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The thymus generates T cells from immature thymocytes and prevents
autoimmune diseases through negative selection and the generation of
FOXP3* regulatory T cells (Tregs). The thymic architecture is typically divided
into two distinct microenvironments, the cortex and the medulla. These
microenvironments are characterized by the presence of cortical thymic
epithelial cells (cTECs) and medullary thymic epithelial cells (mTECs),
respectively. Recent single-cell and spatial transcriptomic analyses have
revealed the expanding diversity of TEC subpopulations in mice and humans.
Myasthenia gravis (MG) is an autoimmune disorder characterized by fatigue
resulting from muscle weakness, which is caused by antibodies toward
structures within the neuromuscular junction. The most common target of
pathogenic autoantibodies in MG is the acetylcholine receptor (AChR). MG
patients are prone to thymic abnormalities, including thymic follicular
hyperplasia and thymoma. Previous studies have suggested that mTECs
expressing major histocompatibility complex (MHC)/AChR-peptide complexes
are involved in the intrathymic pathogenesis of this MG type. However, the exact
mechanisms are unknown. This review provides an update on the diversity of TEC
subpopulations and other cellular alterations in the MG thymus. Additionally, we
present hypotheses on the pathogenetic pathways leading to MG and suggest
potential future directions in thymus research.
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Introduction

The fortuitous association between the thymus and myasthenia
gravis (MG) was first reported in 1939, when the excision of a cystic
thymic tumor had a strikingly positive impact on myasthenic
symptoms in a patient with MG (1). A study performed in 1949
indicated that thymic abnormalities, including hyperplasia and
thymoma, were detectable in approximately 90% of patients with
MG, and that thymectomy for non-thymoma was effective in 43 to
50% of patients (2). Since then, thymectomy has remained a crucial
therapeutic intervention for MG patients with thymic abnormalities
and an oncological necessity for patients with thymomas (3, 4),
despite the emergence of new and highly effective therapeutic agents
in recent years (5).

Notwithstanding the discovery of a link between thymus
pathology and MG in 1949, as mentioned above, the belief
persisted that the thymus was actually a superfluous organ, as its
involution from childhood onwards seemed to have no
consequences—until its crucial role in T cell production was
recognized in 1961 (6). The function of the thymus largely
depends on the function of thymic epithelial cells (TECs). Over
the past two decades, our understanding of the mechanisms
regulating TEC function and development has significantly
advanced. Single-cell and spatial transcriptomic analyses have
revealed a far greater diversity of TEC subpopulations than
previously recognized (7, 8). However, most of these studies have
been conducted using mouse thymuses. Therefore, comprehending
the similarities and differences between mouse and human
thymuses is crucial for clinicians seeking to understand human
diseases associated with thymic abnormalities.

In this review, we summarize current advances in our
understanding of TEC properties in mouse and human thymuses,
as well as the pathomechanisms of MG thymus. We also discuss
future directions in thymus research, including potential new
therapeutic strategies and the development of appropriate
biomarkers for MG.

Thymic epithelial cells in mouse and
human thymuses

The thymus consists of two microenvironments, the cortex and
the medulla, whose functions are characterized by the roles played
by cortical TECs (cTECs) and medullary TECs (mTECs),
respectively. cTECs express functional molecules, including IL7
and DIl4, that regulate early T cell development. Furthermore,
cTECs express enzymes that produce self-peptide antigens,
inducing the positive selection of T cells. These enzymes comprise
the P5t-containing thymoproteasome, the thymus-specific serine
protease, and cathepsin L (9, 10). On the other hand, mTECs
regulate the establishment of T cell self-tolerance. For example,
chemokine CCL21 produced by mTECs is involved in the migration
of positively selected cortical thymocytes into the medulla, whereas
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the nuclear factor AIRE regulates the expression of tissue-specific
antigens for the negative selection of self-reactive T cells and the
generation of regulatory T cells (Tregs) (11-13). The importance of
these ¢cTEC- and mTEC-associated molecules in thymic function
has been revealed through the analyses of animal models,
particularly genetically modified mice. However, transcriptomic
analysis of human TECs has demonstrated that ¢cTEC- and
mTEC-associated molecules are similarly present in human
cTECs and mTECs, respectively (14, 15), indicating that similar
molecular mechanisms govern the regulation of TEC functions in
humans and animal models. These analyses have also revealed
differences between human and mouse TECs, such as IL-25
expression, which characterizes mouse but not human tuft cells—
a subset of mTECs present in both species.

Thymic epithelial progenitors in mouse and
human thymuses

During embryonic thymus organogenesis, TEC emergence
begins on embryonic day 11 in mice and the sixth week of
gestation in humans, marked by the expression of Foxnl, a
landmark transcription factor (16). Intrathymic transplantation of
single TECs isolated from fetal mouse thymus, along with lineage
tracing of transplanted TECs, has revealed that cTECs and mTECs
are derived from a common TEC progenitor (17, 18). Bipotent TEC
progenitors have also been identified in the adult mouse thymus
(19, 20). In addition to bipotent TEC progenitors, mTEC-specific
progenitors, including RANK" TECs, Krt19" TECs, and Sox9*
TECs, as well as Cldn3,4"¢"SSEA1* mTEC stem cells with self-
renewing and clonogenic potential, have been unveiled in the fetal
mouse thymus (21-25). Recently, we reported that mTECs
expressing CCL21 in the fetal mouse thymus are capable of giving
rise to AIRE" mTECs (26), suggesting that the functional
conversion of thymocyte-attracting mTECs into self-antigen-
presenting mTECs contributes to the establishment of a
functional medullary microenvironment.

In humans, TEC stem cells have been identified in the postnatal
thymus (27, 28) through single-cell RNA sequencing of cTECs and
mTECs, within a TEC cluster termed Polykeratin (PolyKRT).
PolyKRT expresses multiple cytokeratins, including KRT5, KRTS,
KRT13,KRT14, KRT15, KRT17, KRT18, and KRT19. The PolyKRT
cluster is predominantly localized in the subcapsular and
perivascular regions of the thymus. It exhibits long-term
expansion potential in vitro, as well as the capacity to differentiate
into multiple TEC lineages (28). However, it remains unclear
whether the frequency and differentiation capacity of PolyKRT
cells change with aging or in the context of thymic abnormalities.
In addition, it is unknown whether lineage-restricted progenitor
populations, such as Krt19", RANK", and CCL21* embryonic TECs
identified in the mouse thymus, are also present in the human
thymus. Further studies are needed to elucidate the roles of human
TEC stem and progenitor cells in thymic involution and the
pathogenesis of thymus-associated diseases.
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TEC subpopulations other than progenitors
in mouse and human thymuses

As far as the mouse thymus is concerned, it is well known that
mTECs are a heterogeneous population that is roughly divided into
two subpopulations: mTEC'®™ (CD80'°Y MHC II'¥), which
includes immature mTECs and those in the post-AIRE stage, and
mTECM? (CD80"#" MHC 11M#"), a mature mTEC subset that
includes AIRE" mTECs. The heterogeneity of cTECs has also been
recognized on the basis of the expression of cTEC-associated
molecules, such as CXCL12 and DLL4 (29, 30). However, single-
cell transcriptomic analyses of TECs isolated from the mouse
thymus have revealed a far greater diversity of mTEC subsets,
including thymic mimetic cells, which exhibit transcriptional and
epigenetic signatures resembling those of extrathymic cells and in
the post-AIRE stage (7, 8, 31-33). These thymic mimetic cells are
suggested to contribute to T cell tolerance by presenting self-
antigens that are typically expressed in peripheral tissues (8). The
functions of thymic mimetic cells beyond antigen presentation have
also been reported, including the regulation of invariant NKT2 cell
development and function by thymic tuft cells, the control of
thymic cellularity by endocrine mTECs, and the generation of
IgA™ plasma cells in the thymus by microfold mTECs (31, 33, 34).

Similar to mouse TECs, the diversity of human TEC
subpopulations has been confirmed by single-cell transcriptomic
analyses. These include various mTEC subpopulations, such as
CCL21" mTEC'"/mTEC-I, AIRE" mTEC"®"/mTEC-II, and
mimetic TECs, as well as a limited number of cTEC
subpopulations (14, 15, 35). Immature TECs, which are
committed to neither the cTEC nor the mTEC lineage, have also
been detected in the human thymus (15, 35). These cells express
KRT15, which is also found in PolyKRT human TEC stem cells
(28). Spatial mapping of TECs has indicated that immature TECs
are located in the subcapsular area of the fetal thymus and in both
the subcapsular area and the cortico-medullary junction of the
pediatric thymus (35). The shift in immature TEC localization from
fetal to pediatric stage may suggest differences in differentiation
preference toward cTECs or mTECs. Regarding thymic mimetic
cells, Huisman and colleagues recently performed high-resolution
profiling of human and zebrafish thymic mimetic cells, uncovering
both species-specific and species-conserved mimetic cells in human,
mouse, and zebrafish thymuses (36). Notably, multiple clusters of
muscle and neuroendocrine mimetic cells were found in the human
thymus, whereas only a single cluster of each was detected in the
mouse thymus, and a single muscle mimetic cluster was noted in the
zebrafish thymus (36). Given that autoantibodies in a substantial
proportion of MG patients target acetylcholine receptors (AChRs)
at neuromuscular junctions, Huisman and colleagues further
focused on muscle mimetic cells and found that these mimetic
clusters show a differentiation trajectory with a gene signature
similar, but not identical, to that of peripheral muscle cells (36).
The development of muscle mimetic cells may be regulated by
mechanisms similar to those in the periphery, as mouse thymuses
deficient in myogenin or Myf5, both of which are myogenic
regulatory factors, exhibit an absence or a reduced number of
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thymic myoid cells (TMCs) (37). Histological analysis of human
thymus tissues has shown that some muscle mimetic cells form
neuromuscular junction-like structures. Thymic tuft cells
expressing choline acetyltransferase (ChAT), an enzyme that
synthesizes acetylcholine, are in close proximity to muscle
mimetic cells, with their interfaces interspersed with o-
bungarotoxin, which binds to AChR (36). However, the
significance of the presence of multiple muscle and
neuroendocrine mimetic clusters, as well as the formation of
neuromuscular junction-like structures in the human thymus, in
regulating the immune system, including the establishment of self-
tolerance, remains unclear. Furthermore, differences in TEC
clusters between human and animal models, such as the number
of specific mimetic clusters, may highlight the limitations of
translating findings from mouse to human.

The transcriptomic analysis of MG-associated thymomas has
led to the identification of a unique mTEC cluster, termed
neuromuscular mTECs (nmTECs), which ectopically express
neuromuscular molecules and exhibit a transcriptome profile
consistent with active antigen presentation (38). Cell-cell
interaction analysis has indicated that nmTECs act as a central
hub for communication with various cells, including B cells and T
cells, via the CXCL12-CXCR4 chemokine axis, as well as non-TEC
stroma cells, through such growth factors as vascular endothelial
growth factor (VEGF) and platelet-derived growth factor (PDGF)
(38). These findings suggest a possible pathogenic role of nmTECs
in thymoma-associated MG (TAMG). It is noteworthy that no
developmental trajectory from mTECs to “mature myoid cells”—
which express desmin and AChRs but not HLA-DR proteins (39)—
has been demonstrated by transcriptomic analysis either in
thymoma or in the human thymus, although
immunohistochemical findings have suggested that such a link is
likely in the thymus (8, 39).

Myasthenia gravis and thymus

MG is an autoimmune disease caused by autoantibodies against
components of neuromuscular junctions. MG patients exhibit
muscle weakness and fatigability due to impaired neuromuscular
transmission (40, 41). Antibodies (Abs) against AChRs are found in
85% of patients (40, 42). In the remaining AChR Ab-negative
patients, Abs against muscle-specific kinase (MuSK) are detected
in 5% (42, 43), and Abs against lipoprotein receptor-related protein
4 (LRP4) have been reported in a minority of MG patients (44, 45).
Another small fraction of patients do not have detectable circulating
autoantibodies against known targets. Accordingly, these patients
are diagnosed as having seronegative MG.

MG can be clinically divided into the following subtypes on the
basis of age of onset, Ab specificity, and associated thymus
pathology (Table 1): early-onset MG (EOMG); thymoma-
associated MG (TAMG); and late-onset MG (LOMG). Seventy
percent of EOMG patients exhibit morphological changes in their
thymus, particularly thymic hyperplasia (46). Thymoma is observed
over a wide age range (47). The thymus in LOMG patients is
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TABLE 1 Features and risk factors of myasthenia gravis (MG) subtypes with acetylcholine receptor (AChR) antibodies, comprising early-onset MG
(EOMG), thymoma-associated MG (TAMG), and late-onset MG (LOMG).

MG Autoantigen Onset age g HLA Thymic :
9 9 Gender bias o 4 Myoid cells
subtype target (years) association  pathology
EOMG AChR <50 Female-dominant | DR3-B8 TFH Normal® Normal number
Any
AChR, titi
TAMG . “,n (median age None None Thymoma Reduced® Absent
Cytokines’, RYR1/2
approx. 50)
AChR, titi i
LOMG ¢ R, tmln >50 Male-dominant No C(')ns.lstent Atrophy NA Reduced number
Cytokines’, RYR1/2 association

NA, not available; RYR1/2, ryanodine receptors 1 and 2; TFH, thymic follicular hyperplasia.

!Cytokines (type I interferons; IL-12).

*Supported by the following references (Marx A, et al. Autoimmun Rev (2013) doi: 10.1016/j.autrev.2013.03.007; Scarpino S, et al. Clin Exp Immunol (2007) doi: 10.1111/1.1365-
2249.2007.03442 x.; lacomino N, et al. Biomedicines (2023) doi: 10.3390/biomedicines11030732).

*Supported by the following references (Strobel P, et al. ] Pathol (2007) doi: 10.1002/patho.2141; Scarpino S, et al. Clin Exp Immunol (2007) doi: 10.1111/1.1365-2249.2007.03442.x.; lacomino N,

et al. Biomedicines (2023) doi: 10.3390/biomedicines11030732).

characterized by age-related involution without histologically
recognizable pathology (47). In MuSK Ab-positive MG patients,
thymic abnormalities are rare (48, 49). In LRP4 Ab-positive MG
patients, thymus involvement remains unclear (50).

EOMG thymus

EOMG may be triggered by genetic predisposition, including
HLA genes, miRNA dysregulation, female gender, and immune
dysregulation (46, 51-54). The hypothesis that viral infection is a
contributor to MG has been posited for a long time, but there is little
evidence to support it (42, 55-58). The representative pathogenic
finding in EOMG thymus is thymic follicular hyperplasia (TFH),
characterized by ectopic lymphoid follicles and germinal centers
(GGCs) in the perivascular space (PVS) margining with the thymic
medulla (59, 60) (Figure 1). The exact mechanisms in the early stage
of GCs are unknown. However, once formed, GCs drive the
hypermutation of B cell receptor genes and the intrathymic
production of high-affinity anti-AChR Abs (61). Females exhibit a
higher number of GCs, particularly between ages 30 and 40, but the
number of GCs decreases after the age of 50, regardless of gender
(62). Corticosteroid treatment results in a reduction in the number
and size of GCs (63).

Cellular changes and autoimmunity in
EOMG

The medullary area is thought to be a site of immune activation
in the MG thymus, where relevant cells, including anti-AChR auto-
reactive lymphocytes, TMCs, dendritic cells (DCs), and mTECs, are
localized (60). The role of T cells in MG has been demonstrated in
previous studies (64-67). B cells develop an anti-AChR
autoimmune response upon encountering antigens, interacting
with helper T cells (63). Myoid cells are rare non-innervated
mesenchymal cells resembling myoblasts or myotubes (68).
Myoid cells that are abundant in normal and EOMG thymic
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medullas express whole native adult and fetal AChRs, but not
major histocompatibility complex (MHC) class II molecules (39,
69, 70). TMCs are attacked by active complement and
autoantibodies in the EOMG thymus (71, 72). DCs are found in
close proximity to myoid cells and likely “cross-present” processed
AChR peptides to nearby auto-reactive T cells (73). Hyperplastic
mTECs that express unfolded AChR subunits and MHC class II
molecules are under attack by complement, and likely prime T cells
for immunogenic AChR peptides (74-77). Intrathymic
proinflammatory cytokines, CXCL12, CXCL13, CCL21, and B
cell-activating factor (BAFF), are overexpressed by increased
numbers of activated lymphatic vessels, high endothelial venules,
and TECs, and likely contribute to the recruitment of B cells and
DCs to the thymus (42, 63, 76, 78-83). The number of thymic Tregs
is not decreased; nevertheless, thymic Treg dysfunction is associated
with MG pathogenesis (42, 84-86). T follicular helper (Tth) cells are
crucial for the establishment of GC reactions (87). Preoperative
immunosuppressive therapy reduces intrathymic Tth profiles and is
suspected to inhibit ectopic GC development (88).

Pathogenetic model of EOMG and
unresolved issues

The early stages of EOMG pathogenesis are still largely
unknown. A popular model suggests a two-step pathogenesis
(89). In the first step, auto-reactive T cells are activated by
mTECs expressing MHC/AChR-peptide complexes.
Subsequently, thymic B cells produce low-affinity Abs toward
AChRs. In the second step, early Abs attack nearby TMCs
expressing folded AChRs on their surface and activate
complement, resulting in the subsequent release of AChR/
immune complexes. These AChR/immune complexes activate
antigen-presenting cells (APCs), such as DCs, which in turn drive
the further activation of auto-reactive CD4" T cells. This leads to the
initiation of ectopic follicle and GC formation with affinity
maturation of their B cell receptors, and ultimately to the
production of high-affinity late AChR Abs (89) (Figure 1).
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FIGURE 1
Intrathymic pathogenetic model of early-onset myasthenia gravis. Acetylcholine receptor (AChR)-reactive T cells in blood re-enter the thymus where
they, activated by unknown triggers, are "primed” by medullary thymic epithelial cells (MTECs) expressing MHC/AChR—peptide complexes. The primed T
cells activate thymic B cells to produce low-affinity anti-AChR Abs. These autoantibodies bind to TMCs expressing native AChRs, activate complement,
and induce the release of AChR/Ab complexes from TMCs for processing by nearby dendritic cells (DCs) that bind to follicular dendritic cells (FDCs).
CCL21 and CXCL13 facilitate the recruitment of B cells and the formation of ectopic germinal centers (GCs). T follicular helper (Tfh) cells promote GC
development, and the GC reaction finally results in plasma cells producing high-affinity anti-AChR Abs. Functionally impaired regulatory T cells (Tregs)
may contribute to the maintenance of EOMG. It is unknown whether lymphoid follicles arise primarily in the perivascular space (PVS) or the medulla, and
why AChR-reactive T cells occur so commonly in the “physiological” T cell repertoire of healthy humans. This figure is a modification of Figure 3 from
Thymus and Autoimmunity, Marx A, Yamada Y, Simon-Keller K, Willcox N, Strébel P, Weis CA, Semin Immunopathol 43; 45-64 (2021), licensed under a
Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).

The resulting thymic TFH responses may be self-perpetuating,
likely due to dysfunctional Tregs in the EOMG thymus and blood
(84, 90). Finally, the autoimmune process initiated in the thymus
can spread to the periphery, where, hypothetically, skeletal muscle-
derived AChR/Ab complexes in regional lymph nodes and
functionally defective Tregs may contribute to the maintenance of
EOMG (47, 91, 92).

It is believed that mimetic “muscle mTECs” in the human
thymus are involved in acetylcholine-mediated interfaces,
mimicking peripheral neuromuscular junctions (36). However, it
remains unknown whether TMCs are identical to, if not a part of,
muscle mTECs.

HCs represent the terminally differentiated stage of mTECs
(93-96). The increased number and morphological changes of HCs
in the TFH thymus are similar to those in infantile Down syndrome
thymus, which exhibits altered AIRE expression (97-99). Down
syndrome is associated with impaired Treg function and an
increased risk of developing autoimmunity (100, 101). It is
conceivable that the altered differentiation of mTECs, including
the increase in the number of HCs, may be associated with impaired
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TEC/thymocyte crosstalk signals in EOMG. Several studies have
reported that AIRE expression in the EOMG thymus is comparable
to that in the control thymus (47, 102, 103). However, these studies
were performed using thymus tissues rather than isolated mTECs.
Moreover, other thymic cells, such as B cells or activated DCs, are
also known to express AIRE (14, 104). Therefore, AIRE expression
in non-mTEC thymic cells may contribute to the apparently
undiminished AIRE expression in the EOMG thymus.

Recent single-cell studies have identified specific helper T cells
or macrophages in the EOMG thymus (105-107). However,
comprehensive single-cell analyses of human TECs and non-
TECs from non-neoplastic MG thymus are needed to better
understand the underlying immunopathogenesis of EOMG.

Thymoma-associated MG
TAMG is a subtype of AChR Ab-positive MG (60).

Approximately 10 to 20% of generalized AChR Ab-positive MG
patients have thymoma (46, 108). TAMG typically occurs after age
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50; however, it has a wide age range, including children (109).
Unlike EOMG, TAMG shows neither gender distribution nor
strong HLA association (47, 50).

Thymomas are neoplasms of TECs, characterized by diverse
cortical and medullary differentiation accompanied by
thymopoiesis in more than 90% of patients (60). The current
WHO classification categorizes thymomas into five main types: A,
AB, Bl1, B2, and B3, on the basis of epithelial cell features and
lymphocyte content (109). Thymomas containing spindled
neoplastic epithelial cells at least focally are classified as type A if
they have no or few immature thymic T cells, and as type AB if
immature T cells among epithelial cells are at least focally abundant.
By contrast, thymomas composed of polygonal tumor cells are
classified as type B, and their further division into B1, B2, and B3
depends on the presence of a very high, intermediate, and low
number of interepithelial immature T cells, respectively. Types AB,
Bl1, and B2 thymomas are the most prevalent subtypes in MG
patients (50) (Figure 2). Unlike in EOMG, more than 80% of
patients with thymomas have autoantibodies against striational
antigens, such as titin and ryanodine receptors (RYRs), as well as
others that neutralize cytokines, including type I interferon (IFN)

10.3389/fimmu.2025.1649171

and IL-12 (110, 111). TAMG is the most common thymoma-
associated autoimmune disease (30-40%). Others, such as
thyroiditis, rheumatoid arthritis, systemic lupus erythematosus,
pure red cell aplasia, hypogammaglobulinemia, and other bone
marrow failures, are less common (each 1-5%). Together with
TAMG, they comprise over 50% of thymoma-associated
autoimmune diseases (112, 113).

Cellular changes and autoimmunity in
TAMG

In TAMG, the most common MG-associated thymoma types
(AB, Bl to B3) typically show prominent cortex-like regions, with
medulla-like regions usually attenuated (114) (Figure 2). These
thymomas mostly contain abundant immature thymocytes and
export high numbers of mature T cells into the peripheral blood,
where the export of mature emigrant CD4" T cells is strongly
associated with the development of MG (115-117).

Abnormalities in TECs, including the reduced expression of
antigen-processing proteases in cTECs and MHC class II antigens

FIGURE 2

Representative images of typical thymomas (Types A, AB, B1-B3) commonly associated with MG. By definition, types AB, B1, and B2 thymomas
consistently harbor interepithelial immature (TdT-positive) T cells, whereas immature T cells are rare and sometimes even absent in types A and B3
thymomas. Enigmatically, the scientifically largely neglected micronodular thymomas with lymphoid stroma are virtually never associated with MG,
offering an “experiment of nature” to study the mechanisms driving or preventing the development of thymoma-associated MG. (A) Type A
thymoma: predominant neoplastic spindle cells and rare (and sometimes no) immature T cells. (B) Type AB: biphasic architecture with lymphocyte-
poor (left, light) and immature T cell-rich (right, dark) regions. Rarely, lymphocyte-poor regions can be missing altogether. (C) Type B1l: predominant
cortical areas with inconspicuous tumor cells, abundant lymphocytes, and a small medullary island (MI) with a single Hassall corpuscle (HC) (arrow).
(D) Type B2: many lymphocytes and many conspicuous, large, polygonal epithelial cells arranged in lobules and around a prominent perivascular
space (PVS) containing lymphocytes and a blood-filled vessel (arrowheads). (E) Type B3: confluent sheets of pink, polygonal tumor cells, few (and
eventually no) interepithelial lymphocytes, PVS containing lymphocytes (arrowheads). (F) Micronodular thymoma with lymphoid stroma: small
nodules of neoplastic epithelial cells resembling those of type A thymoma, surrounded by a lymphoid stroma composed of B cells (often forming

follicles) as well as mature and immature T cells.
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in mTECs, as well as defective FOXP3" Treg generation, may
contribute to TAMG development (77, 114, 118-120). The loss or
reduction of AIRE" mTECs has also been observed in the TAMG
thymus (103, 121) (Table 1). Molecular components essential for
thymic tolerance are deficient in MG thymoma. This may account
for the frequent presence of autoantibodies against non-AChR
skeletal muscle antigens, including titin and RyR, and against
type I IFN (122, 123). The lack of TMCs in thymoma and/or the
expression of AChR, titin, and RyR epitopes in neoplastic TECs
may also account for the generation of muscle Abs (112, 124, 125).
These findings suggest that thymic T cell selection may be altered,
or that auto-reactive T cells may be inappropriately activated in the
thymic environment.

Pathogenetic model of TAMG and
unresolved issues

The above findings suggest the following pathogenetic model:
First, the reduced levels of some HLA variants and neoplastic linear
AChR/titin peptide-overexpressing TECs may contribute to altered
positive selection (77, 121, 124). Next, auto-reactive thymocytes
survive, partly because of the absence of AIRE" mTECs and Tregs,
and also because of the combined defects of medullary functions,
including a lack of myoid cell-derived AChRs and titin for
tolerogenic cross-presentation by APCs (89). Finally, thymoma-
derived auto-reactive mature thymocytes escape negative selection
in the thymoma, exit into the blood, gradually diluting and
eventually replacing the existing tolerant peripheral T cell
repertoire (115, 117, 126). In the periphery, including the
remnant thymus, these escaping auto-reactive thymocytes
stimulate B cells to generate autoantibodies against naive AChRs
after appropriate stimulation. Once initiated, skeletal muscle-
derived AChR/autoantibody complexes present in regional lymph
nodes perpetuate TAMG even after thymoma removal (108, 124,
127, 128).

Those abnormalities in TECs, which are related to positive and
negative selections, are not specific to MG but are commonly
detected in thymoma. Despite the loss of AIRE" mTECs, MG is
not a common manifestation of human autoimmune
polyendocrinopathy-candidiasis—ectodermal dystrophy, which
results from various mutations in AIRE (129, 130). Thus, the loss
of AIRE" mTECs may be partially, but not entirely, linked to MG
pathogenesis. A single-cell sequencing study suggested that a subset
of mTECs, named nmTECs, exhibits a significant function through
the ectopic expression of neuromuscular molecules in MG
thymoma (38). However, nmTEC marker-positive cells are also
present in some non-MG thymomas (38). Therefore, the
accumulation of neuromuscular-related antigens in nmTECs is
not a sufficient condition for MG pathogenesis, and an increased
number of nmTECs alone is insufficient to initiate TAMG. Spatial
transcriptomic analysis has revealed specific immune niches in the
medulla and nmTEC enrichment in the corticomedullary junction
(131). Furthermore, a specific chemokine pattern, i.e., CXCL12-
CXCR4, and immune cells, including CXCL13" Tth cells and
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migratory DCs, have been detected in the MG-thymoma niche
(38, 131). Those immune microenvironments, such as CXCL13
interactions, are often observed in TFH (63, 78). Because occasional
GCs are enriched by high endothelial venules in TAMG (50, 132),
further investigation is needed to elucidate the pathogenesis
of TAMG.

LOMG

There is no consensus on the age threshold for distinguishing
between LOMG and EOMG. The most common age threshold of 50
years shows a gender bias distinct from EOMG, i.e., a predominance
of males, and a higher frequency of AChR seropositivity (42, 50,
133, 134). LOMG patients, by definition, do not have thymoma. The
aging thymus is gradually replaced by fat, but residual parenchyma
may continue to export some T cells at least into middle age (135).
In LOMG, these remnants may rarely show signs of expansion and
even infiltration. However, morphometric analysis did not reveal
significant differences between LOMG and normal thymuses (136).
TMCs and AIRE-positive cells decline with age. However, there is
no apparent difference between LOMG thymuses and age-matched
controls (68, 72, 73). Although the genetic background is likely
different from that of EOMG and is of pathogenetic relevance, the
aged thymus in LOMG is assumed to export and possibly activate
non-tolerant T cells (89, 108). Genome-wide association studies
(GWAS) have demonstrated that several genes are associated with T
cell tolerance (42, 137-139). The following factors are believed to
contribute to the pathogenesis of LOMG: 1) immune system aging,
which is associated with increased rates of autoimmunity; 2) AChR-
reactive T cells, generated in the near absence of myoid cells within
a largely AIRE-negative atrophic thymus, may become activated
after export to the periphery and subsequently trigger LOMG; and
3) a pathogenic T cell population, derived from an atrophic thymus
lacking myoid cells and AIRE expression, is accumulated in the
periphery over a long period before the outbreak of LOMG, similar
to rare thymoma patients who develop TAMG vyears after thymoma
removal (42, 115). Once initiated, LOMG may become self-
perpetuating as described above for TAMG, owing to stimulatory
AChR/autoantibody complexes in muscle-draining lymph nodes.

Other MG subtypes

Patients with MuSK Abs demonstrate a propensity for bulbar
muscle involvement (42). Thymoma has been reported as a rare
exception in MuSK Ab-positive MG patients (49). Most
autoantibodies in MuSK Ab-positive MG are of the IgG4
subclass, in contrast to AChR Abs. Immunopathology of MuSK
Abs is less currently known, but the proposed mechanism
underlying autoantibody production in MuSK MG is as follows.
Peripheral naive B cells likely encounter self-antigens and receive T
cell help in lymphoid tissue. These naive B cells differentiate into
memory B cells and short-lived plasmablasts that produce MuSK
Abs (140). LRP4 Abs are primarily of IgG1 and IgG2 subtypes and
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are associated with clinical presentations resembling the mild form
of EOMG (141). Patients without these other autoantibodies,
namely triple seronegative MG represent a highly heterogeneous
group, and there is limited information regarding their disease
mechanisms (42).

Thymectomy

Thymectomy is a standard treatment option in AChR Ab-
positive MG. It should be performed as early as possible, ideally
within two years of MG onset (142, 143). Thymectomy can
effectively remove AChR-like proteins, antigen-specific T cells,
and Ab-producing B cells (144-146). Whereas clinical
improvement is observed in half of patients following
thymectomy, complete remission is rare (147, 148). Potent
autoantibody-producing B cells can differentiate into long-lived
plasma cells in the thymus, leading to the production of some of the
circulating AChR-specific autoantibodies (140, 149, 150). Thymus-
derived B cell clones persist in the circulation after thymectomy,
and these B cells are thought to be associated with poor outcome
(151). Thymectomy has not resulted in clinical improvement in
MuSK Ab-positive patients, unlike in AChR Ab-positive patients
(152, 153). MuSK Ab-positive thymus shows few GCs, and these
thymic changes are thought to be associated with responses to
thymectomy (48). Several studies have demonstrated that
rituximab, which depletes B cells, achieves a higher improvement
rate in MuSK Ab-positive MG than in AChR Ab-positive MG.
However, rituximab has been reported to reduce the risk of relapse
in AChR Ab-positive MG, although its benefit appears greater in
MuSK Ab-positive MG (154). It is speculated that autoantibody-
producing B cell clones residing in AChR Ab-positive MG thymus
can also populate lymphoid tissues outside the thymus. In those
cases, there may be pathogeneses in which thymectomy or
rituximab is ineffective.

Conclusions and perspectives

Thymic abnormalities are observed in a substantial proportion
of patients with MG, prompting extensive investigation into the
involvement of the thymus in the immunopathogenesis of the
disease. Recent studies have shown the expanding diversity of
TEC subpopulations in relation to neuromuscular junctions.
ChAT-expressing thymic tuft cells are in close proximity to
muscle mimetic cells in the normal human thymus. However, the
role of these TEC subpopulations in the MG thymus remains to be
investigated. Further studies are required to determine whether
muscle mTECs are identical to, or represent a subset of, TMCs, and
whether a specific TEC subpopulation, such as muscle mTECs,
expresses immunogenic AChRs in the thymus of MG patients.

The understanding of TEC biology in humans lags behind that
in mouse models. In this regard, the development of methods for
purifying TEC subpopulations from both non-thymomatous and

Frontiers in Immunology

10.3389/fimmu.2025.1649171

neoplastic thymic tissues is highly anticipated, as this will facilitate
the identification of triggers leading to MG. Experimental
autoimmune MG (EAMG) animal models have been established
to investigate pathogenic mechanisms (155). However, these
EAMG animal models lack thymic abnormalities, limiting their
utility in elucidating the pathogenic mechanisms associated with the
abnormal thymus in MG. A comprehensive understanding of TEC
biology in the MG thymus will positively impact the engineering of
EAMG animal models with thymic abnormalities, thereby further
advancing research on MG thymus.

Thymectomy is one of the long-acting immunotherapies.
However, it is currently not possible to predict the postoperative
MG course owing to the lack of preoperative biomarkers and
predictive morphological features of the resected thymic tissue.
The problem with performing scRNA-seq/spatial transcriptomic
analysis of MG thymus lies in the preoperative use of
corticosteroids, which can lead to pathological changes in the
thymus. However, the integration of recent advancements, such
as in situ single-nucleus barcoding, may provide a solution to this
problem. Biomarkers should aim at identifying highly active and
refractory MG patients. Given the expanding treatment landscape
in MG, highly disease-active and refractory cases should be
considered for new targeted therapies, such as complement
inhibitors or B cell depletion. We hope that thymus research will
contribute to a better understanding of MG pathogenesis and
enable the establishment of biomarkers for MG-specific therapy
that interrupt AChR/MuSK-directed autoimmunity without
compromising other aspects of immune function.
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