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Background: Hepatocellular carcinoma (HCC) lacks reliable prognostic
biomarkers for immunotherapy. Immunogenic cell death (ICD) represents a
promising therapeutic target, but its comprehensive characterization in HCC
remains unexplored.

Methods: We performed multi-omics integration of single-cell RNA sequencing
data from 7 HCC samples (GSE112271, 44,461 cells) with bulk transcriptomics
from three independent cohorts (TCGA-HCC [n=371], GSE14520 [n=242], ICGC
[n=445]). ICD activity was quantified using ssGSEA. We identified HCC-specific
ICD-related (HCC-ICDR) genes via WGCNA and optimized a prognostic model
by benchmarking machine learning algorithms. Experimental validation included
functional assays using CLIC1 and NAP1L1 overexpression in HepG?2 cells.
Results: The ICD-based risk score (ICDRS) demonstrated superior prognostic
accuracy (C-index=0.839), validated across cohorts. Single-cell profiling revealed
macrophages exhibited the highest ICD activity. High-risk patients displayed
immunosuppressive microenvironments with enriched Tregs, MO macrophages, and
neutrophils, alongside hyperactivated DNA repair and MYC signaling. Low-risk patients
showed anti-tumor immunity with increased CD8+ T cells and M1 macrophages.
ICDRS predicted differential therapeutic vulnerabilities: low-risk patients showed
enhanced sensitivity to standard immunotherapy-compatible treatments including
sorafenib and doxorubicin, while high-risk patients demonstrated preferential
sensitivity to EGFR-targeted therapies. Experimental validation confirmed CLIC1 and
NAP1L1 significantly promoted HCC malignant behaviors.

Conclusions: We established the comprehensive ICD-based prognostic
framework for HCC, revealing novel tumor-immune interactions and
therapeutic vulnerabilities. This model provides robust stratification for
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immunotherapy selection and advances precision medicine in HCC
management. Future clinical translation includes prospective validation and
development of companion diagnostics, offering potential pathways for
personalized HCC treatment implementation.

immunogenic cell death, hepatocellular carcinoma, multi-omics integration, precision
medicine, tumor microenvironment, machine learning

1 Introduction

Hepatocellular carcinoma (HCC) accounts for approximately
80% of all liver cancers. Globally, there are about 700,000 new cases
of liver cancer annually, with a male-to-female incidence ratio of 2-
4:1. Each year, approximately 600,000 people die from liver cancer,
making it the third leading cause of cancer-related deaths (1, 2).

Understanding the underlying causes of this global burden
reveals significant geographic variations in HCC etiology. The
etiology of hepatocellular carcinoma varies by geographic region.
In Asia and sub-Saharan Africa, HCC is predominantly associated
with hepatitis B and C viral infections, while in Western countries, it
is linked to non-alcoholic fatty liver disease (NAFLD) and alcoholic
liver disease. Overall, liver cancer development is commonly
associated with chronic liver disease (3, 4). Chronic viral
infections, DNA damage caused by persistent inflammation,
dysregulated cellular regeneration in the context of cirrhosis, and
activation of oncogenes coupled with loss of tumor suppressor gene
function contribute to the development of liver cancer.

Early-stage HCC is often asymptomatic due to the liver’s
compensatory capacity and is typically detected incidentally
during imaging. When HCC is detected early and treated with
surgery or ablation, the 5-year survival rate can reach 75%.
However, advanced HCC typically can only be managed with
chemotherapy or local arterial embolization, with a 2-year
survival rate of merely 20-25% (5, 6). Chemotherapy or targeted
therapy for advanced HCC patients is challenged by tumor drug
resistance, which leads to disease progression or recurrence (7). One
significant cause of this resistance is immunosuppression in the
tumor microenvironment, making immune enhancement
particularly important for effective treatment.

Given these therapeutic limitations, novel approaches targeting
immune mechanisms have gained attention. Immunogenic cell
death (ICD) represents one such promising strategy. ICD, distinct
from other forms of cell death, not only induces apoptosis but also
activates the body’s adaptive immune system against tumor cells.
The underlying mechanism involves dying cells releasing or
exposing a series of damage-associated molecular patterns
(DAMPs), such as extracellular ATP, ecto-calreticulin (CRT), and
high mobility group box 1 protein (HMGBI1) (8-10). These signals
promote dendritic cell uptake of tumor antigens and activate T cell
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responses, thereby forming specific anti-tumor immune memory
responses (11). Some research has begun to explore certain drugs
such as Mecheliolide (7) and Icaritin (12), or physical effect (13)-
mediated ICD enhancement mechanisms. This provides new
directions for tumor treatment.

Current multi-omics studies have revealed ICD characteristic
changes and potential therapeutic targets in neuroblastoma (14).
clear cell renal cell carcinoma (15), and gastric cancer (16).
However, comprehensive ICD characterization in hepatocellular
carcinoma remains lacking. To address this gap, we systematically
investigated the ICD landscape in HCC, identified key regulatory
genes, and validated their functional roles through experimental
approaches, providing new therapeutic targets for HCC treatment.

2 Materials and methods
2.1 Data sources
Our study integrated HCC data from three major databases:

1. The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/) (17) provided gene expression
profiles and corresponding survival data from 371
HCC patients.

2. The Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo/) contributed two key datasets.
GSE112271 (18) contains single-cell RNA sequencing data
from 7 HCC samples, which was utilized to provide insights
at the cellular level. GSE14520 (19) encompasses tissue
sequencing data and survival information from 242 HCC
patients and was employed as an independent
validation cohort.

3. The International Cancer Genome Consortium (ICGC)
platform (https://dcc.icgc.org/) (20) supplemented our
study with transcriptome data and clinical follow-up
information from 445 HCC patients.

Raw count data were converted to TPM values, log2-

transformed [log2(TPM + 1)], and subjected to stringent quality
control. Only samples with complete genomic and clinical data were
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retained. Additionally, we corrected batch effects across cohorts
using the ComBat algorithm prior to integration analysis.
Specifically, the ComBat algorithm (from the sva R package,
version 3.48.0) was applied to adjust for batch effects arising from
the different data sources (TCGA, GEO, ICGC). The batch covariate
was explicitly defined as the dataset of origin. ComBat was run
using its standard parametric empirical Bayes framework
(par.prior=TRUE) to model and adjust for location and scale
shifts between batches. Prior to correction, genes with zero
variance across samples were removed to ensure algorithm
stability. The success of integration and removal of major
technical artifacts were assessed by performing Principal
Component Analysis (PCA) on the expression matrix before and
after correction. The resulting PCA plots were visually inspected,
which confirmed substantial reduction in batch-specific clustering
and improved mixing of samples from different cohorts
post-correction.

2.2 Single-cell analysis

2.2.1 Data preprocessing

Single-cell data preprocessing was performed using Seurat
package (v5.0.0) (21). Quality control filters included: minimum 3
cells per gene, minimum 250 genes per cell, mitochondrial gene
expression <15%, and total RNA counts >1000. This yielded a
reliable dataset for downstream analysis.

2.2.2 Data normalization and dimensionality
reduction

Data normalization is a critical step in single-cell transcriptomic
analysis. The “LogNormalize” method (22) was adopted for data
normalization, using 10000 as the scaling factor, and 2000 highly
variable genes were selected through the “vst” method. To eliminate
batch effects, we performed the Harmony algorithm (harmony v1.0)
(23) for integration of data from multiple samples with the following
optimized parameters: group.by.vars="“orig.ident” for batch variable
specification, assay.use=“SCT” for normalized data input, and
max.iter.harmony=20 for convergence optimization. For both bulk
and single-cell data integration, we systematically evaluated batch
correction effectiveness through: (1) Principal component analysis
(PCA) visualization to assess sample clustering patterns before and
after correction; (2) UMAP dimensional reduction plots to confirm
elimination of sample-specific clustering while preserving biological cell
type distinctions; (3) For single-cell data, successful batch integration
was validated by examining the mixing of samples from different
batches in the same cell type clusters, ensuring that technical variation
was removed while biological heterogeneity was maintained.

Following successful integration, we proceeded with
downstream analysis. PCA was performed on the integrated data,
and the top 30 principal components were selected based on elbow
plot analysis for subsequent dimensionality reduction. Cellular
topology and heterogeneity were effectively visualized using
UMAP and t-SNE methods based on the Harmony-corrected
embeddings (24).
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2.2.3 Cell type annotation

Cell type annotation was performed using a combination of
automatic and manual approaches. First, we used the SingleR
package (25) and the Human Cell Atlas database (https://
www.humancellatlas.org/) to carry out automatic cell type
annotation. The specific marker genes for each of the initial
clusters are provided in Supplementary Table S2. Next, manual
validation was performed by detecting reported cell type-specific
markers, including ALB and SERPINAI (Hepatocyte), GPC3
(Cancer cell), AQP1, TIE1, VWE, EDNRB, CCL14 (Endothelial
cell), ACTA2, COL1A1, DCN, COL1A2 (Fibroblast cell), FOLR2,
ATF1, CD68 (Macrophage), NKG7, GNLY, CCL5 (NKT cell).

2.2.4 Analysis of immune cell death scores

Using single-sample gene set enrichment analysis (ssGSEA)
(26), we quantified ICD scores for individual cells based on
established ICD gene sets (Supplementary Table S3) (27). To
comprehensively evaluate ICD scores distribution patterns across
cell types, Kruskal-Wallis rank sum test was used to assess overall
differences. For significant differences (p<0.05), we performed
pairwise comparisons with Wilcoxon rank sum test, applying
Bonferroni correction for multiple testing. Box plots with
significance indicators were generated comparing macrophages to
other cell populations. Furthermore, we stratified cancer cells and
macrophages into high and low groups based on median ICD
scores, then identified DEGs using the FindAllMarkers function
(minimum expression threshold=0.35). This approach aimed to
reveal molecular characteristics and cellular heterogeneity of ICD at
single-cell resolution in HCC.

2.3 Weighted gene co-expression network
analysis

To explore the relationship between ICD scores and gene
expression patterns, weighted gene co-expression network
analysis (WGCNA) was performed on published ICD-related
gene sets (27) using the WGCNA R package (28). TCGA-HCC
data was preprocessed by filtering zero-variance genes and outlier
samples (29). For the scale-free topology network construction, a
soft threshold power of five was chosen. This was the lowest power
at which the network’s scale-free topology fit index (R?) first
reached the standard threshold of 0.85, ensuring a balance
between network properties and connectivity. Other key
parameters included a minimum module size of 50 and a merge
cut height of 0.15. Subsequently, gene modules were identified by
applying the dynamic tree cutting algorithm, and module
eigengenes (MEs) (30) were calculated. We further analyzed
associations between modules and ICD scores through Pearson
correlation, and identified significant modules using Student’s t-
test. Finally, gene significance (GS) and module membership (MM)
were calculated and visualized in scatter plots to identify key genes
in significant modules, termed module genes. Additionally,
differential expression analysis between TCGA-HCC samples and
normal samples was performed to identify TCGA-DEGs, visualized
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using an enhanced volcano plot and a circular heatmap displaying
the top 50 up-regulated and top 50 down-regulated DEGs. Finally,
we acquired a set of genes related to ICD in HCC (HCC-ICDR
genes) by intersecting TCGA-DEGs with module genes obtained
from WGCNA.

2.4 Integration and comparison of multiple
machine learning models

To identify the most robust prognostic prediction model, various
machine learning algorithms and their combinations were
systematically evaluated for HCC prognosis prediction performance.
We first perform batch effect correction on TCGA, GSE14520, and
ICGC datasets. The expression matrices underwent standardization
processing through the ComBat algorithm (31), which eliminated
batch differences from different data sources. Furthermore, TCGA
served as the training set, and the GSE14520 and ICGC datasets served
as external testing sets to ensure the robustness of the model. Basic
algorithms were tested in this study included Random Survival Forest
(RSF), Elastic Net (Enet), Stepwise Cox regression (StepCox),
CoxBoost, Partial Least Squares Cox regression (plsRcox), Super
Principal Component analysis (SuperPC), Gradient Boosting
Machine (GBM), Survival Support Vector Machine (survival-SVM),
Ridge regression, and Lasso regression. Algorithm-specific parameters
were optimized: CoxBoost (penalty coefficient and iteration steps),
GBM (interaction depth=3, minimum observations=10, optimal tree
number via cross-validation). In addition, we investigated combination
strategies of basic algorithms, such as RSF+GBM, RSF+Lasso, and
CoxBoost+GBM, ultimately evaluating up to 114 different model
combinations. The Concordance index (C-index) (32) was adopted
as the primary evaluation metric, which measures the accuracy of
predicted survival time rankings. We constructed each model on the
training set, and tested its generalization ability on two independent test
sets. Different models’ C-indices across datasets were visualized
through heatmaps, and models were ranked according to the average
C-index values of validation sets to select the final prognostic prediction
tool with optimal predictive performance and stability. We finally
selected the optimal model based on internal validation performance,
external validation results across two independent cohorts, and model
stability across different datasets.

2.5 Establishment and validation of the
consensus signatures

Based on the selected optimal model, namely the RSF model, this
study identified the top 10 key features with the strongest prognostic
predictive power from candidate features by evaluating feature
importance, termed the ICD-related signatures (ICDRS), to predict
overall survival (OS) of HCC patients. Specifically, key gene markers
were systematically ranked and identified by analyzing each feature’s
contribution to model prediction accuracy. To visually demonstrate
key predictors, we plotted feature importance bar charts, with
features sorted and visualized according to their contribution to
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model predictions. The risk score for each patient, termed ICDRS,
was derived directly from the trained RSF model. Specifically, we used
the predict function from the randomForestSRC package to obtain
the predicted mortality risk for each sample. This output, denoted as
predicted, represents the ensemble mortality estimate from all trees in
the forest and serves as the continuous risk score. A higher ICDRS
indicates a greater probability of experiencing the event (death).
Patients were then dichotomized into high- and low-risk groups
using the median ICDRS of the training cohort (TCGA) as the
cutoft threshold.

To comprehensively evaluate the model’s predictive
performance, a multi-faceted validation strategy was adopted. First,
we thoroughly explored survival differences between different risk
stratifications through Kaplan-Meier survival curve analysis.
Subsequently, time-dependent receiver operating characteristic
(ROC) curve analysis (33) was introduced to calculate the area
under the curve (AUC) for 1-year, 3-year, and 5-year predictions,
fully reflecting the model’s predictive accuracy at different follow-up
time points. Meanwhile, we applied the model to two independent
validation sets, and performed identical survival and ROC analyses to
verify the model’s generalization ability.

2.6 Clinical feature correlation and survival
analysis

To thoroughly evaluate the clinical utility of ICDRS, a multi-
dimensional analysis was conducted on the TCGA-HCC dataset,
encompassing correlation studies with clinical features and survival
analysis. First, we constructed a circos plot of clinical characteristics
to visually demonstrate the distribution patterns of TNM staging,
age, gender, and survival status among different risk groups, with
chi-square tests being employed to assess the significance of inter-
group differences. The distribution characteristics of risk scores
across different T stages were analyzed in depth through violin plots
and box plots, with statistical differences evaluated based on the
Wilcoxon rank-sum test. We then created stacked bar charts to
illustrate the proportion of clinical features in high and low risk
groups, comprehensively elucidating the association between risk
scores and tumor staging. Gene expression data were also analyzed,
with heatmaps being generated to display differential gene
expression, intuitively revealing the connection between risk
scores and gene expression profiles. Furthermore, we developed a
logistic regression model to predict M staging, with its predictive
performance assessed through ROC curves. Finally, stratified
Kaplan-Meier survival analyses were performed according to age
and clinical staging to compare survival differences between high
and low risk groups, aiming to comprehensively validate the
prognostic capability of ICDRS.

2.7 Construction of nomographs

To further enhance the model’s predictive accuracy and
prognostic capability, a nomogram combining ICD and clinical
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features was developed for quantifying the expected survival period
of HCC patients. Key variables including age, gender, T stage, N
stage, and M stage initially underwent univariate Cox regression
analysis, which aimed to identify potential prognostic factors
associated with overall survival. Subsequently, a multivariate Cox
proportional hazards regression model was constructed, with the
aforementioned clinical covariates being adjusted to determine
independent prognostic factors. We then created a forest plot to
visually demonstrate the prognostic impact, presenting the hazard
ratios of each variable along with their 95% confidence intervals.
Building upon this foundation, a comprehensive nomogram (34)
integrating risk scores and key clinical parameters was developed to
provide individualized predictions of 1-, 3-, and 5-year survival
probabilities. We rigorously evaluated predictive accuracy and
clinical utility of the nomogram at different time points through
the calibration curves and decision curve analysis. The C-index was
utilized to quantitatively measure the discriminative ability of the
model, providing robust statistical validation for the
prognostic model.

2.8 Functional enrichment analysis

To explore the biological significance of risk stratification based
on ICDRS, multiple methods were employed for functional
enrichment analysis. First, we performed the DEG analysis
between high-risk and low-risk patient groups using the limma
package. Subsequently, gene set enrichment analysis (GSEA) was
conducted using the Hallmark gene sets from MSigDB (v2023.1) to
investigate functional pathways of DEGs. For each gene set, we
calculated normalized enrichment scores and significance levels
after multiple testing correction (FDR g-value), and selected gene
sets having FDR<0.05 for visualization. Second, gene set variation
analysis (GSVA) was applied to quantify pathway activities in
individual samples, and pathway enrichment results were
visualized through t-value-based bar plots, highlighting risk-
associated pathways. We then constructed the correlation
heatmaps to intuitively demonstrate the relationships between
pathway activities and risk scores. Finally, for significant
pathways (log-rank p<0.05), hazard ratios (HR) and 95%
confidence intervals were computed using Cox proportional
hazards models.

2.9 Mutation analysis and heterogeneity
assessment between the two risk groups

To investigate genomic heterogeneity features associated with
ICD, we first calculated Mutant-Allele Tumor Heterogeneity
(MATH) scores for each sample using the maftool package (35),
then intuitively presented distribution characteristics through violin
plots, and evaluated statistical significance using the Wilcoxon
rank-sum test. Afterwards, patients were divided into high and
low groups based on the median MATH score, followed by Kaplan-
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Meier survival analysis to explore the association between tumor
heterogeneity and prognosis. Subsequently, by combining MATH
scores with risk scores, we further classified patients into four
subgroups, aiming to comprehensively reveal their joint
prognostic value. Meanwhile, mutation landscape analysis was
performed for high and low risk groups separately, displaying the
top 20 mutated genes through waterfall plots, and calculating tumor
mutation burden (TMB). Using the “somaticInteractions” function,
we conducted co-occurrence and mutual exclusivity analysis, which
revealed interaction patterns of gene mutations in high and low
risk groups.

2.10 Validation of risk signatures and
analysis of intercellular communication
based on single-cell data

To validate the biological significance of our constructed ICDRS
at the single-cell level, I applied the 10 previously identified key
genes to single-cell RNA sequencing dataset (GSE112271) for
verification analysis. First, the expression distribution patterns of
these 10 genes across different cell types in UMAP dimensionality
reduction space were visualized using the “FeaturePlot” function.
Based on ICDRS, we then calculated risk scores for each cell using
the ssGSEA algorithm with a Poisson distribution kernel density
function. The risk scores were standardized through Z-score
normalization, and cells were classified into high-risk and low-
risk groups using a threshold of Z-score greater than 0. To explore
functional differences between cells in different risk groups, we
identified DEGs between risk groups using the “FindAllMarkers”
function (logfc.threshold=0.35, min.pct=0.35) and revealed relevant
biological processes through KEGG pathway enrichment analysis,
with particular focus on biological pathways related to ICD.
Simultaneously, GSEA was employed based on MSigDB Hallmark
gene sets to identify biological pathways specifically enriched in the
high-risk group.

Furthermore, to elucidate differences in communication patterns
between different risk cancer cells and other cell types in the
microenvironment, we constructed composite labels combining risk
stratification and cell types, redefining cancer cells as “high-riskscore
cancer cells” and “low-riskscore cancer cells” while maintaining
original annotations for other cell types. Cell-cell communication
analysis was performed using the CellChat package (36), identifying
overexpressed ligand-receptor pairs using the human CellChatDB
database and incorporating protein interaction network information.
We then applied a minimum cell count threshold of 10 for
communication filtering and calculated cell-cell communication
probabilities and signaling pathway activities. Finally, for key
signaling pathways such as MDK, VEGF, and MIF pathways,
signaling communication heatmaps were generated to systematically
compare differences in signaling intensity between high/low-riskscore
cancer cells and microenvironment cells, comprehensively revealing
the communication characteristics and potential biological
mechanisms of cancer cells stratified by ICDRS in the TME.
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2.11 Correlation analysis between tumor
immune microenvironment characteristics
and risk score model

To systematically evaluate the relationship between immune
characteristics in the HCC tumor microenvironment and our
constructed risk scoring model, multiple computational methods
were employed for comprehensive analysis. First, we conducted the
ESTIMATE score analysis (37) on HCC samples from the TCGA
database using the IOBR package (38), calculating stromal score,
immune score, and ESTIMATE score for each sample, and
compared the differences between high and low risk groups.
Stromal components and immune cell infiltration levels in tumor
samples are assessed by the ESTIMATE algorithm through specific
gene expression feature. We then used Wilcoxon rank-sum test to
compare differences between high and low risk groups, and created
the boxplots using the ggplot2 package (39) for visualization.

Thereafter, ssGSEA method was adopted for enrichment analysis
of immune-related pathways. We integrated a series of immune-related
pathway gene sets. Activity scores of these pathways in each sample
were first calculated using the “gsva” function. We then computed the
significance of pathway activity differences between high and low risk
groups through the “diff_pathway” function, while heatmaps were
created using the pheatmap package (https://cran.r-project.org/web/
packages/pheatmap/index.html) to visually display differential
patterns of immune pathway activity between different risk groups.
To gain deeper insight into immune cell composition in the TME,
CIBERSORT algorithm (40) was used to quantitatively analyze the
relative abundance of 22 immune cell types in samples. This algorithm,
based on linear support vector regression principles, can accurately
estimate distribution proportions of various immune cell types. Then,
violin plots were created using the “vioplot_plot” function to visually
compare differences in abundance of various immune cells between
high and low risk groups. Additionally, we analyzed the correlations
between 10 key genes in the risk model and immune cell infiltration,
with correlation heatmaps visually displaying these complex
association networks. A significance level of p<0.05 was used for all
statistical analyses, with Benjamini-Hochberg method applied for
correction during multiple comparisons.

To enhance reliability of analysis results, comprehensive
evaluation was conducted in three aspects: (1) Spearman
correlation analysis was performed to assess correlations between
immune cell infiltration levels and risk scores, and correlation
scatter plots were created using ggplot2; (2) Wilcoxon rank-sum
test was used to compare differences in immune cell infiltration
between high and low risk groups; (3) The relationship between
immune cell infiltration levels and the patients’ OS was evaluated
through Kaplan-Meier survival analysis and log-rank test,
generating independent survival curves for each immune cell
type, and recording corresponding p-values and optimal cutoft
points. We further established Venn diagrams using the
VennDiagram package (https://cran.r-project.org/web/packages/
VennDiagram/index.html) to identify key immune cell types
simultaneously satisfying these three conditions, which may play
important roles in HCC development, progression, and prognosis.
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2.12 Drug sensitivity analysis prediction

The Cancer Genomics Project 2016 (CGP2016) database was
utilized to predict the sensitivity of high-risk and low-risk HCC
patient samples to common anticancer drugs. We constructed a cell
line-based ridge regression model using the pRRophetic package
(41), and estimated the half-maximal inhibitory concentration
(IC50) (42) values for each drug sample using the ICDRS from
HCC. The specific analysis process follows: First, the CGP2016
dataset and corresponding gene expression data were loaded.
Subsequently, we performed drug sensitivity predictions for each
compound using the “pRRopheticPredict” function. To ensure data
quality, only samples recorded in both drug sensitivity data and risk
score data were included in the analysis. For each drug, we
compared the differences in IC50 values between high-risk and
low-risk groups using the Wilcoxon rank-sum test, with p<0.05
established as the statistical significance threshold. The median
IC50 values for each risk group were calculated, and drug sensitivity
differences were visualized through box plots. To facilitate
interpretation of results, we sorted all analyzed drugs by P-value,
and saved drug sensitivity results with statistical significance
separately. This approach enables systematic evaluation of
differential sensitivity patterns to anticancer drugs across different
ICDRS risk groups, providing important reference for the
development of individualized treatment strategies.

2.13 Functional verification analysis

2.13.1 Cell culture and vector construction

The human hepatocellular carcinoma cell line HepG2 was
purchased from the Affiliated hospital of Qingdao university and
maintained in DMEM medium (Gibco, USA) supplemented with
10% fetal bovine serum (FBS, Gibco, USA) and 1% penicillin-
streptomycin (Invitrogen, USA) at 37 °C with 5% CO,. The
complete coding sequences of human CLIC1 and NAPIL1 genes
were amplified by PCR and then cloned into pcDNA3.1(+)
eukaryotic expression vector (Invitrogen, USA) to construct
overexpression plasmids pcDNA3.1-CLIC1 and pcDNA3.1-
NAPI1L1, with empty pcDNA3.1 vector serving as negative
control. All recombinant plasmids were verified by DNA
sequencing before being used for transfection experiments.

2.13.2 Establishment of stable cell lines

The complete coding sequences of human CLIC1 and NAP1L1
genes were cloned into the lentiviral vector pLVX-IRES-Puro
(Clontech, USA) to construct recombinant plasmids pLVX-CLIC1
and pLVX-NAPILI, with the empty vector pLVX-IRES-Puro
serving as a negative control. We employed a three-plasmid
system for lentiviral packaging: the recombinant plasmids were
co-transfected with packaging plasmid psPAX2 and envelope
plasmid pMD2.G into 293T cells at a mass ratio of 4:3:1, using
Lipofectamine 3000 transfection reagent (Invitrogen, USA)
according to the manufacturer’s instructions. Virus-containing
supernatants were collected at 48 and 72 hours post-transfection

frontiersin.org


https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/pheatmap/index.html
https://cran.r-project.org/web/packages/VennDiagram/index.html
https://cran.r-project.org/web/packages/VennDiagram/index.html
https://doi.org/10.3389/fimmu.2025.1649618
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

and filtered through a 0.45um filter to remove cellular debris.
HepG2 cells were infected when they reached 70-80% confluence
by adding virus-containing medium supplemented with polybrene
(8ug/mL, Sigma, USA). We then replaced the medium with fresh
culture medium 24 hours after infection. Puromycin (2pg/mL,
Sigma, USA) was added 48 hours post-infection for positive clone
selection, which continued for 10-14 days until stable expression
cell lines were established. Moreover, we designated these cell lines
as OE-CLIC1, OE-NAPILI, and OE-NC (empty vector control),
and verified stable expression of target proteins by Western blot.

2.13.3 Western blot analysis for protein
expression

Total cellular proteins were extracted and quantified using
standard protocols. Proteins (30ug) were separated by SDS-
PAGE, transferred to PVDF membranes, and probed with
primary antibodies against CLIC1, NAP1LI, B-tubulin, and
GAPDH, followed by HRP-conjugated secondary antibodies.
Protein bands were visualized by ECL and quantified using
Image] software, with B-tubulin or GAPDH as loading controls.

2.13.4 CCK-8 cell proliferation assay

The stably transfected cells were seeded in 96-well plates at a
density of 3x10° cells per well, with six replicate wells for each
group. After 24, 48, and 72 hours of culture, we added 10 UL of
CCK-8 reagent (Dojindo, Japan) to each well and incubated at 37 °C
for 2 hours. The absorbance at 450 nm was measured using a
microplate reader (BioTek, USA), and cell growth curves
were plotted.

2.13.5 Clone formation experiment

The stably transfected cells were seeded in 6-well plates at a
density of 1000 cells per well, with three replicate wells established for
each group. We cultured cells under standard conditions for 14 days,
during which we replaced the culture medium every 3 days. At the
end of the experiment, cells were fixed with 4% paraformaldehyde for
20 minutes and stained with 0.1% crystal violet solution for 15
minutes, followed by thorough washing with PBS and air-drying.
The number of colonies (defined as cell clusters containing =50 cells)
was counted under a microscope.

2.13.6 Transwell migration and invasion assays

5x10,4 cells were suspended in 200 UL serum-free DMEM and
added to the upper chamber of Transwell inserts (8 um pore size,
Corning, USA), while 600 UL of complete medium containing 10%
FBS was placed in the lower chamber as a chemoattractant. After
incubation at 37 °C for 24 hours, we gently removed the non-
migrated cells on the upper surface with sterile cotton swabs. Cells
that had migrated through the membrane were fixed with 4%
paraformaldehyde for 20 minutes and stained with 0.1% crystal
violet for 15 minutes. We then counted the migrated cells in five
randomly selected fields (200x magnification).

For the invasion assay, the upper chamber was pre-coated with
50 uL of diluted Matrigel (BD Biosciences, USA; 1:8 dilution) and
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incubated at 37 °C for 1 hour to allow gelation. We performed the
remaining experimental procedures as described for the
migration assay.

2.13.7 Wound healing assay

The stably transfected cells were seeded in 6-well plates at a density
of 5x10° cells per well and cultured until cell confluence exceeded 90%.
We created a straight line wound on the cell monolayer using a sterile
200 pL pipette tip, followed by gentle washing with PBS three times to
remove detached cells and debris. The medium was then replaced with
serum-free DMEM for continued culture. We took the photographs at
the same position at 0, 24, and 48 hours to document wound healing
(100x magnification). Image]J software was used to measure the wound
area, and the healing rate was calculated as: Healing rate (%)=(Initial
wound area - Wound area at detection time point)/Initial wound area
x 100%.

2.14 Statistical analysis

All experiments were independently repeated at least three
times, and data are presented as mean + standard error of the
mean (SEM). We performed the statistical analyses using GraphPad
Prism 8.0 software. Comparisons between two groups were
analyzed using Student’s t-test, while comparisons among
multiple groups were conducted using one-way ANOVA followed
by Tukey’s multiple comparison test. p<0.05 was considered
statistically significant, with significance levels indicated as:
*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns means no
significant difference.

3 Results

An overview of the study design is presented in Figure 1.

3.1 Single-cell transcriptome reveals ICD
characteristic in HCC

Utilizing single-cell RNA sequencing, we comprehensively
examined the expression landscape of ICD across different cell
types. Eleven distinct cell clusters were initially identified, and their
spatial distribution was visualized through UMAP (Figure 2A). We
subsequently employed canonical marker gene expression profiles
to identify and characterize major cell populations using UMAP
dimensionality reduction. Six primary cell types were successfully
delineated (Figures 2B, C), encompassing a total of 44,461 cells: (1)
cancer cells expressing ALB, SERPINA1, and GPC3; (2)
macrophages with high expression of FOLR2, AIF1, and CD68;
(3) endothelial cells specifically expressing AQP1, TIE1l, VWE,
EDNRB, and CCL14; (4) fibroblasts enriched with ACTA2,
COL1A1, DCN, and COL1A2; (5) hepatocytes with high
expression of ALB and SERPINA1L; and (6) NKT cells specifically
expressing NKG7, GNLY, and CCL5. Additionally, we quantified
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the activity of ICD in different cell types, presenting the continuous
distribution of ICD scores using UMAP (Figure 2D). Statistical
analysis (Figure 2E) further revealed that immune cell like
macrophages exhibited significantly highest ICD scores compared
to other cell types (p<0.001).

3.2 WGCNA network analysis identifies
ICD-DEGs in bulk RNA sequencing

In the study of ICD in HCC, the TCGA-HCC dataset was
analyzed using WGCNA to identify and characterize ICD-DEGs
between different ICD score groups. Initially, we analyzed DEGs by
comparing macrophages and cancer cells across ICD score stratified
groups. A total of 317 common DEGs were then identified
(Figure 3A), comprising 710 DEGs from macrophages and 964
DEGs from cancer cells, revealing shared molecular signatures
between these cell types. To further explore the molecular
mechanisms of ICD, we conducted WGCNA on the common
DEGs. Intricate sample clustering patterns and ICD score
distributions were revealed through the hierarchical clustering
dendrogram (Figure 3B). Furthermore, the dynamic tree-cutting
algorithm was applied to identify three distinct functional gene
modules, as visualized in the cluster dendrogram (Figure 3C).
Notably, module-trait relationship heatmap demonstrated that the
turquoise module exhibited the most significant positive correlation
with ICD traits (cor=0.4, p=2e-15), while the blue module revealed
a pronounced negative association (cor=-0.37, p=2e-13, Figure 3D).
Moreover, significant positive correlations between GS and MM
were revealed in the turquoise (cor=0.17, p=0.047, Figure 3E) and
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blue (cor=0.25, p=0.01, Figure 3F) modules, suggesting functional
coherence related to ICD. To narrow down the candidate gene pool,
enhanced volcano plot showed the TCGA-DEGs between TCGA-
HCC samples and normal sample (Figure 3G). Subsequently, the
circular heatmap was conducted to further show top 100 regulated
DEGs (Figure 3H). Moreover, a Venn diagram (Figure 3I) revealed
106 intersecting genes, termed HCC-ICDR genes, between the
identified modules and TCGA-DEGs. These genes demonstrated
significant involvement in ICD mechanisms across both whole-
tissue and single-cell transcriptomic levels.

3.3 Prognostic feature selection and
validation in HCC using machine learning

We developed a consensus signature (ICDRS) using integrated
machine-learning algorithms. The RSF algorithm achieved the
highest C-index (0.839) with parameters: ntree=1000, nodesize=>5,
and splitrule=“logrank” (Figure 4A, Supplementary Table 1). This
selection was further supported by consistent external validation
performance (GSE14520: AUC 0.809-0.839; ICGC: AUC 0.821-
0.832) and RSF’s methodological advantages, including stable
feature selection through ensemble mechanisms and built-in
importance ranking that eliminates additional computational
overhead required by other algorithms. Moreover, the top 10
features including CLIC1, NAPILI, CBX3, RAN, APOE, CD63,
CLTA, SNRPG, FTL and POMP in the RSF model were
systematically identified and ranked based on their variable
importance, showing the high relative importance (Figure 4B). To
rigorously evaluate the prognostic potential of ICDRS, Kaplan-
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Meier survival analyses were conducted across three cohorts.
Patients were categorized into distinct risk groups, which unveiled
statistically significant survival differences in the TCGA training set
(p<0.001) (Figure 4C), with consistent findings observed in the
subsequent testing sets (all p<0.001, Figures 4E, G).

To systematically assess the time-dependent predictive
performance of the prognostic model, time-dependent ROC
curves were generated at 1-, 3-, and 5-year intervals. The AUC
values for the TCGA dataset demonstrated robust predictive
accuracy, with 0.962 (1-year), 0.985 (3-year), and 0.972 (5-year)
(Figure 4D). The predictive performance was then confirmed in two
validation datasets. Specifically, the GSE14520 validation dataset
exhibited AUC values of 0.809 (1-year), 0.839 (3-year), and 0.819
(5-year) (Figure 4F). Similarly, the ICGC validation set showed
AUC values of 0.821 (1-year), 0.832 (3-year), and 0.796 (5-year)
(Figure 4H), demonstrating robust predictive consistency and
significant clinical utility.

3.4 Performance evaluation and clinical
relevance analysis of ICDRS in HCC

We comprehensively evaluated the clinical utility of the ICDRS
for HCC. Initially, significant differences in clinical characteristics
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were revealed through the pie chart (Figure 5A) between high-risk
(n=183) and low-risk (n=182) groups, including T stage (p<0.001),
gender (p<0.0267), and survival status (p<0.001). Furthermore,
Figure 5B illustrated the risk score distributions across T1-T4
stages, while Figure 5C compared early (T1-2) and late (T3-4)
stages. Notably, a significant upward trend in risk scores was
observed as tumor staging progressed. The stacked bar plot
(Figure 5D) then visually presented T stage proportions across
different risk groups. A higher proportion of late-stage T
classifications (T3-T4) was significantly concentrated in the high-
risk group, suggesting that high-risk patients may face more severe
tumor progression and adverse prognosis. Additionally, Figure 5E
illustrated that the gene variables ultimately selected for the model
were generally upregulated in the high-risk group, providing crucial
insights into the biological underpinnings of ICDRS. We employed
the ROC curve (Figure 5F) to assess the model’s performance in
predicting distant metastasis, with an AUC of 0.752. Additionally,
Kaplan-Meier survival curves (Figures 5G-J) demonstrated
significantly higher survival probabilities (all p<0.001) for the
low-risk group across various clinical subgroups, including early
(I-1I) and late (III-IV) stages, as well as age-stratified cohorts (<60
and >60 years). High-risk patients consistently exhibited markedly
shorter survival periods across all subgroups, further validating the
prognostic value of ICDRS in HCC.
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names, and expression change direction. (I) Venn plot showing the intersecting genes between the module genes and TCGA DEGs in bulk RNA-seq.

3.5 Construction and validation of a
prognostic nomogram model integrating
ICDRS and clinical features

To evaluate the potential of ICDRS as an independent prognostic
factor for HCC, we conducted comprehensive cox regression analyses
that integrated clinical parameters (age, gender, TNM stage, clinical
stage, grade) with the risk score. As shown in Figure 6A, T stage
(p<0.001), M stage (p<0.019), clinical stage (p<0.001), and risk score
(p<0.001) were identified as potential prognostic factors associated
with OS. The subsequent multivariate analysis (Figure 6B) further
confirmed that age (p<0.012), and risk score (p<0.001) still
significantly influenced OS after adjusting for other clinical
characteristics, serving as truly independent prognostic factors. A
prognostic scoring nomogram was constructed based on the ICDRS
and clinical characteristics (Figure 6E). Furthermore, the calibration
curves showed excellent alignment between predicted and observed
1-year, 3-year, and 5-year survival rates (Figure 6C). Subsequently,
the nomogram’s superior net benefit within specific high-risk
thresholds was demonstrated by decision curve analysis compared
to individual clinical characteristics (Figure 6D). Finally, the
comparative analysis of the C-index (Figure 6F) further confirmed
the nomogram’s enhanced predictive capability for OS,
outperforming individual clinical features.
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3.6 Transcriptomic characteristics across
risk score patients based on ICDRS

To further explore the molecular mechanisms underlying the
correlation between (ICDRS) and HCC prognosis, we conducted
comprehensive functional enrichment analyses. The significant
enrichment of five cancer-related hallmark pathways were
revealed in the high-risk group through GSEA, including DNA
repair, E2F targets, MYC targets V1, PI3K/AKT/MTOR signaling,
and reactive oxygen species pathway (Figure 7A, FDR < 0.05).
GSVA then uncovered multiple significantly upregulated pathways
in the high-risk group, including: (1) cell cycle and proliferation-
related pathways: MYC targets V1/V2, G2M checkpoint, Mitotic
spindle, and E2F targets; (2) stress and microenvironment-related
pathways: DNA repair, reactive oxygen species pathway, hypoxia,
and unfolded protein response; (3) signal transduction pathways:
MTORCI signaling and PI3K/AKT/MTOR signaling (all
adjusted p<0.05, Figure 7B). Correlation analysis between risk
scores and pathway activities (Figure 7C) validated these findings.
Moreover, the forest plot (Figure 7D) demonstrated that pathways
enriched in the high-risk group, including G2M Checkpoint, E2F
Targets, Glycolysis, and DNA Repair, were associated with higher
HR, suggesting these pathways may be closely linked to
poor prognosis.
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dataset.

3.7 Mutation profiling of ICD related genes

To deeply understand the genomic characteristics of HCC patients,
we systematically analyzed the mutation patterns of ICD genes. Firstly,
the MATH scores in the high-risk group were significantly higher than
those in the low-risk group (p=7.1e-06), indicating greater tumor
heterogeneity in the high-risk group (Figure 8A). Subsequently,
Kaplan-Meier survival analysis based on MATH scores revealed that
patients with higher MATH scores had poorer prognosis (p=0.043,
Figure 8B), further confirming the correlation between tumor
heterogeneity and prognosis. Moreover, we combined MATH scores
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with ICDRS risk stratification, demonstrating their interactive
predictive impact on prognosis. The survival curves showed that the
low-risk and low-MATH score group had the best prognosis (p<0.001,
Figure 8C). Moreover, differential mutated genes between low-risk and
high-risk groups were revealed by a distinct mutational landscape
analysis (Figures 8D, E), with significant co-occurring mutations being
observed (Figures 8F, G). Notably, TP53, a critical tumor suppressor
gene, showed a mutation rate of 36% in the high-risk group compared
to 21% in the low-risk group, indicating accelerated tumor proliferation
and poorer prognosis in the high-risk group. Ultimately, mutation co-
occurrence and exclusivity analysis revealed the complex interaction
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characteristics. (F) Comparison of the C-index between the nomogram and clinical characteristics.

patterns of gene mutations in high-risk and low-risk groups. In the
high-risk group (Figure 8F), (1) TP53 exhibited a co-occurrence
pattern with FAT3 and PCLO; (2) TTN and DOCK2 demonstrated
significant co-occurrence characteristics; (3) no significant exclusivity
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patterns were observed. In the low-risk group (Figure 8G), (1)
CTNNBI showed an exclusivity pattern with AXIN1 and TP53; (2)
TTN and ALB displayed mutation co-occurrence features. Notably, key
tumor suppressor genes like TP53 exhibited significant differences in
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FIGURE 7

Functional mechanism analysis of HCC risk stratification. (A) GSEA waterfall plot revealing molecular signatures of five critical pathways in the high-
risk group, with enrichment profiles and corresponding gene expression landscape. (B) Hallmark pathway enrichment analysis based on GSVA
contrasting differentially activated molecular pathways between high and low-risk groups through color-coded differential representation, with
statistical significance highlighted. (C) Correlation heatmap illustrating the relationships between risk scores and hallmark pathway activities scored
by GSVA through nuanced color gradients. (D) Forest plot depicting pathways’ prognostic significance via hazard ratios and confidence intervals.

mutation patterns across different risk groups, these findings unveiling
the molecular heterogeneity of ICD-related gene mutations in HCC.

3.8 Correlation analysis between ICDRS
and single-cell features
To investigate the role of ICDRS in the tumor microenvironment

(TME) at the single-cell level, we applied the established model to
evaluate individual tumor cells using the top 10 genes. The top 10
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upregulated and downregulated genes from the RSF model were
integrated, including CLIC1, NAP1L1, CBX3, RAN, APOE, CD63,
CLTA, SNRPG, FTL, and POMP. We performed a comprehensive
analysis of ICDRS expression and functional associations across
different single-cell types (Figure 9). The expression patterns of
these 10 genes across various cell types were determined
(Figure 9A), revealing their predominant expression in cancer cells
and macrophages. KEGG pathway enrichment analysis was
conducted to identify the major functional pathways involving
differentially expressed genes between high-risk and low-risk cells
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(Figure 9B). We conducted KEGG pathway enrichment analysis to
identify the major functional pathways involving DEGs between
high-risk and low-risk cells (Figure 9B). Multiple important
biological processes and signaling pathways related to ICD were
significantly enriched, including Chemical carcinogenesis — reactive
oxygen species, Oxidative phosphorylation, Protein processing in
endoplasmic reticulum, Proteasome, Complement and coagulation
cascades, Glutathione metabolism, and Chemical carcinogenesis —
DNA adducts pathways. These pathways primarily involve oxidative
stress, mitochondrial function, endoplasmic reticulum stress, protein
degradation, cell death, and immune response biological processes,
indicating that DEGs play important roles in ICD mechanisms.
Through GSEA analysis, we further discovered multiple
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significantly enriched HALLMARK pathways in the high-risk
group, including coagulation (p=0.03), complement (p=0.05),
peroxisome p=0.05), and reactive oxygen species pathway (p=0.02).
Key biological processes that high-risk cell populations may
participate in were revealed by the enrichment of these
pathways (Figure 9C).

Subsequently, cancer cells were divided into high- and low-
riskscore groups, and their interactions with other cell types in the
TME were investigated. We observed different communication
patterns in cancer cells with varying ICDRS scores (Figure 9D),
with seven cell subpopulations in the high-risk group exhibiting
more complex interaction networks. More active communication
networks between high riskscore cancer cells and macrophages,
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FIGURE 9

Association of ICDRS with single-cell characteristics. (A) Umap plots showing the expression of 10 genes of ICDRS in various cell types, as analyzed
by single-cell RNA sequences. (B) Dot plot revealing the KEGG pathway enrichment analysis of DEGs between high-risk and low-risk cells related to
ICD. Dot size: gene count; color: adjusted p-value from 0.02 to 0.005; x-axis: gene ratio. (C) Waterfall plot presenting GSEA analysis of hallmark
gene sets in the high-risk cells. (D) Cell signaling pathway network among 7 cell types. The thickness of the line indicates the interaction strength.
7(E, F) Ligand-receptor interactions in the (E) low- and (F) high — riskscore cancer cell. Both interaction numbers and interaction strengths are
shown. (G-1) Heatmaps showing the role of different cell types in (G) MDK, (H) VEGF, and (I) MIF signaling networks. The Y-axis shows the signal
transmitter cells and the X-axis represents the signal receiver cells. Shades of color indicate intensity of interaction, with darker reds indicating
stronger communication.
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endothelial cells were demonstrated. In contrast, the intercellular
communication network of low riskscore cancer cells was
significantly simpler, primarily manifesting as interactions with
macrophages, while communication intensity with other cell types
was markedly reduced. Ligand-receptor interaction diagrams
(Figures 9E, F) also showed that the high-risk group possessed
denser and more complex communication networks, suggesting
that elevated ICD levels may enhance signal exchange between cells
in the tumor microenvironment. Notably, significant specificity in
the MDK signaling pathway was exhibited by the high-risk group
compared to the low-risk group. Active MDK signal transduction in
the high-risk group may indicate that these tumor cells possess
stronger proliferative capacity, angiogenic potential, and
microenvironmental regulatory ability, thereby promoting
invasive tumor growth and distant metastasis.

To further explore pathway expression and correlations in
different cell types, three pathways were selected for heatmap
visualization, including the MDK pathway related to tumor
invasiveness and poor prognosis, the VEGF pathway associated
with angiogenesis, and the MIF pathway involved in immune
regulation (Figures 9G-I). The MDK signaling pathway
(Figure 9G) demonstrated more complex communication patterns
in high-riskscore cancer cells, establishing bidirectional signal
exchange with hepatocytes. In contrast, low-riskscore cancer cells
showed significantly reduced activity as MDK signal senders,
indicating their limited capacity for actively regulating the
microenvironment. In the VEGF signaling pathway (Figure 9H),
VEGF signals secreted by cancer cells were accepted by endothelial
cells, which served as the primary signal receivers. Notably, low-
riskscore cancer cells exhibited stronger activity as VEGF signal
senders compared to high-riskscore cancer cells, transmitting more
VEGF signals to endothelial cells. This difference may be attributed
to distinct angiogenic regulatory mechanisms employed by the two
groups. In the MIF signaling pathway (Figure 9I), both high- and
low-riskscore cancer cells regulated macrophage function and
polarization states through MIF secretion. More significant MIF
signal sending capacity was demonstrated by high-riskscore cancer
cells, indicating the stronger immune microenvironment
regulatory ability.

3.9 Immune landscape associated with
ICDRS in HCC

Figure 10 systematically demonstrated the significant
differences in tumor microenvironment immune characteristics
between high-risk and low-risk groups of HCC patients.
Significantly higher Stromal Score in low-risk patients compared
to high-risk patients (p<0.05) were revealed by ESTIMATE
algorithm analysis (Figure 10A), suggesting that the TME in low-
risk patients possesses a higher degree of stromal infiltration.
However, no significant differences were observed between the
two groups in terms of Immune Score (Figure 10B) and
ESTIMATE Score (Figure 10C). Further immune-related pathway
analysis (Figure 10D) identified three signaling pathways that
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showed significant differences between high-risk and low-risk
groups, mainly including: complement and coagulation cascades
(p<0.001), NOD-like receptor signaling pathway (p<0.05), and fc
gamma R mediated phagocytosis (p<0.01). These findings indicate
that the activation status of these pathways differs across TME with
varying risk levels.

Differences in immune cell infiltration patterns between the two
patient groups were further elucidated by quantitative analysis of 22
immune cell types using the CIBERSORT algorithm (Figure 10E).
The results demonstrated significant differences in the abundance
distribution of multiple immune cell subsets between high-risk and
low-risk groups: (1) Immune cell types significantly higher in the
high-risk group included: plasma cells (p=0.037), T cells follicular
helper (p=0.001), T cells regulatory (tregs) (p=0.026), macrophages
MO (p<0.001), and neutrophils (p=0.003); (2) Immune cell types
significantly higher in the low-risk group comprised: B cells naive
(p=0.004), B cells memory (p=0.001), T cells CD8 (p=0.04), NK cells
resting (p=0.048), monocytes (p=0.003), macrophages M1 (p=0.003),
and mast cells resting (p<0.001). More diverse and active immune cell
repertoires, encompassing effector T cells, B cell subsets, monocytes,
and M1 macrophages that represent anti-tumor immune cells, were
demonstrated in low-risk patients. In contrast, the high-risk group
was enriched with more immunosuppressive cells such as regulatory
T cells and MO macrophages. These differences in immune cell
composition, particularly the enrichment of immunosuppressive
cells alongside a relative deficiency in cytotoxic CD8+ T cells in the
high-risk group (Figure 10E), may reflect the establishment of an
immunosuppressive microenvironment prone to immune evasion
mechanisms such as immune exclusion.

The complex association network between the 10 key genes
embedded in ICDRS and various immune cell types was illustrated
by the correlation heatmap (Figure 10F), with some genes such as
CLICI1, NAP1LI, and CBX3 showing extensive positive correlations
with multiple immune cell infiltration levels. A correlation scatter
plot (Figure 10G) revealed that the risk score exhibited significant
positive or negative correlations with specific immune cells, with
macrophages MO, B cells memory, T cells follicular helper, T cells
regulatory (tregs), and neutrophils showing significant positive
correlations, while macrophages M1, mast cells resting, B cells
naive, T cells CD8, monocytes, and dendritic cells resting
displayed significant negative correlations.

Additionally, Kaplan-Meier survival analysis was performed for
individual immune cells (Supplementary Figure 1), through which
we identified immune cell types that were significantly associated
with overall survival of HCC patients (p<0.05). Finally, by
integrating the results from differential analysis (Figure 10E),
correlation analysis (Figure 10G), and survival analysis
(Supplementary Figure 1), we utilized a Venn diagram to identify
5 key immune cell types that simultaneously satisfied all three
evaluation criteria (Figure 10H), including B cells memory,
macrophages MO, macrophages M1, mast cells resting, and
neutrophils. The core immune eftector cells that influence HCC
patient prognosis may be represented by these immune cells
identified in the intersection, providing important clues for
subsequent mechanistic research and therapeutic target screening.
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Correlation of TME, immune characteristics and ICDRS. (A-C) Box plots showing differences in immune status between high and low risk groups as
quantified by Matrix score (A), immune score (B), and ESTIMATE score (C). Red represents the high-risk group and blue is the low-risk group.

(D) Heatmaps reflecting differences in immune-related pathway activity between high and low risk groups. (E) Violin plots showing the level of
immune cell infiltration between the high and low risk groups. Green represents the low-risk group, and red represents the high-risk group. (F) The
correlation heatmap representing the correlation between the degree of immune cell infiltration and the hub genes of ICDRS. Red indicates the
positive correlation, blue indicates the negative correlation, and the depth of the color represents the strength of the correlation. (G) The correlation
scatter plot showing the association of the risk score with the infiltration level of key immune cells. The size of the dot represents the absolute value
of the correlation coefficient, and the color indicates the direction of correlation and statistical significance. (H) Venn diagram representing the

recognition of five key immune cells.

3.10 Differential analysis of drug sensitivity

The differences in drug sensitivity between high-risk and
low-risk groups were investigated to assess the potential clinical
value of the risk stratification model in personalized treatment.
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Drug sensitivity analysis revealed that 10 compounds exhibited
significantly different responses between risk groups
(Figures 11A-]).

In the treatment of HCC, increased sensitivity to targeted
therapies was observed in the low-risk group, including:
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e Sorafenib (first-line standard treatment for HCC, multi-
kinase inhibitor, p=0.00785, Figure 11A)

* Sunitinib (multi-kinase inhibitor, investigational drug for
HCC, p<0.001, Figure 11B)

Foretinib (c-Met/VEGEFR dual inhibitor, p<0.001, Figure 11C)

* Doxorubicin (anthracycline chemotherapeutic agent,
commonly used in TACE for HCC, p<0.001, Figure 11D)

e Paclitaxel (microtubule stabilizer, taxane class,
p<0.001, Figure 11E)

By contrast, enhanced sensitivity to the following agents was
demonstrated by the high-risk group:

* Erlotinib (EGFR inhibitor, p<0.001, Figure 11F)

+ Cisplatin (standard agent for interventional therapy in HCC,
platinum-based chemotherapy, p=0.0108, Figure 11G)

* Lenalidomide (immunomodulatory drug,
p<0.001, Figure 11H)

¢ Lapatinib (EGFR/HER2 dual inhibitor, targeted agent,
p<0.001, Figure 11I)

* Gefitinib (EGFR inhibitor, p<0.001, Figure 11])

These findings not only provide a theoretical basis for risk
stratification-based personalized drug strategies but also reveal that
tumors with different molecular characteristics may require
different therapeutic approaches.

3.11 Functional validation experiments of
candidate genes

3.11.1 CLIC1 enhances malignant biological
behaviors of HCC cells

Based on the high expression profile of CLIC1 in HCC, we
constructed a CLIC1 overexpression cell line in HepG2 cells
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(designated as OE-CLIC1) and established an empty vector control
group (designated as OE-NC). All experiments were repeated at least
three times with consistent results, and representative results are
shown in Figure 12. To verify the transfection efficiency of the CLIC1
overexpression vector, we detected the CLICI protein expression
levels by Western blot in HepG2 cells after transfection. Results
demonstrated that CLIC1 protein expression was significantly
upregulated by approximately 1.5-fold in OE-CLIC1 compared to
OE-NC (p<0.05), while the expression level of the reference protein
B-tubulin showed no significant difference between groups, indicating
successful and efficient transfection of the CLICl overexpression
vector (Figure 12A). The proliferative capacity of HepG2 cells was
significantly promoted by CLICI overexpression as revealed by CCK-
8 proliferation assay results, with particularly notable differences at
the 72-hour time point (p<0.0001, Figure 12B). Colony formation
assays further confirmed the proliferation-promoting effect of CLIC1,
as the overexpression group formed significantly more colonies than
the control group (p<0.0001, Figure 12C).

Given the potential role of CLICI in tumor metastasis, its effects
on cell migration and invasion abilities were examined. Transwell
assay results showed that CLIC1 overexpression significantly
enhanced both migration (p<0.01) and invasion capabilities
(p<0.001, Figure 12D) of HepG2 cells. These findings suggest that
CLIC1 overexpression can significantly enhance the ability of
hepatocellular carcinoma cells to traverse the extracellular matrix,
indicating its potentially important role in the tumor
metastasis process.

To further validate the effect of CLIC1 on cell migration ability,
wound healing assays were performed. The results demonstrated
that the wound closure rate of the OE-CLIC1 group was markedly
faster than that of the OE-NC control group at both 24-hour and
48-hour observation time points. At 48 hours, approximately 50%
wound healing rate was reached by the OE-CLIC1 group, while only
about 20% was achieved by the OE-NC control group, with the
difference between the two groups being highly statistically
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Functional validation of CLIC1. (A) Western blot detection of CLIC1 overexpression efficiency in HepG2 cells, with B-tubulin as internal reference.
(B) CCK-8 assay examining the effect of CLIC1 on cell proliferation. (C) Colony formation assay examining the effect of CLIC1 on cell proliferation.
(D) Transwell assay examining the effect of CLIC1 on cell migration and invasion abilities. (E) Scratch wound healing assay verifying the promoting
effect of CLIC1 on cell migration. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

significant (p<0.001). This result was consistent with the Transwell
migration assay findings, further confirming that CLICI1
overexpression can significantly promote the migration ability of
hepatocellular carcinoma cells (Figure 12E).

3.11.2 NAP1L1 promotes proliferation, migration,
and invasion of HCC cells

NAPILI1-overexpressing cell lines (OE-NAP1L1) and control
groups (OE-NC) were constructed by us, with experiments
repeated three times, and representative results are shown in
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Figure 13. Western blot revealed that the protein level of NAP1LI
in the OE-NAPIL1 group was elevated approximately 1.5-fold
compared to the control group (p<0.01), while GAPDH expression
remained stable, confirming successful transfection (Figure 13A). The
biological effects of NAPIL1 were unveiled through cellular
functional analyses. CCK-8 assay detected enhanced proliferative
activity in the NAPIL1 high-expression group during the late
culture period (72 hours) (p<0.0001, Figure 13B), and colony
formation ability was also significantly enhanced (p<0.0001,
Figure 13C), indicating that NAP1L1 can effectively promote HCC
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Functional verification of NAP1L1. (A) Western blot detection of NAP1L1 overexpression efficiency in HepG2 cells, with GAPDH as internal reference.
(B) CCK-8 assay to detect the effect of NAP1L1 on cell proliferation. (C) Colony formation assay to detect the effect of NAP1L1 on cell proliferation.
(D) Transwell assay to detect the effect of NAP1L1 on cell migration and invasion abilities. (E) Scratch wound healing assay to verify the promoting
effect of NAP1L1 on cell migration. **p<0.01, ***p<0.001, ****p<0.0001, and ns means no significant difference.

cell proliferative potential (Figure 13B). Cells with high NAPILI
expression were demonstrated by Transwell migration and invasion
analyses to possess stronger transmembrane migration capacity
(p<0.01) and matrix invasion ability (p<0.001, Figure 13D). We
further employed the scratch wound healing assay for verification,
with results showing that the NAPIL1 overexpression group
significantly exceeded the control group in wound closure
efficiency within 48 hours (p<0.001, Figure 13E). These findings
collectively suggest that a key role in regulating the malignant
phenotype of hepatocellular carcinoma cells is played by NAP1LI.
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4 Discussion

Through the integration of multi-omics data and advanced
computational methods, we systematically explored the role and
clinical significance of HCC-ICD. Cellular heterogeneity in the
HCC microenvironment was revealed by single-cell RNA
sequencing technology, identifying six major cell subtypes and
analyzing the differences in ICD activity among these cell types.
We then identifled gene modules closely related to ICD through
WGCNA. The HCC-related regulatory network of ICD was
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visualized after integrating the corresponding differentially
expressed genes, module genes, and single-cell characteristic
genes. Based on these findings, we further constructed an ICDRS
using these genes. Good predictive capability was demonstrated by
the model in both the TCGA dataset and external independent
datasets (GSE14520 and ICGC), providing strong evidence for risk
stratification of HCC patients. We further elucidated key biological
pathways associated with ICD through functional enrichment
analyses, including GSEA and GSVA. Associations between ICD
and gene mutations, the immune microenvironment, and drug
sensitivity were explored by our research group, revealing the
comprehensive and multifaceted role of ICD in HCC occurrence,
development, and treatment response. The promoting effects of key
genes CLIC1 and NAP1L1 on HCC proliferation, migration, and
invasion behaviors were verified through in vitro experiments,
providing important experimental evidence for the development
of ICD-related therapeutic targets.

4.1 Research innovation and clinical
comparative advantages

This study constructed a prognostic model for HCC based on
ICD by integrating single-cell RNA sequencing, WGCNA, and
large-scale machine learning algorithms. Extensive research has
been conducted on HCC prognostic and drug resistance models,
focusing primarily on molecular markers such as metabolism-
related genes (43-45) and epigenetic modifications (46, 47).
However, research on the role of ICD in HCC remains limited.

Our ICDRS model demonstrated superior predictive accuracy
in comprehensive performance comparisons. In external validation,
our RSF model achieved AUC values of 0.821, 0.832, and 0.796 for
1-year, 3-year, and 5-year OS, respectively. In comparison, Wang
et al. (44) developed a mitochondrial-related transcriptome model
with 3-year AUC of 0.77, while Chen et al. (45) constructed an
oxidative phosphorylation-based model with AUC values of 0.690,
0.726, and 0.720 for 1-year, 2-year, and 3-year OS, respectively.
These comparisons demonstrate that the ICD-based HCC
prognostic model developed in this study shows superior
performance compared to existing HCC prognostic models based
on other molecular features. Our model enhanced predictive
performance and greater stability across different survival
timeframes, highlighting its clinical application value in
HCC prediction.

Single-cell analysis revealed that macrophages had significantly
higher ICD scores than other cell types (p<0.001), consistent with
recent findings by Han et al. regarding tumor-associated
macrophages’ role in ICD (48). Through WGCNA analysis, we
identified 106 HCC-ICDR genes that were correlated with ICD
scores in the turquoise module (cor=0.4, p=2e-15) and blue module
(cor=-0.37, p=2e-13), providing insights into the molecular
regulatory network of ICD in hepatocellular carcinoma.
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4.2 Molecular mechanisms: the multi-layer
regulatory network of ICD and tumor
progression

4.2.1 Composition and functional mechanisms of
ICDRS

To understand the mechanistic basis of our predictive model,
we analyzed the molecular mechanisms associated with ICDRS. The
ICDRS comprises ten key genes with distinct functional roles.
CLIC1, NAP1L1, APOE, and CD63 have been demonstrated to
play crucial roles in ICD mechanisms: CLIC1, serving as a chloride
ion channel protein, is involved in the regulation of apoptosis and
ICD (49, 50). NAPILI is involved in the ICD process through its
regulation of nucleosome assembly and chromatin remodeling,
which affects the DNA damage response (51). APOE plays a key
role in immune regulation and lipid metabolism, potentially
influencing ICD effects through the modulation of macrophage
polarization (52). CD63, as a marker of extracellular vesicles, is
involved in intercellular signaling and immune activation (53, 54).
The remaining genes CBX3, RAN, CLTA, SNRPG, FTL, and POMP
primarily regulate transcription, nucleocytoplasmic transport,
intracellular trafficking, RNA splicing, iron metabolism, and
proteasome function, thereby indirectly modulating ICD-related
cellular stress responses (55-58).

Patients in the high-risk group exhibited distinct activation of
pathways associated with malignant tumor characteristics. Using
functional enrichment analysis to identify these differential pathways,
we found that five key cancer-related pathways were significantly
enriched in the high-risk group by GSEA analysis (FDR < 0.05),
including DNA repair pathway, E2F targets, MYC targets V1, PI3K/
AKT/MTOR signaling, Reactive oxygen species pathway. Subsequent
GSVA analysis further revealed multiple significantly upregulated
pathways in the high-risk group, encompassing cell cycle and
proliferation related pathways, stress and microenvironment related
pathways, and signal transduction pathways.

4.2.2 DNA repair and genomic instability

DNA repair pathway activation plays a crucial role in
maintaining genomic stability. Notably, a complex association
pattern was observed between DNA repair pathway enrichment
and TP53 mutations in the high-risk group. Our mutation analysis
revealed that TP53 mutation rates were significantly higher in high-
risk group patients compared to the low-risk group (36% vs 21%).
This was accompanied by elevated MATH scores, reflecting greater
tumor heterogeneity in the high-risk population.

Typically, TP53 mutations result in cell cycle checkpoint defects
and reduced DNA damage repair capacity. However, expression of
DNA repair-related genes was paradoxically increased in the high-
risk group. Nevertheless, this compensatory repair activation is
incomplete and still leads to the accumulation of genomic instability
while potentially promoting the development of treatment
resistance (59).
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4.2.3 Cell cycle dysregulation and checkpoint
defects

E2F targets pathway enrichment reflects cell cycle
dysregulation. E2F transcription factors promote cell proliferation
through S phase progression and DNA replication regulation.
Hyperactivation of the E2F pathway has been recognized as an
important driving factor in the malignant progression of HCC (60).
Dong et al. (61) further revealed that TP53 mutations affect E2F1-
mediated cell cycle progression by regulating the overexpression of
histone variant H2AFZ. Specifically, H2AFZ overexpression
regulates cell cycle signal transduction and DNA replication
through pathways involving multiple cancer-associated kinases
and E2F1, providing a molecular mechanism explanation for the
association between E2F pathway activation and TP53 mutations
observed in our high-risk group.

Furthermore, activation of the G2M checkpoint pathway has
special significance in the context of TP53 mutations. Under normal
circumstances, the TP53-mediated G1/S checkpoint serves as the
primary barrier preventing the replication of damaged DNA. When
this checkpoint is dysfunctional, more cells carrying DNA damage
enter the S phase for replication. In this scenario, the G2M
checkpoint faces greater pressure, needing to detect and respond
to increased DNA damage and replication stress generated during
the S phase. However, the G2M checkpoint function has inherent
limitations. While the G2M checkpoint can temporarily prevent
cells carrying DNA damage from entering mitosis, if DNA repair
mechanisms cannot completely repair all damage, these cells may
eventually bypass the checkpoint and enter division, leading to the
transmission of chromosomal instability. More critically, in tumors
with TP53 functional defects, the G2M checkpoint itself may also
become dysfunctional, with reduced sensitivity to DNA damage,
thereby allowing more genomically unstable cells to complete
division, further exacerbating the accumulation of genomic
instability (62).

4.2.4 Activation of oncogenic signaling pathways

In addition to cell cycle dysregulation, the PI3K/AKT/mTOR
signaling pathway regulates cell survival, proliferation, and
autophagy by integrating nutritional status, growth factor signals,
and energy metabolism. Activation of this pathway in HCC is
associated with tumor progression, angiogenesis, invasive
metastasis, and the development of multidrug resistance (63-65).
Similarly, MYC targets V1 not only regulates cell proliferation, but
also is a major regulator of cell metabolism, and its abnormal
activation is closely related to the aggressive phenotype and poor
prognosis of HCC patients (55, 66). The activation of the reactive
oxygen species pathway plays a dual role in the pathogenesis of
HCC. While moderate oxidative stress promotes tumor cell survival
and proliferation, excessive oxidative stress can cause extensive
DNA damage, including base modifications, DNA strand breaks,
and chromosomal aberrations (67). This oxidative damage is
consistent with the increased genomic instability we observed and
may be one of the important factors contributing to elevated
MATH scores.
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4.3 Immune microenvironment remodeling
and mechanisms of therapeutic resistance

Despite the ICD signature, tumors with high ICDRS scores do
not necessarily exhibit effective immune-mediated tumor control
(48). Instead, poor prognosis in high ICDRS tumors appears to
result from the promotion of an immunosuppressive
microenvironment, a state that can be explained by mechanisms
such as immune exclusion, where cytotoxic immune cells are
prevented from infiltrating the tumor core, and/or T cell
dysfunction, where infiltrated cells lose their effector functions (68,
69). Our immune cell infiltration analysis revealed the underlying
mechanisms of this seemingly paradoxical phenomenon.

Specifically, the high-risk group demonstrated abundant
immune cell infiltration, but these cells were predominantly
composed of immunosuppressive components: plasma cell,
follicular helper T cells, regulatory T cells, MO macrophages, and
neutrophils were significantly increased. This enrichment of
immunosuppressive cells creates an immunosuppressive
environment. The concomitant significant reduction in CD8+ T
cell infiltration in the high-risk group (Figure 10E) strongly suggests
that immune exclusion is a key mechanism underlying the
ineffective anti-tumor immunity. Similar phenomena were
confirmed in a clear cell renal cell carcinoma study by Wen et al.
(70), who found that high-risk group patients exhibited increased
Treg infiltration and decreased M1 macrophages, thereby forming
an immunosuppressive environment.

In contrast, tumors with lower ICDRS scores demonstrated
markedly different immune characteristics. The low-risk group was
enriched with more effector immune cells, including naive B cells,
memory B cells, CD8+ T cells, resting NK cells, monocytes, M1
macrophages, and resting mast cells. Extensive literature supports
the central role of effector immune cells such as CD8+ T cells and
M1 macrophages in anti-tumor immunity (71-74). The presence of
these anti-tumor immune cells may more readily stimulate effective
cytotoxic T cell responses, suggesting a more favorable immune
environment and better prognosis.

Single-cell communication analysis provided a mechanistic
foundation for this immune exclusion. In high ICDRS tumors,
cancer cells exhibited more complex intercellular communication
networks, establishing extensive signal exchanges with the
microenvironment via MDK and MIF signaling pathways.
Particularly, the MDK signaling pathway demonstrated stronger
activity in the high-risk group, with bidirectional signal exchanges
established between high-risk cancer cells and hepatocytes,
potentially promoting tumor growth and microenvironment
remodeling. More importantly, high-risk cancer cells were
characterized by enhanced MIF signal-sending capacity, which
promotes the establishment of an immunosuppressive
microenvironment by regulating macrophage function and
polarization states. Chen et al. (75) confirmed that MIF can
induce macrophage polarization toward the M2 phenotype,
thereby supporting tumor growth. This active reprogramming of
the microenvironment towards an immunosuppressive and barrier-
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like state offers a plausible mechanism for the observed exclusion of
CD8+ T cells.

Notably, intercellular communication networks of low-risk
cancer cells were significantly simplified, primarily characterized
by interactions with macrophages, while communication intensity
was relatively weakened. This may reflect a more balanced state of
tumor-immune interaction.

4.4 Clinical application potential and
personalized treatment guidance

The potential clinical application of ICDRS in HCC
management could significantly enhance current treatment
paradigms. At initial diagnosis, ICDRS could complement
conventional staging systems and risk stratification approaches,
potentially identifying high-risk patients who might benefit from
earlier aggressive intervention or closer surveillance protocols.

These findings were further validated in a drug sensitivity
analysis. Patients in the low-risk group showed higher sensitivity to
multi-kinase inhibitors (sorafenib, sunitinib, fretinib) and
chemotherapy drugs (doxorubicin, paclitaxel), which may be
related to their more active anti-tumor immune microenvironment.
Tumors are often classified into “cold” tumors that are
immunosuppressed and “hot” tumors that are immunoactive and
inflammatory (76), with the latter having better immunogenicity; At
the same time, Smith et al. (77) also inversely confirmed that tumors
with higher immune function scores showed worse sensitivity to a
variety of therapeutic drugs, further supporting the close correlation
between immune microenvironment status and treatment
responsiveness. On the contrary, patients in the high-risk group
showed relatively better response to specific targeted drugs (erlotinib,
lapatinib, gefitinib) and cisplatin, suggesting that different risk groups
may have different molecular target dependence and need
individualized treatment strategy selection. These findings provide
a theoretical basis for risk stratification-based personalized drug
strategies and reveal that tumors with different molecular
characteristics may require different therapeutic approaches.

From an implementation perspective, the 10-gene signature
(CLICI1, NAP1LI, CBX3, RAN, APOE, CD63, CLTA, SNRPG, FTL,
and POMP) could be assessed using RT-PCR or targeted RNA
sequencing, making it feasible for integration into clinical testing
workflows alongside established prognostic factors to guide
treatment decisions throughout the HCC care continuum. Our
nomogram integrating clinical characteristics provides
individualized 1-, 3-, and 5-year survival probability predictions,
serving as a valuable prognostic tool for clinical decision-making.

Near-term clinical translation focuses on three actionable
pathways: (1) validation of the 10-gene ICDRS in prospective
HCC cohorts undergoing sorafenib or immunotherapy, with
initial feasibility studies planned within 12-18 months using
existing clinical samples; (2) development of CLICI and NAP1L1
as therapeutic targets, building on our functional validation
showing their roles in HCC proliferation and invasion, with
potential for existing drug repurposing or novel inhibitor
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development; (3) integration of ICDRS with current BCLC
staging to create enhanced risk stratification algorithms,
particularly valuable for intermediate-stage patients where
treatment decisions are most challenging. The model’s ability to
predict differential drug sensitivity suggests potential clinical utility
for treatment selection, though this requires further validation.
While the identified immune microenvironment patterns offer
biomarkers for immunotherapy response prediction.

4.5 Study limitations and future directions

Although this study has made significant progress in
uncovering the importance of genes involved in immunogenic cell
death in HCC, several limitations remain. First, our heavy reliance
on public datasets introduces a potential selection bias. While these
resources are invaluable, they may not fully capture the
heterogeneity of HCC across different etiologies, clinical settings,
and geographical regions. This limitation crucially impacts the
generalizability of our ICDRS model and suggests that its
performance should be cautiously evaluated in specific
subpopulations not well-represented in current databases (e.g.,
NAFLD-driven HCC in Western cohorts). Additionally, the
temporal heterogeneity inherent in these datasets, where samples
were collected across different time periods with varying clinical
practices and technological platforms, introduces confounding
variables that our batch correction methods may not fully
address. The interconnected nature of genomic databases, where
similar patient populations, sample processing protocols, and
analytical pipelines are often shared across studies, limits the true
independence of our external validation and may create systematic
biases that cannot be eliminated through conventional validation
strategies. Furthermore, differences in survival endpoints, follow-up
protocols, and clinical management practices across cohorts
introduce outcome measurement bias that could artificially
influence our model’s apparent predictive accuracy, making the
observed performance potentially non-generalizable to
contemporary clinical settings.

Beyond dataset-derived biases, we must critically address the
risk of model overfitting. Although we employed robust
methodologies to mitigate this—including regularization
techniques within our RSF algorithm, external validation in two
independent cohorts, and systematic cross-validation during model
selection—the possibility that the ICDRS is overly optimized for
available dataset characteristics cannot be entirely ruled out. The
exceptional performance observed in the TCGA training set
compared to validation cohorts, combined with the high-
dimensional nature of transcriptomic data, means that some
features within our 10-gene signature might inadvertently capture
dataset-specific technical variances or biological redundancies
rather than solely the core biological signals of immunogenic cell
death. While the consistent performance across cohorts is
reassuring, the model’s efficacy could potentially diminish when
applied to populations with substantially different genetic
backgrounds or data generation protocols.
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Furthermore, the transition of the ICDRS model from
computational prediction to clinical utility faces significant
barriers. The absence of prospective clinical validation means its
real-world effectiveness remains unproven. Beyond a simple lack of
validation, we critically acknowledge that practical implementation
would face challenges such as the standardization of clinical assay
methods, patient acceptance, cost-eftectiveness, and integration into
clinical workflows—factors often overlooked in bioinformatics
studies but fundamental to translational impact.

A core set of limitations pertains to our experimental validation.
The functional analysis of CLIC1 and NAP1L1 was conducted initially
in only one cell line (HepG2), chosen for its well-established use in
HCC research and stable transfection characteristics. However, we
critically recognize that this approach is insufficient to account for the
well-documented molecular heterogeneity of HCC, particularly given
HepG2’s specific genotype (e.g., HBV-positive, wild-type p53).
Consequently, the oncogenic roles we observed may be cell-context-
dependent. Future validation in genetically distinct cell lines (e.g.
Huh7, SNU-398, PLC/PRE/5) representing diverse HCC subtypes is
essential to confirm the generalizability of our findings. Furthermore,
while computationally robust, our model lacks experimental validation
in patient-derived samples (e.g., ITHC confirmation of protein
expression in tissue microarrays). This gap not only limits the future
translational impact but also leaves the biological plausibility of our
computational inferences less firmly established. Moreover, another
central limitation of this study is the lack of direct experimental
evidence linking the identified hub genes, CLIC1 and NAPI1LI, to
the modulation of ICD itself. While our functional assays confirmed
their pro-tumorigenic roles in proliferation, migration, and invasion,
these experiments did not specifically quantify hallmark ICD events.
Furthermore, the precise signaling pathways downstream of CLIC1
and NAP1L1, such as AKT/mTOR, remain unexplored, limiting our
mechanistic understanding. Thus, the precise functional relationship
between these genes and the core immunogenic cell death process in
HCC remains to be experimentally defined.

Similarly, our drug sensitivity analysis, while insightful, is derived
from in vitro cell line data. We critically argue that these predictions
likely cannot fully recapitulate the complex tumor microenvironment
in vivo or account for patient-specific pharmacokinetics and
pharmacodynamics. The lack of correlation with clinical response
data means these predictions remain hypothetical and should be
viewed primarily as generating testable hypotheses for future study,
not as definitive therapeutic guides.

Finally, the mechanistic links between ICD and immune
microenvironment remodeling, particularly their temporal dynamics,
remain correlative. A critical limitation is that our study design cannot
confirm causality, which is essential for developing targeted
interventions that modulate ICD to improve clinical outcomes.

To address these interconnected limitations directly and bridge
the gap between computational prediction and clinical application,
we have formulated a targeted future research plan. We are
establishing a prospective clinical cohort study at our institution.
This initiative is specifically designed to: (1) expand functional
experiments to include a panel of HCC cell lines with diverse
genetic backgrounds (e.g., Huh7, SNU-398, PLC/PRF/5) and,

Frontiers in Immunology

10.3389/fimmu.2025.1649618

crucially, to directly investigate the role of CLIC1 and NAPILI in
regulating ICD by assessing key hallmarks such as calreticulin
exposure, ATP release, and HMGBI translocation, combined with
mechanistic investigations via Western blot analysis of key signaling
pathways (e.g., AKT/mTOR) and qPCR for related genes; (2)
Validate characteristic gene protein expression and its association
with immune-mediated cell death phenotypes in external patient
tissues; (3) Correlate the ICDRS risk score with actual treatment
responses (e.g., sorafenib, EGFR inhibitors), ultimately evaluating
its practical value in guiding personalized treatment decisions. This
comprehensive strategy is aimed expressly at transforming the
limitations identified herein into focused research objectives,
thereby enhancing the translational potential of our findings.

Despite these limitations, our study establishes a solid
foundation for clinical translation. In conclusion, our ICD-based
prognostic framework represents a paradigm shift toward precision
oncology in HCC management. The potential translational
opportunities include clinical validation of the 10-gene signature,
therapeutic targeting of CLIC1/NAPIL1 pathways, and
implementation of risk-stratified treatment protocols. Long-term
prospects encompass integration with emerging technologies such
as liquid biopsies, radiomics, and AI-driven treatment optimization,
potentially revolutionizing HCC patient outcomes through truly
personalized medicine approaches.
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