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The thymus generates T cells from immature thymocytes and prevents

autoimmune diseases through negative selection and the generation of

FOXP3+ regulatory T cells (Tregs). The thymic architecture is typically divided

into two distinct microenvironments, the cortex and the medulla. These

microenvironments are characterized by the presence of cortical thymic

epithelial cells (cTECs) and medullary thymic epithelial cells (mTECs),

respectively. Recent single-cell and spatial transcriptomic analyses have

revealed the expanding diversity of TEC subpopulations in mice and humans.

Myasthenia gravis (MG) is an autoimmune disorder characterized by fatigue

resulting from muscle weakness, which is caused by antibodies toward

structures within the neuromuscular junction. The most common target of

pathogenic autoantibodies in MG is the acetylcholine receptor (AChR). MG

patients are prone to thymic abnormalities, including thymic follicular

hyperplasia and thymoma. Previous studies have suggested that mTECs

expressing major histocompatibility complex (MHC)/AChR–peptide complexes

are involved in the intrathymic pathogenesis of this MG type. However, the exact

mechanisms are unknown. This review provides an update on the diversity of TEC

subpopulations and other cellular alterations in the MG thymus. Additionally, we

present hypotheses on the pathogenetic pathways leading to MG and suggest

potential future directions in thymus research.
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Introduction

The fortuitous association between the thymus and myasthenia

gravis (MG) was first reported in 1939, when the excision of a cystic

thymic tumor had a strikingly positive impact on myasthenic

symptoms in a patient with MG (1). A study performed in 1949

indicated that thymic abnormalities, including hyperplasia and

thymoma, were detectable in approximately 90% of patients with

MG, and that thymectomy for non-thymoma was effective in 43 to

50% of patients (2). Since then, thymectomy has remained a crucial

therapeutic intervention for MG patients with thymic abnormalities

and an oncological necessity for patients with thymomas (3, 4),

despite the emergence of new and highly effective therapeutic agents

in recent years (5).

Notwithstanding the discovery of a link between thymus

pathology and MG in 1949, as mentioned above, the belief

persisted that the thymus was actually a superfluous organ, as its

involution from childhood onwards seemed to have no

consequences—until its crucial role in T cell production was

recognized in 1961 (6). The function of the thymus largely

depends on the function of thymic epithelial cells (TECs). Over

the past two decades, our understanding of the mechanisms

regulating TEC function and development has significantly

advanced. Single-cell and spatial transcriptomic analyses have

revealed a far greater diversity of TEC subpopulations than

previously recognized (7, 8). However, most of these studies have

been conducted using mouse thymuses. Therefore, comprehending

the similarities and differences between mouse and human

thymuses is crucial for clinicians seeking to understand human

diseases associated with thymic abnormalities.

In this review, we summarize current advances in our

understanding of TEC properties in mouse and human thymuses,

as well as the pathomechanisms of MG thymus. We also discuss

future directions in thymus research, including potential new

therapeutic strategies and the development of appropriate

biomarkers for MG.
Thymic epithelial cells in mouse and
human thymuses

The thymus consists of two microenvironments, the cortex and

the medulla, whose functions are characterized by the roles played

by cortical TECs (cTECs) and medullary TECs (mTECs),

respectively. cTECs express functional molecules, including IL7

and Dll4, that regulate early T cell development. Furthermore,

cTECs express enzymes that produce self-peptide antigens,

inducing the positive selection of T cells. These enzymes comprise

the b5t-containing thymoproteasome, the thymus-specific serine

protease, and cathepsin L (9, 10). On the other hand, mTECs

regulate the establishment of T cell self-tolerance. For example,

chemokine CCL21 produced by mTECs is involved in the migration

of positively selected cortical thymocytes into the medulla, whereas
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the nuclear factor AIRE regulates the expression of tissue-specific

antigens for the negative selection of self-reactive T cells and the

generation of regulatory T cells (Tregs) (11–13). The importance of

these cTEC- and mTEC-associated molecules in thymic function

has been revealed through the analyses of animal models,

particularly genetically modified mice. However, transcriptomic

analysis of human TECs has demonstrated that cTEC- and

mTEC-associated molecules are similarly present in human

cTECs and mTECs, respectively (14, 15), indicating that similar

molecular mechanisms govern the regulation of TEC functions in

humans and animal models. These analyses have also revealed

differences between human and mouse TECs, such as IL-25

expression, which characterizes mouse but not human tuft cells—

a subset of mTECs present in both species.
Thymic epithelial progenitors in mouse and
human thymuses

During embryonic thymus organogenesis, TEC emergence

begins on embryonic day 11 in mice and the sixth week of

gestation in humans, marked by the expression of Foxn1, a

landmark transcription factor (16). Intrathymic transplantation of

single TECs isolated from fetal mouse thymus, along with lineage

tracing of transplanted TECs, has revealed that cTECs and mTECs

are derived from a common TEC progenitor (17, 18). Bipotent TEC

progenitors have also been identified in the adult mouse thymus

(19, 20). In addition to bipotent TEC progenitors, mTEC-specific

progenitors, including RANK+ TECs, Krt19+ TECs, and Sox9+

TECs, as well as Cldn3,4highSSEA1+ mTEC stem cells with self-

renewing and clonogenic potential, have been unveiled in the fetal

mouse thymus (21–25). Recently, we reported that mTECs

expressing CCL21 in the fetal mouse thymus are capable of giving

rise to AIRE+ mTECs (26), suggesting that the functional

conversion of thymocyte-attracting mTECs into self-antigen-

presenting mTECs contributes to the establishment of a

functional medullary microenvironment.

In humans, TEC stem cells have been identified in the postnatal

thymus (27, 28) through single-cell RNA sequencing of cTECs and

mTECs, within a TEC cluster termed Polykeratin (PolyKRT).

PolyKRT expresses multiple cytokeratins, including KRT5, KRT8,

KRT13, KRT14, KRT15, KRT17, KRT18, and KRT19. The PolyKRT

cluster is predominantly localized in the subcapsular and

perivascular regions of the thymus. It exhibits long-term

expansion potential in vitro, as well as the capacity to differentiate

into multiple TEC lineages (28). However, it remains unclear

whether the frequency and differentiation capacity of PolyKRT

cells change with aging or in the context of thymic abnormalities.

In addition, it is unknown whether lineage-restricted progenitor

populations, such as Krt19+, RANK+, and CCL21+ embryonic TECs

identified in the mouse thymus, are also present in the human

thymus. Further studies are needed to elucidate the roles of human

TEC stem and progenitor cells in thymic involution and the

pathogenesis of thymus-associated diseases.
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TEC subpopulations other than progenitors
in mouse and human thymuses

As far as the mouse thymus is concerned, it is well known that

mTECs are a heterogeneous population that is roughly divided into

two subpopulations: mTEClow (CD80low MHC IIlow), which

includes immature mTECs and those in the post-AIRE stage, and

mTEChigh (CD80high MHC IIhigh), a mature mTEC subset that

includes AIRE+ mTECs. The heterogeneity of cTECs has also been

recognized on the basis of the expression of cTEC-associated

molecules, such as CXCL12 and DLL4 (29, 30). However, single-

cell transcriptomic analyses of TECs isolated from the mouse

thymus have revealed a far greater diversity of mTEC subsets,

including thymic mimetic cells, which exhibit transcriptional and

epigenetic signatures resembling those of extrathymic cells and in

the post-AIRE stage (7, 8, 31–33). These thymic mimetic cells are

suggested to contribute to T cell tolerance by presenting self-

antigens that are typically expressed in peripheral tissues (8). The

functions of thymic mimetic cells beyond antigen presentation have

also been reported, including the regulation of invariant NKT2 cell

development and function by thymic tuft cells, the control of

thymic cellularity by endocrine mTECs, and the generation of

IgA+ plasma cells in the thymus by microfold mTECs (31, 33, 34).

Similar to mouse TECs, the diversity of human TEC

subpopulations has been confirmed by single-cell transcriptomic

analyses. These include various mTEC subpopulations, such as

CCL21+ mTEClow/mTEC-I, AIRE+ mTEChigh/mTEC-II, and

mimetic TECs, as well as a limited number of cTEC

subpopulations (14, 15, 35). Immature TECs, which are

committed to neither the cTEC nor the mTEC lineage, have also

been detected in the human thymus (15, 35). These cells express

KRT15, which is also found in PolyKRT human TEC stem cells

(28). Spatial mapping of TECs has indicated that immature TECs

are located in the subcapsular area of the fetal thymus and in both

the subcapsular area and the cortico-medullary junction of the

pediatric thymus (35). The shift in immature TEC localization from

fetal to pediatric stage may suggest differences in differentiation

preference toward cTECs or mTECs. Regarding thymic mimetic

cells, Huisman and colleagues recently performed high-resolution

profiling of human and zebrafish thymic mimetic cells, uncovering

both species-specific and species-conserved mimetic cells in human,

mouse, and zebrafish thymuses (36). Notably, multiple clusters of

muscle and neuroendocrine mimetic cells were found in the human

thymus, whereas only a single cluster of each was detected in the

mouse thymus, and a single muscle mimetic cluster was noted in the

zebrafish thymus (36). Given that autoantibodies in a substantial

proportion of MG patients target acetylcholine receptors (AChRs)

at neuromuscular junctions, Huisman and colleagues further

focused on muscle mimetic cells and found that these mimetic

clusters show a differentiation trajectory with a gene signature

similar, but not identical, to that of peripheral muscle cells (36).

The development of muscle mimetic cells may be regulated by

mechanisms similar to those in the periphery, as mouse thymuses

deficient in myogenin or Myf5, both of which are myogenic

regulatory factors, exhibit an absence or a reduced number of
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thymic myoid cells (TMCs) (37). Histological analysis of human

thymus tissues has shown that some muscle mimetic cells form

neuromuscular junction-like structures. Thymic tuft cells

expressing choline acetyltransferase (ChAT), an enzyme that

synthesizes acetylcholine, are in close proximity to muscle

mimetic cells, with their interfaces interspersed with a-
bungarotoxin, which binds to AChR (36). However, the

significance of the presence of mult iple muscle and

neuroendocrine mimetic clusters, as well as the formation of

neuromuscular junction-like structures in the human thymus, in

regulating the immune system, including the establishment of self-

tolerance, remains unclear. Furthermore, differences in TEC

clusters between human and animal models, such as the number

of specific mimetic clusters, may highlight the limitations of

translating findings from mouse to human.

The transcriptomic analysis of MG-associated thymomas has

led to the identification of a unique mTEC cluster, termed

neuromuscular mTECs (nmTECs), which ectopically express

neuromuscular molecules and exhibit a transcriptome profile

consistent with active antigen presentation (38). Cell–cell

interaction analysis has indicated that nmTECs act as a central

hub for communication with various cells, including B cells and T

cells, via the CXCL12–CXCR4 chemokine axis, as well as non-TEC

stroma cells, through such growth factors as vascular endothelial

growth factor (VEGF) and platelet-derived growth factor (PDGF)

(38). These findings suggest a possible pathogenic role of nmTECs

in thymoma-associated MG (TAMG). It is noteworthy that no

developmental trajectory from mTECs to “mature myoid cells”—

which express desmin and AChRs but not HLA-DR proteins (39)—

has been demonstrated by transcriptomic analysis either in

t h y m om a o r i n t h e h um a n t h ym u s , a l t h o u g h

immunohistochemical findings have suggested that such a link is

likely in the thymus (8, 39).
Myasthenia gravis and thymus

MG is an autoimmune disease caused by autoantibodies against

components of neuromuscular junctions. MG patients exhibit

muscle weakness and fatigability due to impaired neuromuscular

transmission (40, 41). Antibodies (Abs) against AChRs are found in

85% of patients (40, 42). In the remaining AChR Ab-negative

patients, Abs against muscle-specific kinase (MuSK) are detected

in 5% (42, 43), and Abs against lipoprotein receptor-related protein

4 (LRP4) have been reported in a minority of MG patients (44, 45).

Another small fraction of patients do not have detectable circulating

autoantibodies against known targets. Accordingly, these patients

are diagnosed as having seronegative MG.

MG can be clinically divided into the following subtypes on the

basis of age of onset, Ab specificity, and associated thymus

pathology (Table 1): early-onset MG (EOMG); thymoma-

associated MG (TAMG); and late-onset MG (LOMG). Seventy

percent of EOMG patients exhibit morphological changes in their

thymus, particularly thymic hyperplasia (46). Thymoma is observed

over a wide age range (47). The thymus in LOMG patients is
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characterized by age-related involution without histologically

recognizable pathology (47). In MuSK Ab-positive MG patients,

thymic abnormalities are rare (48, 49). In LRP4 Ab-positive MG

patients, thymus involvement remains unclear (50).
EOMG thymus

EOMG may be triggered by genetic predisposition, including

HLA genes, miRNA dysregulation, female gender, and immune

dysregulation (46, 51–54). The hypothesis that viral infection is a

contributor to MG has been posited for a long time, but there is little

evidence to support it (42, 55–58). The representative pathogenic

finding in EOMG thymus is thymic follicular hyperplasia (TFH),

characterized by ectopic lymphoid follicles and germinal centers

(GCs) in the perivascular space (PVS) margining with the thymic

medulla (59, 60) (Figure 1). The exact mechanisms in the early stage

of GCs are unknown. However, once formed, GCs drive the

hypermutation of B cell receptor genes and the intrathymic

production of high-affinity anti-AChR Abs (61). Females exhibit a

higher number of GCs, particularly between ages 30 and 40, but the

number of GCs decreases after the age of 50, regardless of gender

(62). Corticosteroid treatment results in a reduction in the number

and size of GCs (63).
Cellular changes and autoimmunity in
EOMG

The medullary area is thought to be a site of immune activation

in the MG thymus, where relevant cells, including anti-AChR auto-

reactive lymphocytes, TMCs, dendritic cells (DCs), and mTECs, are

localized (60). The role of T cells in MG has been demonstrated in

previous studies (64–67). B cells develop an anti-AChR

autoimmune response upon encountering antigens, interacting

with helper T cells (63). Myoid cells are rare non-innervated

mesenchymal cells resembling myoblasts or myotubes (68).

Myoid cells that are abundant in normal and EOMG thymic
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medullas express whole native adult and fetal AChRs, but not

major histocompatibility complex (MHC) class II molecules (39,

69, 70). TMCs are attacked by active complement and

autoantibodies in the EOMG thymus (71, 72). DCs are found in

close proximity to myoid cells and likely “cross-present” processed

AChR peptides to nearby auto-reactive T cells (73). Hyperplastic

mTECs that express unfolded AChR subunits and MHC class II

molecules are under attack by complement, and likely prime T cells

for immunogenic AChR peptides (74–77). Intrathymic

proinflammatory cytokines, CXCL12, CXCL13, CCL21, and B

cell-activating factor (BAFF), are overexpressed by increased

numbers of activated lymphatic vessels, high endothelial venules,

and TECs, and likely contribute to the recruitment of B cells and

DCs to the thymus (42, 63, 76, 78–83). The number of thymic Tregs

is not decreased; nevertheless, thymic Treg dysfunction is associated

with MG pathogenesis (42, 84–86). T follicular helper (Tfh) cells are

crucial for the establishment of GC reactions (87). Preoperative

immunosuppressive therapy reduces intrathymic Tfh profiles and is

suspected to inhibit ectopic GC development (88).
Pathogenetic model of EOMG and
unresolved issues

The early stages of EOMG pathogenesis are still largely

unknown. A popular model suggests a two-step pathogenesis

(89). In the first step, auto-reactive T cells are activated by

mTECs expre s s ing MHC/AChR–pep t ide complexes .

Subsequently, thymic B cells produce low-affinity Abs toward

AChRs. In the second step, early Abs attack nearby TMCs

expressing folded AChRs on their surface and activate

complement, resulting in the subsequent release of AChR/

immune complexes. These AChR/immune complexes activate

antigen-presenting cells (APCs), such as DCs, which in turn drive

the further activation of auto-reactive CD4+ T cells. This leads to the

initiation of ectopic follicle and GC formation with affinity

maturation of their B cell receptors, and ultimately to the

production of high-affinity late AChR Abs (89) (Figure 1).
TABLE 1 Features and risk factors of myasthenia gravis (MG) subtypes with acetylcholine receptor (AChR) antibodies, comprising early-onset MG
(EOMG), thymoma-associated MG (TAMG), and late-onset MG (LOMG).

MG
subtype

Autoantigen
target

Onset age
(years)

Gender bias
HLA
association

Thymic
pathology

AIRE Myoid cells

EOMG AChR <50 Female-dominant DR3-B8 TFH Normal2 Normal number

TAMG
AChR, titin
Cytokines1, RYR1/2

Any
(median age
approx. 50)

None None Thymoma Reduced3 Absent

LOMG
AChR, titin
Cytokines1, RYR1/2

≥50 Male-dominant
No consistent
association

Atrophy NA Reduced number
NA, not available; RYR1/2, ryanodine receptors 1 and 2; TFH, thymic follicular hyperplasia.
1Cytokines (type I interferons; IL-12).
2Supported by the following references (Marx A, et al. Autoimmun Rev (2013) doi: 10.1016/j.autrev.2013.03.007; Scarpino S, et al. Clin Exp Immunol (2007) doi: 10.1111/j.1365-
2249.2007.03442.x.; Iacomino N, et al. Biomedicines (2023) doi: 10.3390/biomedicines11030732).
3Supported by the following references (Strobel P, et al. J Pathol (2007) doi: 10.1002/patho.2141; Scarpino S, et al. Clin Exp Immunol (2007) doi: 10.1111/j.1365-2249.2007.03442.x.; Iacomino N,
et al. Biomedicines (2023) doi: 10.3390/biomedicines11030732).
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The resulting thymic TFH responses may be self-perpetuating,

likely due to dysfunctional Tregs in the EOMG thymus and blood

(84, 90). Finally, the autoimmune process initiated in the thymus

can spread to the periphery, where, hypothetically, skeletal muscle-

derived AChR/Ab complexes in regional lymph nodes and

functionally defective Tregs may contribute to the maintenance of

EOMG (47, 91, 92).

It is believed that mimetic “muscle mTECs” in the human

thymus are involved in acetylcholine-mediated interfaces,

mimicking peripheral neuromuscular junctions (36). However, it

remains unknown whether TMCs are identical to, if not a part of,

muscle mTECs.

HCs represent the terminally differentiated stage of mTECs

(93–96). The increased number and morphological changes of HCs

in the TFH thymus are similar to those in infantile Down syndrome

thymus, which exhibits altered AIRE expression (97–99). Down

syndrome is associated with impaired Treg function and an

increased risk of developing autoimmunity (100, 101). It is

conceivable that the altered differentiation of mTECs, including

the increase in the number of HCs, may be associated with impaired
Frontiers in Immunology 05
TEC/thymocyte crosstalk signals in EOMG. Several studies have

reported that AIRE expression in the EOMG thymus is comparable

to that in the control thymus (47, 102, 103). However, these studies

were performed using thymus tissues rather than isolated mTECs.

Moreover, other thymic cells, such as B cells or activated DCs, are

also known to express AIRE (14, 104). Therefore, AIRE expression

in non-mTEC thymic cells may contribute to the apparently

undiminished AIRE expression in the EOMG thymus.

Recent single-cell studies have identified specific helper T cells

or macrophages in the EOMG thymus (105–107). However,

comprehensive single-cell analyses of human TECs and non-

TECs from non-neoplastic MG thymus are needed to better

understand the underlying immunopathogenesis of EOMG.
Thymoma-associated MG

TAMG is a subtype of AChR Ab-positive MG (60).

Approximately 10 to 20% of generalized AChR Ab-positive MG

patients have thymoma (46, 108). TAMG typically occurs after age
FIGURE 1

Intrathymic pathogenetic model of early-onset myasthenia gravis. Acetylcholine receptor (AChR)-reactive T cells in blood re-enter the thymus where
they, activated by unknown triggers, are “primed” by medullary thymic epithelial cells (mTECs) expressing MHC/AChR–peptide complexes. The primed T
cells activate thymic B cells to produce low-affinity anti-AChR Abs. These autoantibodies bind to TMCs expressing native AChRs, activate complement,
and induce the release of AChR/Ab complexes from TMCs for processing by nearby dendritic cells (DCs) that bind to follicular dendritic cells (FDCs).
CCL21 and CXCL13 facilitate the recruitment of B cells and the formation of ectopic germinal centers (GCs). T follicular helper (Tfh) cells promote GC
development, and the GC reaction finally results in plasma cells producing high-affinity anti-AChR Abs. Functionally impaired regulatory T cells (Tregs)
may contribute to the maintenance of EOMG. It is unknown whether lymphoid follicles arise primarily in the perivascular space (PVS) or the medulla, and
why AChR-reactive T cells occur so commonly in the “physiological” T cell repertoire of healthy humans. This figure is a modification of Figure 3 from
Thymus and Autoimmunity, Marx A, Yamada Y, Simon-Keller K, Willcox N, Ströbel P, Weis CA, Semin Immunopathol 43; 45-64 (2021), licensed under a
Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
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50; however, it has a wide age range, including children (109).

Unlike EOMG, TAMG shows neither gender distribution nor

strong HLA association (47, 50).

Thymomas are neoplasms of TECs, characterized by diverse

cortical and medullary differentiation accompanied by

thymopoiesis in more than 90% of patients (60). The current

WHO classification categorizes thymomas into five main types: A,

AB, B1, B2, and B3, on the basis of epithelial cell features and

lymphocyte content (109). Thymomas containing spindled

neoplastic epithelial cells at least focally are classified as type A if

they have no or few immature thymic T cells, and as type AB if

immature T cells among epithelial cells are at least focally abundant.

By contrast, thymomas composed of polygonal tumor cells are

classified as type B, and their further division into B1, B2, and B3

depends on the presence of a very high, intermediate, and low

number of interepithelial immature T cells, respectively. Types AB,

B1, and B2 thymomas are the most prevalent subtypes in MG

patients (50) (Figure 2). Unlike in EOMG, more than 80% of

patients with thymomas have autoantibodies against striational

antigens, such as titin and ryanodine receptors (RYRs), as well as

others that neutralize cytokines, including type I interferon (IFN)
Frontiers in Immunology 06
and IL-12 (110, 111). TAMG is the most common thymoma-

associated autoimmune disease (30–40%). Others, such as

thyroiditis, rheumatoid arthritis, systemic lupus erythematosus,

pure red cell aplasia, hypogammaglobulinemia, and other bone

marrow failures, are less common (each 1–5%). Together with

TAMG, they comprise over 50% of thymoma-associated

autoimmune diseases (112, 113).
Cellular changes and autoimmunity in
TAMG

In TAMG, the most common MG-associated thymoma types

(AB, B1 to B3) typically show prominent cortex-like regions, with

medulla-like regions usually attenuated (114) (Figure 2). These

thymomas mostly contain abundant immature thymocytes and

export high numbers of mature T cells into the peripheral blood,

where the export of mature emigrant CD4+ T cells is strongly

associated with the development of MG (115–117).

Abnormalities in TECs, including the reduced expression of

antigen-processing proteases in cTECs and MHC class II antigens
FIGURE 2

Representative images of typical thymomas (Types A, AB, B1–B3) commonly associated with MG. By definition, types AB, B1, and B2 thymomas
consistently harbor interepithelial immature (TdT-positive) T cells, whereas immature T cells are rare and sometimes even absent in types A and B3
thymomas. Enigmatically, the scientifically largely neglected micronodular thymomas with lymphoid stroma are virtually never associated with MG,
offering an “experiment of nature” to study the mechanisms driving or preventing the development of thymoma-associated MG. (A) Type A
thymoma: predominant neoplastic spindle cells and rare (and sometimes no) immature T cells. (B) Type AB: biphasic architecture with lymphocyte-
poor (left, light) and immature T cell-rich (right, dark) regions. Rarely, lymphocyte-poor regions can be missing altogether. (C) Type B1: predominant
cortical areas with inconspicuous tumor cells, abundant lymphocytes, and a small medullary island (MI) with a single Hassall corpuscle (HC) (arrow).
(D) Type B2: many lymphocytes and many conspicuous, large, polygonal epithelial cells arranged in lobules and around a prominent perivascular
space (PVS) containing lymphocytes and a blood-filled vessel (arrowheads). (E) Type B3: confluent sheets of pink, polygonal tumor cells, few (and
eventually no) interepithelial lymphocytes, PVS containing lymphocytes (arrowheads). (F) Micronodular thymoma with lymphoid stroma: small
nodules of neoplastic epithelial cells resembling those of type A thymoma, surrounded by a lymphoid stroma composed of B cells (often forming
follicles) as well as mature and immature T cells.
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in mTECs, as well as defective FOXP3+ Treg generation, may

contribute to TAMG development (77, 114, 118–120). The loss or

reduction of AIRE+ mTECs has also been observed in the TAMG

thymus (103, 121) (Table 1). Molecular components essential for

thymic tolerance are deficient in MG thymoma. This may account

for the frequent presence of autoantibodies against non-AChR

skeletal muscle antigens, including titin and RyR, and against

type I IFN (122, 123). The lack of TMCs in thymoma and/or the

expression of AChR, titin, and RyR epitopes in neoplastic TECs

may also account for the generation of muscle Abs (112, 124, 125).

These findings suggest that thymic T cell selection may be altered,

or that auto-reactive T cells may be inappropriately activated in the

thymic environment.
Pathogenetic model of TAMG and
unresolved issues

The above findings suggest the following pathogenetic model:

First, the reduced levels of some HLA variants and neoplastic linear

AChR/titin peptide-overexpressing TECs may contribute to altered

positive selection (77, 121, 124). Next, auto-reactive thymocytes

survive, partly because of the absence of AIRE+ mTECs and Tregs,

and also because of the combined defects of medullary functions,

including a lack of myoid cell-derived AChRs and titin for

tolerogenic cross-presentation by APCs (89). Finally, thymoma-

derived auto-reactive mature thymocytes escape negative selection

in the thymoma, exit into the blood, gradually diluting and

eventually replacing the existing tolerant peripheral T cell

repertoire (115, 117, 126). In the periphery, including the

remnant thymus, these escaping auto-reactive thymocytes

stimulate B cells to generate autoantibodies against naïve AChRs

after appropriate stimulation. Once initiated, skeletal muscle-

derived AChR/autoantibody complexes present in regional lymph

nodes perpetuate TAMG even after thymoma removal (108, 124,

127, 128).

Those abnormalities in TECs, which are related to positive and

negative selections, are not specific to MG but are commonly

detected in thymoma. Despite the loss of AIRE+ mTECs, MG is

not a common manifestat ion of human autoimmune

polyendocrinopathy–candidiasis–ectodermal dystrophy, which

results from various mutations in AIRE (129, 130). Thus, the loss

of AIRE+ mTECs may be partially, but not entirely, linked to MG

pathogenesis. A single-cell sequencing study suggested that a subset

of mTECs, named nmTECs, exhibits a significant function through

the ectopic expression of neuromuscular molecules in MG

thymoma (38). However, nmTEC marker-positive cells are also

present in some non-MG thymomas (38). Therefore, the

accumulation of neuromuscular-related antigens in nmTECs is

not a sufficient condition for MG pathogenesis, and an increased

number of nmTECs alone is insufficient to initiate TAMG. Spatial

transcriptomic analysis has revealed specific immune niches in the

medulla and nmTEC enrichment in the corticomedullary junction

(131). Furthermore, a specific chemokine pattern, i.e., CXCL12–

CXCR4, and immune cells, including CXCL13+ Tfh cells and
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migratory DCs, have been detected in the MG–thymoma niche

(38, 131). Those immune microenvironments, such as CXCL13

interactions, are often observed in TFH (63, 78). Because occasional

GCs are enriched by high endothelial venules in TAMG (50, 132),

further investigation is needed to elucidate the pathogenesis

of TAMG.
LOMG

There is no consensus on the age threshold for distinguishing

between LOMG and EOMG. The most common age threshold of 50

years shows a gender bias distinct from EOMG, i.e., a predominance

of males, and a higher frequency of AChR seropositivity (42, 50,

133, 134). LOMG patients, by definition, do not have thymoma. The

aging thymus is gradually replaced by fat, but residual parenchyma

may continue to export some T cells at least into middle age (135).

In LOMG, these remnants may rarely show signs of expansion and

even infiltration. However, morphometric analysis did not reveal

significant differences between LOMG and normal thymuses (136).

TMCs and AIRE-positive cells decline with age. However, there is

no apparent difference between LOMG thymuses and age-matched

controls (68, 72, 73). Although the genetic background is likely

different from that of EOMG and is of pathogenetic relevance, the

aged thymus in LOMG is assumed to export and possibly activate

non-tolerant T cells (89, 108). Genome-wide association studies

(GWAS) have demonstrated that several genes are associated with T

cell tolerance (42, 137–139). The following factors are believed to

contribute to the pathogenesis of LOMG: 1) immune system aging,

which is associated with increased rates of autoimmunity; 2) AChR-

reactive T cells, generated in the near absence of myoid cells within

a largely AIRE-negative atrophic thymus, may become activated

after export to the periphery and subsequently trigger LOMG; and

3) a pathogenic T cell population, derived from an atrophic thymus

lacking myoid cells and AIRE expression, is accumulated in the

periphery over a long period before the outbreak of LOMG, similar

to rare thymoma patients who develop TAMG years after thymoma

removal (42, 115). Once initiated, LOMG may become self-

perpetuating as described above for TAMG, owing to stimulatory

AChR/autoantibody complexes in muscle-draining lymph nodes.
Other MG subtypes

Patients with MuSK Abs demonstrate a propensity for bulbar

muscle involvement (42). Thymoma has been reported as a rare

exception in MuSK Ab-positive MG patients (49). Most

autoantibodies in MuSK Ab-positive MG are of the IgG4

subclass, in contrast to AChR Abs. Immunopathology of MuSK

Abs is less currently known, but the proposed mechanism

underlying autoantibody production in MuSK MG is as follows.

Peripheral naïve B cells likely encounter self-antigens and receive T

cell help in lymphoid tissue. These naïve B cells differentiate into

memory B cells and short-lived plasmablasts that produce MuSK

Abs (140). LRP4 Abs are primarily of IgG1 and IgG2 subtypes and
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are associated with clinical presentations resembling the mild form

of EOMG (141). Patients without these other autoantibodies,

namely triple seronegative MG represent a highly heterogeneous

group, and there is limited information regarding their disease

mechanisms (42).
Thymectomy

Thymectomy is a standard treatment option in AChR Ab-

positive MG. It should be performed as early as possible, ideally

within two years of MG onset (142, 143). Thymectomy can

effectively remove AChR-like proteins, antigen-specific T cells,

and Ab-producing B cells (144–146). Whereas clinical

improvement is observed in half of patients following

thymectomy, complete remission is rare (147, 148). Potent

autoantibody-producing B cells can differentiate into long-lived

plasma cells in the thymus, leading to the production of some of the

circulating AChR-specific autoantibodies (140, 149, 150). Thymus-

derived B cell clones persist in the circulation after thymectomy,

and these B cells are thought to be associated with poor outcome

(151). Thymectomy has not resulted in clinical improvement in

MuSK Ab-positive patients, unlike in AChR Ab-positive patients

(152, 153). MuSK Ab-positive thymus shows few GCs, and these

thymic changes are thought to be associated with responses to

thymectomy (48). Several studies have demonstrated that

rituximab, which depletes B cells, achieves a higher improvement

rate in MuSK Ab-positive MG than in AChR Ab-positive MG.

However, rituximab has been reported to reduce the risk of relapse

in AChR Ab-positive MG, although its benefit appears greater in

MuSK Ab-positive MG (154). It is speculated that autoantibody-

producing B cell clones residing in AChR Ab-positive MG thymus

can also populate lymphoid tissues outside the thymus. In those

cases, there may be pathogeneses in which thymectomy or

rituximab is ineffective.
Conclusions and perspectives

Thymic abnormalities are observed in a substantial proportion

of patients with MG, prompting extensive investigation into the

involvement of the thymus in the immunopathogenesis of the

disease. Recent studies have shown the expanding diversity of

TEC subpopulations in relation to neuromuscular junctions.

ChAT-expressing thymic tuft cells are in close proximity to

muscle mimetic cells in the normal human thymus. However, the

role of these TEC subpopulations in the MG thymus remains to be

investigated. Further studies are required to determine whether

muscle mTECs are identical to, or represent a subset of, TMCs, and

whether a specific TEC subpopulation, such as muscle mTECs,

expresses immunogenic AChRs in the thymus of MG patients.

The understanding of TEC biology in humans lags behind that

in mouse models. In this regard, the development of methods for

purifying TEC subpopulations from both non-thymomatous and
Frontiers in Immunology 08
neoplastic thymic tissues is highly anticipated, as this will facilitate

the identification of triggers leading to MG. Experimental

autoimmune MG (EAMG) animal models have been established

to investigate pathogenic mechanisms (155). However, these

EAMG animal models lack thymic abnormalities, limiting their

utility in elucidating the pathogenic mechanisms associated with the

abnormal thymus in MG. A comprehensive understanding of TEC

biology in the MG thymus will positively impact the engineering of

EAMG animal models with thymic abnormalities, thereby further

advancing research on MG thymus.

Thymectomy is one of the long-acting immunotherapies.

However, it is currently not possible to predict the postoperative

MG course owing to the lack of preoperative biomarkers and

predictive morphological features of the resected thymic tissue.

The problem with performing scRNA-seq/spatial transcriptomic

analysis of MG thymus lies in the preoperative use of

corticosteroids, which can lead to pathological changes in the

thymus. However, the integration of recent advancements, such

as in situ single-nucleus barcoding, may provide a solution to this

problem. Biomarkers should aim at identifying highly active and

refractory MG patients. Given the expanding treatment landscape

in MG, highly disease-active and refractory cases should be

considered for new targeted therapies, such as complement

inhibitors or B cell depletion. We hope that thymus research will

contribute to a better understanding of MG pathogenesis and

enable the establishment of biomarkers for MG-specific therapy

that interrupt AChR/MuSK-directed autoimmunity without

compromising other aspects of immune function.
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