upregulated or downregulated
genes (p < 0.05) in both Slc25a13*'* and Slc25a13”~ mice upon TNF
challenge, a clearly more pronounced transcriptional response to
TNF was observed in Slc25a13”" mice compared to Slc25a13™"*
mice, especially for the downregulated genes (Upregulated genes:
Figure 3E, red line slope = 1.246; downregulated genes: Figure 3F,
red line slope = 2.210). We detected 752 and 1942 significantly
upregulated genes and 69 and 2227 significantly downregulated
genes (LFC > 1 or < -1 and p < 0.05) by TNF in Slc25a13*'* and
Slc25a13"" mice, respectively (Figure 3G). Hence, TNF caused a
substantially stronger transcriptional response in Slc25a13”" mice,
with a 2.6- and 33-fold increase in the number of up- and

** mice.

downregulated genes, respectively, compared to Slc25a13

Enrichr analysis of the 1227 uniquely upregulated genes by TNF
in Slc25a13”" mice demonstrated a clear enrichment in pro-
inflammatory responses (Supplementary Figure S3E). More
specifically, heatmap depiction of the LFCs of genes involved in
inflammation and endothelial activation demonstrated a stronger
upregulation in Slc25a13”" mice compared to Slc25a13*/* mice 8h
post-TNF injection (Supplementary Figure S3F). These results
imply that citrin deficiency enhances the transcriptional
inflammatory response upon TNF stimulation. However, the
difference in differential gene expression upon TNF injection was
much more pronounced for the downregulated genes compared to
the upregulated genes between Slc25a13*'* and Slc25a13”" mice
(Figures 3E, F). Therefore, we focused on the uniquely 2164
significantly downregulated genes by TNF in Slc25a13”" mice to
explore potential mechanisms contributing to their increased TNF
sensitivity. Interestingly, Enrichr analysis of these downregulated
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FIGURE 3

Citrin knockout results in acute lethality and enhanced metabolic dysfunctions in TNF-induced SIRS. (A) Experimental setup for liver genome-wide
transcriptomic analysis and survival after TNF (35 pg). (B) Slc25a13*/* and Slc25a13 ™/~ were IP injected with TNF (35 pg) and mortality was monitored.
n=14-15/group. (C, D). Liver NAD" (C) and NADH (D) levels in PBS- and TNF-treated Slc25a13*/* and Slc25a13™/" mice, relative to PBS wildtype
controls. n=6-12/group. (E, F). Scatter plot depicting the log fold changes (LFC) of differentially upregulated (E) or downregulated (F) genes in TNF-
treated Slc25a13”~ mice compared to TNF-treated Slc25a13"/* mice. The black line represents the diagonal (r=1) and the red line indicates the real
slope [r=1.246 (E) or r=2.210 (F)] of the data. Data were analyzed with linear regression. (G) Venn diagram depicting the number and overlap of up-
and downregulated genes (LFC > 1 or LFC < -1 and p < 0.05) by TNF in Slc25a13*'* and Slc25a13”" mice. (H) Enrichr pathway analysis (Reactome
2022) of the unique downregulated genes 8h after TNF (2164 genes) in Slc25a13 ™~ mice with LFC < -1 and p < 0.05. (I-K). Enrichr pathway analysis
(GO Biological Process 2023 (I) and GO Cellular component 2023 (J)) and Metascape pathway analysis (K) of the downregulated genes associated
with metabolism 8h after TNF (327 genes) with LFC < -1 and p < 0.05. Bars: mean + SEM. Each dot represents a single biological replicate. P-values
were analyzed with two-way ANOVA (C, D). Survival was analyzed via a log rank test (B). ***p < 0.001, **p < 0.01, *p < 0.05, ns, not significant.
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genes revealed metabolism as the top hit, followed by ‘metabolism
of lipids’ and ‘fatty acid metabolism’ (Figure 3H). Transcription
factor analysis (ChEA 2022) also revealed a clear enrichment for
RXR, PPARa and LXR, clearly suggesting a significant
downregulation of lipid metabolism (Supplementary Figure S3G).
We next performed further functional analyses on the 327
downregulated genes specifically associated with metabolism.
Both Enrichr and Metascape analyses revealed a clear hit for
lipid, fatty acid and monocarboxylic acid metabolic processes, and
the mitochondrial membrane as the most affected cellular
component (Figures 3I-K). Clearly, these functional enrichment
analyses 8h after TNF injection in Slc25a13”" mice closely
resembled the functional enrichment analyses observed 18h after
lethal TNF injection in Slc25a13** mice (Figure 1). When plotting
the LECs of all differentially expressed genes (p < 0.05) in Slc25a13"/
* upon 18h TNF treatment versus their LFC in Slc25a13”" mice
upon 8h TNF treatment, a similar transcriptional signature
response to TNF was observed (Supplementary Figure S3H, red
line slope = 0.7814 versus black diagonal). Hence, these data
strongly suggest that citrin LOF and subsequent MAS inactivity
play a crucial role in the development of metabolic dysregulations,
i.e. fatty acid and carbohydrate metabolism, and that this
contributes to lethality in TNF-induced SIRS.

Citrin knockout worsens lipid metabolic
dysfunctions in TNF-induced SIRS

To substantiate the importance of citrin LOF in the
development of a disrupted lipid metabolism in TNF-induced
SIRS, we measured several lipid metabolic parameters 8h after
TNF challenge in Slc25a13*"* and Slc25a13” mice (Figure 4A).
As expected, TNF injection led to significantly more severe
hypothermia in Slc25a13”" mice (Figure 4B). Both plasma FFA
and glycerol levels were significantly increased in TNF-treated
SIc25a13”" mice compared to PBS controls, a difference that was
not (yet) observed in Slc25a13** mice (Figures 4C, D). This
indicates the earlier presence of a dysregulated lipid metabolism
in TNEF-treated Slc25a13”" mice. We next determined the potential
presence of enhanced lipolysis responsible for the more severe
increase in plasma FFA and glycerol levels in TNF-treated
Slc25a13™" mice by determining loss of fat tissue. The total body
weight and iWAT weight of both Slc25a13""* and Slc25a13”" mice
were not altered upon TNF injection (Figures 4E, F). Additionally,
gene expression of Lipe (encodes hormone sensitive lipase enzyme
involved in the hydrolysis of triglycerides into FFA and glycerol) in
iWAT was even significantly reduced in Slc25a13** upon TNF
injection compared to PBS controls. This decrease was also
observed in both PBS-treated and TNF-treated Slc25a13”" mice
(Figure 4G). This suggests no clear detection of enhanced lipolysis
in TNF-treated Slc25a13”" mice, despite other studies showing
elevated lipolysis upon TNF treatment (23-25).

Given the more pronounced reduced liver NAD* and NADH
levels in TNEF-treated Slc25a13”" mice, and the dependence of
mitochondrial FFA B-oxidation on a proper NAD"/NADH ratio,
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we next explored whether citrin LOF contributes to impaired FFA
[-oxidation in TNF-induced SIRS. Heatmap depiction of the LFCs
of genes involved in FFA [B-oxidation showed a more severe
downregulation in Slc25a13”" mice compared to Slc25a13** mice
8h post-TNF injection (Figure 4H). We assessed mitochondrial FFA
B-oxidation capacity via Seahorse analysis on isolated liver
mitochondria of PBS- and TNF-treated Slc25a13"'" and
Slc25a13”" mice (Figure 41). Palmitoylcarnitine-driven OCR was
already markedly diminished in Slc25a13”" mitochondria
compared to Slc25a13™* controls under basal conditions
(Figure 4], Supplementary Figure S4A). Following TNF injection,
this reduction became significantly more pronounced in Slc25a13""
mitochondria, whereas no such decline was observed in Slc25a13"/*
mitochondria (Figure 4], Supplementary Figure S4A). Hence, citrin
deficiency aggravates mitochondrial FFA B-oxidation supposedly
leading to the more rapid FFA accumulation in the blood in TNF-
induced SIRS. When fatty acid levels are elevated in circulation, the
liver stores them in lipid droplets (50). We performed LipidTOX
staining to examine the occurrence of ectopic lipid accumulation in
livers of PBS-treated and TNF-treated Slc25a13""* and Slc25a13"
mice. An increased number of lipid droplets were detected in livers
of Slc25a13”" mice under basal conditions, likely reflecting their
diminished mitochondrial FFA B-oxidation capacity (Figures 4K,
L). Interestingly, liver lipid droplet count was increased in
Slc25a13** mice upon TNF challenge which was even more
augmented in Slc25a13”" mice (Figures 4K, L). Overall, these data
illustrate that citrin LOF-mediated MAS dysfunction impairs
mitochondrial B-oxidation, ultimately resulting in FFA
accumulation and lipid droplet formation in TNF-induced SIRS.

Citrin knockout exacerbates aerobic
glycolysis and lactate clearance leading to
lactate-mediated lethal shock in TNF-
induced SIRS

Since TNF-treated Slc25a13~ mice were characterized by more
prominent hyperlactatemia (Supplementary Figure S3D) and
adequate NAD" and NADH levels are crucial for sustaining
glycolysis and oxidative phosphorylation, we next investigated the
impact of citrin LOF on carbohydrate metabolism in TNF-induced
SIRS. Heatmap visualization of LFCs of genes involved in glycolysis
demonstrated a stronger upregulation in Slc25a13”~ mice compared
to Slc25a13*/* mice 8h post-TNF injection (Figures 5A, B). This was
accompanied by more severe hypoglycemia and hyperlactatemia in
TNF-treated Slc25a13”" mice, which was not yet evident in TNF-
treated wildtype controls (Figures 5C, D) at this 8h post TNF
timepoint. Liver glycogen depletion, already observed in TNEF-
treated Slc25a13*"* mice, was significantly more pronounced in
TNE-treated Slc25a13”" (Figure 5E), suggesting accelerated glucose
mobilization and glycolytic flux. To further assess glycolytic
capacity, a glucose tolerance test was performed upon TNF
challenge (Figure 3F). Glucose injection resulted in a significant

+/+

blood glucose increase in TNF-treated Slc25a13™" which was

remarkably less pronounced in Slc25a13”" mice, indicating quick
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FIGURE 4

Citrin knockout worsens lipid metabolic dysfunctions in TNF-induced SIRS. (A) Experimental setup 8h after TNF (35 pg). (B—D) Body temperature (B),
plasma FFA (C) and glycerol (D) levels in PBS- and TNF-treated Slc25a13"/* and Slc25a13 ™/~ mice. n=4-12/group. (E) % decrease in body weight of
PBS- and TNF-treated Slc25a13*/* and Slc25a13™'~ mice, with body weight from the PBS condition set at 100%. n=5-6/group. (F) Weight of the
inguinal fat pad (IWAT) relative to the total body weight of PBS- and TNF-treated Slc25a13*/* and Slc25a13™/~ mice. n=4-6/group. (G) Lipe mRNA
expression in livers of PBS- and TNF-treated Slc25a13*/* and Slc25a13™/~ mice, relative to Gapdh and Tbp. n=4-6/group. (H) Heatmap depicting the
LFC (TNF versus PBS) of FFA oxidation genes in Slc25a13*/* and Slc25a13 "~ mice. (I) Experimental setup for Seahorse analysis. (J) OCR flux of
isolated liver mitochondria of PBS- and TNF-treated Slc25a13*/* and Slc25a13”" mice, driven by 40 uM palmitoylcarnitine and 0.5 mM malate. n=6/
group. (K, L) Count of lipid droplets relative to liver tissue volume was determined for each Z-stack and averaged over all Z-stack liver sections of
PBS- and TNF treated Slc25a13** and Slc25a13”" mice (K). Immunofluorescent images of liver of PBS- and TNF treated Slc25a13*/* and Slc25a137"
mice stained with Acti-stain (green), DAPI (blue) and LipidTOX (red). Z-stacks were generated in 8 regions across the entire liver section. White scale
bar = 20 ym. (L) n=4-7/group. Bars: mean + SEM. Each dot represents a single biological replicate. P-values were analyzed with two-way ANOVA
(B—G, K). ****p < 0.0001,**p < 0.01, *p < 0.05, ns, not significant.
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Citrin knockout exacerbates aerobic glycolysis and lactate clearance leading to a lactate-mediated lethal shock in TNF-induced SIRS. (A) Experimental setup
8h after TNF (35 pg). (B) Heatmap depicting the LFC (TNF versus PBS) of glycolysis and GNEO genes in Slc25a13*/* and Slc25a13” mice. (C—E) Blood
glucose (C), blood lactate (D) and liver glycogen (E) levels of PBS- and TNF treated Slc25a13"* and Slc25a13™~ mice. n=5-12/group. (F) Experimental setup

for glucose tolerance 8h after TNF (35 pg) (G, H). Glucose tolerance in TNF-treated Slc25al
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and Slc25a13”" mice. Blood glucose levels (G) and blood

lactate levels (H) were measured via the tail vein. P-values of glucose injected mice were compared with their respective PBS control. n=5-6/group. (I) OCR
flux of isolated liver mitochondria of PBS- and TNF-treated Slc25a13"/* and Slc25a13”" mice, driven by 10 mM pyruvate. n=6/group. (J) Lactate tolerance in
TNF-treated Slc25a13*/* and Slc25a13”" mice. Blood lactate levels were measured via the tail vein. P-values of lactate injected mice were compared with
their respective PBS control. n=5-8. (K) Plasma VEGF levels of PBS- and TNF-treated Slc25a13*/* and Slc25a13" mice. n=4-6/group. (L). Vascular
permeability in liver of PBS- and TNF-treated Slc25a13** and Slc25a13”~ mice. n=4-7/group. (M) Experimental setup for lactate survival. (N, O) Slc25a13*/*
and Slc25a13”" were IP injected with sodium-L-lactate (3 g/kg) and mortality (N) and blood lactate levels (O) were monitored. n=8-13/group. Bars: mean +
SEM. Each dot represents a single biological replicate. P-values were analyzed with two-way ANOVA (C-E, G, H, J-L, O). Survival curve was analyzed with a
chi-square test (N). ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns, not significant.
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enhanced glucose utilization (Figure 5G). This was accompanied by
more severe lactate production in TNF-treated Slc25a13”""

+/+

compared to Slc25a13™" controls (Figure 5H), demonstrating the
presence of enhanced aerobic glycolysis. Pyruvate-driven OCR was
also significantly more diminished in isolated liver mitochondria
+/+

from Slc25a13”" mice compared to Slc25a13"* controls following
TNF injection (Figure 5I, Supplementary Figure S4B). Together,
these findings indicate that citrin absence - and the resulting MAS
inactivity - contributes to the metabolic switch toward a Warburg-
like phenotype in TNF-induced SIRS. Specifically, the accelerated
decline in NAD" levels in Slc25a137" mice likely drives lactate
dehydrogenase A (LDHA)-mediated lactate production to sustain
NAD" regeneration for glycolytic flux. Simultaneously, diminished
mitochondrial NADH availability may impair pyruvate-driven
respiration, further enhancing aerobic glycolysis and excessive
lactate production.

In addition to exacerbating lactate production, we propose that
citrin LOF also impairs lactate-mediated GNEO in TNF-induced
SIRS. Heatmap depiction of genes involved in lactate-mediated
GNEO (Ldhb, Pck1 and G6Pc) were notably more downregulated in
Slc25a13”" mice compared to Slc25a13*'* mice 8h post-TNF
injection (Figure 5B). To functionally evaluate lactate clearance,
lactate tolerance was assessed in TNF-treated Slc25a13"* and
Slc25a13”" mice. Lactate administration caused a significant
increase in blood lactate in the TNF-treated Slc25a13*'* mice.
This increase was remarkably more apparent in TNF-treated
Slc25a137" mice (Figure 5]). Hence, it is suggested that MAS
dysfunction due to citrin absence leads to diminished lactate
clearance in TNF-induced SIRS by a cytosolic NAD™ shortage as
the LDHB-catalyzed conversion of pyruvate to lactate is
NAD" dependent.

Interestingly, a previous study showed that elevated blood
lactate levels, in the absence of efficient clearance, can induce
toxicity through lactate-mediated VEGF production, promoting
vascular permeability and ultimately resulting in lethal vascular
collapse (51). Based on these findings, we hypothesized that the
heightened sensitivity to TNF-induced SIRS observed in Slc25a13 "7
mice is driven by lactate-mediated toxicity. Indeed, TNF treatment
resulted in significantly higher VEGF levels (Figure 5K) and a
stronger upregulation of genes related to endothelial activation and
damage in Slc25a13”" mice compared to wildtype controls
(Supplementary Figure S4C). This was associated with more
vascular permeability for most organs (Figure 5L, Supplementary
Figures S4D-G). To corroborate these findings, lactate-induced
toxicity was assessed in Slc25a13*"* and Slc25a13” mice under
basal conditions (Figure 5M). Slc25a13”" mice displayed
significantly higher mortality for a sublethal lactate dose
compared to wildtype controls (Figure 5N). This was correlated
with diminished lactate clearance, reflected by significantly elevated
blood lactate levels over time in Slc25a13”" mice compared to
wildtype controls (Figure 50). Overall, this shows that citrin
deficiency-induced hyperlactatemia is a key driver for lactate-
mediated VEGF production and vascular permeability, thereby
contributing to lethality in TNF-induced SIRS.
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Discussion

Significant metabolic alterations in carbohydrate and fat
metabolism are key hallmarks of SIRS, as extensively evidenced in
other studies (18, 52-54). We substantiate that TNF-induced SIRS
is characterized by (1) a metabolic switch from oxidative
phosphorylation towards aerobic glycolysis (i.e. Warburg-like
phenotype), (2) reduced lactate-mediated GNEO, and (3)
diminished mitochondrial FFA f-oxidation. These phenomena
lead to severe hypoglycemia, liver glycogen depletion,
hyperlactatemia and elevated blood FFA levels, all contributing to
TNF-induced lethal shock. However, the potential mechanisms
behind these metabolic deviations are still a matter of debate.
According to the literature, TNF-induced Warburg-like
metabolism can be the result of NF-xB or iNOS dependent
HIFla activation (15-17, 20), Akt-mTOR signaling by the kinase
ITK (55) or excessive ROS production and oxidative stress resulting
in mitochondrial dysfunction (56, 57). Also, impaired PPARo.
activity (58) or PGCla dysfunction (28-30) leading to the
downregulation of B-oxidation enzymes are possible explanations
for disruptive mitochondrial FFA B-oxidation in SIRS. However, a
coherent mechanism that explains both the presence of the
Warburg phenotype and reduced FFA B-oxidation, in vivo during
SIRS, still remains elusive. The acute induction of SIRS by TNF in
mice is an ideal model to dissect the underlaying mechanisms.

One of the main features of both glycolysis and FFA 3-oxidation
is their reliance on a continuous regeneration of cytosolic NAD™
and generation of mitochondrial NADH, mediated by two redox
shuttles, i.e. the MAS and, to a lesser extent, the glycerol-3-
phosphate shuttle. In this study, we found that TNF impairs MAS
activity leading to a NAD" and NADH shortage. Our findings align
with previous studies illustrating the presence of disruptive ionic
shuttles in hemorrhagic shock and TNF-mediated MAS disruption
and mitochondrial dysfunction in enteric neurons derived from
patients with Parkinson’s disease (59, 60). We propose that TNEF-
induced MAS inactivity is mediated by Slc25a13 downregulation
due to HNF4a LOF. TNF is known to inhibit HNF4o
transcriptional activity, potentially through NF-kB activation
which may impair HNF4o. DNA binding affinity and
transactivation potential (45, 61, 62). Other possibilities include
FOXA2 and USFI1, two transcription factors that are known to
regulate Slc25a13 expression, and FOXA2 has been shown to be
downregulated during systemic inflammation (63, 64).

Of note, some studies proposed that TNF and other
inflammatory stimuli also affect NAD" biosynthesis. For instance,
TNF treatment upregulates the expression of both major NAD*-
consuming enzymes (e.g. CD38) and NAD"-synthesizing enzymes
(e.g. IDO), ultimately resulting in diminished cellular NAD™ levels
in primary macrophages (65-67). In contrast, LPS induced TNF
release has also been shown to correlate with increased NAD™ levels
in pro-inflammatory macrophages, highlighting a potential
interplay between NAD" and inflammatory responses (68).
Moreover, research demonstrated that the presence of Warburg
metabolism in LPS-stimulated pro-inflammatory macrophages
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relies on NAD™ metabolism. This is mediated by mitochondrial
ROS causing oxidative DNA damage leading to NAD™ depletion
and upregulation of NAD™ salvage pathways, thereby restoring
NAD" levels and sustaining the Warburg phenotype and
inflammation (69-72).

By using Slc25a13”" mice to eliminate MAS activity, we
demonstrate that impaired redox shuttling underlies the
prominent lipid metabolic disturbances in TNF-induced SIRS.
Our data reveal that TNF’s disruptive hepatic mitochondrial FFA
B-oxidation is aggravated in Slc25a13”" mice, leading to accelerated
circulatory FFA accumulation and hepatic steatosis. In our opinion,
there are two possible explanations for this observation. First,
because NAD™ deficiency has been shown to promote hepatic
steatosis in a diet-induced Metabolic dysfunction-associated
steatotic liver disease model (73). TNF-induced MAS dysfunction
in combination with impaired oxidative phosphorylation capacity,
may indirectly reduce mitochondrial NAD" levels. Because one of
the rate-limiting enzymes of FFA oxidation (3-hydroxyacyl-CoA
dehydrogenase) requires NAD" as a cofactor, NAD" depletion
would hinder its activity and lead to reduced FFA oxidation and
to lipid accumulation (74-76). Second, transcriptional repression of
genes encoding mitochondrial FFA B-oxidation enzymes due to
PPARa: inactivity. Dyslipidemia and steatogenesis in patients with
citrin deficiency have also been associated with PPARo
downregulation, but the mechanisms behind this downregulation
remained elusive (77). Interestingly, LOF of the NAD"-dependent
deacetylase SIRT1 has been associated with impaired FFA oxidation
and hepatic steatosis in fasted mice and during a high-fat diet. This
impairment is mediated through the absence of SIRT1-mediated
deacetylation and activation of PGClol (78, 79). PGCla is an
important coactivator of many nuclear receptors that regulate
cellular energy metabolic pathways and its interaction is crucial
for constitutive activity of PPARa (80). We propose that NAD*
depletion due to TNF-induced MAS inactivity hinders SIRT1-
mediated deacetylation of PGClo, eventually resulting in PPARo
inactivity and massive transcriptional repression. Interestingly, the
administration of resveratrol, a SIRT1 activator, has been reported
to ameliorate mitochondrial function, aerobic capacity and FFA
oxidation by activating SIRT1 and PGClo (81, 82). Hence, this
warrants further exploration.

Furthermore, we found that TNF-induced MAS dysfunction
plays a crucial role in driving the metabolic switch towards a
Warburg-like metabolism in SIRS. This was characterized by
accelerated glucose utilization, exacerbated lactate production,
and further impairment of mitochondrial pyruvate-driven
respiration in TNF-treated Slc25a13”" mice. However, patients
with citrin deficiency display impaired hepatic glycolysis as
cytosolic NAD™ levels are heavily depleted due to MAS
inactivity (41, 43), which is in strong contrast with our
observations. Yet, other studies suggest that the lack of cytosolic
NAD" regeneration in MAS-deficient cells can be compensated by
the activation of other NAD"-recycling pathways, like the
glycerol-3-phosphate shuttle and LDHA (48, 49, 83). While the
glycerol-3-phosphate shuttle provides some backup NAD"
recycling capacity, it is less active and less efficient compared to
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the MAS and its maximal activity is rapidly reached (84-86).
Furthermore, when the glycolytic rate exceeds the NAD'-
regenerating capacity of both mitochondrial NADH shuttles,
this is accompanied by increased lactate excretion (87, 88).
Pyruvate reduction via elevated LDHA activity then becomes
the primary route for NAD" regeneration. Given that TNF is a
well-known glycolytic inducer, we propose that in combination
with TNF-induced MAS inactivity, TNF-activated glycolysis will
be further accelerated by (1) enhanced LDHA activity responsible
for NAD™ regeneration, and (2) by diminished mitochondrial
pyruvate-driven respiration due to restricted mitochondrial
NADH availability, all leading to excessive lactate production in
TNF-induced SIRS.

Prominent hyperlactatemia in TNF-treated Slc25a13”" mice not
only results from enhanced production via LDHA activity for
NAD" regeneration, but also from more increased lactate
clearance problems (via GNEO). Impaired GNEO starting from
lactate is a well-known phenomenon in citrin deficient individuals,
and is thought to result from the altered cytosolic NADH and
NAD™ levels (43, 48). Deficiency in nicotinamide riboside kinase 1,
a rate-limiting enzyme in NAD" synthesis, has indeed been shown
to diminish the gluconeogenic potential (89). Hence, in our context,
it seems logical that the available NAD" is scavenged by the
glycolysis pathway, hindering the essential NAD"-dependent
conversion of lactate to pyruvate via LDHB during lactate-
mediated GNEO. It is also possible that TNF-induced MAS
inactivity induces a shift in the LDH isozyme profile, leading to
lower LDH1 and LDH2 levels and increased LDH4 and LDH5
levels, as was observed during hypoxic conditions, to promote
NAD" recycling (90).

We provide evidence that elevated blood lactate levels, due to
MAS inactivity contribute to lethality in TNF-induced SIRS by
promoting VEGF-mediated vascular leakage, a mechanism that has
been unfolded in sepsis (51). Restoring NAD" deficits or NAD*
recycling, could therefore be an interesting therapeutic target to
limit hyperlactatemia and it’s toxic effects. Supplementation with
the NAD™ precursor, nicotinamide riboside, could be valuable as it
has been shown to improve the dysregulated carbohydrate
metabolism and FFA-B-oxidation in citrin deficient hepatocytes
(91). It also attenuated ethanol-induced inflammation by activating
SIRT1, thereby limiting metabolic changes in the glycolytic and
oxidative phosphorylation pathways, and mitigating lactate release
in macrophages (92).

In summary, our data demonstrate that TNF-induced SIRS is
marked by MAS inactivity, possibly by a transcriptional
downregulation of the Slc25a13 gene due to TNF-induced
HNF4o inactivation. The MAS problem is leading to significant
metabolic dysregulations. Defective cytosolic NAD™ recycling as a
result of MAS dysfunction causes a shift towards enhanced lactate
production via LDHA and diminished lactate clearance via LDHB
in an attempt to ensure NAD" regeneration for TNF-induced
glycolysis. This imbalance contributes to severe hypoglycemia,
hyperlactatemia and lethality. Additionally, NAD" deficits play a
crucial role in diminished mitochondrial FFA-B-oxidation resulting
in circulatory FFA accumulation and hepatic steatosis.
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Materials and methods
Mice

C57BL6/] (wildtype) mice were purchased from Janvier (Le
Genest-St. Isle, France). Mutant Hnf4a™" mice were generated by
Dr. Frank Gonzalez (NIH, Bethesda, USA) and formally called
B6.129x1(FVB)-Hnf4atm1.1Gonz/] (93). The mice had been
backcrossed into C57BL/6] background and were provided by Dr.
Tannis Talianidis (University of Crete, Heraklion (Greece), by
courtesy of Dr. Frank Gonzalez, and were under protection of an
MTA. AlbCreERT2"®* mice were kindly provided by Dr. D.
Metzger & Dr. P. Chambon (Igbmc, France) (94). an4ocﬂ/ﬂ;
AlbCreERT2"'* (Hnf4a™") and Hnf4o";AlbCreERT2"¢/*
(Hnfao-veXO) were generated by crossing as described by Van
Dender et al. (44). Hnf4o"" and Hnf4o Ve "0 were
intraperitoneally (IP) injected with 1 mg tamoxifen in a 1:8
ethanol:oil solution for 5 consecutive days to induce hepatic
HNF4o. depletion, which was observed 3 days after the final
tamoxifen injection. Slc25a13”" mice, in a C57BL6/J background,
were generated in house by the transgenic core facility (IRC-VIB,
Ghent University, Belgium) and formally called Slc25a13°™ <", A
deletion of 83 base pairs was induced in exon 6 via Crispr/Cas.
Slc25a13”" mice were backcrossed to C57BL/6] (wildtype) mice,
purchased from Janvier (Le Genest-St. Isle, France), to establish
Slc25a13” and Slc25a13*"* mice by Slc25a13* intercrosses. All
mice were housed in individually ventilated cages at conventional
housing conditions (22°C, 14/10h light/dark cycle, dark phase
starting at 9 p.m.) in a specific pathogen-free facility. Food (chow
diet consisting of 18% proteins, 4.5% fibers, 4.5% fat and 6.3% ashes,
Provimi Kliba SA) and water were given at libitum, unless if
otherwise stated. Male and female mice were used at the age of
8-20 weeks. Approval for all experiments was granted by the
Institutional Ethics Committee for animal welfare of the Faculty
of Sciences, Ghent University, Belgium. The methods were in
conformity with the relevant guidelines and regulations.

Injections and sampling

All injections were administered IP and injection volumes were
adapted based on the bodyweight of the mice. Mice were injected
with recombinant mouse TNF in a volume of 200 uL/20g. A dose of
LDsy or LD;o, of TNF was determined in advance and varies
depending on the mouse strain, animal house, type of experiment
and the TNF batch. Doses are depicted in the figure legends.
Recombinant mouse TNF was generated in Escherichia coli and
purified at our facility in the absence of detectable
endotoxin contamination.

During lethality experiments, the rectal body temperature of the
mice was frequently monitored, and when it dropped below 28°C,
the mice were euthanized via cervical dislocation (humane
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endpoint). For sampling experiments, blood (for plasma isolation)
was collected via cardiac puncture after anesthetizing the mice with
ketamine (100 mg/kg) and xylazine (10 mg/kg) mixture. Mice were
euthanized via cervical dislocation at the indicated timepoints and
organs were isolated. Organs were preserved in RNA later (Life
Technologies Europe) or snap-frozen in liquid nitrogen for
further analysis.

To assess glucose and lactate tolerance, glucose monohydrate
(2 g/kg; Sigma 49159) or sodium-L-lactate (2 g/kg; Sigma 71718)
were both dissolved in PBS and administered 8h post TNF injection.
To determine lactate toxicity, mice were injected with sodium-L-
Lactate (> 3 g/kg; dissolved in PBS; Sigma 49159) and lethality
was monitored.

Biochemical analysis of fluids or tissues

Blood lactate and glucose levels were monitored in tail blood
using the Lactate Plus meter (NOVA Biomedical) and the
OneTouch Verio glucose meter, respectively. Plasma FFA
(Abnova KA1667), plasma glycerol (Cayman Chemical 10010755-
96), liver glycogen (Abcam ab65620) and liver NAD" and NADH
(Abcam ab65348) levels were measured via a colorimetric assay kit.
Plasma VEGF levels (Bio-Techne MMV00) were quantified via
ELISA. All assays were executed according to the
manufacturer’s protocol.

Western blot analysis

For the detection of SLC25A13 and SLC25A11, total protein
was isolated from snap-frozen liver tissue with RIPA lysis buffer
containing a protease inhibitor cocktail (Roche). Protein
concentration was determined by Bradford assay (Bio-Rad).
Protein samples (50 pg protein) mixed with loading dye were
separated by electrophoresis on a 8% gradient SDS-
polyacrylamide gel, followed by transfer onto a nitrocellulose
membrane (pore size 0.45 um). The membranes were blocked
with a % dilution of Starting Block/PBST0.1% (Thermo Fisher
Scientific) followed by an overnight incubation at 4 °C with primary
antibodies against SLC25A13 (1:1000; NBP1-33380, Novus
Biologicals) or SLC25A11 (1:1000; PA5-27510; Thermofisher
Scientific), and B-ACTIN (1:5000; MA5-15739, Thermo Fisher
Scientific) or B-TUBULIN (1:1000; 2146S, Cell Signaling
Technology) as loading control. After washing with PBST0.1%,
the blots were incubated with Amersham ECL anti-mouse antibody
(1:2000, GENA931, GE Healthcare Life Sciences) or Amersham
ECL anti-rabbit antibody (1:2000; GEN934, GE Healthcare Life
Sciences) for 1h at room temperature. The blots were washed with
PBST0.1% and immunoreactive bands were detected and quantified
using the WesternBright ECL kit (Advansta Inc.) and an Amersham
Imager 600 (GE Healthcare Life Sciences).
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TABLE 1 List of primer sequences used for RT-qPCR.

10.3389/fimmu.2025.1652516

Gene Forward primer (5°-3’) Reverse primer (5'-3’)
Gapdh TGAAGCAGGCATCTGAGGG CGAAGGTGGAAGAGTGGGAG
Lipe CCAGCCTGAGGGCTTACTG CTCCATTGACTGTGACATCTCG
Thp GAAGCTGCGGTACAATTCCAG CCCCTTGTACCCTTCACCAAT

Transcriptomics analysis

RNA sequencing
Liver — TNF 18h dataset

We used the liver TNF dataset GSE237949 that was processed as
described by Wallaeys et al. (46). Gene level read counts were
obtained using feature Counts and differentially expressed genes
were identified with the DESeq2 R package, setting the false
discovery rate (FDR) at 5% (95, 96).

Liver — Hnf4a"*""“ dataset

We used the liver Hnf4a"™* "X dataset GSE260635 that was
processed as described by Van Dender et al. (44). Differentially
expressed genes were identified using the DESeq2 R package with a
FDR at 5% (95, 96).

Liver — Slc25a13 ™" TNF 8h dataset

Total RNA was isolated with Aurum Total RNA mini Kit (Bio-
Rad) following the manufacturer’s instructions. RNA concentration
and quality were determined with the Agilent RNA 6000 Pico Kit
(Agilent Technologies). RNA was used to construct an Illumina
sequencing library using the Illumina TruSeqLT stranded RNA-seq
library protocol, and single-end sequencing was performed on an
element AVITI instrument (VIB Nucleomics Core). The obtained
reads were mapped to the mouse (mm39) reference genome using
STAR v2.7.10b (97). Multimapping reads were removed. Gene level
read counts were directly aquired from STAR using the
—-quantMode GeneCounts flag and differentially expressed genes
were acquired using DESeq2 package, with the FDR set at 5%
(95, 96).

Enrichr, Metascape and HOMER were used for further RNASeq
data analysis (98-100).

Real-time qPCR

White adipose tissue was isolated, snap-frozen and stored at -20°C.
The Aurum Total RNA mini Kit (Bio-Rad) was used for total RNA
isolation following the manufacturer’s instructions. RNA
concentration and quality were measured using the Nanodrop 1000
(Thermo Scientific) and 1000 ng RNA was used for cDNA synthesis
with the Sensifast cDNA Synthesis Kit (Bioline). cDNA was 10 time
diluted in nuclease-free water. RT-qPCR was executed using the
Bioline SensiFAST SYBR No-ROX mix (Bioline) and the Roche
LightCycler 480 system (Applied Biosystems). Genorm was used to
determine the stability of the housekeeping genes and qPCR data were
analyzed with gBase+ software (Biogazelle). Results are depicted as
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relative expression values normalized to the geometric mean of the
housekeeping genes. Used qPCR primers are depicted in Table 1.

Liver mitochondria isolation

Liver mitochondria were isolated following the protocol in
Frezza et al. (101). In short, the whole liver was isolated, washed
and minced in ice-cold isolation buffer (1 M sucrose, 0.1 M Tris/
MOPS and 0.1 M EGTA/Tris). A Dounce tissue grinder set (Sigma
D9063) was used to homogenize the minced liver. After a
centrifugation step (600 g, 10min, 4°C), the supernatans was
collected and recentrifuged at 7000 g, 10 min, 4°C. The
resuspended pellet in ice-cold isolation buffer was recentrifuged at
7000 g, 10 min, 4 °C to collect purified mitochondria. The total
mitochondrial protein content was measured via a Bradford protein
assay (Bio-Rad).

Seahorse analysis

The OCR of isolated liver mitochondria was assessed using a
Seahorse Bioscience XF96 Analyzer (Agilent), following the protocol
by Luso et al. (102). Mitochondria (10 pg) in mitochondrial assay
solution (MAS, 70 mM sucrose, 220 mM mannitol, 10 mM KH,PO,,
5mM MgCl,, 2 mM HEPES, 1 mM EGTA and 0.2% fatty acid-free
BSA) were delivered/well in a 96-well Seahorse microplate (Agilent).
After centrifugation (20 min, 2000 g, 4°C), prewarmed MAS with
specific respiratory substrates (40 uM palmitoylcarnitine and 0.5 mM
malate or 10 mM pyruvate) were administered to the mitochondria,
followed by a 10 min incubation at 37°C. The OCR flux was
determined over time after the sequential injection of ADP (40
mM), oligomycin (25 pg/ml), FCCP (40 uM) and rotenone (20
uM) with antimycin A (AA; 40 pM).

Lipid TOX

Isolated liver tissue was fixed in antigenfix (DiaPath) at 4 °C for 1-
2h. Liver tissues were washed with PBS, followed by an overnight
incubation in 34% sucrose at 4 °C, and were mounted with O.C.T.
compound (Tissue-Tek). Cryostat sections of 20 pm thickness were
rehydrated in PBS and were blocked for 30 min at room temperature
(RT) with blocking buffer (2% BSA, 1% fetal calf serum, 1% goat
serum, in 0.5% saponin). The liver sections were incubated with a
primary antibody mix (LipidTOX Deep Red (1:400; Life
Technologies Europe B.V.); Acti-stain 488 Phalloidin (1:150;
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Cytoskeleton Inc.)) for 2h at RT. The slides were washed with PBS
and the nuclear staining (DAPI (1:1000, Sigma-Aldrich N.V.)) was
added for 15 min at RT. After washing with PBS and bidi to remove
residual salts, the slides were mounted with PVA including DABCO.
For each liver section, Z-stacks of 8 areas were imaged using a
spinning disk confocal microscope (Zeiss), with a Plan-Apochromat
40x/1.4 oil DIC (UV) VIS-IR M27 objective lens at a pixel size of
0.275 pm and at optimal Z-resolution (240 mm). Z-stacks were
analyzed in Arivis and the amount of lipid droplets relative to the
tissue volume was quantified.

Vascular permeability assay

8h after TNF injection, mice were intravenously injected with
FITC-dextran 4 kDa (25 mg/kg, TDB labs 60842-46-8). One hour
post-injection, mice were transcardially perfused with 0.2% EDTA
in PBS after anesthetizing the mice with ketamine (100 mg/kg) and
xylazine (10 mg/kg) mixture. Organs were isolated, cut in small
pieces and overnight incubated (37°C; shaking) in 100% formamide
(Sigma) for FITC-labeled dextran extraction. After centrifugation
(15 min, 14-000 rpm), the supernatans was 1/20 diluted in PBS and
fluorescence was measured with a FLUOstar OMEGA plate reader
(BMG Labtech, Germany). Fluorescence was normalized to the

+/+

respective Slc25a13™" - PBS control per tissue.

Statistics

Statistical and graphical data analysis were performed using
GraphPad Prism software (version 10.3.1). qPCR data was log-
transformed to obtain normal distribution. An unpaired Student’s
t-test was performed to compare two group means. A two-way
ANOVA with a Tukey’s multiple comparisons test was used for
experimental setups with a second variable. Kaplan Meier survival
curves were compared using a Log-Rank (Mantel-Cox) test or one-
side chi-squared test.

Statistical significance was defined by a P-value of < 0.05. **** P
<0.0001, *** P <0.001, ** P <0.01, * P < 0.05, ns: not significant. All
data are expressed as means + standard error of the means (SEM).
N represents the number of biological replicates used in the
experiments. Group sizes were chosen based on prior experience.
Statistical details can be found in the figure legends.
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SUPPLEMENTARY FIGURE 1

TNF-induced SIRS is characterized by severe metabolic reprogramming. (A—
D). Enrichr pathway analysis (TRRUST Transcription Factors 2019, MSigDB
Hallmark 2020 and GO Biological Process 2023) (A—C) and Metascape
pathway analysis (D) of the upregulated genes 18h after TNF (1502 genes)
with LFC > 1 and p < 0.05. (E). % decrease in body weight of PBS- and TNF
treated mice, with body weight before injection set at 100%. n=3-5/group. (F).
Weight of the inguinal fat pad (i\WAT) relative to the total body weight of PBS-
and TNF-treated mice (18h). n=3-5/group. (G, H). Calculated basal
respiration, ATP-linked respiration and maximal respiration of isolated liver
mitochondria of PBS- and TNF treated mice, driven by specific respiratory
substrates, i.e. 40 uM palmitoylcarnitine and 0.5 mM malate (G) or 10 mM
pyruvate (H). n=4-7/group. Bars: mean + SEM. Each dot represents a single
biological replicate. P-values were analyzed with two-way ANOVA (E, F) and
with unpaired t-test (G, H). *p < 0.05, ns: not significant.

SUPPLEMENTARY FIGURE 2

TNF impairs the malate aspartate shuttle leading to a NAD* and NADH deficit.
(A). MRNA counts of Sic25a11 in livers of PBS- and TNF-treated mice. n=3/
group. (B, C). Western blot analysis of SLC25A11 (34 kDa) protein levels in
livers of PBS- and TNF-treated mice, normalized to B-tubulin levels (55 kDa).
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