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Objectives: Mesothelin (MSLN) is a cell-surface glycoprotein overexpressed in the
majority of pancreatic ductal adenocarcinoma (PDAC) cases and represents a
promising immunotherapeutic target. Despite studies and clinical trials investigating
MSLN-targeted immunotherapies, its biological role in PDAC carcinogenesis and
influence on the tumor microenvironment remain poorly characterized. This study
aims to investigate MSLN expression patterns in PDAC and assess their relationship to
clinical outcomes and the immune microenvironment.

Methods: MSLN expression in 74 PDAC patients was evaluated by
immunohistochemistry staining on a tissue microarray and correlated with
clinicopathological features and survival outcomes. Complementary analyses
of publicly available transcriptomic datasets (bulk RNA-seq and single-cell RNA-
seq) were performed to characterize associations between MSLN expression and
the tumor immune microenvironment with immunohistochemical validation.
Results: High MSLN expression (H-score > 62) was associated with improved
relapse-free survival (p = 0.021) and with increased patient age (p = 0.036).
Transcriptomic analyses revealed high MSLN expression was associated with an
immunosuppressive microenvironment characterized by reduced immune
reactivity and diminished cytotoxic T cell infiltration. Immunohistochemical
validation confirmed a trend toward decreased stromal cytotoxic T cell
abundance with increasing MSLN expression.

Conclusion: This study revealed an inverse relationship between MSLN
expression and cytotoxic T cell infiltration in PDAC, despite a trend toward
improved relapse-free survival in MSLN-high tumors. These findings have
important implications for MSLN-targeted immunotherapies and suggest that
addressing the immunosuppressive microenvironment may be necessary to
optimize their current responses in PDAC.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC), accounting for
more than 90% of all pancreatic malignancies, is an aggressive
and lethal cancer (1). PDAC has a poor prognosis with a rising
incidence rate and a high mortality rate (five-year survival of less
than 10%) (2, 3). The majority of PDAC cases arise from
microscopic dysplastic lesions known as pancreatic intraepithelial
neoplasms (PanINs) (4), although other cystic precursor lesions,
such as intraductal papillary mucinous neoplasms (IPMNs) and
mucinous cystic neoplasms (MCNs), can also become malignant
(5). Diagnosis occurs late in the majority of PDAC patients due to
both the absence of specific clinical symptoms during early disease
and the inherent challenges in imaging and detecting early-stage
pancreatic tumors (6, 7). Although surgical resection is the only
potentially curative treatment, most patients are diagnosed with
locally advanced or metastatic disease and as such, are not eligible
for resection. Standard systemic chemotherapy and radiotherapy
have shown limited efficacy to date, highlighting the need for more
effective therapies (8, 9).

MSLN is a glycosylphosphatidylinositol (GPI)-anchored
glycoprotein that is overexpressed in certain solid tumors including
PDAC, with minimal expression in normal tissues. Anti-MSLN
immunotherapies, such as antibody-based therapeutics (10-12),
immunotoxins (13), antibody-drug conjugates (14), and chimeric
antigen receptor (CAR) T cells (15-17), have been evaluated in
clinical trials. Despite promising preclinical results (18-20), clinical
response to anti-MSLN immunotherapies remains modest (21, 22).
Efforts are ongoing to better understand the underlying cause of
treatment failures and to improve the effectiveness of the therapy.

The clinical significance of MSLN expression has been studied in
PDAC as well as other cancer types including colorectal cancer (23,
24), ovarian cancer (25, 26), breast cancer (27, 28), gastric cancer (29,
30), lung cancer (31, 32), and mesothelioma (33, 34). However, there
are conflicting results on the prognostic potential of MSLN due in
part to differences in cohorts and methodologies used. Cohorts from
the United States and Japan have reported an unfavorable association
with tumor pathology and/or survival outcomes based on MSLN
transcript (35, 36) and protein (37, 38) levels. Although no survival
analysis was undertaken, no association was found between MSLN
expression in PDAC tissues and clinicopathological factors (age, sex,
disease stage, and tumor differentiation) in one cohort from China
(39). No studies, to date, have performed immunohistochemical
evaluation of MSLN in an Australian PDAC cohort.

In addition to its therapeutic and clinical significance, the biological
importance of MSLN remains poorly understood. Under normal
physiological conditions, MSLN is lowly expressed in mesothelial
cells of the pleural, peritoneal, and pericardial lining (40). The
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physiological function of MSLN remains elusive, as MSLN knockout
mice do not display abnormalities in survival, development or
reproduction (41). In cancer, MSLN is involved in various pathways
that promote tumorigenesis. PDAC cells overexpressing MSLN
promote proliferation by activation of STAT3 (42). MSLN signals
through the PI3K/Akt pathway to increase autocrine IL-6 production
and protect PDAC cells from TNF-alpha induced apoptosis (43-45).
MSLN also binds to mucin-16 (MUCI16) to facilitate the migration and
metastatic dissemination of PDAC cells (46, 47).

Recent transcriptomic studies found MSLN was associated with
anti-tumor immunity. Studies in ovarian cancer and colorectal cancer
demonstrated an association between high MSLN expression and an
immunosuppressive tumor microenvironment (TME) (48, 49). In
PDAC, high MSLN expression was associated with an increased
stromal CD274 (PD-L1) expression in classical B and basal-like
subtypes, which could play a role in immune evasion (50, 51).
Another study found that PDAC tumors with high MSLN expression
had decreased infiltration scores of immune cell subsets (CD4 T cells,
CD8 T cells, B cells, and dendritic cells) (36). These findings warrant
further characterization of the PDAC tumor landscape to understand
the role that MSLN plays in immune regulation.

In this study, we evaluated novel associations between MSLN
expression patterns, at both transcript and protein levels, with
clinical outcomes and the composition of the immune
microenvironment in PDAC patients.

2 Materials and methods

2.1 Immunohistochemical staining and
scoring

Human PDAC tissue microarrays (TMAs), comprising 74
PDAC patients and 14 patients with precursor lesion (13 PanIN
and 1 IPMN), were obtained through the Australian Pancreatic
Cancer Genome Initiative (APGI) Bioresource (University of
Sydney Human Research Ethics Committee: 2018/730). Serial
human PDAC formalin-fixed paraffin-embedded (FFPE) sections
were also obtained from 10 patients from the Royal Prince Alfred
Hospital (RPA) (Sydney Local Health District Human Ethics
Committee: 2020/ETH02321). MSLN THC staining (clone MN-1,
Rockland Immunochemicals, Pottstown, PA, USA) and analysis by
H-score were undertaken, as previously described (34). Additionally
on the serial FFPE sections, CD3 (clone LN10, Novocastra, Leica
Microsystems, Deer Park, IL, USA), CD8 (clone C8144B, Dako,
Santa Clara, CA, USA), and CD68 (clone KP1, Dako, Santa Clara,
CA, USA) IHC staining were undertaken along with routine
haematoxylin and eosin (H&E) staining. CD3, CD8, and CD68
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scores were evaluated as percentage of stained cells within the
tumor stromal area, as previously described (52). Two pathologists
independently evaluated the staining, with final scores calculated as
the average of their individual assessments.

2.2 Transcriptomic data preprocessing

Human PDAC bulk RNA-seq data was obtained from the
European Genome-phenome Archive (EGA) database
(International Cancer Genome Consortium (ICGC): DACO-
7197). Two datasets containing 97 samples (ICGC PACA-AU;
EGAD00001003298) and 219 samples (ICGC PACA-CA;
EGAD00001003945) were included for analysis. To standardize
read alignments across datasets, BAM files were converted to
FASTQ using bedtools (ver.2.30.0) (53), and then realigned to the
human genome assembly (GENCODE, release 35, GRCh38.p13)
using STAR aligner (ver. 2.7.1a) (54). Raw gene counts were
enumerated via featureCounts (ver.2.4.2) (55). Batch effects were
corrected using the Combat_seq function from sva (ver. 3.50.0) and
only counts from protein-coding genes defined by the Human
Genome Organisation Gene Nomenclature Committee (HGNC)
were retained for analysis (56). Patients with missing clinical
information were excluded as well as those with a diagnosis not
classified as PDAC.

Mouse PDAC bulk RNA-seq data (n = 37 samples), from a
published study (57), were obtained from the Gene Expression
Omnibus (GEO) database (GSE109933). Raw read count data was
filtered to remove non-protein-coding genes. Seven samples with
unknown T cell infiltration status were excluded from the analysis.

Human PDAC single-cell RNA-seq (scRNA-seq) data were
sourced from a published study (58). Data from 24 samples were
collected as normalized gene expression matrices (Cancer Single-
Cell Expression Map (CancerSCEM): https://ngdc.cncb.ac.cn/
cancerscem/downloads), on the Genome Sequence Archive
(CNCB-NGDC; PRJCA001063). Filtering was performed to retain
only high-quality cells, as defined by cells with > 500 detectable
genes, = 1500 unique molecular identifiers (UMI), > 0.8 cell
complexity (logl0 genes per UMI), and <10% of transcripts from
mitochondrial genes.

2.3 Bulk RNA-seq data analysis

Normalization of raw gene counts and differential expression
analysis were conducted via DESeq2 (ver. 1.38.2) (59). For the
human dataset, samples in the top and bottom tertiles of MSLN
expression were compared. Due to smaller sample size (n = 30), the
mouse dataset was split based on median Msln expression and
compared. Upregulated and downregulated genes were identified
based on significance (adjusted P-value < 0.05) and expression
changes (absolute log2 FC > 0.58). Over-representation analysis of
upregulated and downregulated genes was conducted separately via
Gene Ontology (GO) enrichment analysis in clusterProfiler (ver
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4.7.1.003) (60). Results were visualized using the treeplot function
via enrichplot (ver 1. 18.4).

Tumor reactivity was evaluated for human and mouse datasets
using the tumor reactive gene signatures (TRS) derived from a
previous study, which has been validated in melanoma and several
other solid tumor datasets (61). For the mouse dataset, TRS genes
were converted to mouse Ensembl IDs. TRS scores were calculated
using GSVA (ver 1.46.0) with default parameters as previously
described (62).

For estimates of cell type proportions, gene expressions from
the human dataset were converted into Transcripts Per Million
(TPM) values and analyzed using the “Immune Estimation”
algorithm from TIMER2.0 (63).

2.4 scRNA-seq analysis

Integration, clustering, and dimensionality reduction of scRNA-
seq samples were performed via Seurat (ver 4.3.0) (64). Elbow plots
were used to determine the optimal number of principal
components (PCs), and PCs 1 to 30 were used for clustering at
resolution = 0.5. Annotation was performed at single cell level via
SCINA (ver 1.2.0) (65), using cell type identification markers in the
original study from which the data was derived (58). Marker
expression in each cell type was verified after cell annotation.
Samples were assigned to high and low MSLN expression groups
based on median cutoff of MSLN normalized counts per cell. For
analysis of specific subtypes within annotated cell types, cell
populations were isolated from the integrated dataset and re-
clustered at optimal resolution determined from a range of 0.5,
0.1, and 0.05. Manual annotation was performed for each cluster
based on the expression of representative markers, which were
identified using the FindAllMarkers function from Seurat (ver
4.3.0). UMAP (Uniform Manifold Approximation and Projection)
plots were generated to illustrate cell clusters and specific marker
expression across clusters using the DimPlot and FeaturePlot
functions from Seurat (ver 4.3.0), respectively. A balloon plot of
MSLN expression in annotated cell types across samples was
generated using the ggballoonplot function in ggpubr (ver 0.6.0).
For the macrophage population, M1 and M2 polarization scores
were evaluated for each sample via UCell (ver 2.10.1), based on
previously established M1 and M2 gene signatures (66, 67).

Differential gene expressions of CD8 T cell clusters from the
MSLN-high and MSLN-low groups were assessed using the
FindMarkers function based on default thresholds (adjusted P-
value < 0.05 and absolute log2 FC > 0.25). Upregulated and
downregulated genes were used in downstream GO enrichment
analysis and visualized. Phenotypic profiling was performed using
ProjecTILs (ver 3.5.1), with phenotypes inferred by projecting CD8
T cells onto the reference atlas of tumor-infiltrating CD8 T cells
provided within the package (68). Cytokine signaling activities in
CD8 T cells from each sample were evaluated using the CytoSig
database via scaper (ver 0.2.0) (69). Expression levels of memory
and exhaustion markers, as well as all chemokine and chemokine
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receptors, were averaged for CD8 T cells from each sample and
compared between the MSLN-high and MSLN-low groups.

2.5 Statistical analysis

Statistical analysis was performed in GraphPad Prism (ver 10.4.1,
San Diego, California, USA) and R Statistical Software (ver 4.4.2,
Vienna, Austria). Clinicopathological characteristics associations with
MSLN expression from TMA data and RNA-seq data were evaluated
using the Mann-Whitney U test for continuous variables, and the chi-
squared test for categorical variables. Survival data was analyzed using
Kaplan-Meier curves with the log-rank test. Optimal H-score cutoff for
survival using the exact distribution of maximally selected rank statistic
was used, as previously described (70), using the surv_cutpoint
function from survminer (ver 0.5.0). Univariate and multivariate
analyses were performed using Cox proportional hazards regression
models for estimating hazard ratios (HR) with 95% confidence
intervals (CIs). For multivariate analysis, effects of covariates (age,
sex, and tumor stage) were accounted for when evaluating survival
differences. Unpaired student’s t-test and Pearson correlation analysis
were used in other comparisons between two groups of continuous
variables. In all cases, two-tailed tests were used, and statistical
significance was set at p < 0.05.

3 Results

3.1 High MSLN is associated with increased
relapse-free survival

The clinical characteristics of the 74 PDAC TMA patients are
summarized in Table 1. Twelve of the patients (16.2%) received

TABLE 1 Demographic and clinicopathological summary of Australian
PDAC patients in the tissue microarray cohort.

Parameter Patient n (%)

Total 74 (100.0)
Age (years) 74 (100.0)
<65 36 (48.6)
> 65 38 (51.4)
Sex 74 (100.0)
Male 39 (52.7)
Female 35 (47.3)
Tumor stage 72 (97.3)
1A 3(4.2)
1B 8 (11.1)
1A 20 (27.8)
1B 38 (52.8)
v 3(4.2)
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chemotherapy, as adjuvant (n = 7), neoadjuvant (n = 2), and/or
palliative (n = 3) treatment. No difference in MSLN H-score was
observed between the PDAC and the precursor lesion cohorts (14
patients consisting of PanINs and IPMNs) (Supplementary Figure
S1A). Using an H-score cutoff of 62 (Supplementary Figure S1B), 32%
(n = 24) were classified as MSLN-low and 68% (n = 50) were classified
as MSLN-high (Figure 1A). The MSLN-high group had significantly
higher relapse-free survival (RFS) with a median of 14.5 months (95%
CI = 10.0 - 21.6 months), compared to a median RFS survival of 8.5
months (95% CI = 6.9 - 13.9 months) in the MSLN-low group (p =
0.021) (Figure 1B). The MSLN-high group had significantly reduced
univariate HR (0.571, 95% CI = 0.343 - 0.951, p = 0.031) and reduced,
albeit not significant, HR by multivariate analysis, adjusted for age, sex,
and tumor stage (0.618, 95% CI = 0.332 - 1.147, p = 0.127).
Clinicopathological associations with MSLN expression found that
the MSLN-high group exhibited a positive association with increased
age (p = 0.036) (Table 2). There was no difference between MSLN
expression with respect to all other parameters examined including sex,
tumor characteristics (stage, size, location, differentiation, and residual
tumor), invasion (in peritoneum, and vasculature) and lymph
node involvements.

Interestingly, no significant difference in patient outcomes (overall
and relapse-free survival) was observed in relation to MSLN expression
levels in the RNA-seq datasets (Supplementary Figure S2). The MSLN-
high group did not correlate with any of the clinicopathological
parameters examined, including age, sex, tumor characteristics (stage,
location, and differentiation), treatment type, response, and relapse
status (Supplementary Table S1). This discrepancy could be due to
differences in MSLN expressions at transcript versus protein levels.

3.2 High MSLN is associated with reduced
immune activity in human and mouse
PDAC tumors

To investigate the biological significance of MSLN, transcriptomic
analysis was conducted on human and mouse RNA-seq datasets to
compare samples with high and low MSLN expressions (Figures 2A,
B). In both datasets, the MSLN-high group exhibited downregulation
of genes involved in immune-associated pathways, including the
regulation of leukocyte adhesion, proliferation, and migration/
chemotaxis (Figures 2C, D). In addition, T cell activation and more
broadly adaptive immune response pathways were downregulated.
Within the top 30 downregulated pathways examined, the human
RNA-seq dataset also included two clusters of pathways participating
in bone development and peptide secretions, although these were not
observed in the mouse RNA-seq dataset, which was comprised only of
immune-associated clusters. To examine anti-tumor responses, tumor
reactivity was predicted using tumor reactive CD8 T cell signature
(TRS) scores from a previous study (61), which has been validated
using hepatocellular carcinoma, non-small-cell lung cancer, melanoma,
and colorectal cancer datasets. The MSLN-high group in both human
and mouse datasets showed significantly lower TRS scores, indicating
high MSLN expression is potentially associated with reduced anti-
tumor immune responses (Figures 2E, F).
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FIGURE 1

Expression and prognostic value of mesothelin (MSLN). (A) Distribution of MSLN expression across the cohort based on H-score cutoff of 62 (dotted
line) (left). Mean + SEM. Representative images of tissue microarray samples from the MSLN-high and MSLN-low groups (right). Scale bar = 500 pm.
(B) Kaplan Meier curves of relapse-free survival of MSLN-high and MSLN-low groups. P-value was derived from log-rank test.

TABLE 2 Associations between mesothelin expression levels and clinicopathological characteristics of Australian PDAC patients in the tissue
microarray cohort.

Parameter Category Total (n = 74)  MSLN-high (n =50) MSLN-low (n = 24) P-value
Age (years), median (range) 65 (40-83) 66.5 (44-79) 60.5 (40-83) 0.036
Sex. 1 (%) Male 39 (52.7) 29 (58.0) 10 (41.7) N
74 (100.0) Female 35 (47.3) 21 (42.0) 14 (58.3)
IA-IB 11 (15.3) 9 (18.4) 2(87)
T tage, n (%
umor stage, 1 (%) 1A 20 (27.8) 13 (26.5) 7 (30.4) ns
72 (97.3)
1B - IV 41 (56.9) 27 (55.1) 14 (60.9)
Tumor size, 1 (%) <35cm 42 (65.6) 31 (68.9) 11 (57.9) N
64 (86.5) >35cm 22 (34.4) 14 (31.1) 8 (42.1)
Head 42 (76.4) 28 (73.7) 14 (82.4)
Tumor location, n (%)
B 4(7. g 1(5.
55 (74.3) ody (7.3) 3(7.9) (5.9) ns
Tail 9 (16.4) 7 (18.4) 2(11.8)
Well differentiated 8 (11.1) 6 (12.5) 2(8.3)
T ifferentiation, 1 (5
umor differentiation, n (%) Moderately differentiated 41 (56.9) 27 (56.3) 14 (58.3) ns
72 (97.3)
Poorly differentiated 23 (31.9) 15 (31.3) 8(33.3)
Residual tumor, 1 (%) No residual tumor 32 (56.1) 18 (52.9) 14 (60.9)
57 (77.0) ns
' Residual microscopic tumor = 25 (43.9) 16 (47.1) 9 (39.1)
Peritoneal invasion, n (%) Absent 9 (16.7) 8 (20.0) 1(7.1) ns
54(73.0) Present 45 (83.3) 32 (80.0) 13 (92.9)
Vascular invasion, n (%) Absent 14 (40.0) 11 (42.3) 3(33.3) N
35(47.3) Present 21 (60.0) 15 (57.7) 6 (66.7)
0 26 (44.1) 19 (47.5) 7 (36.8)
1 0
Lymph nodes involved, (%) 1-3 24 (40.7) 16 (40.0) 8 (42.1) ns
59 (79.7)
47 9 (15.3) 5 (12.5) 4(21.1)

MSLN, mesothelin; ns, not significant.
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FIGURE 2

High mesothelin (human: MSLN, mouse: Msin) transcript is associated with decreased immune functions and tumor reactivity. (A) Workflow for
transcriptomic analysis of human (top) and mouse (bottom) bulk RNA-sequencing datasets. (B) Human (top) and mouse (bottom) datasets were
separated into MSLN-high and MSLN-low groups based on transcript expression of MSLN. Expression was quantified as normalized read counts
(DESeq?2). Expression thresholds for stratification are indicated (dashed lines). Top 30 biological processes from gene ontology enrichment analysis
of downregulated genes in MSLN-high vs MSLN-low groups from the human (C) and mouse (D) datasets. Predicted tumor-reactive T cell signatures
(TRS) scores for MSLN-high and MSLN-low groups from the human (E) and mouse (F) datasets. Statistical testing by student's t-tests (*p < 0.05; ***p

< 0.001; ns, not significant).

To investigate if immune cell infiltration into tumors also
decreased, the relative proportions of key immune cell infiltrates
(such as T cells and macrophages) were estimated via cell type
prediction algorithms and compared between the MSLN-high
and MSLN-low groups in the human RNA-seq dataset.
However, strong discordance was observed across the
algorithms (Supplementary Figure S3). For the mouse RNA-
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seq dataset, T cell infiltration status of the implanted tumor
clones, described in the study from which the mouse data was
derived (57), was not associated with Msln expression. Msln
expression did not differ significantly between “T cell high” and
“T cell low” clones, nor did tumors in the MSLN-high group
have higher proportions of “T cell high” clones (Supplementary
Figure S4).
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3.3 Cytotoxic T cells are reduced in PDAC
tumors with high MSLN expression by
single-cell RNA-seq

In the human scRNA-seq dataset, MSLN expression was mainly
distributed in a malignant ductal 2 cell population, as demonstrated
previously (58) (Figures 3A, B). Highest MSLN expression was also
confirmed in the ductal 2 cells based on the intensity of expression

10.3389/fimmu.2025.1651687

and percentage abundance (percentage out of total cells) in
individual samples (Supplementary Figure S5). The MSLN-high
group exhibited a significantly higher percentage of ductal 2 cells
(mean + SEM: 31.2% + 5.5% vs 7.6% * 2.2%) and lower percentage
of endothelial cells (mean + SEM: 7.0% * 2.2% vs 16.0% * 2.1%)
(Figure 3C). Further characterization revealed a MUCI-positive
cluster to be the predominant subtype of ductal 2 cells, but both the
MUCI-positive and one of the MUCI-negative clusters showed
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FIGURE 3
Characterization of human pancreatic cancer from single-cell transcriptomi

cs based on mesothelin (MSLN) expression. (A) UMAP visualization

showing the clustering of cells following integration of all samples. Cell type annotations represented by different colors. (B) Feature plot indicating

the distribution of MSLN expression across the annotated cell clusters. Colo

r scale shows the level of MSLN expression, with higher intensity

indicating higher expression. (C) Comparison of the profiles of annotated cell types in MSLN-high and MSLN-low groups. Samples were stratified
based on median MSLN normalized counts per cell. Overall landscape based on UMAP visualization (left) and quantified differences in percentage
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increased percentages abundance in the MSLN-high group
(Supplementary Figure S6A). The endothelial cells were
comprised of three clusters representing an arterial population
and two (PLVAP+/POSTN+) venous populations (Supplementary
Figure S6B). Reductions in percentage abundance were observed
only in the PLVAP+ venous subtype, which comprised the majority
(~65%) of endothelial cells in MSLN-high vs MSLN-low groups.

Although differences in global abundance of T cell infiltrates
were not observed, the CD8 T cell subset showed significantly
reduced percentage abundance in the MSLN-high group (mean *
SEM: 5.5% =+ 1.0% vs 9.5% * 0.8%) (Figure 3D). This represents a
more than 40% reduction in total CD8 T cell populations, when
compared to the MSLN-low group. Other immune subsets (CD4 T
cells, B cell and macrophage subsets) did not show any significant
difference in percentage between MSLN-high and MSLN-low
groups (Supplementary Figures S6C, D). However, within the
macrophage population, the MSLN-high group demonstrated a
shift towards an M2-polarized phenotype (Supplementary
Figure S7).

Transcriptomic profiles of CD8 T cell subset in the MSLN-high
group showed genes involved in immune-associated activity
pathways to be downregulated compared to the MSLN-low group
(Figure 3E). These pathways participate in adaptive immune
responses, immune activation, and chemotaxis, consistent with
the bulk RNA-seq analysis. The memory and exhaustion
phenotypes, as well as cytokine and chemokine profiles, of CD8 T

MSLN

10.3389/fimmu.2025.1651687

cells were further characterized. No significant differences were
observed in the memory or exhaustion phenotypes between MSLN-
high and MSLN-low groups (Supplementary Figure S8). When
compared to the MSLN-low group, CD8 T cells from MSLN-high
group showed enrichment of GMCSF, HGF, IL-1, IL-2, and
TNEFSF12 signaling pathways (Supplementary Figure S9). These
cells also showed downregulated expressions of chemokines CCL2,
XCL1, and XCL2, as well as the chemokine receptor CXCR6
(Supplementary Figure S10). However, expression of CXCL5, a
neutrophil chemoattractant known to impair CD8 T cell-
mediated anti-tumor immunity (71), was upregulated. These
findings suggest that high MSLN expression is associated with
reduced abundance and altered transcriptomic activities of CD8 T
cell infiltrates in PDAC.

3.4 Tumors with high MSLN expression
show reduced cytotoxic T cell infiltration

To validate the transcriptomic relationship between MSLN
expression and T cell infiltration, ITHC staining on 10 surgically
resected PDAC tumors was undertaken. MSLN expression
(evaluated as H-score) showed a range from 0.5 - 210
(Figure 4A). Using the H-score cutoff of 62, the MSLN-high
group (n=3) exhibited less intense, albeit not significant, staining
of CD8 (mean + SEM: 3.167 + 0.833 vs 5.429 + 1.172, p = 0.272) and
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CD3 (mean + SEM: 5.333 + 1.481 vs 7.643 + 1.580, p = 0.409) in the
tumor stroma (Figure 4B; Supplementary Figure S11). CD68, used
as a negative control, showed comparable staining between MSLN-
high and MSLN-low groups (mean + SEM: 6.000 + 2.000 vs 7.143 +
1.366, p = 0.656). Across all samples, a decreasing trend was
observed in all three (CD8, CD3, and CD68) scores with
increasing MSLN H-score, but correlations did not reach
significance (CD8: p = 0.174; CD3: p = 0.267; CD68: p = 0.432),
likely due to low sample numbers (Figure 4C). Overall, a decreased
trend in CD8 T cell infiltration was observed in MSLN-high tumors.

4 Discussion

This study identified high MSLN expression (H-score > 62 from
THC staining) in PDAC to be associated with improved RFS and
age. Transcriptomic analysis found a link between MSLN
expression and an immunosuppressive tumor landscape.
Specifically, CD8 T cells had reduced immune reactivity and
reduced percentage abundance in PDAC tumors with high MSLN
expression. In subsequent IHC validation, PDAC tumors with high
MSLN expression demonstrated reduced infiltration of CD8 T cells
in the stroma, although significance is not reached and
confirmations in larger independent cohorts remain necessary.

The study identified MSLN as a biomarker for improved
prognosis, which contrasts previous studies that found high
MSLN expression to be correlated with worse survival outcome in
PDAC (37, 38, 46). This discrepancy could be due to the different
methodological classification and scoring used. Only one other
study in PDAC used the H-score system for stratification. Using a
median MSLN H-score cutoff of 180, they found poor survival in
patients with high co-expression of MSLN and MUCI16 (46). Other
studies established cutoffs either based on the percentage of MSLN-
positive cells alone (38) or the percentage of positive cells with the
staining intensity analyzed separately (37). Antibody clones for
MSLN staining also varied in studies. Two studies used anti-MSLN
antibody clone 5B2 (37, 46), in contrast to the MN-1 clone used in
the current study. The 5B2 clone has been found to have lower
affinity and staining positivity in PDAC compared to the MN-1
clone (72). Staining patterns also differ between MN-1 and 5B2
clones, likely due to differential expression of epitopes for MSLN
recognition, where the exact binding site for 5B2 has not been
characterized (34).

Underlying cohort-specific factors can potentially contribute to
the observed findings as well. Our TMA cohort is relatively small
(n = 74), with only a limited number of individuals receiving
adjuvant chemotherapy (n = 7) and having available resection
margin data (n = 56). Consequently, the effects of surgical
resection and adjuvant chemotherapy on RFS could not be
comprehensively examined in this cohort and were therefore
excluded from the multivariate analysis, although they may
represent potential confounders. Further investigation in a larger
cohort and with biopsy samples are warranted.

Our study is the first to examine MSLN expression in an
Australian PDAC population via IHC. Interestingly, high MSLN
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expression, in tumors of an Australian mesothelioma patient
cohort, was also associated with improved patient outcomes (34).
In mesothelioma, the epithelioid subtype shows higher MSLN
expression and a more favorable prognosis than the less
differentiated sarcomatoid and biphasic subtypes (73). Although
MSLN was not associated with the histological grade (Table 2), the
relationship of MSLN expression with molecular subtypes of PDAC
have not been examined in this Australian cohort, due to the lack of
patient-matched transcriptomic data, and requires further
investigation. Additionally, multiple proteases in the ADAM,
MMP, and BACE families have been known to shed MSLN from
cancer cells (74). Tumors with high MSLN expression could
potentially be more resistant to antigen shedding, thus enabling
greater surface antigen availability for immune surveillance, as
MSLN-specific CD4 and CD8 T cells have been detected in the
peripheral circulation of PDAC patients (75). Conversely, tumors
with low cell-surface MSLN expression and high shedding activity
may release elevated levels of soluble MSLN into the circulation,
where sustained exposure could contribute to T cell anergy over
time (76), potentially leading to poorer prognosis. Notably, MSLN
shedding and other post-translational processing such as antigen
maturation may result in discrepancies of MSLN expression at the
RNA and protein levels, hence possibly explaining the different
prognostic outcomes from the IHC and bulk RN A-seq data. Further
validation using an independent Australian cohort is needed to
determine whether the positive prognostic value of MSLN is
reproducible and reflects a generalizable biological phenomenon
or is influenced by population-specific genetic and/or
environmental factors. The Australian population is racially and
ethnically diverse and a comparison with other populations could
be of interest.

Our finding that MSLN expression is associated with an
immunosuppressive microenvironment is consistent with
previous RNA-seq analyses (36, 50). In one study, a positive
correlation between tumor MSLN expression and stromal CD274
(PD-L1) expression was found using the deconvoluted ICGC RNA-
seq data and validated in vitro (50). PD-L1, upon binding to the PD-
1 receptor, is known to suppress T cell activating signals and inhibit
anti-tumor responses (77). Although our study did not directly
examine PD-1/PD-L1 signaling pathways, transcriptomic analyses
of both mouse and human RNA-seq datasets revealed that MSLN-
high tumors exhibited decreased T cell activation signatures and
suppressed tumor reactivity scores. However, in scRNA-seq,
exhaustion phenotypes of CD8 T cells did not show significant
differences between MSLN-high and MSLN-low groups.
Downregulation of other immune-related pathways (such as
leukocyte adhesion, proliferation and chemotaxis) was also
observed in this study and suggests that additional
immunosuppressive mechanisms could exist in MSLN-high
tumors. In particular, we confirmed that expressions of
chemokines and chemokine receptors that promote T cell
migration and anti-tumor activities were suppressed in CD8 T
cells from MSLN-high tumors, whereas expression of the
immunosuppressive cytokine, CXCL5, was elevated. Furthermore,
a reduced proportion of endothelial cells in the PLVAP+ venous
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subtype was observed in the scRNA-seq dataset. PLVAP is known
to regulate vascular permeability and facilitates leukocyte trafficking
(78-80). Thus, decreased abundance of PLVAP+ endothelial cells
could be linked to reductions in CD8 T cell infiltration as well.

In ovarian cancer, MSLN activates Wnt/f3-catenin signaling to
induce protumorigenic macrophage polarization via CD24
upregulation (81). While CD24 upregulation was not observed in
our study from both the bulk RNA-seq and scRNA-seq analyses, we
did find macrophages in MSLN-high tumors to exhibit increased
polarization towards the tumorigenic M2 phenotype. MSLN
overexpression has been shown to promote autocrine IL-6
signaling in PDAC cells (44); however, its association with
cytokine signaling in T cells has not been specifically investigated.
In our scRNA-seq analysis, we observed increased activity of pro-
inflammatory cytokine signaling in CD8 T cells from MSLN-high
tumors. Notably, this association was not identified in our bulk
RNA-seq data, where such upregulated cytokine signaling activity
may potentially be obscured by reduced infiltration of CD8 T cells.
These suggest that high MSLN expression may be linked to broader
immunomodulation within the PDAC TME, while the exact
biological pathways underlying the observed functional changes
in these immune infiltrates remain to be fully characterized.

High MSLN expression has been associated with reduced CD8
T cell infiltration in PDAC tumors in two independent human
RNA-seq cohorts (TCGA and GSE62452) (36). Cell type
compositions and immune activities were inferred based on the
xCell algorithm (82). Although cohort-specific variations in
multiple immune cell types, such as dendritic cells, were also
observed, only CD8 T cells showed a consistent decrease in both
RNA-seq cohorts. Suppressed immune responses (in lymphocyte
infiltration, T-cell receptor richness, and cytolytic activity scores)
were also associated with high MSLN expression. Nevertheless, cell
type estimates and immune response predictions remain limited
from bulk RNA-seq, as bona fide immune cell populations cannot
be isolated for independent characterization. In the current study,
estimates of cell type compositions from human RNA-seq samples
demonstrated large discrepancies across the prediction tools used.
Consequently, we confirmed CD8 T cell infiltration by scRNA-seq
analysis as well as by ITHC staining. Convincingly, as determined by
scRNA-seq, CD8 T cells were the only immune subset that
exhibited a significant reduction in abundance (~4% of total cells
per sample, or 42% of total CD8 population) when comparing
MSLN-high to MSLN-low tumors. The THC validation also found a
trend towards reduced CD8 T cell stromal infiltration but did not
reach significance, likely due to the small sample size of this
exploratory cohort (n = 10). Similarly, assessment of CD8 T cells
using the MSLN cutoff defined in Section 3.1 (H-score = 62) showed
an overall reduction in the MSLN-high group, but did not reach
significance, likely due to the very limited number of cases
remaining in this group after stratification (n = 3). The consistent
inverse relationship between MSLN expression and CD8 T cell
infiltration observed across multiple datasets warrants
histopathological validation in larger independent cohorts in
future studies.
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It remains to be addressed whether there is a causative effect
between MSLN expression and immunosuppression in PDAC. Our
analysis on mouse RNA-seq data suggested that there was a lack of
association between T cell infiltration status of the implanted tumor
clones and tumor Msin levels. This suggests that
immunosuppressive tumors did not cause upregulations of Msln
expression. These findings, and whether high MSLN expression
induces immunosuppression, remain to be tested in human-based
experimental models. MSLN expression and CD8 T cell infiltration
may also be specific to PDAC. Analyses in other MSLN-expressing
tumors, such as mesothelioma, have interestingly indicated an
opposite relationship where high MSLN expression was associated
with high CD8 T cell density in TMAs (83). Transcriptomic analysis
in ovarian and colorectal cancer also found higher CD8 T cell
infiltration and higher T cell inflamed score, respectively, despite an
overall positive association with an immunosuppressive tumor
landscape (48, 49). Further studies to elucidate the mechanisms
for MSLN and immuno-modulation are required, and to confirm
whether this is a direct causative effect.

In summary, this study investigated the clinicopathological and
prognostic significance of MSLN expression in an Australian PDAC
cohort. A significant association between high MSLN expression
and an immunosuppressive tumor microenvironment was also
identified in PDAC, characterized specifically by reduced CD8 T
cell infiltration. These findings have important clinical implications
for treatment selection. Patients with low MSLN expression may
derive greater benefit from immune checkpoint inhibitors (anti-
PD-1 and anti-CTLA-4 antibodies) due to their relatively higher
baseline CD8 T cell infiltration levels. Conversely, patients with
high MSLN expression might be better candidates for MSLN-
targeted therapies, such as the SS1P immunotoxin, given their
increased target antigen expression. By elucidating the
relationship between MSLN expression and immune contexture
in PDAC, our work provides a foundation for developing more
personalized treatment strategies that may improve
patient outcomes.
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