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Background: Hepatocellular carcinoma (HCC) lacks reliable prognostic

biomarkers for immunotherapy. Immunogenic cell death (ICD) represents a

promising therapeutic target, but its comprehensive characterization in HCC

remains unexplored.

Methods: We performed multi-omics integration of single-cell RNA sequencing

data from 7 HCC samples (GSE112271, 44,461 cells) with bulk transcriptomics

from three independent cohorts (TCGA-HCC [n=371], GSE14520 [n=242], ICGC

[n=445]). ICD activity was quantified using ssGSEA. We identified HCC-specific

ICD-related (HCC-ICDR) genes via WGCNA and optimized a prognostic model

by benchmarking machine learning algorithms. Experimental validation included

functional assays using CLIC1 and NAP1L1 overexpression in HepG2 cells.

Results: The ICD-based risk score (ICDRS) demonstrated superior prognostic

accuracy (C-index=0.839), validated across cohorts. Single-cell profiling revealed

macrophages exhibited the highest ICD activity. High-risk patients displayed

immunosuppressive microenvironments with enriched Tregs, M0macrophages, and

neutrophils, alongsidehyperactivatedDNArepair andMYCsignaling. Low-riskpatients

showed anti-tumor immunity with increased CD8+ T cells and M1 macrophages.

ICDRS predicted differential therapeutic vulnerabilities: low-risk patients showed

enhanced sensitivity to standard immunotherapy-compatible treatments including

sorafenib and doxorubicin, while high-risk patients demonstrated preferential

sensitivity to EGFR-targeted therapies. Experimental validation confirmed CLIC1 and

NAP1L1 significantly promoted HCCmalignant behaviors.

Conclusions: We established the comprehensive ICD-based prognostic

framework for HCC, revealing novel tumor-immune interactions and

therapeutic vulnerabilities. This model provides robust stratification for
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immunotherapy selection and advances precision medicine in HCC

management. Future clinical translation includes prospective validation and

development of companion diagnostics, offering potential pathways for

personalized HCC treatment implementation.
KEYWORDS

immunogenic cell death, hepatocellular carcinoma, multi-omics integration, precision
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1 Introduction

Hepatocellular carcinoma (HCC) accounts for approximately

80% of all liver cancers. Globally, there are about 700,000 new cases

of liver cancer annually, with a male-to-female incidence ratio of 2-

4:1. Each year, approximately 600,000 people die from liver cancer,

making it the third leading cause of cancer-related deaths (1, 2).

Understanding the underlying causes of this global burden

reveals significant geographic variations in HCC etiology. The

etiology of hepatocellular carcinoma varies by geographic region.

In Asia and sub-Saharan Africa, HCC is predominantly associated

with hepatitis B and C viral infections, while inWestern countries, it

is linked to non-alcoholic fatty liver disease (NAFLD) and alcoholic

liver disease. Overall, liver cancer development is commonly

associated with chronic liver disease (3, 4). Chronic viral

infections, DNA damage caused by persistent inflammation,

dysregulated cellular regeneration in the context of cirrhosis, and

activation of oncogenes coupled with loss of tumor suppressor gene

function contribute to the development of liver cancer.

Early-stage HCC is often asymptomatic due to the liver’s

compensatory capacity and is typically detected incidentally

during imaging. When HCC is detected early and treated with

surgery or ablation, the 5-year survival rate can reach 75%.

However, advanced HCC typically can only be managed with

chemotherapy or local arterial embolization, with a 2-year

survival rate of merely 20-25% (5, 6). Chemotherapy or targeted

therapy for advanced HCC patients is challenged by tumor drug

resistance, which leads to disease progression or recurrence (7). One

significant cause of this resistance is immunosuppression in the

tumor microenvironment, making immune enhancement

particularly important for effective treatment.

Given these therapeutic limitations, novel approaches targeting

immune mechanisms have gained attention. Immunogenic cell

death (ICD) represents one such promising strategy. ICD, distinct

from other forms of cell death, not only induces apoptosis but also

activates the body’s adaptive immune system against tumor cells.

The underlying mechanism involves dying cells releasing or

exposing a series of damage-associated molecular patterns

(DAMPs), such as extracellular ATP, ecto-calreticulin (CRT), and

high mobility group box 1 protein (HMGB1) (8–10). These signals

promote dendritic cell uptake of tumor antigens and activate T cell
02
responses, thereby forming specific anti-tumor immune memory

responses (11). Some research has begun to explore certain drugs

such as Mecheliolide (7) and Icaritin (12), or physical effect (13)-

mediated ICD enhancement mechanisms. This provides new

directions for tumor treatment.

Current multi-omics studies have revealed ICD characteristic

changes and potential therapeutic targets in neuroblastoma (14).

clear cell renal cell carcinoma (15), and gastric cancer (16).

However, comprehensive ICD characterization in hepatocellular

carcinoma remains lacking. To address this gap, we systematically

investigated the ICD landscape in HCC, identified key regulatory

genes, and validated their functional roles through experimental

approaches, providing new therapeutic targets for HCC treatment.
2 Materials and methods

2.1 Data sources

Our study integrated HCC data from three major databases:
1. The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/) (17) provided gene expression

profiles and corresponding survival data from 371

HCC patients.

2. The Gene Expression Omnibus (GEO) database (https://

www.ncbi.nlm.nih.gov/geo/) contributed two key datasets.

GSE112271 (18) contains single-cell RNA sequencing data

from 7 HCC samples, which was utilized to provide insights

at the cellular level. GSE14520 (19) encompasses tissue

sequencing data and survival information from 242 HCC

patients and was employed as an independent

validation cohort.

3. The International Cancer Genome Consortium (ICGC)

platform (https://dcc.icgc.org/) (20) supplemented our

study with transcriptome data and clinical follow-up

information from 445 HCC patients.
Raw count data were converted to TPM values, log2-

transformed [log2(TPM + 1)], and subjected to stringent quality

control. Only samples with complete genomic and clinical data were
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retained. Additionally, we corrected batch effects across cohorts

using the ComBat algorithm prior to integration analysis.

Specifically, the ComBat algorithm (from the sva R package,

version 3.48.0) was applied to adjust for batch effects arising from

the different data sources (TCGA, GEO, ICGC). The batch covariate

was explicitly defined as the dataset of origin. ComBat was run

using its standard parametric empirical Bayes framework

(par.prior=TRUE) to model and adjust for location and scale

shifts between batches. Prior to correction, genes with zero

variance across samples were removed to ensure algorithm

stability. The success of integration and removal of major

technical artifacts were assessed by performing Principal

Component Analysis (PCA) on the expression matrix before and

after correction. The resulting PCA plots were visually inspected,

which confirmed substantial reduction in batch-specific clustering

and improved mixing of samples from different cohorts

post-correction.
2.2 Single-cell analysis

2.2.1 Data preprocessing
Single-cell data preprocessing was performed using Seurat

package (v5.0.0) (21). Quality control filters included: minimum 3

cells per gene, minimum 250 genes per cell, mitochondrial gene

expression <15%, and total RNA counts >1000. This yielded a

reliable dataset for downstream analysis.

2.2.2 Data normalization and dimensionality
reduction

Data normalization is a critical step in single-cell transcriptomic

analysis. The “LogNormalize” method (22) was adopted for data

normalization, using 10000 as the scaling factor, and 2000 highly

variable genes were selected through the “vst” method. To eliminate

batch effects, we performed the Harmony algorithm (harmony v1.0)

(23) for integration of data from multiple samples with the following

optimized parameters: group.by.vars=“orig.ident” for batch variable

specification, assay.use=“SCT” for normalized data input, and

max.iter.harmony=20 for convergence optimization. For both bulk

and single-cell data integration, we systematically evaluated batch

correction effectiveness through: (1) Principal component analysis

(PCA) visualization to assess sample clustering patterns before and

after correction; (2) UMAP dimensional reduction plots to confirm

elimination of sample-specific clustering while preserving biological cell

type distinctions; (3) For single-cell data, successful batch integration

was validated by examining the mixing of samples from different

batches in the same cell type clusters, ensuring that technical variation

was removed while biological heterogeneity was maintained.

Following successful integration, we proceeded with

downstream analysis. PCA was performed on the integrated data,

and the top 30 principal components were selected based on elbow

plot analysis for subsequent dimensionality reduction. Cellular

topology and heterogeneity were effectively visualized using

UMAP and t-SNE methods based on the Harmony-corrected

embeddings (24).
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2.2.3 Cell type annotation
Cell type annotation was performed using a combination of

automatic and manual approaches. First, we used the SingleR

package (25) and the Human Cell Atlas database (https://

www.humancellatlas.org/) to carry out automatic cell type

annotation. The specific marker genes for each of the initial

clusters are provided in Supplementary Table S2. Next, manual

validation was performed by detecting reported cell type-specific

markers, including ALB and SERPINA1 (Hepatocyte), GPC3

(Cancer cell), AQP1, TIE1, VWF, EDNRB, CCL14 (Endothelial

cell), ACTA2, COL1A1, DCN, COL1A2 (Fibroblast cell), FOLR2,

AIF1, CD68 (Macrophage), NKG7, GNLY, CCL5 (NKT cell).

2.2.4 Analysis of immune cell death scores
Using single-sample gene set enrichment analysis (ssGSEA)

(26), we quantified ICD scores for individual cells based on

established ICD gene sets (Supplementary Table S3) (27). To

comprehensively evaluate ICD scores distribution patterns across

cell types, Kruskal-Wallis rank sum test was used to assess overall

differences. For significant differences (p<0.05), we performed

pairwise comparisons with Wilcoxon rank sum test, applying

Bonferroni correction for multiple testing. Box plots with

significance indicators were generated comparing macrophages to

other cell populations. Furthermore, we stratified cancer cells and

macrophages into high and low groups based on median ICD

scores, then identified DEGs using the FindAllMarkers function

(minimum expression threshold=0.35). This approach aimed to

reveal molecular characteristics and cellular heterogeneity of ICD at

single-cell resolution in HCC.
2.3 Weighted gene co-expression network
analysis

To explore the relationship between ICD scores and gene

expression patterns, weighted gene co-expression network

analysis (WGCNA) was performed on published ICD-related

gene sets (27) using the WGCNA R package (28). TCGA-HCC

data was preprocessed by filtering zero-variance genes and outlier

samples (29). For the scale-free topology network construction, a

soft threshold power of five was chosen. This was the lowest power

at which the network’s scale-free topology fit index (R2) first

reached the standard threshold of 0.85, ensuring a balance

between network properties and connectivity. Other key

parameters included a minimum module size of 50 and a merge

cut height of 0.15. Subsequently, gene modules were identified by

applying the dynamic tree cutting algorithm, and module

eigengenes (MEs) (30) were calculated. We further analyzed

associations between modules and ICD scores through Pearson

correlation, and identified significant modules using Student’s t-

test. Finally, gene significance (GS) and module membership (MM)

were calculated and visualized in scatter plots to identify key genes

in significant modules, termed module genes. Additionally,

differential expression analysis between TCGA-HCC samples and

normal samples was performed to identify TCGA-DEGs, visualized
frontiersin.org

https://www.humancellatlas.org/
https://www.humancellatlas.org/
https://doi.org/10.3389/fimmu.2025.1649618
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1649618
using an enhanced volcano plot and a circular heatmap displaying

the top 50 up-regulated and top 50 down-regulated DEGs. Finally,

we acquired a set of genes related to ICD in HCC (HCC-ICDR

genes) by intersecting TCGA-DEGs with module genes obtained

from WGCNA.
2.4 Integration and comparison of multiple
machine learning models

To identify the most robust prognostic prediction model, various

machine learning algorithms and their combinations were

systematically evaluated for HCC prognosis prediction performance.

We first perform batch effect correction on TCGA, GSE14520, and

ICGC datasets. The expression matrices underwent standardization

processing through the ComBat algorithm (31), which eliminated

batch differences from different data sources. Furthermore, TCGA

served as the training set, and the GSE14520 and ICGC datasets served

as external testing sets to ensure the robustness of the model. Basic

algorithms were tested in this study included Random Survival Forest

(RSF), Elastic Net (Enet), Stepwise Cox regression (StepCox),

CoxBoost, Partial Least Squares Cox regression (plsRcox), Super

Principal Component analysis (SuperPC), Gradient Boosting

Machine (GBM), Survival Support Vector Machine (survival-SVM),

Ridge regression, and Lasso regression. Algorithm-specific parameters

were optimized: CoxBoost (penalty coefficient and iteration steps),

GBM (interaction depth=3, minimum observations=10, optimal tree

number via cross-validation). In addition, we investigated combination

strategies of basic algorithms, such as RSF+GBM, RSF+Lasso, and

CoxBoost+GBM, ultimately evaluating up to 114 different model

combinations. The Concordance index (C-index) (32) was adopted

as the primary evaluation metric, which measures the accuracy of

predicted survival time rankings. We constructed each model on the

training set, and tested its generalization ability on two independent test

sets. Different models’ C-indices across datasets were visualized

through heatmaps, and models were ranked according to the average

C-index values of validation sets to select the final prognostic prediction

tool with optimal predictive performance and stability. We finally

selected the optimal model based on internal validation performance,

external validation results across two independent cohorts, and model

stability across different datasets.
2.5 Establishment and validation of the
consensus signatures

Based on the selected optimal model, namely the RSF model, this

study identified the top 10 key features with the strongest prognostic

predictive power from candidate features by evaluating feature

importance, termed the ICD-related signatures (ICDRS), to predict

overall survival (OS) of HCC patients. Specifically, key gene markers

were systematically ranked and identified by analyzing each feature’s

contribution to model prediction accuracy. To visually demonstrate

key predictors, we plotted feature importance bar charts, with

features sorted and visualized according to their contribution to
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model predictions. The risk score for each patient, termed ICDRS,

was derived directly from the trained RSFmodel. Specifically, we used

the predict function from the randomForestSRC package to obtain

the predicted mortality risk for each sample. This output, denoted as

predicted, represents the ensemble mortality estimate from all trees in

the forest and serves as the continuous risk score. A higher ICDRS

indicates a greater probability of experiencing the event (death).

Patients were then dichotomized into high- and low-risk groups

using the median ICDRS of the training cohort (TCGA) as the

cutoff threshold.

To comprehensively evaluate the model ’s predictive

performance, a multi-faceted validation strategy was adopted. First,

we thoroughly explored survival differences between different risk

stratifications through Kaplan-Meier survival curve analysis.

Subsequently, time-dependent receiver operating characteristic

(ROC) curve analysis (33) was introduced to calculate the area

under the curve (AUC) for 1-year, 3-year, and 5-year predictions,

fully reflecting the model’s predictive accuracy at different follow-up

time points. Meanwhile, we applied the model to two independent

validation sets, and performed identical survival and ROC analyses to

verify the model’s generalization ability.
2.6 Clinical feature correlation and survival
analysis

To thoroughly evaluate the clinical utility of ICDRS, a multi-

dimensional analysis was conducted on the TCGA-HCC dataset,

encompassing correlation studies with clinical features and survival

analysis. First, we constructed a circos plot of clinical characteristics

to visually demonstrate the distribution patterns of TNM staging,

age, gender, and survival status among different risk groups, with

chi-square tests being employed to assess the significance of inter-

group differences. The distribution characteristics of risk scores

across different T stages were analyzed in depth through violin plots

and box plots, with statistical differences evaluated based on the

Wilcoxon rank-sum test. We then created stacked bar charts to

illustrate the proportion of clinical features in high and low risk

groups, comprehensively elucidating the association between risk

scores and tumor staging. Gene expression data were also analyzed,

with heatmaps being generated to display differential gene

expression, intuitively revealing the connection between risk

scores and gene expression profiles. Furthermore, we developed a

logistic regression model to predict M staging, with its predictive

performance assessed through ROC curves. Finally, stratified

Kaplan-Meier survival analyses were performed according to age

and clinical staging to compare survival differences between high

and low risk groups, aiming to comprehensively validate the

prognostic capability of ICDRS.
2.7 Construction of nomographs

To further enhance the model’s predictive accuracy and

prognostic capability, a nomogram combining ICD and clinical
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features was developed for quantifying the expected survival period

of HCC patients. Key variables including age, gender, T stage, N

stage, and M stage initially underwent univariate Cox regression

analysis, which aimed to identify potential prognostic factors

associated with overall survival. Subsequently, a multivariate Cox

proportional hazards regression model was constructed, with the

aforementioned clinical covariates being adjusted to determine

independent prognostic factors. We then created a forest plot to

visually demonstrate the prognostic impact, presenting the hazard

ratios of each variable along with their 95% confidence intervals.

Building upon this foundation, a comprehensive nomogram (34)

integrating risk scores and key clinical parameters was developed to

provide individualized predictions of 1-, 3-, and 5-year survival

probabilities. We rigorously evaluated predictive accuracy and

clinical utility of the nomogram at different time points through

the calibration curves and decision curve analysis. The C-index was

utilized to quantitatively measure the discriminative ability of the

model, providing robust statistical validation for the

prognostic model.
2.8 Functional enrichment analysis

To explore the biological significance of risk stratification based

on ICDRS, multiple methods were employed for functional

enrichment analysis. First, we performed the DEG analysis

between high-risk and low-risk patient groups using the limma

package. Subsequently, gene set enrichment analysis (GSEA) was

conducted using the Hallmark gene sets from MSigDB (v2023.1) to

investigate functional pathways of DEGs. For each gene set, we

calculated normalized enrichment scores and significance levels

after multiple testing correction (FDR q-value), and selected gene

sets having FDR<0.05 for visualization. Second, gene set variation

analysis (GSVA) was applied to quantify pathway activities in

individual samples, and pathway enrichment results were

visualized through t-value-based bar plots, highlighting risk-

associated pathways. We then constructed the correlation

heatmaps to intuitively demonstrate the relationships between

pathway activities and risk scores. Finally, for significant

pathways (log-rank p<0.05), hazard ratios (HR) and 95%

confidence intervals were computed using Cox proportional

hazards models.
2.9 Mutation analysis and heterogeneity
assessment between the two risk groups

To investigate genomic heterogeneity features associated with

ICD, we first calculated Mutant-Allele Tumor Heterogeneity

(MATH) scores for each sample using the maftool package (35),

then intuitively presented distribution characteristics through violin

plots, and evaluated statistical significance using the Wilcoxon

rank-sum test. Afterwards, patients were divided into high and

low groups based on the median MATH score, followed by Kaplan-
Frontiers in Immunology 05
Meier survival analysis to explore the association between tumor

heterogeneity and prognosis. Subsequently, by combining MATH

scores with risk scores, we further classified patients into four

subgroups, aiming to comprehensively reveal their joint

prognostic value. Meanwhile, mutation landscape analysis was

performed for high and low risk groups separately, displaying the

top 20 mutated genes through waterfall plots, and calculating tumor

mutation burden (TMB). Using the “somaticInteractions” function,

we conducted co-occurrence and mutual exclusivity analysis, which

revealed interaction patterns of gene mutations in high and low

risk groups.
2.10 Validation of risk signatures and
analysis of intercellular communication
based on single-cell data

To validate the biological significance of our constructed ICDRS

at the single-cell level, I applied the 10 previously identified key

genes to single-cell RNA sequencing dataset (GSE112271) for

verification analysis. First, the expression distribution patterns of

these 10 genes across different cell types in UMAP dimensionality

reduction space were visualized using the “FeaturePlot” function.

Based on ICDRS, we then calculated risk scores for each cell using

the ssGSEA algorithm with a Poisson distribution kernel density

function. The risk scores were standardized through Z-score

normalization, and cells were classified into high-risk and low-

risk groups using a threshold of Z-score greater than 0. To explore

functional differences between cells in different risk groups, we

identified DEGs between risk groups using the “FindAllMarkers”

function (logfc.threshold=0.35, min.pct=0.35) and revealed relevant

biological processes through KEGG pathway enrichment analysis,

with particular focus on biological pathways related to ICD.

Simultaneously, GSEA was employed based on MSigDB Hallmark

gene sets to identify biological pathways specifically enriched in the

high-risk group.

Furthermore, to elucidate differences in communication patterns

between different risk cancer cells and other cell types in the

microenvironment, we constructed composite labels combining risk

stratification and cell types, redefining cancer cells as “high-riskscore

cancer cells” and “low-riskscore cancer cells” while maintaining

original annotations for other cell types. Cell-cell communication

analysis was performed using the CellChat package (36), identifying

overexpressed ligand-receptor pairs using the human CellChatDB

database and incorporating protein interaction network information.

We then applied a minimum cell count threshold of 10 for

communication filtering and calculated cell-cell communication

probabilities and signaling pathway activities. Finally, for key

signaling pathways such as MDK, VEGF, and MIF pathways,

signaling communication heatmaps were generated to systematically

compare differences in signaling intensity between high/low-riskscore

cancer cells and microenvironment cells, comprehensively revealing

the communication characteristics and potential biological

mechanisms of cancer cells stratified by ICDRS in the TME.
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2.11 Correlation analysis between tumor
immune microenvironment characteristics
and risk score model

To systematically evaluate the relationship between immune

characteristics in the HCC tumor microenvironment and our

constructed risk scoring model, multiple computational methods

were employed for comprehensive analysis. First, we conducted the

ESTIMATE score analysis (37) on HCC samples from the TCGA

database using the IOBR package (38), calculating stromal score,

immune score, and ESTIMATE score for each sample, and

compared the differences between high and low risk groups.

Stromal components and immune cell infiltration levels in tumor

samples are assessed by the ESTIMATE algorithm through specific

gene expression feature. We then used Wilcoxon rank-sum test to

compare differences between high and low risk groups, and created

the boxplots using the ggplot2 package (39) for visualization.

Thereafter, ssGSEA method was adopted for enrichment analysis

of immune-related pathways.We integrated a series of immune-related

pathway gene sets. Activity scores of these pathways in each sample

were first calculated using the “gsva” function. We then computed the

significance of pathway activity differences between high and low risk

groups through the “diff_pathway” function, while heatmaps were

created using the pheatmap package (https://cran.r-project.org/web/

packages/pheatmap/index.html) to visually display differential

patterns of immune pathway activity between different risk groups.

To gain deeper insight into immune cell composition in the TME,

CIBERSORT algorithm (40) was used to quantitatively analyze the

relative abundance of 22 immune cell types in samples. This algorithm,

based on linear support vector regression principles, can accurately

estimate distribution proportions of various immune cell types. Then,

violin plots were created using the “vioplot_plot” function to visually

compare differences in abundance of various immune cells between

high and low risk groups. Additionally, we analyzed the correlations

between 10 key genes in the risk model and immune cell infiltration,

with correlation heatmaps visually displaying these complex

association networks. A significance level of p<0.05 was used for all

statistical analyses, with Benjamini-Hochberg method applied for

correction during multiple comparisons.

To enhance reliability of analysis results, comprehensive

evaluation was conducted in three aspects: (1) Spearman

correlation analysis was performed to assess correlations between

immune cell infiltration levels and risk scores, and correlation

scatter plots were created using ggplot2; (2) Wilcoxon rank-sum

test was used to compare differences in immune cell infiltration

between high and low risk groups; (3) The relationship between

immune cell infiltration levels and the patients’ OS was evaluated

through Kaplan-Meier survival analysis and log-rank test,

generating independent survival curves for each immune cell

type, and recording corresponding p-values and optimal cutoff

points. We further established Venn diagrams using the

VennDiagram package (https://cran.r-project.org/web/packages/

VennDiagram/index.html) to identify key immune cell types

simultaneously satisfying these three conditions, which may play

important roles in HCC development, progression, and prognosis.
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2.12 Drug sensitivity analysis prediction

The Cancer Genomics Project 2016 (CGP2016) database was

utilized to predict the sensitivity of high-risk and low-risk HCC

patient samples to common anticancer drugs. We constructed a cell

line-based ridge regression model using the pRRophetic package

(41), and estimated the half-maximal inhibitory concentration

(IC50) (42) values for each drug sample using the ICDRS from

HCC. The specific analysis process follows: First, the CGP2016

dataset and corresponding gene expression data were loaded.

Subsequently, we performed drug sensitivity predictions for each

compound using the “pRRopheticPredict” function. To ensure data

quality, only samples recorded in both drug sensitivity data and risk

score data were included in the analysis. For each drug, we

compared the differences in IC50 values between high-risk and

low-risk groups using the Wilcoxon rank-sum test, with p<0.05

established as the statistical significance threshold. The median

IC50 values for each risk group were calculated, and drug sensitivity

differences were visualized through box plots. To facilitate

interpretation of results, we sorted all analyzed drugs by P-value,

and saved drug sensitivity results with statistical significance

separately. This approach enables systematic evaluation of

differential sensitivity patterns to anticancer drugs across different

ICDRS risk groups, providing important reference for the

development of individualized treatment strategies.
2.13 Functional verification analysis

2.13.1 Cell culture and vector construction
The human hepatocellular carcinoma cell line HepG2 was

purchased from the Affiliated hospital of Qingdao university and

maintained in DMEM medium (Gibco, USA) supplemented with

10% fetal bovine serum (FBS, Gibco, USA) and 1% penicillin-

streptomycin (Invitrogen, USA) at 37 °C with 5% CO2. The

complete coding sequences of human CLIC1 and NAP1L1 genes

were amplified by PCR and then cloned into pcDNA3.1(+)

eukaryotic expression vector (Invitrogen, USA) to construct

overexpression plasmids pcDNA3.1-CLIC1 and pcDNA3.1-

NAP1L1, with empty pcDNA3.1 vector serving as negative

control. All recombinant plasmids were verified by DNA

sequencing before being used for transfection experiments.

2.13.2 Establishment of stable cell lines
The complete coding sequences of human CLIC1 and NAP1L1

genes were cloned into the lentiviral vector pLVX-IRES-Puro

(Clontech, USA) to construct recombinant plasmids pLVX-CLIC1

and pLVX-NAP1L1, with the empty vector pLVX-IRES-Puro

serving as a negative control. We employed a three-plasmid

system for lentiviral packaging: the recombinant plasmids were

co-transfected with packaging plasmid psPAX2 and envelope

plasmid pMD2.G into 293T cells at a mass ratio of 4:3:1, using

Lipofectamine 3000 transfection reagent (Invitrogen, USA)

according to the manufacturer’s instructions. Virus-containing

supernatants were collected at 48 and 72 hours post-transfection
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and filtered through a 0.45mm filter to remove cellular debris.

HepG2 cells were infected when they reached 70-80% confluence

by adding virus-containing medium supplemented with polybrene

(8mg/mL, Sigma, USA). We then replaced the medium with fresh

culture medium 24 hours after infection. Puromycin (2mg/mL,

Sigma, USA) was added 48 hours post-infection for positive clone

selection, which continued for 10–14 days until stable expression

cell lines were established. Moreover, we designated these cell lines

as OE-CLIC1, OE-NAP1L1, and OE-NC (empty vector control),

and verified stable expression of target proteins by Western blot.
2.13.3 Western blot analysis for protein
expression

Total cellular proteins were extracted and quantified using

standard protocols. Proteins (30mg) were separated by SDS-

PAGE, transferred to PVDF membranes, and probed with

primary antibodies against CLIC1, NAP1L1, b-tubulin, and

GAPDH, followed by HRP-conjugated secondary antibodies.

Protein bands were visualized by ECL and quantified using

ImageJ software, with b-tubulin or GAPDH as loading controls.
2.13.4 CCK-8 cell proliferation assay
The stably transfected cells were seeded in 96-well plates at a

density of 3×10³ cells per well, with six replicate wells for each

group. After 24, 48, and 72 hours of culture, we added 10 mL of

CCK-8 reagent (Dojindo, Japan) to each well and incubated at 37 °C

for 2 hours. The absorbance at 450 nm was measured using a

microplate reader (BioTek, USA), and cell growth curves

were plotted.
2.13.5 Clone formation experiment
The stably transfected cells were seeded in 6-well plates at a

density of 1000 cells per well, with three replicate wells established for

each group. We cultured cells under standard conditions for 14 days,

during which we replaced the culture medium every 3 days. At the

end of the experiment, cells were fixed with 4% paraformaldehyde for

20 minutes and stained with 0.1% crystal violet solution for 15

minutes, followed by thorough washing with PBS and air-drying.

The number of colonies (defined as cell clusters containing ≥50 cells)

was counted under a microscope.
2.13.6 Transwell migration and invasion assays
5×104 cells were suspended in 200 mL serum-free DMEM and

added to the upper chamber of Transwell inserts (8 mm pore size,

Corning, USA), while 600 mL of complete medium containing 10%

FBS was placed in the lower chamber as a chemoattractant. After

incubation at 37 °C for 24 hours, we gently removed the non-

migrated cells on the upper surface with sterile cotton swabs. Cells

that had migrated through the membrane were fixed with 4%

paraformaldehyde for 20 minutes and stained with 0.1% crystal

violet for 15 minutes. We then counted the migrated cells in five

randomly selected fields (200× magnification).

For the invasion assay, the upper chamber was pre-coated with

50 mL of diluted Matrigel (BD Biosciences, USA; 1:8 dilution) and
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incubated at 37 °C for 1 hour to allow gelation. We performed the

remaining experimental procedures as described for the

migration assay.

2.13.7 Wound healing assay
The stably transfected cells were seeded in 6-well plates at a density

of 5×105 cells per well and cultured until cell confluence exceeded 90%.

We created a straight line wound on the cell monolayer using a sterile

200 mL pipette tip, followed by gentle washing with PBS three times to

remove detached cells and debris. The medium was then replaced with

serum-free DMEM for continued culture. We took the photographs at

the same position at 0, 24, and 48 hours to document wound healing

(100× magnification). ImageJ software was used to measure the wound

area, and the healing rate was calculated as: Healing rate (%)=(Initial

wound area - Wound area at detection time point)/Initial wound area

× 100%.
2.14 Statistical analysis

All experiments were independently repeated at least three

times, and data are presented as mean ± standard error of the

mean (SEM). We performed the statistical analyses using GraphPad

Prism 8.0 software. Comparisons between two groups were

analyzed using Student’s t-test, while comparisons among

multiple groups were conducted using one-way ANOVA followed

by Tukey’s multiple comparison test. p<0.05 was considered

statistically significant, with significance levels indicated as:

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, ns means no

significant difference.
3 Results

An overview of the study design is presented in Figure 1.
3.1 Single-cell transcriptome reveals ICD
characteristic in HCC

Utilizing single-cell RNA sequencing, we comprehensively

examined the expression landscape of ICD across different cell

types. Eleven distinct cell clusters were initially identified, and their

spatial distribution was visualized through UMAP (Figure 2A). We

subsequently employed canonical marker gene expression profiles

to identify and characterize major cell populations using UMAP

dimensionality reduction. Six primary cell types were successfully

delineated (Figures 2B, C), encompassing a total of 44,461 cells: (1)

cancer cells expressing ALB, SERPINA1, and GPC3; (2)

macrophages with high expression of FOLR2, AIF1, and CD68;

(3) endothelial cells specifically expressing AQP1, TIE1, VWF,

EDNRB, and CCL14; (4) fibroblasts enriched with ACTA2,

COL1A1, DCN, and COL1A2; (5) hepatocytes with high

expression of ALB and SERPINA1; and (6) NKT cells specifically

expressing NKG7, GNLY, and CCL5. Additionally, we quantified
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the activity of ICD in different cell types, presenting the continuous

distribution of ICD scores using UMAP (Figure 2D). Statistical

analysis (Figure 2E) further revealed that immune cell like

macrophages exhibited significantly highest ICD scores compared

to other cell types (p<0.001).
3.2 WGCNA network analysis identifies
ICD-DEGs in bulk RNA sequencing

In the study of ICD in HCC, the TCGA-HCC dataset was

analyzed using WGCNA to identify and characterize ICD-DEGs

between different ICD score groups. Initially, we analyzed DEGs by

comparing macrophages and cancer cells across ICD score stratified

groups. A total of 317 common DEGs were then identified

(Figure 3A), comprising 710 DEGs from macrophages and 964

DEGs from cancer cells, revealing shared molecular signatures

between these cell types. To further explore the molecular

mechanisms of ICD, we conducted WGCNA on the common

DEGs. Intricate sample clustering patterns and ICD score

distributions were revealed through the hierarchical clustering

dendrogram (Figure 3B). Furthermore, the dynamic tree-cutting

algorithm was applied to identify three distinct functional gene

modules, as visualized in the cluster dendrogram (Figure 3C).

Notably, module-trait relationship heatmap demonstrated that the

turquoise module exhibited the most significant positive correlation

with ICD traits (cor=0.4, p=2e-15), while the blue module revealed

a pronounced negative association (cor=-0.37, p=2e-13, Figure 3D).

Moreover, significant positive correlations between GS and MM

were revealed in the turquoise (cor=0.17, p=0.047, Figure 3E) and
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blue (cor=0.25, p=0.01, Figure 3F) modules, suggesting functional

coherence related to ICD. To narrow down the candidate gene pool,

enhanced volcano plot showed the TCGA-DEGs between TCGA-

HCC samples and normal sample (Figure 3G). Subsequently, the

circular heatmap was conducted to further show top 100 regulated

DEGs (Figure 3H). Moreover, a Venn diagram (Figure 3I) revealed

106 intersecting genes, termed HCC-ICDR genes, between the

identified modules and TCGA-DEGs. These genes demonstrated

significant involvement in ICD mechanisms across both whole-

tissue and single-cell transcriptomic levels.
3.3 Prognostic feature selection and
validation in HCC using machine learning

We developed a consensus signature (ICDRS) using integrated

machine-learning algorithms. The RSF algorithm achieved the

highest C-index (0.839) with parameters: ntree=1000, nodesize=5,

and splitrule=“logrank” (Figure 4A, Supplementary Table 1). This

selection was further supported by consistent external validation

performance (GSE14520: AUC 0.809-0.839; ICGC: AUC 0.821-

0.832) and RSF’s methodological advantages, including stable

feature selection through ensemble mechanisms and built-in

importance ranking that eliminates additional computational

overhead required by other algorithms. Moreover, the top 10

features including CLIC1, NAP1L1, CBX3, RAN, APOE, CD63,

CLTA, SNRPG, FTL and POMP in the RSF model were

systematically identified and ranked based on their variable

importance, showing the high relative importance (Figure 4B). To

rigorously evaluate the prognostic potential of ICDRS, Kaplan-
FIGURE 1

Study flowchart.
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Meier survival analyses were conducted across three cohorts.

Patients were categorized into distinct risk groups, which unveiled

statistically significant survival differences in the TCGA training set

(p<0.001) (Figure 4C), with consistent findings observed in the

subsequent testing sets (all p<0.001, Figures 4E, G).

To systematically assess the time-dependent predictive

performance of the prognostic model, time-dependent ROC

curves were generated at 1-, 3-, and 5-year intervals. The AUC

values for the TCGA dataset demonstrated robust predictive

accuracy, with 0.962 (1-year), 0.985 (3-year), and 0.972 (5-year)

(Figure 4D). The predictive performance was then confirmed in two

validation datasets. Specifically, the GSE14520 validation dataset

exhibited AUC values of 0.809 (1-year), 0.839 (3-year), and 0.819

(5-year) (Figure 4F). Similarly, the ICGC validation set showed

AUC values of 0.821 (1-year), 0.832 (3-year), and 0.796 (5-year)

(Figure 4H), demonstrating robust predictive consistency and

significant clinical utility.
3.4 Performance evaluation and clinical
relevance analysis of ICDRS in HCC

We comprehensively evaluated the clinical utility of the ICDRS

for HCC. Initially, significant differences in clinical characteristics
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were revealed through the pie chart (Figure 5A) between high-risk

(n=183) and low-risk (n=182) groups, including T stage (p<0.001),

gender (p<0.0267), and survival status (p<0.001). Furthermore,

Figure 5B illustrated the risk score distributions across T1-T4

stages, while Figure 5C compared early (T1-2) and late (T3-4)

stages. Notably, a significant upward trend in risk scores was

observed as tumor staging progressed. The stacked bar plot

(Figure 5D) then visually presented T stage proportions across

different risk groups. A higher proportion of late-stage T

classifications (T3-T4) was significantly concentrated in the high-

risk group, suggesting that high-risk patients may face more severe

tumor progression and adverse prognosis. Additionally, Figure 5E

illustrated that the gene variables ultimately selected for the model

were generally upregulated in the high-risk group, providing crucial

insights into the biological underpinnings of ICDRS. We employed

the ROC curve (Figure 5F) to assess the model’s performance in

predicting distant metastasis, with an AUC of 0.752. Additionally,

Kaplan-Meier survival curves (Figures 5G-J) demonstrated

significantly higher survival probabilities (all p<0.001) for the

low-risk group across various clinical subgroups, including early

(I-II) and late (III-IV) stages, as well as age-stratified cohorts (≤60

and >60 years). High-risk patients consistently exhibited markedly

shorter survival periods across all subgroups, further validating the

prognostic value of ICDRS in HCC.
FIGURE 2

Single-cell transcriptome reveals ICD characteristic in HCC. (A) Umap plot reflecting the partitioning of all cells into 11 distinct clusters. Different
colors represent various cell clusters. (B) Umap plot showing the 6 distinct cell types identified with the DEGs across 11 clusters. Different colors
represent distinct cell types. (C) Dot plot depicting the gene expression profile across cell types. Dot size indicates the percentage of cells expressing
the genes, and dot color represents the average expression level, with red indicating positive expression and blue representing negative expression.
(D) Cell-level distribution of ICD score across UMAP embedding. Darker colors represent lower ICD scores, while lighter colors indicate higher ICD
scores. (E) Box plot showing the ICD score distribution across different cell types, highlighting significant differences between macrophages and
other cell populations. ***p<0.001.
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3.5 Construction and validation of a
prognostic nomogram model integrating
ICDRS and clinical features

To evaluate the potential of ICDRS as an independent prognostic

factor for HCC, we conducted comprehensive cox regression analyses

that integrated clinical parameters (age, gender, TNM stage, clinical

stage, grade) with the risk score. As shown in Figure 6A, T stage

(p<0.001), M stage (p<0.019), clinical stage (p<0.001), and risk score

(p<0.001) were identified as potential prognostic factors associated

with OS. The subsequent multivariate analysis (Figure 6B) further

confirmed that age (p<0.012), and risk score (p<0.001) still

significantly influenced OS after adjusting for other clinical

characteristics, serving as truly independent prognostic factors. A

prognostic scoring nomogram was constructed based on the ICDRS

and clinical characteristics (Figure 6E). Furthermore, the calibration

curves showed excellent alignment between predicted and observed

1-year, 3-year, and 5-year survival rates (Figure 6C). Subsequently,

the nomogram’s superior net benefit within specific high-risk

thresholds was demonstrated by decision curve analysis compared

to individual clinical characteristics (Figure 6D). Finally, the

comparative analysis of the C-index (Figure 6F) further confirmed

the nomogram’s enhanced predictive capability for OS,

outperforming individual clinical features.
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3.6 Transcriptomic characteristics across
risk score patients based on ICDRS

To further explore the molecular mechanisms underlying the

correlation between (ICDRS) and HCC prognosis, we conducted

comprehensive functional enrichment analyses. The significant

enrichment of five cancer-related hallmark pathways were

revealed in the high-risk group through GSEA, including DNA

repair, E2F targets, MYC targets V1, PI3K/AKT/MTOR signaling,

and reactive oxygen species pathway (Figure 7A, FDR < 0.05).

GSVA then uncovered multiple significantly upregulated pathways

in the high-risk group, including: (1) cell cycle and proliferation-

related pathways: MYC targets V1/V2, G2M checkpoint, Mitotic

spindle, and E2F targets; (2) stress and microenvironment-related

pathways: DNA repair, reactive oxygen species pathway, hypoxia,

and unfolded protein response; (3) signal transduction pathways:

MTORC1 signaling and PI3K/AKT/MTOR signaling (all

adjusted p<0.05, Figure 7B). Correlation analysis between risk

scores and pathway activities (Figure 7C) validated these findings.

Moreover, the forest plot (Figure 7D) demonstrated that pathways

enriched in the high-risk group, including G2M Checkpoint, E2F

Targets, Glycolysis, and DNA Repair, were associated with higher

HR, suggesting these pathways may be closely linked to

poor prognosis.
FIGURE 3

WGCNA network analysis reveals key gene modules of ICD. (A) Common differential gene expression analysis in macrophages and cancer cells
stratified by ICD scores. (B) Hierarchical clustering dendrogram (upper) showing sample relationships and heatmap (lower) revealing ICD score
distribution. Color intensity represents score levels. (C) Cluster dendrogram illustrating gene relationships, with colored bands at the bottom
representing distinct functional gene modules. (D) Heatmap showing module-trait relationships. Each row depicts a co-expression module, with
numerical values and color intensity reflecting correlational strength to ICD scores. (E, F) Scatter plots showing MM-GS correlation of the (E)
turquoise and (F) blue modules. X-axis: module membership; Y-axis: gene significance for ICD score. (G) Enhanced volcano plot of DEGs between
TCGA-HCC samples and normal samples. Red and blue dots represent statistically significant upregulated and downregulated genes, with total
18,367 variables analyzed. (H) Circular heatmap of the top 50 up-regulated (red) and 50 down-regulated (blue) DEGs. Inner to outer rings show gene
names, and expression change direction. (I) Venn plot showing the intersecting genes between the module genes and TCGA DEGs in bulk RNA-seq.
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3.7 Mutation profiling of ICD related genes

To deeply understand the genomic characteristics of HCC patients,

we systematically analyzed the mutation patterns of ICD genes. Firstly,

the MATH scores in the high-risk group were significantly higher than

those in the low-risk group (p=7.1e-06), indicating greater tumor

heterogeneity in the high-risk group (Figure 8A). Subsequently,

Kaplan-Meier survival analysis based on MATH scores revealed that

patients with higher MATH scores had poorer prognosis (p=0.043,

Figure 8B), further confirming the correlation between tumor

heterogeneity and prognosis. Moreover, we combined MATH scores
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with ICDRS risk stratification, demonstrating their interactive

predictive impact on prognosis. The survival curves showed that the

low-risk and low-MATH score group had the best prognosis (p<0.001,

Figure 8C). Moreover, differential mutated genes between low-risk and

high-risk groups were revealed by a distinct mutational landscape

analysis (Figures 8D, E), with significant co-occurring mutations being

observed (Figures 8F, G). Notably, TP53, a critical tumor suppressor

gene, showed a mutation rate of 36% in the high-risk group compared

to 21% in the low-risk group, indicating accelerated tumor proliferation

and poorer prognosis in the high-risk group. Ultimately, mutation co-

occurrence and exclusivity analysis revealed the complex interaction
FIGURE 4

Developing and validating the ICDRS. (A) Bar plot ranking predictive performance of various machine learning models. Each bar represents the C-
index across different cohorts, with models sorted from highest to lowest C-index. (B) Bar plot showing the variable importance ranking of top 10
features in RSF model. (C, E, G) Kaplan-Meier survival curves of all datasets. Curves respectively showed survival differences between high (red line)
and low risk (blue line) groups based on risk scores for (C) TCGA, (E) GSE14520 and (G) ICGC dataset. (D, F, H) Time-dependent ROC curves of all
datasets. Curves demonstrated the predictive accuracy of the model at 1-, 3-, and 5-year time points for (D) TCGA, (F) GSE14520 and (H) ICGC
dataset.
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patterns of gene mutations in high-risk and low-risk groups. In the

high-risk group (Figure 8F), (1) TP53 exhibited a co-occurrence

pattern with FAT3 and PCLO; (2) TTN and DOCK2 demonstrated

significant co-occurrence characteristics; (3) no significant exclusivity
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patterns were observed. In the low-risk group (Figure 8G), (1)

CTNNB1 showed an exclusivity pattern with AXIN1 and TP53; (2)

TTN and ALB displayedmutation co-occurrence features. Notably, key

tumor suppressor genes like TP53 exhibited significant differences in
FIGURE 5

Assessing the performance and clinical utility of the ICDRS in HCC. (A) Pie charts revealing distribution of clinical features across low- and high-risk
groups. (B) Violin integrated with box plots showing distribution of risk scores at different T stages, including T1, T2, T3, and T4. Non-significant
differences are marked as “ns”. (C) Violin integrated with box plots demonstrating the comparison of risk scores between different T stages, including
T1–2 and T3-4. (D) Stacked bar plot showing the proportion of T stage distribution in risk groups. (E) Heatmap showing expression profiles of
signature genes and clinical features across risk groups. (F) ROC curve for predicting distant metastasis (M stage). (G, H) Kaplan-Meier survival curves
after age stratification, including age ≤ 60 and age>60. (I, J) Kaplan-Meier survival curves after stage stratification, including early stage (stage I+II)
and later stage (stage III+IV).
FIGURE 6

Comprehensive Cox regression and nomogram analysis. (A) Forest plot of univariate cox regression analysis of clinical variables and risk score.
(B) Forest plot of multivariate cox regression analysis revealing adjusted hazard ratios for clinical variables and risk score. (C) Calibration curve of the
nomogram for 1, 3, and 5-year observed OS. Nomogram-predicted versus observed OS probabilities: red (1-year), blue (3-year), green (5-year)
survival curves. (D) Decision curve analysis depicting prognostic model utility across risk thresholds. (E) Nomogram integrating risk score and clinical
characteristics. (F) Comparison of the C-index between the nomogram and clinical characteristics.
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mutation patterns across different risk groups, these findings unveiling

the molecular heterogeneity of ICD-related gene mutations in HCC.
3.8 Correlation analysis between ICDRS
and single-cell features

To investigate the role of ICDRS in the tumor microenvironment

(TME) at the single-cell level, we applied the established model to

evaluate individual tumor cells using the top 10 genes. The top 10
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upregulated and downregulated genes from the RSF model were

integrated, including CLIC1, NAP1L1, CBX3, RAN, APOE, CD63,

CLTA, SNRPG, FTL, and POMP. We performed a comprehensive

analysis of ICDRS expression and functional associations across

different single-cell types (Figure 9). The expression patterns of

these 10 genes across various cell types were determined

(Figure 9A), revealing their predominant expression in cancer cells

and macrophages. KEGG pathway enrichment analysis was

conducted to identify the major functional pathways involving

differentially expressed genes between high-risk and low-risk cells
FIGURE 7

Functional mechanism analysis of HCC risk stratification. (A) GSEA waterfall plot revealing molecular signatures of five critical pathways in the high-
risk group, with enrichment profiles and corresponding gene expression landscape. (B) Hallmark pathway enrichment analysis based on GSVA
contrasting differentially activated molecular pathways between high and low-risk groups through color-coded differential representation, with
statistical significance highlighted. (C) Correlation heatmap illustrating the relationships between risk scores and hallmark pathway activities scored
by GSVA through nuanced color gradients. (D) Forest plot depicting pathways’ prognostic significance via hazard ratios and confidence intervals.
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(Figure 9B). We conducted KEGG pathway enrichment analysis to

identify the major functional pathways involving DEGs between

high-risk and low-risk cells (Figure 9B). Multiple important

biological processes and signaling pathways related to ICD were

significantly enriched, including Chemical carcinogenesis – reactive

oxygen species, Oxidative phosphorylation, Protein processing in

endoplasmic reticulum, Proteasome, Complement and coagulation

cascades, Glutathione metabolism, and Chemical carcinogenesis –

DNA adducts pathways. These pathways primarily involve oxidative

stress, mitochondrial function, endoplasmic reticulum stress, protein

degradation, cell death, and immune response biological processes,

indicating that DEGs play important roles in ICD mechanisms.

Through GSEA analysis, we further discovered multiple
Frontiers in Immunology 14
significantly enriched HALLMARK pathways in the high-risk

group, including coagulation (p=0.03), complement (p=0.05),

peroxisome p=0.05), and reactive oxygen species pathway (p=0.02).

Key biological processes that high-risk cell populations may

participate in were revealed by the enrichment of these

pathways (Figure 9C).

Subsequently, cancer cells were divided into high- and low-

riskscore groups, and their interactions with other cell types in the

TME were investigated. We observed different communication

patterns in cancer cells with varying ICDRS scores (Figure 9D),

with seven cell subpopulations in the high-risk group exhibiting

more complex interaction networks. More active communication

networks between high riskscore cancer cells and macrophages,
FIGURE 8

Mutation profiling of ICD related genes. (A) Violin and box plot showing the tumor heterogeneity across different risk groups by comparing MATH
scores in HCC patient. (B) Kaplan-Meier survival curves comparing high (n=175) and low (n=176) MATH score groups. (C) Survival analysis combining
MATH scores and risk group analysis. (D, E) Mutation landscape waterfall plots revealing the top 20 mutated genes in high-risk (D) and low-risk (E)
groups. (F, G) Mutation gene co-occurrence and mutual exclusivity heatmap for high-risk (F) and low-risk (G) groups. Heatmap colors indicate
relationships between gene pairs, asterisks denote statistical significance levels. *p<0.05, ·p<0.1.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1649618
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1649618
FIGURE 9

Association of ICDRS with single-cell characteristics. (A) Umap plots showing the expression of 10 genes of ICDRS in various cell types, as analyzed
by single-cell RNA sequences. (B) Dot plot revealing the KEGG pathway enrichment analysis of DEGs between high-risk and low-risk cells related to
ICD. Dot size: gene count; color: adjusted p-value from 0.02 to 0.005; x-axis: gene ratio. (C) Waterfall plot presenting GSEA analysis of hallmark
gene sets in the high-risk cells. (D) Cell signaling pathway network among 7 cell types. The thickness of the line indicates the interaction strength.
7(E, F) Ligand-receptor interactions in the (E) low- and (F) high – riskscore cancer cell. Both interaction numbers and interaction strengths are
shown. (G-I) Heatmaps showing the role of different cell types in (G) MDK, (H) VEGF, and (I) MIF signaling networks. The Y-axis shows the signal
transmitter cells and the X-axis represents the signal receiver cells. Shades of color indicate intensity of interaction, with darker reds indicating
stronger communication.
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endothelial cells were demonstrated. In contrast, the intercellular

communication network of low riskscore cancer cells was

significantly simpler, primarily manifesting as interactions with

macrophages, while communication intensity with other cell types

was markedly reduced. Ligand-receptor interaction diagrams

(Figures 9E, F) also showed that the high-risk group possessed

denser and more complex communication networks, suggesting

that elevated ICD levels may enhance signal exchange between cells

in the tumor microenvironment. Notably, significant specificity in

the MDK signaling pathway was exhibited by the high-risk group

compared to the low-risk group. Active MDK signal transduction in

the high-risk group may indicate that these tumor cells possess

stronger proliferative capacity, angiogenic potential, and

microenvironmental regulatory ability, thereby promoting

invasive tumor growth and distant metastasis.

To further explore pathway expression and correlations in

different cell types, three pathways were selected for heatmap

visualization, including the MDK pathway related to tumor

invasiveness and poor prognosis, the VEGF pathway associated

with angiogenesis, and the MIF pathway involved in immune

regulation (Figures 9G-I). The MDK signaling pathway

(Figure 9G) demonstrated more complex communication patterns

in high-riskscore cancer cells, establishing bidirectional signal

exchange with hepatocytes. In contrast, low-riskscore cancer cells

showed significantly reduced activity as MDK signal senders,

indicating their limited capacity for actively regulating the

microenvironment. In the VEGF signaling pathway (Figure 9H),

VEGF signals secreted by cancer cells were accepted by endothelial

cells, which served as the primary signal receivers. Notably, low-

riskscore cancer cells exhibited stronger activity as VEGF signal

senders compared to high-riskscore cancer cells, transmitting more

VEGF signals to endothelial cells. This difference may be attributed

to distinct angiogenic regulatory mechanisms employed by the two

groups. In the MIF signaling pathway (Figure 9I), both high- and

low-riskscore cancer cells regulated macrophage function and

polarization states through MIF secretion. More significant MIF

signal sending capacity was demonstrated by high-riskscore cancer

cells, indicating the stronger immune microenvironment

regulatory ability.
3.9 Immune landscape associated with
ICDRS in HCC

Figure 10 systematically demonstrated the significant

differences in tumor microenvironment immune characteristics

between high-risk and low-risk groups of HCC patients.

Significantly higher Stromal Score in low-risk patients compared

to high-risk patients (p<0.05) were revealed by ESTIMATE

algorithm analysis (Figure 10A), suggesting that the TME in low-

risk patients possesses a higher degree of stromal infiltration.

However, no significant differences were observed between the

two groups in terms of Immune Score (Figure 10B) and

ESTIMATE Score (Figure 10C). Further immune-related pathway

analysis (Figure 10D) identified three signaling pathways that
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showed significant differences between high-risk and low-risk

groups, mainly including: complement and coagulation cascades

(p<0.001), NOD-like receptor signaling pathway (p<0.05), and fc

gamma R mediated phagocytosis (p<0.01). These findings indicate

that the activation status of these pathways differs across TME with

varying risk levels.

Differences in immune cell infiltration patterns between the two

patient groups were further elucidated by quantitative analysis of 22

immune cell types using the CIBERSORT algorithm (Figure 10E).

The results demonstrated significant differences in the abundance

distribution of multiple immune cell subsets between high-risk and

low-risk groups: (1) Immune cell types significantly higher in the

high-risk group included: plasma cells (p=0.037), T cells follicular

helper (p=0.001), T cells regulatory (tregs) (p=0.026), macrophages

M0 (p<0.001), and neutrophils (p=0.003); (2) Immune cell types

significantly higher in the low-risk group comprised: B cells naive

(p=0.004), B cells memory (p=0.001), T cells CD8 (p=0.04), NK cells

resting (p=0.048), monocytes (p=0.003), macrophages M1 (p=0.003),

andmast cells resting (p<0.001). More diverse and active immune cell

repertoires, encompassing effector T cells, B cell subsets, monocytes,

and M1 macrophages that represent anti-tumor immune cells, were

demonstrated in low-risk patients. In contrast, the high-risk group

was enriched with more immunosuppressive cells such as regulatory

T cells and M0 macrophages. These differences in immune cell

composition, particularly the enrichment of immunosuppressive

cells alongside a relative deficiency in cytotoxic CD8+ T cells in the

high-risk group (Figure 10E), may reflect the establishment of an

immunosuppressive microenvironment prone to immune evasion

mechanisms such as immune exclusion.

The complex association network between the 10 key genes

embedded in ICDRS and various immune cell types was illustrated

by the correlation heatmap (Figure 10F), with some genes such as

CLIC1, NAP1L1, and CBX3 showing extensive positive correlations

with multiple immune cell infiltration levels. A correlation scatter

plot (Figure 10G) revealed that the risk score exhibited significant

positive or negative correlations with specific immune cells, with

macrophages M0, B cells memory, T cells follicular helper, T cells

regulatory (tregs), and neutrophils showing significant positive

correlations, while macrophages M1, mast cells resting, B cells

naive, T cells CD8, monocytes, and dendritic cells resting

displayed significant negative correlations.

Additionally, Kaplan-Meier survival analysis was performed for

individual immune cells (Supplementary Figure 1), through which

we identified immune cell types that were significantly associated

with overall survival of HCC patients (p<0.05). Finally, by

integrating the results from differential analysis (Figure 10E),

correlation analysis (Figure 10G), and survival analysis

(Supplementary Figure 1), we utilized a Venn diagram to identify

5 key immune cell types that simultaneously satisfied all three

evaluation criteria (Figure 10H), including B cells memory,

macrophages M0, macrophages M1, mast cells resting, and

neutrophils. The core immune effector cells that influence HCC

patient prognosis may be represented by these immune cells

identified in the intersection, providing important clues for

subsequent mechanistic research and therapeutic target screening.
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3.10 Differential analysis of drug sensitivity

The differences in drug sensitivity between high-risk and

low-risk groups were investigated to assess the potential clinical

value of the risk stratification model in personalized treatment.
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Drug sensitivity analysis revealed that 10 compounds exhibited

significantly different responses between risk groups

(Figures 11A-J).

In the treatment of HCC, increased sensitivity to targeted

therapies was observed in the low-risk group, including:
FIGURE 10

Correlation of TME, immune characteristics and ICDRS. (A-C) Box plots showing differences in immune status between high and low risk groups as
quantified by Matrix score (A), immune score (B), and ESTIMATE score (C). Red represents the high-risk group and blue is the low-risk group.
(D) Heatmaps reflecting differences in immune-related pathway activity between high and low risk groups. (E) Violin plots showing the level of
immune cell infiltration between the high and low risk groups. Green represents the low-risk group, and red represents the high-risk group. (F) The
correlation heatmap representing the correlation between the degree of immune cell infiltration and the hub genes of ICDRS. Red indicates the
positive correlation, blue indicates the negative correlation, and the depth of the color represents the strength of the correlation. (G) The correlation
scatter plot showing the association of the risk score with the infiltration level of key immune cells. The size of the dot represents the absolute value
of the correlation coefficient, and the color indicates the direction of correlation and statistical significance. (H) Venn diagram representing the
recognition of five key immune cells.
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Fron
• Sorafenib (first-line standard treatment for HCC, multi-

kinase inhibitor, p=0.00785, Figure 11A)

• Sunitinib (multi-kinase inhibitor, investigational drug for

HCC, p<0.001, Figure 11B)

• Foretinib (c-Met/VEGFR dual inhibitor, p<0.001, Figure 11C)

• Doxorubicin (anthracycline chemotherapeutic agent,

commonly used in TACE for HCC, p<0.001, Figure 11D)

• Paclitaxel (microtubule stabil izer, taxane class,

p<0.001, Figure 11E)
By contrast, enhanced sensitivity to the following agents was

demonstrated by the high-risk group:
• Erlotinib (EGFR inhibitor, p<0.001, Figure 11F)

• Cisplatin (standard agent for interventional therapy in HCC,

platinum-based chemotherapy, p=0.0108, Figure 11G)

• L e n a l i d om i d e ( i mm u n om o d u l a t o r y d r u g ,

p<0.001, Figure 11H)

• Lapatinib (EGFR/HER2 dual inhibitor, targeted agent,

p<0.001, Figure 11I)

• Gefitinib (EGFR inhibitor, p<0.001, Figure 11J)
These findings not only provide a theoretical basis for risk

stratification-based personalized drug strategies but also reveal that

tumors with different molecular characteristics may require

different therapeutic approaches.
3.11 Functional validation experiments of
candidate genes

3.11.1 CLIC1 enhances malignant biological
behaviors of HCC cells

Based on the high expression profile of CLIC1 in HCC, we

constructed a CLIC1 overexpression cell line in HepG2 cells
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(designated as OE-CLIC1) and established an empty vector control

group (designated as OE-NC). All experiments were repeated at least

three times with consistent results, and representative results are

shown in Figure 12. To verify the transfection efficiency of the CLIC1

overexpression vector, we detected the CLIC1 protein expression

levels by Western blot in HepG2 cells after transfection. Results

demonstrated that CLIC1 protein expression was significantly

upregulated by approximately 1.5-fold in OE-CLIC1 compared to

OE-NC (p<0.05), while the expression level of the reference protein

b-tubulin showed no significant difference between groups, indicating
successful and efficient transfection of the CLIC1 overexpression

vector (Figure 12A). The proliferative capacity of HepG2 cells was

significantly promoted by CLIC1 overexpression as revealed by CCK-

8 proliferation assay results, with particularly notable differences at

the 72-hour time point (p<0.0001, Figure 12B). Colony formation

assays further confirmed the proliferation-promoting effect of CLIC1,

as the overexpression group formed significantly more colonies than

the control group (p<0.0001, Figure 12C).

Given the potential role of CLIC1 in tumor metastasis, its effects

on cell migration and invasion abilities were examined. Transwell

assay results showed that CLIC1 overexpression significantly

enhanced both migration (p<0.01) and invasion capabilities

(p<0.001, Figure 12D) of HepG2 cells. These findings suggest that

CLIC1 overexpression can significantly enhance the ability of

hepatocellular carcinoma cells to traverse the extracellular matrix,

indicating its potentially important role in the tumor

metastasis process.

To further validate the effect of CLIC1 on cell migration ability,

wound healing assays were performed. The results demonstrated

that the wound closure rate of the OE-CLIC1 group was markedly

faster than that of the OE-NC control group at both 24-hour and

48-hour observation time points. At 48 hours, approximately 50%

wound healing rate was reached by the OE-CLIC1 group, while only

about 20% was achieved by the OE-NC control group, with the

difference between the two groups being highly statistically
FIGURE 11

Distribution of IC50 scores for drugs in high-risk and low-risk groups as defined by ICDRS. (A) Sorafenib; (B) Sunitinib; (C) Foretinib; (D) Doxorubicin;
(E) Paclitaxel; (F) Erlotinib; (G) Cisplatin; (H) Lenalidomide; (I) Lapatinib; (J) Gefitinib. *p<0.05, **p<0.01, ***p<0.001.
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significant (p<0.001). This result was consistent with the Transwell

migration assay findings, further confirming that CLIC1

overexpression can significantly promote the migration ability of

hepatocellular carcinoma cells (Figure 12E).

3.11.2 NAP1L1 promotes proliferation, migration,
and invasion of HCC cells

NAP1L1-overexpressing cell lines (OE-NAP1L1) and control

groups (OE-NC) were constructed by us, with experiments

repeated three times, and representative results are shown in
Frontiers in Immunology 19
Figure 13. Western blot revealed that the protein level of NAP1L1

in the OE-NAP1L1 group was elevated approximately 1.5-fold

compared to the control group (p<0.01), while GAPDH expression

remained stable, confirming successful transfection (Figure 13A). The

biological effects of NAP1L1 were unveiled through cellular

functional analyses. CCK-8 assay detected enhanced proliferative

activity in the NAP1L1 high-expression group during the late

culture period (72 hours) (p<0.0001, Figure 13B), and colony

formation ability was also significantly enhanced (p<0.0001,

Figure 13C), indicating that NAP1L1 can effectively promote HCC
FIGURE 12

Functional validation of CLIC1. (A) Western blot detection of CLIC1 overexpression efficiency in HepG2 cells, with b-tubulin as internal reference.
(B) CCK-8 assay examining the effect of CLIC1 on cell proliferation. (C) Colony formation assay examining the effect of CLIC1 on cell proliferation.
(D) Transwell assay examining the effect of CLIC1 on cell migration and invasion abilities. (E) Scratch wound healing assay verifying the promoting
effect of CLIC1 on cell migration. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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cell proliferative potential (Figure 13B). Cells with high NAP1L1

expression were demonstrated by Transwell migration and invasion

analyses to possess stronger transmembrane migration capacity

(p<0.01) and matrix invasion ability (p<0.001, Figure 13D). We

further employed the scratch wound healing assay for verification,

with results showing that the NAP1L1 overexpression group

significantly exceeded the control group in wound closure

efficiency within 48 hours (p<0.001, Figure 13E). These findings

collectively suggest that a key role in regulating the malignant

phenotype of hepatocellular carcinoma cells is played by NAP1L1.
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4 Discussion

Through the integration of multi-omics data and advanced

computational methods, we systematically explored the role and

clinical significance of HCC-ICD. Cellular heterogeneity in the

HCC microenvironment was revealed by single-cell RNA

sequencing technology, identifying six major cell subtypes and

analyzing the differences in ICD activity among these cell types.

We then identified gene modules closely related to ICD through

WGCNA. The HCC-related regulatory network of ICD was
FIGURE 13

Functional verification of NAP1L1. (A) Western blot detection of NAP1L1 overexpression efficiency in HepG2 cells, with GAPDH as internal reference.
(B) CCK-8 assay to detect the effect of NAP1L1 on cell proliferation. (C) Colony formation assay to detect the effect of NAP1L1 on cell proliferation.
(D) Transwell assay to detect the effect of NAP1L1 on cell migration and invasion abilities. (E) Scratch wound healing assay to verify the promoting
effect of NAP1L1 on cell migration. **p<0.01, ***p<0.001, ****p<0.0001, and ns means no significant difference.
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visualized after integrating the corresponding differentially

expressed genes, module genes, and single-cell characteristic

genes. Based on these findings, we further constructed an ICDRS

using these genes. Good predictive capability was demonstrated by

the model in both the TCGA dataset and external independent

datasets (GSE14520 and ICGC), providing strong evidence for risk

stratification of HCC patients. We further elucidated key biological

pathways associated with ICD through functional enrichment

analyses, including GSEA and GSVA. Associations between ICD

and gene mutations, the immune microenvironment, and drug

sensitivity were explored by our research group, revealing the

comprehensive and multifaceted role of ICD in HCC occurrence,

development, and treatment response. The promoting effects of key

genes CLIC1 and NAP1L1 on HCC proliferation, migration, and

invasion behaviors were verified through in vitro experiments,

providing important experimental evidence for the development

of ICD-related therapeutic targets.
4.1 Research innovation and clinical
comparative advantages

This study constructed a prognostic model for HCC based on

ICD by integrating single-cell RNA sequencing, WGCNA, and

large-scale machine learning algorithms. Extensive research has

been conducted on HCC prognostic and drug resistance models,

focusing primarily on molecular markers such as metabolism-

related genes (43–45) and epigenetic modifications (46, 47).

However, research on the role of ICD in HCC remains limited.

Our ICDRS model demonstrated superior predictive accuracy

in comprehensive performance comparisons. In external validation,

our RSF model achieved AUC values of 0.821, 0.832, and 0.796 for

1-year, 3-year, and 5-year OS, respectively. In comparison, Wang

et al. (44) developed a mitochondrial-related transcriptome model

with 3-year AUC of 0.77, while Chen et al. (45) constructed an

oxidative phosphorylation-based model with AUC values of 0.690,

0.726, and 0.720 for 1-year, 2-year, and 3-year OS, respectively.

These comparisons demonstrate that the ICD-based HCC

prognostic model developed in this study shows superior

performance compared to existing HCC prognostic models based

on other molecular features. Our model enhanced predictive

performance and greater stability across different survival

timeframes, highlighting its clinical application value in

HCC prediction.

Single-cell analysis revealed that macrophages had significantly

higher ICD scores than other cell types (p<0.001), consistent with

recent findings by Han et al. regarding tumor-associated

macrophages’ role in ICD (48). Through WGCNA analysis, we

identified 106 HCC-ICDR genes that were correlated with ICD

scores in the turquoise module (cor=0.4, p=2e-15) and blue module

(cor=-0.37, p=2e-13), providing insights into the molecular

regulatory network of ICD in hepatocellular carcinoma.
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4.2 Molecular mechanisms: the multi-layer
regulatory network of ICD and tumor
progression

4.2.1 Composition and functional mechanisms of
ICDRS

To understand the mechanistic basis of our predictive model,

we analyzed the molecular mechanisms associated with ICDRS. The

ICDRS comprises ten key genes with distinct functional roles.

CLIC1, NAP1L1, APOE, and CD63 have been demonstrated to

play crucial roles in ICD mechanisms: CLIC1, serving as a chloride

ion channel protein, is involved in the regulation of apoptosis and

ICD (49, 50). NAP1L1 is involved in the ICD process through its

regulation of nucleosome assembly and chromatin remodeling,

which affects the DNA damage response (51). APOE plays a key

role in immune regulation and lipid metabolism, potentially

influencing ICD effects through the modulation of macrophage

polarization (52). CD63, as a marker of extracellular vesicles, is

involved in intercellular signaling and immune activation (53, 54).

The remaining genes CBX3, RAN, CLTA, SNRPG, FTL, and POMP

primarily regulate transcription, nucleocytoplasmic transport,

intracellular trafficking, RNA splicing, iron metabolism, and

proteasome function, thereby indirectly modulating ICD-related

cellular stress responses (55–58).

Patients in the high-risk group exhibited distinct activation of

pathways associated with malignant tumor characteristics. Using

functional enrichment analysis to identify these differential pathways,

we found that five key cancer-related pathways were significantly

enriched in the high-risk group by GSEA analysis (FDR < 0.05),

including DNA repair pathway, E2F targets, MYC targets V1, PI3K/

AKT/MTOR signaling, Reactive oxygen species pathway. Subsequent

GSVA analysis further revealed multiple significantly upregulated

pathways in the high-risk group, encompassing cell cycle and

proliferation related pathways, stress and microenvironment related

pathways, and signal transduction pathways.

4.2.2 DNA repair and genomic instability
DNA repair pathway activation plays a crucial role in

maintaining genomic stability. Notably, a complex association

pattern was observed between DNA repair pathway enrichment

and TP53 mutations in the high-risk group. Our mutation analysis

revealed that TP53 mutation rates were significantly higher in high-

risk group patients compared to the low-risk group (36% vs 21%).

This was accompanied by elevated MATH scores, reflecting greater

tumor heterogeneity in the high-risk population.

Typically, TP53 mutations result in cell cycle checkpoint defects

and reduced DNA damage repair capacity. However, expression of

DNA repair-related genes was paradoxically increased in the high-

risk group. Nevertheless, this compensatory repair activation is

incomplete and still leads to the accumulation of genomic instability

while potentially promoting the development of treatment

resistance (59).
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4.2.3 Cell cycle dysregulation and checkpoint
defects

E2F targets pathway enrichment reflects cell cycle

dysregulation. E2F transcription factors promote cell proliferation

through S phase progression and DNA replication regulation.

Hyperactivation of the E2F pathway has been recognized as an

important driving factor in the malignant progression of HCC (60).

Dong et al. (61) further revealed that TP53 mutations affect E2F1-

mediated cell cycle progression by regulating the overexpression of

histone variant H2AFZ. Specifically, H2AFZ overexpression

regulates cell cycle signal transduction and DNA replication

through pathways involving multiple cancer-associated kinases

and E2F1, providing a molecular mechanism explanation for the

association between E2F pathway activation and TP53 mutations

observed in our high-risk group.

Furthermore, activation of the G2M checkpoint pathway has

special significance in the context of TP53 mutations. Under normal

circumstances, the TP53-mediated G1/S checkpoint serves as the

primary barrier preventing the replication of damaged DNA. When

this checkpoint is dysfunctional, more cells carrying DNA damage

enter the S phase for replication. In this scenario, the G2M

checkpoint faces greater pressure, needing to detect and respond

to increased DNA damage and replication stress generated during

the S phase. However, the G2M checkpoint function has inherent

limitations. While the G2M checkpoint can temporarily prevent

cells carrying DNA damage from entering mitosis, if DNA repair

mechanisms cannot completely repair all damage, these cells may

eventually bypass the checkpoint and enter division, leading to the

transmission of chromosomal instability. More critically, in tumors

with TP53 functional defects, the G2M checkpoint itself may also

become dysfunctional, with reduced sensitivity to DNA damage,

thereby allowing more genomically unstable cells to complete

division, further exacerbating the accumulation of genomic

instability (62).

4.2.4 Activation of oncogenic signaling pathways
In addition to cell cycle dysregulation, the PI3K/AKT/mTOR

signaling pathway regulates cell survival, proliferation, and

autophagy by integrating nutritional status, growth factor signals,

and energy metabolism. Activation of this pathway in HCC is

associated with tumor progression, angiogenesis, invasive

metastasis, and the development of multidrug resistance (63–65).

Similarly, MYC targets V1 not only regulates cell proliferation, but

also is a major regulator of cell metabolism, and its abnormal

activation is closely related to the aggressive phenotype and poor

prognosis of HCC patients (55, 66). The activation of the reactive

oxygen species pathway plays a dual role in the pathogenesis of

HCC. While moderate oxidative stress promotes tumor cell survival

and proliferation, excessive oxidative stress can cause extensive

DNA damage, including base modifications, DNA strand breaks,

and chromosomal aberrations (67). This oxidative damage is

consistent with the increased genomic instability we observed and

may be one of the important factors contributing to elevated

MATH scores.
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4.3 Immune microenvironment remodeling
and mechanisms of therapeutic resistance

Despite the ICD signature, tumors with high ICDRS scores do

not necessarily exhibit effective immune-mediated tumor control

(48). Instead, poor prognosis in high ICDRS tumors appears to

result from the promotion of an immunosuppressive

microenvironment, a state that can be explained by mechanisms

such as immune exclusion, where cytotoxic immune cells are

prevented from infiltrating the tumor core, and/or T cell

dysfunction, where infiltrated cells lose their effector functions (68,

69). Our immune cell infiltration analysis revealed the underlying

mechanisms of this seemingly paradoxical phenomenon.

Specifically, the high-risk group demonstrated abundant

immune cell infiltration, but these cells were predominantly

composed of immunosuppressive components: plasma cell,

follicular helper T cells, regulatory T cells, M0 macrophages, and

neutrophils were significantly increased. This enrichment of

immunosuppressive cells creates an immunosuppressive

environment. The concomitant significant reduction in CD8+ T

cell infiltration in the high-risk group (Figure 10E) strongly suggests

that immune exclusion is a key mechanism underlying the

ineffective anti-tumor immunity. Similar phenomena were

confirmed in a clear cell renal cell carcinoma study by Wen et al.

(70), who found that high-risk group patients exhibited increased

Treg infiltration and decreased M1 macrophages, thereby forming

an immunosuppressive environment.

In contrast, tumors with lower ICDRS scores demonstrated

markedly different immune characteristics. The low-risk group was

enriched with more effector immune cells, including naive B cells,

memory B cells, CD8+ T cells, resting NK cells, monocytes, M1

macrophages, and resting mast cells. Extensive literature supports

the central role of effector immune cells such as CD8+ T cells and

M1 macrophages in anti-tumor immunity (71–74). The presence of

these anti-tumor immune cells may more readily stimulate effective

cytotoxic T cell responses, suggesting a more favorable immune

environment and better prognosis.

Single-cell communication analysis provided a mechanistic

foundation for this immune exclusion. In high ICDRS tumors,

cancer cells exhibited more complex intercellular communication

networks, establishing extensive signal exchanges with the

microenvironment via MDK and MIF signaling pathways.

Particularly, the MDK signaling pathway demonstrated stronger

activity in the high-risk group, with bidirectional signal exchanges

established between high-risk cancer cells and hepatocytes,

potentially promoting tumor growth and microenvironment

remodeling. More importantly, high-risk cancer cells were

characterized by enhanced MIF signal-sending capacity, which

promotes the establishment of an immunosuppressive

microenvironment by regulating macrophage function and

polarization states. Chen et al. (75) confirmed that MIF can

induce macrophage polarization toward the M2 phenotype,

thereby supporting tumor growth. This active reprogramming of

the microenvironment towards an immunosuppressive and barrier-
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like state offers a plausible mechanism for the observed exclusion of

CD8+ T cells.

Notably, intercellular communication networks of low-risk

cancer cells were significantly simplified, primarily characterized

by interactions with macrophages, while communication intensity

was relatively weakened. This may reflect a more balanced state of

tumor-immune interaction.
4.4 Clinical application potential and
personalized treatment guidance

The potential clinical application of ICDRS in HCC

management could significantly enhance current treatment

paradigms. At initial diagnosis, ICDRS could complement

conventional staging systems and risk stratification approaches,

potentially identifying high-risk patients who might benefit from

earlier aggressive intervention or closer surveillance protocols.

These findings were further validated in a drug sensitivity

analysis. Patients in the low-risk group showed higher sensitivity to

multi-kinase inhibitors (sorafenib, sunitinib, fretinib) and

chemotherapy drugs (doxorubicin, paclitaxel), which may be

related to their more active anti-tumor immune microenvironment.

Tumors are often classified into “cold” tumors that are

immunosuppressed and “hot” tumors that are immunoactive and

inflammatory (76), with the latter having better immunogenicity; At

the same time, Smith et al. (77) also inversely confirmed that tumors

with higher immune function scores showed worse sensitivity to a

variety of therapeutic drugs, further supporting the close correlation

between immune microenvironment status and treatment

responsiveness. On the contrary, patients in the high-risk group

showed relatively better response to specific targeted drugs (erlotinib,

lapatinib, gefitinib) and cisplatin, suggesting that different risk groups

may have different molecular target dependence and need

individualized treatment strategy selection. These findings provide

a theoretical basis for risk stratification-based personalized drug

strategies and reveal that tumors with different molecular

characteristics may require different therapeutic approaches.

From an implementation perspective, the 10-gene signature

(CLIC1, NAP1L1, CBX3, RAN, APOE, CD63, CLTA, SNRPG, FTL,

and POMP) could be assessed using RT-PCR or targeted RNA

sequencing, making it feasible for integration into clinical testing

workflows alongside established prognostic factors to guide

treatment decisions throughout the HCC care continuum. Our

nomogram integrating clinical characteristics provides

individualized 1-, 3-, and 5-year survival probability predictions,

serving as a valuable prognostic tool for clinical decision-making.

Near-term clinical translation focuses on three actionable

pathways: (1) validation of the 10-gene ICDRS in prospective

HCC cohorts undergoing sorafenib or immunotherapy, with

initial feasibility studies planned within 12–18 months using

existing clinical samples; (2) development of CLIC1 and NAP1L1

as therapeutic targets, building on our functional validation

showing their roles in HCC proliferation and invasion, with

potential for existing drug repurposing or novel inhibitor
Frontiers in Immunology 23
development; (3) integration of ICDRS with current BCLC

staging to create enhanced risk stratification algorithms,

particularly valuable for intermediate-stage patients where

treatment decisions are most challenging. The model’s ability to

predict differential drug sensitivity suggests potential clinical utility

for treatment selection, though this requires further validation.

While the identified immune microenvironment patterns offer

biomarkers for immunotherapy response prediction.
4.5 Study limitations and future directions

Although this study has made significant progress in

uncovering the importance of genes involved in immunogenic cell

death in HCC, several limitations remain. First, our heavy reliance

on public datasets introduces a potential selection bias. While these

resources are invaluable, they may not fully capture the

heterogeneity of HCC across different etiologies, clinical settings,

and geographical regions. This limitation crucially impacts the

generalizability of our ICDRS model and suggests that its

performance should be cautiously evaluated in specific

subpopulations not well-represented in current databases (e.g.,

NAFLD-driven HCC in Western cohorts). Additionally, the

temporal heterogeneity inherent in these datasets, where samples

were collected across different time periods with varying clinical

practices and technological platforms, introduces confounding

variables that our batch correction methods may not fully

address. The interconnected nature of genomic databases, where

similar patient populations, sample processing protocols, and

analytical pipelines are often shared across studies, limits the true

independence of our external validation and may create systematic

biases that cannot be eliminated through conventional validation

strategies. Furthermore, differences in survival endpoints, follow-up

protocols, and clinical management practices across cohorts

introduce outcome measurement bias that could artificially

influence our model’s apparent predictive accuracy, making the

observed performance potentially non-generalizable to

contemporary clinical settings.

Beyond dataset-derived biases, we must critically address the

risk of model overfitting. Although we employed robust

methodologies to mitigate this—including regularization

techniques within our RSF algorithm, external validation in two

independent cohorts, and systematic cross-validation during model

selection—the possibility that the ICDRS is overly optimized for

available dataset characteristics cannot be entirely ruled out. The

exceptional performance observed in the TCGA training set

compared to validation cohorts, combined with the high-

dimensional nature of transcriptomic data, means that some

features within our 10-gene signature might inadvertently capture

dataset-specific technical variances or biological redundancies

rather than solely the core biological signals of immunogenic cell

death. While the consistent performance across cohorts is

reassuring, the model’s efficacy could potentially diminish when

applied to populations with substantially different genetic

backgrounds or data generation protocols.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1649618
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1649618
Furthermore, the transition of the ICDRS model from

computational prediction to clinical utility faces significant

barriers. The absence of prospective clinical validation means its

real-world effectiveness remains unproven. Beyond a simple lack of

validation, we critically acknowledge that practical implementation

would face challenges such as the standardization of clinical assay

methods, patient acceptance, cost-effectiveness, and integration into

clinical workflows—factors often overlooked in bioinformatics

studies but fundamental to translational impact.

A core set of limitations pertains to our experimental validation.

The functional analysis of CLIC1 and NAP1L1 was conducted initially

in only one cell line (HepG2), chosen for its well-established use in

HCC research and stable transfection characteristics. However, we

critically recognize that this approach is insufficient to account for the

well-documented molecular heterogeneity of HCC, particularly given

HepG2’s specific genotype (e.g., HBV-positive, wild-type p53).

Consequently, the oncogenic roles we observed may be cell-context-

dependent. Future validation in genetically distinct cell lines (e.g.,

Huh7, SNU-398, PLC/PRF/5) representing diverse HCC subtypes is

essential to confirm the generalizability of our findings. Furthermore,

while computationally robust, our model lacks experimental validation

in patient-derived samples (e.g., IHC confirmation of protein

expression in tissue microarrays). This gap not only limits the future

translational impact but also leaves the biological plausibility of our

computational inferences less firmly established. Moreover, another

central limitation of this study is the lack of direct experimental

evidence linking the identified hub genes, CLIC1 and NAP1L1, to

the modulation of ICD itself. While our functional assays confirmed

their pro-tumorigenic roles in proliferation, migration, and invasion,

these experiments did not specifically quantify hallmark ICD events.

Furthermore, the precise signaling pathways downstream of CLIC1

and NAP1L1, such as AKT/mTOR, remain unexplored, limiting our

mechanistic understanding. Thus, the precise functional relationship

between these genes and the core immunogenic cell death process in

HCC remains to be experimentally defined.

Similarly, our drug sensitivity analysis, while insightful, is derived

from in vitro cell line data. We critically argue that these predictions

likely cannot fully recapitulate the complex tumor microenvironment

in vivo or account for patient-specific pharmacokinetics and

pharmacodynamics. The lack of correlation with clinical response

data means these predictions remain hypothetical and should be

viewed primarily as generating testable hypotheses for future study,

not as definitive therapeutic guides.

Finally, the mechanistic links between ICD and immune

microenvironment remodeling, particularly their temporal dynamics,

remain correlative. A critical limitation is that our study design cannot

confirm causality, which is essential for developing targeted

interventions that modulate ICD to improve clinical outcomes.

To address these interconnected limitations directly and bridge

the gap between computational prediction and clinical application,

we have formulated a targeted future research plan. We are

establishing a prospective clinical cohort study at our institution.

This initiative is specifically designed to: (1) expand functional

experiments to include a panel of HCC cell lines with diverse

genetic backgrounds (e.g., Huh7, SNU-398, PLC/PRF/5) and,
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crucially, to directly investigate the role of CLIC1 and NAP1L1 in

regulating ICD by assessing key hallmarks such as calreticulin

exposure, ATP release, and HMGB1 translocation, combined with

mechanistic investigations via Western blot analysis of key signaling

pathways (e.g., AKT/mTOR) and qPCR for related genes; (2)

Validate characteristic gene protein expression and its association

with immune-mediated cell death phenotypes in external patient

tissues; (3) Correlate the ICDRS risk score with actual treatment

responses (e.g., sorafenib, EGFR inhibitors), ultimately evaluating

its practical value in guiding personalized treatment decisions. This

comprehensive strategy is aimed expressly at transforming the

limitations identified herein into focused research objectives,

thereby enhancing the translational potential of our findings.

Despite these limitations, our study establishes a solid

foundation for clinical translation. In conclusion, our ICD-based

prognostic framework represents a paradigm shift toward precision

oncology in HCC management. The potential translational

opportunities include clinical validation of the 10-gene signature,

therapeutic targeting of CLIC1/NAP1L1 pathways, and

implementation of risk-stratified treatment protocols. Long-term

prospects encompass integration with emerging technologies such

as liquid biopsies, radiomics, and AI-driven treatment optimization,

potentially revolutionizing HCC patient outcomes through truly

personalized medicine approaches.
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