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B lymphocytes exhibit amultifaceted and context-dependent role in tumor biology,

acting as both promoters and suppressors of malignancy through dynamic

interactions within the tumor microenvironment (TME). This review synthesizes

current evidence on the dual functions of B cells in tumor immunity, highlighting

their capacity to orchestrate antitumor responses via antigen presentation,

antibody-dependent cytotoxicity, and tertiary lymphoid structure (TLS)-mediated

T cell activation, while paradoxically driving immunosuppression through regulatory

B cells (Bregs), pro-angiogenic signaling, and immune checkpoint modulation. Key

mechanisms include TLS formation, which enhances cytotoxic T cell priming and

correlates with improved immunotherapy outcomes, and Breg-mediated secretion

of IL-10/TGF-b, which fosters T cell exhaustion and myeloid-derived suppressor

cell recruitment. Tumor-type specificity is evident: TLS-rich malignancies like

melanoma and Non-Small Cell Lung Cancer (NSCLC) show B cell-driven

immune activation, whereas pancreatic and hepatocellular carcinomas

demonstrate B cell functional plasticity influenced by metabolic and epigenetic

reprogramming. Therapeutically, B cell-targeted strategies—including CD20

antibodies, CAR-T cells, and B cell epitope vaccines—demonstrate efficacy in

hematologic and solid tumors, yet face challenges due to subset heterogeneity

and sex-specific response disparities. Emerging approaches combine immune

checkpoint inhibitors (ICBs) with TLS-inducing agents or exploit B cell-derived

biomarkers for personalized therapy. Future directions emphasize deciphering B

cell metabolic-niche crosstalk, optimizing combinatorial regimens, and leveraging
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1649812/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1649812/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1649812/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1649812/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1649812/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1649812&domain=pdf&date_stamp=2025-10-30
mailto:jiaonajd@163.com
https://doi.org/10.3389/fimmu.2025.1649812
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1649812
https://www.frontiersin.org/journals/immunology


Lv et al. 10.3389/fimmu.2025.1649812

Frontiers in Immunology
spatial multiomics to resolve functional heterogeneity. By bridging mechanistic

insights with clinical translation, this work underscores B cells as pivotal regulators

of tumor immunity and advocates for precision strategies to harness their antitumor

potential while mitigating pro-tumor plasticity.
KEYWORDS
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1 Introduction

Tumorigenesis represents a multifaceted biological process

involving dynamic interactions between malignant cells and host

immunity. While T lymphocytes have dominated tumor

immunology research, emerging evidence underscores the critical

yet underappreciated role of B lymphocytes within the TME (1). As

integral components of adaptive immunity, B cells undergo a tightly

regulated differentiation process: upon antigen encounter, naïve B

cells can proliferate and differentiate into memory B cells(MBCs) or

antibody-secreting plasma cells(PCs), mediating long-term

humoral immunity. Beyond their canonical role in antibody

production, B cells also function as antigen-presenting cells and

cytokine secretors, thereby modulating both innate and adaptive

immune responses (2).

Under physiological conditions, this differentiation is critically

shaped by signals from the microenvironment, including cytokines,

T cell help, and antigen affinity. However, in the tumor context,

these precisely regulated processes are often co-opted or

dysregulated. Recent advances have elucidated novel mechanisms

by which B cells shape anti-tumor immunity, revealing their

potential as diagnostic biomarkers and therapeutic targets (3).

This evolving paradigm highlights the urgency to decipher B cell

biology in malignancy, which may catalyze the development of

innovative immunotherapies and prognostic tools.
2 Classification and functional
overview of B cells

Single-cell transcriptome profiling has revolutionized B cell

classification, refining it into numerous phenotypically and

functionally distinct subsets beyond traditional lineages,

particularly in the context of human cancers. Naïve B cells,

marked by genes like TCL1A, FCER2, and IGHD, serve as

primary reservoirs for antigen recognition (4). Activated B cell

subsets, such as EGR1+ACB1, NR4A2+ACB2, and CCR7+ACB3, are

characterized by CD69 and CD83 expression, reflecting early

activation states (5). Germinal center (GC) B cells had relatively

high expression of MKI67, which mediate somatic hypermutation
02
(SHM) and class-switch recombination for high-affinity antibody

production (6). Key newly identified subsets include atypical MBCs,

expressing markers like ITGAX and FCRL5, with an exhausted

phenotype and progenitor potential for extrafollicular-derived

antibody-secreting cells (ASCs); tumor-associated atypical B cells,

which interact with CD4+ T cells and predict favorable prognosis;

and heterogeneous MBCs (1, 5). ASCs, including plasmablasts and

multiple plasma cell subclusters, exhibit distinct tissue preferences

and functional specialization in antibody secretion, with isotype

shifts (e.g., IgG bias in tumors vs. IgA-dominance in adjacent

tissues) driven by the microenvironment (5).

Clonal expansion characteristics, inferred from B cell receptor

(BCR) repertoire and single-cell RNA sequencing (scRNA-seq)

dynamics, further distinguish B cell subsets and underpin their

functional roles. GC-derived ASCs, enriched in some cancers (e.g.,

colon adenocarcinoma), show high clonal diversity, extensive SHM, and

preferential class-switch recombination to IGHA1/2, reflecting antigen-

driven affinity maturation (5). In contrast, EF-derived ASCs, dominant

in others (e.g., liver hepatocellular carcinoma), exhibit oligoclonal

expansion with lower SHM, limited class-switch recombination, and

enrichment of IGHM/IGHG4, linked to polyreactive/autoantibody

production (5). Atypical MBCs display moderate clonal overlap with

EF-derived ASCs, independent of GC pathways, and their expansion

correlates with immunosuppressive microenvironments. tumor-

associated atypical B cells and IgG+ ASCs undergo robust clonal

expansion in tumors, indicative of antigen-driven activation (1). GC B

cells show frequent clonal sharing, supporting iterative differentiation

into MBCs and ASCs with accumulated SHM to enhance antibody

affinity. These clonal dynamics, coupled with subset-specific interactions

(e.g., tumor-associated atypical B cells with CD4+ T cells via MHC-II),

shape B cells’dual roles in humoral immunity and T cell regulation, with

implications for antitumor immunity, immune evasion, and

immunotherapy response (1).
3 Basic characteristics of B cells in the
tumor microenvironment

While the classification of B cell subsets provides a foundational

understanding of their functional diversity, their spatial distribution
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and organizational states within the TME further dictate their roles

in tumor immunity.

The TME, a multicellular ecosystem comprising malignant

cells, stromal fibroblasts, vascular networks, and immune

populations, exhibits significant spatial heterogeneity in B

lymphocyte distribution (7). B cell infiltration patterns

demonstrate tumor-type specificity and stage-dependent

variation: while malignancies such as melanoma and triple-

negative breast cancer display dense B cell infiltrates that

frequently organize into TLSs– organized lymphoid aggregates

supporting coordinated antitumor immunity – other tumors like

pancreatic adenocarcinoma show minimal B cell recruitment (8).

This spatial heterogeneity stems from tripartite regulatory

mechanisms: tumor-intrinsic features (e.g., mutational burden,

chemokine secretion profiles); microenvironmental constraints

(hypoxia, extracellular matrix remodeling), and host immunological

status (peripheral B cell repertoire diversity, pre-existing antitumor

memory) (9). Notably, TLS formation correlates with enhanced

cytotoxic T cell priming and improved clinical outcomes,

highlighting the functional implications of B cell spatial

organization in the TME (10–13).
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4 The dual role of B cells in tumor
immunity

4.1 Antitumor mechanisms

4.1.1 Antigen presentation and coordinated T cell
activation

B lymphocytes orchestrate antitumor responses through

multifaceted mechanisms, most notably via professional antigen

presentation (7). By internalizing tumor-associated antigens

(TAAs) and processing them through MHC-II pathways, B

cells present immunogenic peptides to CD4+ T cells via TCR

engagement, crucially licensing dendritic cells for subsequent

CD8+ T cell priming through CD40-CD40L costimulatory

interactions (14). Mechanistically, this antigen cross-presentation

cascade amplifies cytotoxic T lymphocyte activation, proliferation,

and tumor infiltration while promoting immunological memory

formation (14). Experimental evidence from B cell-deficient murine

models reveals profound impairment of T cell effector functions and

tumor control, underscoring the essential role of B cells in

coordinating adaptive immunity (15). Furthermore, B cell-derived
FIGURE 1

Diagram illustrating the dual roles of B cells in cancer, highlighting cancer-suppressing mechanisms in light blue and pro-cancer mechanisms in
pink. (A) Antigen Presentation and Coordinated T Cell Activation Mechanisms; (B) Antibody-Dependent Antitumor Effector Mechanisms; (C) Cytokine
Network and Tumor Microenvironment Reprogramming; (D) Secretion of vascular endothelial growth factor (VEGF), basic fibroblast growth factor
(bFGF), and matrix metalloproteinases (MMPs) by activated B cells stimulates endothelial cell proliferation and migration through VEGF receptor 2
(VEGFR2) signaling; (E) tumor-infiltrating B cells may paradoxically promote oncogenesis through antibody-dependent pathways; (F) Regulatory B
cells (Bregs) exert immunosuppressive effects through the secretion of potent immunosuppressive cytokines.
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cytokines including IL-12 and IFN-g enhance Th1 polarization and

macrophage tumoricidal activity, creating a self-reinforcing

antitumor immune loop (16) (Figure 1A).

4.1.2 Antibody-dependent antitumor effector
mechanisms

Upon antigen-specific activation, tumor-reactive B cells

differentiate into antibody-secreting PCs that generate high-affinity

immunoglobulins targeting tumor-associated surface markers (17).

These antibodies execute multifaceted antitumor effects through

three principal mechanisms: Antibody-dependent cellular

cytotoxicity mediated by Fcg receptor activation on natural killer

cells and macrophages; Complement-dependent cytotoxicity initiated

through C1q binding and membrane attack complex formation;

Opsonization-enhanced phagocytosis via Fc receptor engagement

on myeloid cells (18). Clinically, this paradigm is exemplified by

CD20-targeting rituximab in B cell lymphomas, where antibody-

mediated B cell depletion achieves durable remissions (19).

Furthermore, certain antibodies disrupt oncogenic signaling by

competitively inhibiting growth factor receptors (20) (Figure 1B).

4.1.3 Cytokine network and tumor
microenvironment reprogramming

Within the TME, B lymphocytes orchestrate coordinated antitumor

immunity through cytokine-mediated crosstalk (21). Secretion of

interleukin-12 and interferon-g enables B cells to potentiate T cell

cytotoxicity by driving Th1 polarization through signal transducer

and activator of transcription4-dependent transcriptional

programming, while simultaneously enhancing natural killer cell

degranulation capacity via PI3K/Akt pathway activation (21).

Furthermore, interferon-g reprograms tumor-associated macrophages

(TAMs) toward an immunostimulatoryM1 phenotype characterized by

heightened phagocytic activity and inducible nitric oxide synthase

expression, effectively reversing immunosuppressive TME conditions

(22). Clinical correlative studies demonstrate that B cell-derived

interleukin-12/interferon-g levels correlate with improved cytotoxic

lymphocyte infiltration and survival outcomes in melanoma and

colorectal carcinoma (23) (Figure 1C).

A Antigen Presentation and Coordinated T Cell Activation

Mechanisms; B Antibody-Dependent Antitumor Effector

Mechanisms; C Cytokine Network and Tumor Microenvironment

Reprogramming; D Secretion of vascular endothelial growth factor

(VEGF) , bas ic fibroblas t growth fac tor , and matr ix

metalloproteinases by activated B cells stimulates endothelial cell

proliferation and migration through VEGF receptor 2 signaling; E

tumor-infiltrating B cells (TIL-Bs) may paradoxically promote

oncogenesis through antibody-dependent pathways; F Bregs exert

immunosuppressive effects through the secretion of potent

immunosuppressive cytokines.

4.1.4 The links between TLS maturity and B cell
function

The maturity of TLSs directly influences the efficiency of B cell

activation, antibody secretion, and T cell helper functions. The

specific mechanisms are as follows:
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4.1.4.1 Immature TLS and B cell activation

Immature TLS (such as primary follicles) typically lack GCs,

resulting in distinct B cell differentiation trajectories compared to

mature TLS. In this context, B cell activation relies on direct antigen

stimulation; however, the affinity is relatively low, and the main

antibody secreted is IgM (24, 25). Additionally, B cells in immature

TLS tend to differentiate into Bregs. These Bregs inhibit immune

responses by secreting cytokines like IL-10, thereby establishing an

immune-tolerant environment (24, 25).
4.1.4.2 Mature TLS and B cell activation

Mature TLS, such as secondary follicles, possess active GCs

where B cells undergo class switching (e.g., from IgM to IgG) and

affinity maturation. Here, the two-signal activation model plays a

dominant role: the first signal is triggered when the BCR

specifically binds to antigenic epitopes, and the second signal is

provided by T cells—via the binding of CD40L to CD40 on B cells

—along with T cells secreting cytokines like IL-4, which together

drive B cell proliferation and differentiation into PCs and memory

cells (24).
4.1.4.3 Mature TLS and antibody secretion

In mature TLS, plasma cell differentiation is more efficient, and

the primary antibodies produced are of the IgG class. These

antibodies clear pathogens or TAAs through mechanisms such as

neutralization and opsonization. Simultaneously, B cells enhance

antibody affinity via SHM, contributing to the formation of

immunological memory (25).
4.1.4.4 Aberrant TLS and immune imbalance

Aberrantly immature TLS may contribute to autoimmune

diseases (e.g., systemic lupus erythematosus) due to enhanced

BCR signaling and the lack of effective co-stimulatory regulation.

Conversely, excessively mature TLS might trigger tumor immune

evasion. For instance, in solid tumors like breast cancer, IgG

antibodies produced by high-density PCs may facilitate the

masking of TAAs (24, 26).
4.1.5 TLS-mediated T cell activation
Within TLSs, B cells function as professional antigen-

presenting cells, internalizing and processing tumor-derived

antigens for presentation via MHC class II molecules to CD4+ T

cells (27). Concurrently, B cell-derived chemokines such as

CXCL13 establish chemotactic gradients that recruit CXCR5+ T

cell subsets – particularly follicular helper T cells and Th17 cells –

into TLS niches (28–30). These recruited T cells amplify

antitumor responses through dual mechanisms: IFN-g secretion

to enhance CTL tumor infiltration via CXCL9/10 induction, and

IL-21 production to support B cell antibody affinity maturation

(31–33). Spatial proximity within TLS thus creates an

immunological ly active hub for coordinated T-B cell

collaboration (34, 35) (Figure 2).
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4.1.6 TLS-dependent dendritic cell regulation
B cells also modulate dendritic cell (DC) activity within TLS via

cytokine-mediated crosstalk (36). Mature DCs reciprocally enhance

TLS function by cross-presenting tumor antigens via MHC class I to

activate CD8+ T cells and producing IL-12 to sustain Th1 polarization

(37). This bidirectional synergy establishes a self-reinforcing loop:

DC-primed T cells secrete lymphotoxin-b to maintain TLS stromal

architecture, while TLS-resident DCs acquire enhanced capacity for

tumor antigen uptake through Fc gamma receptor-mediated immune

complex internalization (38). Such coordinated interactions

transform TLS into functional equivalents of secondary lymphoid

organs, enabling sustained adaptive immunity against progressing

malignancies (38) (Figure 2).

Tertiary lymphoid structures in tumors; mechanisms of tertiary

lymphoid structure formation.

While B cells can orchestrate potent antitumor immune

responses through the mechanisms described above, it is

increasingly evident that certain B cell subsets also contribute to

immunosuppression and tumor progression. The following section

discusses these paradoxical pro-tumor roles, highlighting the

context-dependent nature of B cell functions in cancer.
4.2 Pro-tumor mechanisms

Certain B cell subsets, particularly Bregs, exert immunosuppressive

effects through the secretion of potent immunosuppressive cytokines

such as interleukin-10 (IL-10) and transforming growth factor-b (39,
Frontiers in Immunology 05
40). These cytokines directly inhibit T cell activation, proliferation, and

effector functions, facilitating tumor progression and immune evasion

(40). Preclinical studies across multiple tumor models demonstrate a

strong correlation between Breg infiltration, accelerated tumor growth,

and poor clinical outcomes (41) (Figure 1F).

A subset of TIL-Bs may paradoxically promote oncogenesis

through antibody-dependent pathways (5). Pathogenic

autoantibodies targeting tumor-associated surface antigens can

activate pro-survival signaling cascades (e.g., PI3K/Akt and

MAPK pathways), thereby enhancing tumor cell proliferation,

epithelial-mesenchymal transition, and metastatic dissemination

(42). Furthermore, antibody-antigen immune complexes engage

Fcg receptors on myeloid-derived suppressor cells and TAMs,

amplifying immunosuppressive cytokine networks (e.g., IL-6, IL-

8) while triggering chronic inflammation that fosters tumor niche

establishment (43) (Figure 1E).

B cells also contribute to tumor neovascularization through

paracrine interactions within the TME (44). Secretion of VEGF,

basic fibroblast growth factor, and matrix metalloproteinases by

activated B cells stimulates endothelial cell proliferation and

migration through VEGF receptor 2 signaling, ultimately

establishing pro-angiogenic networks that sustain tumor metabolic

demands and facilitate hematogenous metastasis (45) (Figure 1D).

Emerging evidence indicates bidirectional crosstalk between

Bregs and stromal components, particularly cancer-associated

fibroblasts (46). CAFs recruit B cell precursors via CXCL12/

CXCR4 axis activation and induce Breg polarization through dual

secretion of Transforming Growth Factor-beta(TGF-b) and

prostaglandin E2 (47).
FIGURE 2

Mechanisms of TLS-mediated T cell activation and dendritic cell regulation.
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4.3 Molecular mechanisms governing B
cell functional plasticity

The functional plasticity of B cells in the TME is principally

governed by dynamic transcriptional networks. Key transcription

factors play decisive roles in fate determination: B-cell lymphoma 6

maintains GC B cell identity and prevents premature

differentiation, whereas B lymphocyte-induced maturation

protein-1 promotes plasma cell maturation and antibody

production (48, 49). Conversely, the differentiation of Bregs is

driven by STAT3 activation, often induced by cytokines such as

IL-10 and IL-35 within the TME (50, 51). BTB and CNC homology

2 acts as a critical repressor that preserves B cell plasticity by

restraining terminal differentiation and maintaining a reversible

functional state (52).

Beyond transcriptional control, epigenetic and metabolic

mechanisms stabilize B cell phenotypes and enforce functional

commitment. Tumor-derived signals—including hypoxia, cytokines,

and nutrient scarcity—reshape the epigenetic landscape through DNA

methylation, histone modifications, and non-coding RNAs, thereby

locking B cells into specific transcriptional programs (53).

Concurrently, metabolic reprogramming modulates B cell function;

hypoxia-inducible factor-1a activation under low oxygen tension

alters glycolytic flux and oxidative phosphorylation, influencing

survival, proliferation, and immunoglobulin class switching.

The integration of extrinsic signals through specific receptors

ultimately dictates B cell function via coordinated molecular

cascades. For instance, Transforming Growth Factor-beta plus IL-

21 signaling through cytokine receptors promotes Breg generation

via STAT pathways, while CD40L and IL-4 engagement activates

NF-kB and PI3K signaling to foster GC responses (50). These

signaling networks converge to regulate the transcriptional,

epigenetic, and metabolic networks described above, forming a

coherent “signal–mechanism–phenotype” axis that explicates how

microenvironmental cues steer B cells toward either pro-tumor or

anti-tumor identities.

Given the context-dependent nature of B cell functions, it is

imperative to examine how these mechanisms manifest across

different cancer types, which we explore in the following section.
5 B cell interactions within the tumor
microenvironment: crosstalk with
immune and cancer cells

5.1 Interactions between B cells and T cells

B cells and T cells engage in bidirectional functional

cooperation during antitumor immune responses (2, 54–56). As

professional antigen-presenting cells, B cells prime CD4+ T cell

activation through MHC-II-mediated tumor antigen presentation

(57). This antigen-specific stimulation, complemented by co-

stimulatory signals such as CD80/CD86, ensures full T

cell activation.
Frontiers in Immunology 06
Reciprocally, activated T cells secrete cytokines such as IL-21,

which drives B cell proliferation, plasma cell differentiation, and

enhanced antibody production through STAT3-dependent

transcriptional activation (58, 59). Tfh cells are crucial instructors

of B cell fate and function (60–62). Through direct cell contact

mediated by CD40L binding to CD40 on B cells, and through the

secretion of cytokines—most notably IL-21—Tfh cells provide

essential signals that guide B cell differentiation. IL-21 signaling

activates the JAK-STAT3 pathway in B cells, leading to

transcriptional upregulation of genes that promote proliferation,

isotype switching, and ultimately, their differentiation into

antibody-secreting PCs or GC B cells (63). This high-level

cooperation is spatially coordinated within tumor-associated

TLSs, which serve as organized hubs for the generation of high-

affinity, tumor-specific antibodies and MBCs (64) (Figure 3A).

Conversely, B cells significantly influence the function and

differentiation of T cells, particularly Tfh cells. By presenting

antigen, B cells help sustain Tfh cell survival and functional

maturation within TLS (64). Furthermore, activated B cells

undergo metabolic reprogramming, increasing their glycolytic flux

and glutamine metabolism. The resulting metabolic byproducts,

such as lactate, can enhance mitochondrial oxidative

phosphorylation in neighboring effector T cells, thereby boosting

their antitumor activity, while simultaneously inhibiting the

expansion of immunosuppressive regulatory T cells (65, 66).

In summary, the interaction between B and T cells is a dynamic,

reciprocal relationship encompassing antigen presentation, co-

stimulatory signaling, cytokine communication, and metabolic

cross-talk. This coordinated network is vital for directing both

cellular and humoral arms of the immune system against tumors.
5.2 Regulatory dynamics between B cells
and natural killer cells

The interplay between B cells and NK cells exhibits dual

regulatory roles in tumor immunity (7, 67). B cell-derived

interferon-g primes NK cell activation through STAT1-mediated

transcriptional upregulation of perforin and granzyme B, thereby

enhancing NK-mediated tumor cell lysis. Conversely, NK cells

regulate B cell responses through both contact-dependent and

cytokine-mediated mechanisms (68). NK cell-derived IL-12 and

membrane-bound CD40L directly promote B cell proliferation and

immunoglobulin class switching, while NKp46 engagement with B

cell surface ligands induces apoptosis of malignant or dysfunctional

B cell clones—a quality control mechanism maintaining immune

homeostasis (69) (Figure 3B).
5.3 Bidirectional crosstalk between B cells
and tumor-associated macrophages

The functional interplay between B cells and TAMs critically

shapes the immunomodulatory landscape of the TME (70). For

instance, in melanoma (71)and breast cancer (72), subcapsular
frontiersin.org
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sinus macrophages, particularly CD169+ subsets, act as tumor

suppressors by inhibiting B cell activation, possibly through

forming a physical barrier that restricts B cell activity (71, 73, 74).

However, in breast cancer, this regulation is subtype-specific: while

Subcapsular sinus macrophages (72)and CD169+ TAMs (75)

suppress B cell activation, CD169+ monocyte-derived

macrophages (75) promote B cell activation, highlighting the

functional diversity of macrophages in TME. Additionally,

macrophage-derived factors like BAFF and APRIL (76–80), which

drive B cell proliferation via NF-kB signaling, may contribute to the

expansion of malignant B cells in lymphomas (81).

Conversely, B cells actively shape macrophage functions to

favor tumor progression through multiple mechanisms. In diffuse

large B-cell lymphoma, B cells secrete CCL8, which binds to CCR1/

2/3/5 on macrophages, inducing M2 polarization and limiting anti-

tumor immunity (82). In mantle cell lymphoma, B cell-derived

CCL3 forms a positive feedback loop with M2 macrophages: CCL3

promotes M2 polarization, and M2 macrophages secrete IL-10 to

further stimulate CCL3 secretion by MCL cells, accelerating tumor

growth (83). B cells also evade macrophage-mediated phagocytosis
Frontiers in Immunology 07
via pathways like CD47/SIRPa (84) and PD-L1/PD-1 (85), where

CD47 on malignant B cells binds SIRPa on macrophages, and PD-

L1 interacts with PD-1 on macrophages, both inhibiting phagocytic

activity. Furthermore, B cell-derived GABA induces monocyte

differentiation into M2 macrophages, which secrete IL-10 to

support tumor survival (86). Besides, B cell-derived cytokines,

including interferon-g and granulocyte-macrophage colony-

stimulating factor, drive macrophage polarization toward an

immunostimulatory M1 phenotype characterized by enhanced

tumoricidal activity through nitric oxide production and pro-

inflammatory cytokine secretion (87) (Figure 3C).
5.4 Direct and indirect interactions
between B cells and cancer cells

B cells engage in both direct and indirect crosstalk with tumor

cells, significantly influencing tumor progression and immune

surveillance. A key direct mechanism involves BCR-mediated
FIGURE 3

B cell interactions within the tumor microenvironment: crosstalk with immune and cancer cells. (A) Interactions between B Cells and T Cells;
(B) Regulatory Dynamics between B Cells and NK Cells; (C) Bidirectional Crosstalk between B Cells and Tumor-Associated Macrophages; (D) Direct
and Indirect Interactions between B Cells and Cancer Cells.
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recognition of TAAs, which can initiate specific activation,

proliferation, and antibody production. This antigen-specific

engagement may also trigger direct cytotoxic effects against tumor

cells via Fas-FasL and granzyme-perforin pathways under certain

conditions (88–90) (Figure 3D).

Indirectly, B cells modulate tumor behavior through cytokine

networks. For instance, B cell-derived lymphotoxin and TNF-a can

promote cancer cell survival and invasion by activating NF-kB
signaling in malignant cells (91) (Figure 3D). Conversely, certain B

cell subsets produce anti-angiogenic cytokines that inhibit tumor

vascularization (88).
6 The role of B cells in tumor
immunobiology across cancer types

The dual roles of B cells are not uniformly exhibited across all

malignancies; rather, they are shaped by tumor-intrinsic factors,

microenvironmental cues, and host immune status. The following

section examines how these mechanisms manifest in a cancer-type-

specific manner, highlighting both common themes and context-

dependent variations.
6.1 Hematologic malignancies

In B cell-derived lymphomas, malignant transformation arises

from dysregulated proliferation, differentiation, and apoptotic

pathways intrinsic to B cell development (92). Within the

lymphoma microenvironment, bidirectional crosstalk occurs

between neoplastic B cells and residual normal B lymphocytes (93).

Tumor cells subvert neighboring B cells through IL-6/STAT3

signaling and CD40L-mediated activation, reprogramming them

into pro-tumor effectors that secrete survival factors (94).

Clinically, B cell-targeted therapies demonstrate remarkable

efficacy: anti-CD20 monoclonal antibodies (e.g., rituximab)

induce complement-dependent lysis in CD20+ lymphomas, while

B-cell maturation antigen -directed CAR-T cells and bispecific

antibodies achieve deep responses in refractory myeloma by

eradicating malignant plasma cell clones (95, 96).
6.2 Solid tumors

6.2.1 Melanoma
B cells exhibit dual roles in the immune regulation of

melanoma, with their functions critically dependent on subset

heterogeneity and microenvironmental features (67, 97–100). On

one hand, B cells can enhance antitumor immunity by forming

TLSs in collaboration with T cells (97). These structures are

enriched with MBCs and activated T cells, significantly improving

the efficacy of immune checkpoint blockade (ICB) and correlating

with better patient survival (97, 98). Concurrently, clonal

expansion, antibody diversity, and affinity maturation of TIL-Bs

suggest their involvement in localized antitumor responses,
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tumor progression (97). On the other hand, specific B cell subsets

exert immunosuppressive effects by secreting IL-10 or upregulating

PD-L1, thereby promoting tumor growth (67, 101). Notably, PD-

L1+ naïve-like B cells directly inhibit T cell function, and their

abundance is positively associated with advanced melanoma bone

metastasis and poor prognosis (102). Additionally, peripheral blood

B-cell levels serve as a predictive biomarker for anti-PD-1 therapy

response, with lower B-cell levels correlating with longer survival

(103). This functional heterogeneity is closely linked to the balance

of B-cell subsets, spatial organization (e.g., infiltrative patterns of

activated B-cell follicles in metastatic lymph nodes), and

autoimmune-like features, highlighting that targeting specific B-

cell subsets or disrupting their immunosuppressive signaling may

represent novel therapeutic strategies for melanoma (100).

6.2.2 NSCLC
B cells play a critical immunomodulatory role in NSCLC

through the formation of TLSs and functional heterogeneity

(104). TLS, serving as hubs for adaptive immune responses,

coordinate B and T cell interactions, and their presence

significantly enhances the efficacy of PD-L1 inhibitors (e.g.,

atezolizumab), correlating with prolonged patient survival

independently of CD8+ T cell signals (104). B cell subsets exhibit

dynamic functional divergence: naïve-like B cells suppress tumor

growth in early stages by secreting inhibitory factors but diminish in

advanced NSCLC, correlating with poor prognosis, while plasma-

like B cells exert antitumor activity in early stages but may promote

tumor progression in advanced disease via secretion of specific

immunoglobulins (e.g., IgG subclasses) or microenvironmental

interactions (104, 105). Additionally, B cells generate antitumor

effects through antibodies targeting endogenous retroviruses, which

are amplified during ICB therapy and enhance therapeutic

responses via CXCL13-dependent TLS formation (106). The

heterogeneity of B and PCs is influenced by smoking status and

TME, with their functional phenotypes (e.g., immunosuppressive

plasma cell profiles) predicting postoperative outcomes and ICB

efficacy (105). Collectively, strategies targeting TLS formation (e.g.,

CXCL13 therapy), balancing B cell subsets, or modulating antibody

responses (e.g., enhancing anti-Endogenous retrovirus activity) may

represent novel therapeutic avenues for NSCLC immunotherapy

(106, 107).

6.2.3 Breast cancer
B cells play multiple critical roles in the immune regulation of

breast cancer, with their diverse functional subsets and dynamic

changes significantly influencing antitumor immune responses and

therapeutic outcomes (108). Studies demonstrate that B cells

aggregate via TLSs and interact with T follicular helper cells to

promote antibody production and T cell activation, constituting a

core mechanism underlying responses to ICBs (6). Single-cell

sequencing reveals substantial heterogeneity in TIL-Bs, where

follicular B cell subsets and chemotherapy-induced inducible T-

cell costimulator ligand (ICOSL)+ B cell subsets are closely

associated with immunotherapy and chemotherapy efficacy,
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respectively (6). Additionally, B cell infiltration exhibits a

synergistic relationship with tumor-associated neutrophils,

particularly in TLS-low groups, highlighting the complexity of

microenvironmental interactions. Mechanistically, B cell function

is regulated by complement signaling (e.g., complement receptor 2/

CD55 pathways), as chemotherapy-induced immunogenic cell

death drives ICOSL+ B cell differentiation via complement-

complement receptor 2 signaling, thereby enhancing the effector-

to-regulatory T cell ratio to potentiate antitumor immunity (109).

These findings not only underscore the therapeutic potential of

targeting B cells (e.g., CD23 as a TLS biomarker) but also provide a

theoretical foundation for combinatorial immunotherapeutic

strategies (e.g., targeting ICOSL or complement pathways).

6.2.4 Renal cell carcinoma
B cells exhibit complex and dynamic dual roles in the immune

regulation of renal cell carcinoma (110). On one hand, intratumoral

TLSs host B cells that differentiate into antibody-secreting PCs (e.g.,

IgG/IgA-producing subtypes), mediating antibody-dependent

antitumor effects and correlating with improved clinical responses

and survival in patients treated with ICBs (111). Spatial

transcriptomics reveals that B cells within TLS undergo clonal

diversification, expansion, and migration, with their maturation

status and localization (e.g., tumor-proximal mature TLS

containing CD23+ GCs) significantly influencing prognosis.

Mature TLS are associated with favorable survival outcomes,

whi le immature tumor-dista l TLS are enriched with

immunosuppressive cells (e.g., PD-L1+ macrophages and

regulatory T cells), reflecting microenvironmental heterogeneity

(111). On the other hand, dynamic shifts in B cell subsets are

linked to treatment efficacy and toxicity: combined ICB therapy

promotes differentiation of circulating B cells into memory

phenotypes (e.g., increased switched MBCs correlate with

therapeutic efficacy), whereas plasmablast expansion is associated

with severe immune-related adverse events (e.g., hypophysitis)

(112). Notably, high TIL-Bs may recruit M2 macrophages and

Tregs, exacerbate T-cell exhaustion (marked by upregulation of PD-

1/CTLA-4/TIM-3), and diminish the efficacy of combination

therapies (e.g., anti-PD-1 inhibitors combined with axitinib)

(113). These findings underscore the dual nature of B cells in

RCC—balancing antitumor potential and immunosuppressive

risks—with their functional polarization shaped by spatial

distribution, maturation status, and therapeutic interventions,

offering critical insights for precision immunotherapy strategies.

6.2.5 Hepatocellular carcinoma
The role of B cells in HCC is dualistic and complex,

encompassing both antitumor immune regulation and tumor-

promoting mechanisms through specific subsets or signaling

pathways (114–116). Studies indicate that B cells collaborate with

T cells to suppress HCC progression, such as by forming TLSs to

enhance T cell memory function or via B-cell-related gene models

that predict immunophenotypes and prognosis, highlighting their
Frontiers in Immunology 09
antitumor potential (117). However, B cells can also drive

immunosuppression through distinct mechanisms, such as IL-21

receptor signaling inducing immunosuppressive IgA+ B cells to

inhibit CD8+ T cell activity, or Ten-eleven translocation

methylcytosine dioxygenase 2-mediated IL-10+ regulatory B cells

(Breg) promoting tumor immune evasion (118). Additionally,

interactions between B cells and innate lymphoid cells,

exemplified by ICOSL signaling, exacerbate inflammatory

microenvironments and accelerate HCC progression (115).

Spatial dynamics analysis further reveals that colocalization

patterns of B and T cells (e.g., TLS or lymphoplasmacytic

microenvironments) significantly influence clinical outcomes and

immunotherapy responses (119). Molecular regulatory mechanisms

within the TME, such as Pre-mRNA processing factor 19-mediated

degradation of DEAD-box helicase 5 suppressing B cell recruitment

or dysregulation of the CXCL12/CXCR4 axis, alongside epigenetic

modifications (e.g., Ten-eleven translocation methylcytosine

dioxygenase 2-dependent IL-10 expression), reshape B cell

functionality and emerge as potential therapeutic targets (120,

121). In summary, B cells exhibit functional heterogeneity in

HCC, with their pro- or antitumor effects determined by subset

characteristics, spatial distribution, and microenvironmental

signaling networks. Targeting B cell-related pathways (e.g., ICOS,

IL-21R, Ten-eleven translocation methylcytosine dioxygenase 2) or

combining therapies with ICBs may offer novel strategies for

personalized immunotherapy in HCC.
6.2.6 Colorectal cancer
B cells in CRC exhibit functional diversity andmicroenvironment

dependency, contributing to both antitumor immune regulation and

pro-tumor mechanisms (122–124). Studies show that B cell subsets

such as TLS-associated CD20+ B cells and IgG PCs collaborate with

CXCL13+ CD8+ T cells to promote TLS formation, enhance antigen

presentation, and correlate positively with high microsatellite

instability, high tumor mutation burden, and immunotherapy

response, indicating their antitumor potential (122). However,

specific B cell subsets, such as leucine-tRNA synthase 2-expressing

B cells, suppress antitumor immunity through TGF-b1-dominant

regulatory features (123). These cells are driven by leucine

metabolism and rely on mitochondrial nicotinamide adenine

dinucleotide+ regeneration and sirtuin 1 signaling, promoting CRC

immune evasion (123). Spatial heterogeneity analysis reveals distinct

B cell developmental trajectories and CD20+ B cell abundance

between right- and left-sided CRC, with CD20+ B cell enrichment

in right-sided CRC predicting favorable prognosis, while their

depletion impairs anti-PD-1 therapy efficacy (124). Additionally,

microbiota-immune interactions regulate B cell function: specific

bacteria like Helicobacter hepaticus induce follicular helper T cells

to promote TLS maturation and antitumor immunity, whereas

Alcaligenes faecalis suppresses IgA+ B cell homing and disrupts the

intestinal barrier via acetate-mediated vinculin acetylation, driving

the inflammation-to-cancer transition (11, 125). Notably, activated B

cells inhibit CRC liver metastasis via the SDF-1-CXCR4 axis, yet their
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depletion in metastatic sites correlates with increased metastasis,

while immature plasma cell subsets are linked to metastasis

progression (126). In summary, B cells in CRC exhibit a dual role,

with their function determined by subset characteristics, metabolic

states, spatial localization, and dynamic interactions with microbiota

and T cells. Targeted modulation of B cell subsets—such as inhibiting

leucine-tRNA synthase 2-expressing B cells, enhancing CD20+ B

cells, or promoting follicular helper T-B cell collaboration—may

provide novel strategies for CRC immunotherapy.
6.3 Analysis of similarities and differences
in B cell function across tumor types

In the same tumor, the dual antitumor and pro-tumor roles of B

cells arise from the integration of multiple interconnectedmechanisms.

Firstly, B cell subset heterogeneity is foundational: antitumor subsets,

such as GC B cells and PCs, exert protective effects by producing high-

affinity antibodies and forming TLSs to recruit and activate T cells

(127). In contrast, pro-tumor subsets like Bregs secrete

immunosuppressive cytokines (e.g., IL-10, TGF-b) to inhibit effector

T/NK cells and promote Treg differentiation, while exhausted or aged

B cells impair antigen presentation and express high levels of immune

checkpoints (e.g., PD-1, TIM-1) to exhaust T cells (128).

Secondly, the TME actively shapes this duality through

metabolic and signaling regulation (129). Metabolic stress,

including nutrient competition with tumor cells and hypoxia,

induces hypoxia-inducible factor-1a and impairs B cell effector

functions (e.g., reduced antibody production) (129). Meanwhile,

TME-derived signals selectively suppress antitumor B cells while

recruiting or activating Bregs (130).

Thirdly, heterogeneous expression of immune checkpoint

molecules contributes: pro-tumor subsets (Bregs, exhausted B

cells) upregulate PD-L1, CTLA-4, etc., to transmit inhibitory

signals, whereas antitumor subsets retain low checkpoint

expression to maintain functionality (131).

Lastly, clonal origin and antigen specificity differences underpin

functional divergence. B cell clones recognizing TAAs or

neoantigens differentiate into antitumor PCs, while those

targeting self-antigens or non-specific inflammatory signals are

prone to becoming Bregs (132). These clones compete for

resources and signals in the TME, further amplifying

functional heterogeneity.

Collectively, these mechanisms—subset diversity, TME

regulation, checkpoint heterogeneity, and clonal specificity—

synergistically drive the coexistence of B cells’ contradictory roles

within the same tumor.

The functional heterogeneity of B cells across different cancer

types underscores the necessity of understanding their roles in a

context-specific manner. This knowledge not only enhances our

comprehension of tumor immunobiology but also informs the

development of tailored therapeutic strategies. In the following

section, we explore how B cells influence—and can be harnessed

to improve—current cancer treatments, including ICBs, cancer

vaccines, and chemotherapy.
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7 Comparative analysis of B cell
functions in human and murine
systems

B cells in both humans and mice play dual and multifaceted

roles in tumor immunity, contributing to both anti-tumor and pro-

tumor responses through conserved mechanisms. In both species, B

cells are involved in antigen presentation, antibody production, and

the formation of TLSs, which support T-cell activation and adaptive

immunity. For example, in human cancers such as breast and lung

adenocarcinoma, as well as in mouse models like 4T1 and CT26, B

cells enhance antitumor immunity by producing antibodies,

facilitating antigen cross-presentation, and promoting cytotoxic

T-cell responses (2). Bregs also exist in both systems and suppress

immune activity through cytokines such as IL-10 and TGF-b,
highlighting a shared functional dichotomy in B cell responses

(133, 134).

However, important species-specific differences are evident. In

humans, Bregs are commonly identified by the phenotype

CD19+CD24hiCD38hi (135), particularly in gastric and pancreatic

cancers, whereas murine Bregs are often characterized as

CD19+CD5+CD1Dhi (136). Additionally, therapeutic outcomes

can diverge; anti-CD20 therapy effectively depletes B cells in some

human cancers but may exacerbate tumor growth in mice due to the

expansion of CD20low Breg subsets (137, 138). Human B cells also

display greater heterogeneity and spatial complexity within tumors,

frequently including distinctive subsets such as double-negative

(CD27−IgD−) MBCs and dense plasma cell infiltrates, whose roles

are not fully paralleled in mouse models (139). These differences

underscore the necessity of cautiously translating murine findings

to human applications and combining insights from both systems

to advance cancer immunotherapy.
8 The impact of B cells on tumor
immunotherapy and chemotherapy

Building upon the mechanistic insights into B cell functions in

tumor immunity, we now turn to their clinical implications,

particularly in the context of immunotherapy and chemotherapy,

where B cells serve as both mediators of response and potential

therapeutic targets.
8.1 Immune checkpoint inhibitor therapy

B cells exhibit dual roles in immune checkpoint inhibitor

therapy, with their functions and predictive value varying by

tumor type and immune microenvironment. In solid tumors such

as bladder cancer, a high intratumoral B-cell gene signature

combined with CD8+ T-cell signals significantly predicts ICB

efficacy, correlating with prolonged overall survival particularly in

male patients, while no such association is observed in females,

suggesting sex-specific immune regulatory mechanisms (140). In B-
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cell lymphomas, HLA-dependent antigen presentation defects—

such as class II-associated invariant chain peptide retention caused

by HLA-DM deficiency—constitute a key immune escape

mechanism, impairing tumor antigen presentation and potentially

diminishing ICB efficacy. Notably, abnormal HLA expression

patterns occur in 62-88% of cases in classic Hodgkin lymphoma

and diffuse large B-cell lymphoma (141). Additionally, combination

strategies targeting B-cell surface molecules (e.g., CD20-targeting

antibodies) with ICBs have emerged as a research focus.

Bibliometric analyses highlight CAR-T therapy, next-generation

CD20 antibodies, and PD-1/PD-L1 inhibitors as emerging

directions, potentially overcoming treatment barriers in B-cell

lymphomas by modulating B-cell functions or enhancing T-cell

activity (142). In summary, B cells serve not only as potential

predictive biomarkers for ICB efficacy (e.g., B8T signature) but also

as critical targets for therapeutic optimization (e.g., CD20-targeted

combinations) and immune escape mechanism analysis (e.g., HLA

abnormalities). Their multifaceted roles necessitate comprehensive

evaluation based on tumor type, sex, and molecular characteristics

(140–142) (Figure 4).
8.2 Cancer vaccines

B cells play a critical role in cancer vaccine development as key

effector cells, enhancing antitumor responses through the activation

of humoral immunity and synergistic action with adaptive

immunity (143). B-cell epitope vaccines, such as HER-vaxx, target

linear epitopes of TAAs (e.g., Her-2/neu) to induce polyclonal,

high-affinity antibodies (144). Their efficacy rivals that of

monoclonal antibodies (e.g., trastuzumab) while offering

advantages such as lower cost, reduced toxicity, and controllable
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half-lives (145). For instance, a CD19-targeted fusion protein (scFv-

Her2D4) combined with PD-1 antibodies reverses T-cell

exhaustion, reduces MDSC/Treg infiltration, and promotes

complete tumor regression (146) (Figure 4).

To enhance immunogenicity, vaccine design employs

multivalent antigen strategies (e.g., bivalent antigens), which

promote GC B cell differentiation and long-lived plasma cell

generation through B-cell receptor (BCR) crosslinking,

significantly boosting antibody levels (147). Antigen delivery

systems targeting DC surface markers (e.g., CD11c, Xcr1) or

MHC II molecules further optimize antigen-presenting cell (APC)

presentation efficiency (147).

Synergy between B-cell and T-cell vaccines is achieved through

coordinated mechanisms: CD8+ T cells directly lyse tumors via pMHC

recognition, while B cells, with CD4+ T-cell assistance, secrete

antibodies mediating antibody-dependent cellular cytotoxicity or

blocking immunosuppressive signals (e.g., PD-1/PD-L1) (148).

Additionally, active immunization strategies using immune

checkpoint mimotopes (e.g., PD-1 mimotopes) induce endogenous

antibodies to block inhibitory pathways (143). When combined with

tumor-specific vaccines (e.g., Her-2), this approach significantly

enhances efficacy, as demonstrated in preclinical models by reduced

tumor proliferation and induced apoptosis (143) (Figure 4).

Novel vaccine platforms integrate chemical modifications (e.g.,

fluorinated cyclic dinucleotides to enhance STING activation),

nanocarriers (e.g., black phosphorus nanosheets), and dynamic

APC behavior regulation (e.g., DNA hydrogels) to achieve

multimodal immune activation (148). Future directions focus on

optimizing multivalent antigen design, APC-targeted delivery

systems, and B/T cell dual pathway synergy to overcome clinical

translation barriers, advancing cancer immunotherapy toward

high-efficiency, precision-driven multidimensional strategies (147).
FIGURE 4

B cells on tumor immunotherapy.
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8.3 B cell dynamics during chemotherapy

Chemotherapy exerts profound and selective effects on B cell

subsets, altering their proportions, differentiation trajectories, and

functional phenotypes in ways that impact antitumor immunity.

Notably, chemotherapy often increases the proportion of naive B

cells (e.g., IgD+CD27- subsets) while depleting MBCs, with

incomplete recovery of MBCs even years post-treatment (149).

Transitional B cells rebound rapidly after chemotherapy,

exceeding baseline levels temporarily, whereas follicular and

marginal zone B cells show prolonged depletion, particularly

marginal zone B cells, which are critical for rapid antibody

responses to T-independent antigens (149–152). PCs exhibit

relative resistance to chemotherapy-induced depletion compared

to other B cell subsets, with preserved or enhanced antibody

secretion—including IgG targeting TAAs—facilitated by

chemotherapy-induced antigen release and immune complex

formation (153). Bregs are selectively reduced by certain

chemotherapeutics, with decreased IL-10 secretion and increased

apoptosis, potentially alleviating immunosuppression and

enhancing treatment efficacy (154).

These dynamic changes in B cell subsets are tightly linked to

treatment responses. For instance, post-chemotherapy increases in

ICOSL+ B cells correlate with elevated effector T cell/Treg ratios

and improved survival in breast cancer (109), while class-switched

MBCs with upregulated CD86 predict better responses to platinum-

based therapy in ovarian cancer (155). Clonal expansion patterns

also shift: chemotherapy drives naive B cell differentiation into

antigen-specific MBCs and PCs, with clonal diversity linked to

robust antitumor antibody responses (149). Additionally,

chemotherapy modulates B cell-T cell crosstalk—via CD86

upregulation on B cells or ICOSL-ICOS interactions—to enhance

T cell activation, further shaping treatment outcomes (156).

Together, these dynamics highlight B cells as key regulators of

chemotherapy efficacy, with subset-specific changes offering

potential biomarkers and therapeutic targets.
8.4 Clinically approved B cell-targeted
therapies in solid tumor

In solid tumor therapy, several B cell-targeted strategies have

been applied in clinical practice or clinical trials. Monoclonal

antibodies (mAbs) represent a key approach. Rituximab, an anti-

CD20 mAb, has been used to deplete B cells in certain solid tumors;

for example, it inhibits cross-talk between B cells and TAMs in

pancreatic ductal adenocarcinoma, showing potential in preclinical

and early clinical settings (157). Ibrutinib, a Bruton’s tyrosine kinase

inhibitor, has also been explored for B cell depletion in pancreatic

ductal adenocarcinoma, aiming to reduce the pro-tumorigenic

effects of Bregs (157). Additionally, anti-CD20 mAbs have been

tested in melanoma, with studies indicating that depleting tumor-

associated B cells may improve outcomes in patients at high risk of

recurrence (158, 159).
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Vaccines and adjuvants targeting B cells to enhance anti-tumor

immunity are another active area. HER-2/neu-based vaccines, such as

those using GM-CSF as an adjuvant, have been evaluated in breast

cancer to boost anti-HER2/neu antibody responses (160). A Phase Ib

trial of the B cell epitope vaccine IMU-131/HER-Vaxx in HER-2+

gastroesophageal adenocarcinoma demonstrated dose-dependent

increases in HER2/neu-specific IgG levels (161). Adjuvants like CpG

oligodeoxynucleotides and monophosphoryl lipid A have been

combined with tumor antigens in vaccines for melanoma, non-

small cell lung cancer, and prostate cancer, enhancing cytotoxic

antibody functions and inducing IgG production (162, 163).
9 Future perspectives

While significant progress has been made in unraveling the roles

of B cells in tumor biology, critical challenges and knowledge gaps

remain. Future studies should prioritize elucidating the functional

heterogeneity of B-cell subsets within the TME, delineating their

precise mechanisms in tumorigenesis, therapeutic response, and

immune regulation. This includes deciphering complex crosstalk

between B cells and other immune components (e.g., T cells, DCs)

and identifying microenvironmental factors (e.g., cytokines,

metabolic cues) that modulate these interactions. Concurrently,

advancing targeted B-cell therapies requires optimizing specificity

to suppress pro-tumor subsets while preserving antitumor functions,

alongside developing combination strategies with checkpoint

inhibitors or chemotherapy to minimize toxicity and enhance

therapeutic efficacy. Translational efforts must focus on identifying

robust biomarkers—such as B-cell receptor diversity or TLS

signatures—to predict treatment outcomes and guide personalized

immunotherapy. Additionally, emerging mechanisms involving non-

coding RNAs, metabolic reprogramming, and exosome-mediated

communication between B cells and tumors warrant deeper

exploration for their diagnostic and therapeutic potential. By

addressing these priorities, a deeper understanding of B-cell biology

in oncology will pave the way for innovative immunotherapies,

ultimately improving survival and quality of life for cancer patients.
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