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Machine learning-based
predictive model for the
perioperative co-occurrence
of T-cell-mediated
rejection and pneumonia
in liver transplantation
Junjie Sun †, Guangyi Zhu †, Qingwen Liang, Ning Wen,
Haibin Li and Xuyong Sun*

Institute of Transplant Medicine, The Second Affiliated Hospital of Guangxi Medical University,
Guangxi Clinical Research Center for Organ Transplantation, Guangxi Key Laboratory of Organ
Donation and Transplantation, Nanning, China
Objective: Perioperative T-cell-mediated rejection (TCMR) and pneumonia

occurrence significantly impair graft function and patient survival following

liver transplantation (LT). This article aims to develop a machine learning (ML)-

based model to predict perioperative co-occurrence of TCMR and pneumonia.

Methods: Recipient-related data were retrospectively collected. Predictive

Variables were identified through LASSO regression analysis. Five machine

learning algorithms, including support vector machine (SVM), were employed

to develop predictive models. Model performance was appraised via the receiver

operating characteristic (ROC) curve, and calibration curve. SHapley Additive

exPlanations (SHAP) method was employed to visualize model characteristics

and individual predictions.

Results: This study enrolled 717 LT recipients, including 93 patients with

perioperative co-occurrence of TCMR and pneumonia. LASSO regression

identified postoperative direct bilirubin, postoperative international normalized

ratio, high-density lipoprotein, postoperative alanine aminotransferase, natural

killer cell, tacrolimus (FK506) concentration, Na+, operative time, anhepatic

phase, induction regimen, and ICU stay as significant predictors. The SVM

model demonstrated superior predictive performance, with area under the

curve values of 0.881 (95% CI: 0.83–0.93) and 0.786 (95% CI: 0.69–0.88) in

the training and test sets, respectively. The calibration curve showed high

agreement between the predicted and observed risks. The SVM model

demonstrated superior specificity, sensitivity, F1 score, and recall compared to

other models. SHAP analysis identified variables that contributed to the

model predictions.
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Conclusions: This study constructed a robust predictive model for the

perioperative co-occurrence of TCMR and pneumonia. The SVM model

demonstrated superior predictive performance.
KEYWORDS

machine learning, liver transplantation, T-cell-mediated rejection, pneumonia,
perioperative period, predictive model
Introduction

Liver transplantation (LT) has become the optimal treatment

for end-stage liver disease. Although liver is considered an

immunologically privileged organ among solid organ transplants

(1), the incidence of acute rejection following LT can still reach 10–

30% (2, 3). Theoretically, T-cell-mediated rejection (TCMR)

typically occurs within 4 to 6 weeks post-transplantation,

representing the period of most intense immune rejection in LT

recipients (4). If not promptly intervened, it can lead to graft

dysfunction and even graft failure (5). Although Banff

classification criteria remain the gold standard for diagnosing

TCMR (6), percutaneous liver biopsy, has limitations in the

prompt identification. Concurrently, pneumonia is a common

infectious complication during the perioperative period. It

exacerbates hepatic ischemia-reperfusion injury, contributing to

delayed graft function recovery (7), adversely impacting clinical

outcomes of LT and posing a significant threat to recipient survival

(8). Hence, it is critically urgent to refine prognostic tools. Precise

risk stratification for TCMR and pneumonia occurrence is essential

for optimizing perioperative care. This may provide a framework

for elucidating the pathophysiological mechanisms of perioperative

TCMR and pneumonia in LT and developing individualized

dynamic surveillance protocols. Such advancements hold

significant implications for enhancing patient quality of life and

prolonging survival outcomes, thereby optimizing long-term

prognosis in this high-risk population. Postoperative pneumonia

risk stratification has been enhanced by recently developed scoring
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systems, including the ISAN score (Intracerebral Hemorrhage, Sex,

Age, NIH Stroke Scale) (9), Pneumonia Risk Index (non-cardiac

surgery) (10), and Systemic Inflammation Score (post-gastrectomy)

(11). However, these scoring systems are not applicable for

assessing pneumonia after LT. They fail to account for the

multifactorial synergy driving the co-occurrence of TCMR and

pneumonia and struggle to capture nonlinear relationships or

higher-order interactions among variables. Furthermore,

conventional models exhibit low sensitivity in predicting TCMR

post-LT (12), making it difficult to optimize immunosuppressive

regimens for individual patients. For instance, while pulse steroid

therapy can reduce rejection risk, it increases infection probability;

traditional models are inadequate for quantifying such dynamic

trade-offs.

In contrast, machine learning (ML) algorithms—through

automated feature extraction and nonlinear modeling—

demonstrate superior prediction accuracy. Techniques such as

gradient-boosted ensembles outperform conventional scoring

systems in predicting perioperative TCMR and pneumonia

occurrence by decoding complex clinical variable interactions.

Compared to traditional scoring systems, ML models have shown

promising performance in predicting outcomes across various solid

organ transplantation (13, 14). Currently, ML is widely applied to

predict outcomes after LT (15, 16). Chen et al. (17) developed an

MLmodel to predict pneumonia occurrence after LT. Maryam et al.

(18) developed and validated an ML model demonstrating good

performance in predicting plasma cell-rich rejection after LT. To

mitigate the incidence of rejection following LT, Yoon et al. (19)

employed ML algorithms to predict the optimal therapeutic range

of tacrolimus, thereby advancing the clinical implementation of

personalized immunosuppressive regimens. However, ML models

specifically predicting the co-occurrence of perioperative TCMR

and pneumonia after LT are scarce.

This study aims to develop and validate an ML-based predictive

model for the co-occurrence of perioperative TCMR and

pneumonia after LT. Ensemble algorithms and SHapley Additive

exPlanations interpretability (SHAP) will be employed to identify

nonlinear interactions and latent risk patterns that conventional

methods may overlook, thereby addressing critical gaps in current

prognostic frameworks. The clinical significance of this study lies in

its potential to transform perioperative management strategies.

With precise risk stratification, the established model could guide
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personalized therapeutic interventions, optimize surveillance

protocols, inform immunosuppression regimen adjustments, and

optimize the rational use of antimicrobial agents. These advances

hold promise for reducing serious complications arising from

perioperative TCMR and pneumonia after LT, thereby providing

a basis for clinical decision-making.
Methods

Study cohort

This retrospective study obtained clinical data from LT patients

at the Institute of Transplantation Medicine, Second Affiliated

Hospital of Guangxi Medical University, between November 1,

2019, and June 1, 2025. All allografts originated from deceased

donors, with allocation governed by the China Organ Transplant

Response System. The study was conducted in accordance with

both the Declarations of Helsinki and Istanbul and the study

protocol was ratified by the Institutional Review Board of the

hospital (Approval No.: 2019-(KY-0113)), and all participants

provided informed consent. Inclusion criteria encompassed: (1)

age ≥18 years at the time of primary deceased-donor allogeneic LT;

(2) absence of active infection at transplantation: negative blood

cultures within 48 hours preoperatively and no radiological

evidence of infection; (3) normal preoperative immune status:

CD4+ T-cell count ≥200/mL; (4) TCMR meeting either criterion:

histologically confirmed per Banff 2023 criteria (biopsy-proven);

clinical diagnosis: ALT/AST elevation ≥3× baseline and FK506 <5

ng/mL; (5) pneumonia diagnosis requiring: radiological

confirmation and/or microbiological evidence; (6) co-occurrence

requirement: TCMR and pneumonia diagnoses within the

perioperative period and interval between TCMR and pneumonia

≤7 days; (7) availability of standardized postoperative follow-up

data. Exclusion criteria encompassed: (1) combined multi-organ

transplantation; (2) pre-existing structural lung disease or chronic

respiratory failure; (3) active systemic infection at transplantation;

(4) mortality or retransplantation within perioperative period

(excluding cases caused by TCMR and pneumonia); (5) ABO-

incompatible LT. In this study, the perioperative period was

defined as 30 days after LT.
Data collection

The following information was retrospectively collected: (1)

demographic parameters: gender; age; body mass index (BMI);

blood type; (2) preoperative laboratory parameters: white blood

cell (WBC) count; hemoglobin (Hb); platelet (PLT) count;

neutrophil (NEUT) count; lymphocyte (LYM) count; creatine

kinase (CK); creatine kinase-MB isoenzyme (CK-MB);

procalcitonin (PCT); C-reactive protein (CRP); total cholesterol

(TC); triglyceride (TG); high-density lipoprotein (HDL); low-

density lipoprotein (LDL); serum creatinine (SCr); blood urea
Frontiers in Immunology 03
nitrogen (BUN); uric acid (UA); cystatin C (Cys C); CD4+ T-

lymphocyte (CD4+) count; CD8+ T-lymphocyte (CD8+) count; B

cell (BC) count; natural killer cell (NK) count; K+; Na+; Cl+; Ca2+;

Mg2+; PH; PO2; PCO2; A-aDO2; (3) preoperative concurrent

symptoms: hepatic encephalopathy; ascites; (4) postoperative

laboratory parameters (postoperative day 7): postoperative total

bilirubin (TBIL); postoperative direct bilirubin (DBIL);

postoperative albumin (ALB); postoperative gamma-glutamyl

transpeptidase (GGT); postoperative aspartate aminotransferase

(AST); postoperative alanine aminotransferase (ALT);

postoperative alkaline phosphatase (ALP); postoperative

prothrombin time (PT); postoperative international normalized

ratio (INR); postoperative activated partial thromboplastin time

(APTT); postoperative CD4+; postoperative CD8+; postoperative

BC; postoperative NK; postoperative PH; postoperative PO2;

postoperative PCO2; postoperative A-aDO2; (5) surgical metrics:

operation time; anhepatic phase; blood loss; packed red blood cells

(PRBC); fresh frozen plasma (FFP); apheresis platelets; mechanical

ventilation (MV); ICU stay; (6) immunosuppressive management:

human leukocyte antigen class I antibody (HLA-I Ab); human

leukocyte antigen class II antibody (HLA-II Ab); induction therapy;

immunotherapy regimen; tacrolimus (FK506); (7) donor gender;

donor age; donor BMI; (8) gender matched.
Statistical analysis

All data were processed and visualized in the R statistical

computing environment 4.4.0. The ggplot2 package was utilized

for graphical representations. Two-tailed analyses were utilized for

hypothesis testing, with P<0.05 implying statistical significance. The

normality of continuous variables was determined via the Shapiro-

Wilk test. Variables in normal distribution were depicted as mean ±

standard deviation (SD), while non-normally distributed variables

were depicted as median (interquartile range [IQR]) and compared

with the Mann-Whitney U test. Categorical data were reported as

frequencies (percentages), and pairwise comparisons were

performed via Pearson’s c² test or Fisher’s exact test, as

appropriate. For variables exceeding the predetermined 20%

missingness threshold, imputation was performed using the

Random Forest algorithm within the Multivariate Imputation by

Chained Equations (MICE) package (v3.16.2).
Feature variable screening

LASSO regression identified significant predictors between clinical

characteristics of LT recipients and the perioperative co-occurrence of

TCMR and pneumonia following LT. The iterative analysis was

conducted via a 10-fold cross-validation method, l-min (minimum

lambda): 0.01906806. Variables with statistical significance (P < 0.05) in

both LASSO regression and comparative analyses were selected for

multivariate modeling. These variables were subsequently incorporated

into predictive model development.
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Development and evaluation of predictive
models

Predictive models were constructed for perioperative co-

occurrence of TCMR and pneumonia after LT (binary outcome:

1=co-occurrence, 0=no co-occurrence). Five classical ML algorithms

were implemented: logistic regression (LR), support vector machine

(SVM), random forest (RF), gradient boosting machine (GBM), and

extreme gradient boosting (XGBoost). The cohort was randomly

stratified into training (70%) and test (30%) sets.

Receiver operating characteristic (ROC) curves assessed model

performance, with the AUC and 95% CI reckoned to quantify

discrimination accuracy. The optimal diagnostic cutoff was

identified by the Youden index (J=sensitivity + specificity – 1),

from which corresponding sensitivity and specificity values were

derived. The calibration curve was implemented to estimate high

agreement between the predicted and observed risks. Model

performance was additionally evaluated using specificity,

sensitivity, F1-score, and recall rate. Comparative analysis of these

metrics across all algorithms was made to identify the optimal

model for subsequent clinical assessment.
Interpretability analysis

A swarm plot was created using the SHAP method to present

the individual contribution of each feature to the prediction. SHAP

evaluations revealed the degree to which each feature influenced

specific samples, thereby elucidating the model’s decision-making

procedures. Ultimately, feature recursive elimination was utilized to

screen variables to simplify the model.
Results

Clinical characteristics

This study enrolled 717 patients who underwent LT, including 600

males (83.7%) and 117 females (16.3%). Based on perioperative co-

occurrence of TCMR and pneumonia after LT, patients were allocated

into a co-occurrence group (93 cases) and a no co-occurrence group

(624 cases). Biopsy-proven TCMR: 56 cases (accounting for 60.2% of

total TCMR cases); clinically diagnosed TCMR: 37 cases (accounting

for 39.8% of total TCMR cases). Demographic and clinical traits are

listed in Table 1. Most variables showed comparable distributions

between training and test sets (P > 0.05). However, the following

variables demonstrated statistically significant differences (p < 0.05)

between the training and testing cohorts: blood type, WBC, PLT,

NEUT, TG, UA, CysC, CD8+, and Mg2+.
Feature selection

LASSO regression analysis in the training cohort (70% of the

total sample) identified postoperative DBIL, postoperative INR,
Frontiers in Immunology 04
HDL, postoperative ALT, NK, FK506, NA+, operative time,

anhepatic phase, induction regimen, and ICU stay as significant

predictors of perioperative co-occurrence TCMR and pneumonia

(Figures 1A, B). These variables were subsequently integrated into

ML algorithms to establish a robust prediction model.
Model performance assessment

To determine the optimal model for predicting perioperative

co-occurrence TCMR and pneumonia, five distinct algorithms were

compared. The predictive power of these models was

comprehensively evaluated via ROC curves and AUC values.

Results demonstrated that the SVM model consistently achieved

superior AUC values of 0.881 (95% CI: 0.83–0.93) in the training

dataset and 0.786 (95% CI: 0.69–0.88) in the test dataset,

outperforming all other models (Figures 2A, B). Furthermore,

additional binary classification metrics—including AUC,

sensitivity, recall, specificity, accuracy, precision, and F1-score—

were evaluated (Table 2). The SVM model exhibited statistically

significant advantages across these metrics compared to alternative

models (Figures 3A, B), further validating its predictive capability

for co-occurrence TCMR and pneumonia.
Interpretability analysis

In the swarm diagram (Figure 4A), the horizontal axis was

SHAP values, and the vertical axis demonstrated features. Each data

point reflected a specific instance, with its position on the x-axis

representing the SHAP value for a particular feature. The analysis

identified FK506, ICU stay, operation time, and NK cell as the four

most influential predictors (Figures 4A, B). Notably, NK cell exerted

a negative effect on perioperative co-occurrence TCMR and

pneumonia. To demonstrate the SHAP calculation process,

representative samples were selected: one with a positive outcome

prediction (Figure 5A) and one with a negative outcome prediction

(Figure 5B). The SVM-derived SHAP plot illustrates feature

contributions for two patients. Orange/purple bars denote

positive/negative impacts, with actual values alongside

SHAP values.
Discussion

Accurate prediction of risk factors for perioperative co-

occurrence TCMR and pneumonia following LT is critical for

timely intervention and improved outcomes. This study focused

on recipients undergoing LT and validated a predictive model for

assessing the simultaneous occurrence of TCMR and pneumonia

during the perioperative period. The model integrated preoperative

clinical characteristics, immunological interventions, dynamic

changes in surgical parameters, preoperative concurrent

symptoms, postoperative clinical characteristics, and donor

information utilizing multiple ML algorithms. Comparative
frontiersin.org
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TABLE 1 Clinical characteristics of recipients.

Variable
All Training set Test set P value

(n=717) (n=501) (n=216)

Gender (n, %) 0.349

Male 600 (83.7%) 424 (84.6%) 176 (81.5%)

Female 117 (16.3%) 77 (15.4%) 40 (18.5%)

Age (years) 51.0 [43.0;57.0] 51.0 [43.0;56.0] 50.0 [42.0;57.2] 0.707

Blood type (n, %) 0.021

A 169 (23.6%) 118 (23.6%) 51 (23.6%)

B 169 (23.6%) 103 (20.6%) 66 (30.6%)

O 42 (5.86%) 33 (6.59%) 9 (4.17%)

AB 337 (47.0%) 247 (49.3%) 90 (41.7%)

BMI (kg/m²) 23.0 [20.9;25.3] 23.1 [21.0;25.2] 22.9 [20.8;25.5] 0.891

WBC (109/L) 4.56 [3.30;6.53] 4.79 [3.40;6.56] 4.10 [3.01;6.38] 0.013

Hb (g/L) 101 [81.0;123] 102 [82.0;124] 100 [78.0;120] 0.31

PLT (109/L) 80.0 [50.0;130] 81.0 [51.5;141] 75.5 [43.0;113] 0.02

NEUT(109/L) 3.03 [1.98;4.57] 3.14 [2.08;4.67] 2.62 [1.85;4.36] 0.013

LYM(109/L) 0.85 [0.57;1.24] 0.86 [0.58;1.25] 0.82 [0.53;1.23] 0.352

CK (u/L) 77.0 [46.0;124] 79.0 [46.0;127] 71.5 [44.8;115] 0.214

CKMB (u/L) 30.0 [17.0;48.0] 30.0 [17.0;48.0] 29.0 [16.0;48.0] 0.918

PCT (ng/mL) 0.16 [0.07;0.44] 0.17 [0.08;0.44] 0.15 [0.07;0.42] 0.22

CRP (mg/L) 7.78 [2.65;21.2] 8.08 [2.76;22.9] 6.42 [2.45;17.8] 0.127

TC (mmol/L) 3.10 [2.19;4.09] 3.05 [2.19;4.16] 3.12 [2.20;3.88] 0.635

TG (mmol/L) 0.90 [0.68;1.30] 0.88 [0.66;1.24] 0.96 [0.79;1.53] 0.007

HDL (mmol/L) 0.89 [0.50;1.23] 0.90 [0.48;1.26] 0.88 [0.52;1.18] 0.475

LDL (mmol/L) 1.77 [1.18;2.53] 1.83 [1.17;2.63] 1.69 [1.21;2.39] 0.162

SCr (mmol/L) 78.0 [64.0;101] 78.0 [64.0;100] 79.0 [65.0;101] 0.455

BUN (mmol/L) 5.13 [3.85;7.51] 5.09 [3.76;7.22] 5.22 [4.03;7.93] 0.297

UA (mmol/L) 283 [209;378] 272 [202;370] 302 [220;393] 0.012

CysC (mg/L) 1.19 [0.95;1.60] 1.18 [0.92;1.57] 1.27 [1.00;1.70] 0.028

CD4+ (mL) 314 [176;497] 315 [179;510] 304 [172;482] 0.435

CD8+ (mL) 162 [87.0;274] 173 [95.0;280] 145 [75.8;258] 0.017

BC (mL) 131 [70.0;210] 137 [76.0;219] 112 [64.8;197] 0.066

NK (mL) 76.0 [40.0;151] 80.0 [41.0;159] 67.0 [39.0;134] 0.158

K+ (mmol/L) 3.83 [3.57;4.12] 3.81 [3.55;4.11] 3.90 [3.64;4.13] 0.1

Na+ (mmol/L) 138 [135;140] 138 [135;140] 138 [135;140] 0.862

Cl+ (mmol/L) 105 [102;108] 105 [102;108] 106 [102;109] 0.202

Ca2+ (mmol/L) 2.15 [2.05;2.25] 2.14 [2.05;2.25] 2.16 [2.06;2.27] 0.368

Mg2+ (mmol/L) 0.81 [0.75;0.88] 0.82 [0.76;0.88] 0.80 [0.72;0.87] 0.035

PH 7.43 [7.40;7.46] 7.43 [7.40;7.46] 7.43 [7.40;7.46] 0.86

(Continued)
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TABLE 1 Continued

Variable
All Training set Test set P value

(n=717) (n=501) (n=216)

PO2 (mmHg) 93.8 [80.0;107] 94.2 [81.0;108] 93.0 [78.7;106] 0.394

PCO2(mmHg) 34.9 [31.1;38.2] 34.9 [31.1;38.7] 34.9 [31.2;37.8] 0.522

A-aDO2(mmHg) 28.0 [14.6;60.2] 27.9 [13.6;60.2] 28.1 [15.6;59.7] 0.411

Operation time (minutes) 443 [400;506] 444 [399;505] 442 [403;514] 0.74

Anhepatic phase (minutes) 40.0 [35.0;48.0] 41.0 [35.0;48.0] 40.0 [35.8;47.0] 0.389

Blood loss (mL) 500 [400;800] 500 [400;800] 500 [400;800] 0.744

PRBC (u) 4.00 [0.00;7.50] 4.00 [0.00;7.00] 4.00 [0.00;8.00] 0.141

FFP (mL) 610 [0.00;1020] 610 [0.00;1010] 625 [0.00;1050] 0.2

Apheresis platelets (u) 0.00 [0.00;1.00] 0.00 [0.00;1.00] 0.00 [0.00;1.00] 0.667

MV (hours) 12.5 [9.00;20.0] 12.0 [9.00;20.0] 13.0 [9.00;23.0] 0.206

ICU stay (hours) 163 [139;193] 162 [139;190] 164 [138;209] 0.859

FK506 (ng/mL) 4.00 [2.50;5.70] 4.00 [2.60;5.80] 3.85 [2.48;5.40] 0.126

Postop-TBIL (mmol/L) 35.1 [15.0;133] 34.4 [14.7;131] 36.2 [15.4;142] 0.554

Postop-DBIL (mmol/L) 18.0 [7.30;88.7] 17.5 [6.90;88.7] 19.2 [8.00;87.8] 0.51

Postop-ALB (g/L) 33.9 [29.9;37.7] 34.0 [30.0;38.0] 33.2 [29.1;37.3] 0.152

Postop-GGT (u/L) 60.0 [31.0;123] 62.0 [31.0;121] 57.5 [31.8;125] 0.737

Postop-AST (u/L) 50.0 [33.0;88.0] 52.0 [33.0;90.0] 45.0 [32.0;82.0] 0.11

Postop-ALT (u/L) 33.0 [20.0;56.0] 35.0 [22.0;57.0] 30.0 [19.0;55.0] 0.098

Postop-ALP (u/L) 129 [96.0;189] 128 [96.0;184] 132 [97.5;198] 0.439

Postop-PT (seconds) 15.2 [13.0;19.4] 15.1 [12.9;19.5] 15.6 [13.1;19.0] 0.632

Postop-INR 1.38 [1.17;1.76] 1.37 [1.17;1.77] 1.40 [1.18;1.74] 0.677

Postop-APTT (seconds) 35.3 [32.0;40.7] 35.3 [31.8;40.8] 35.4 [32.1;40.5] 0.74

Postop-CD4+ (mL) 121 [61.0;252] 123 [59.0;246] 115 [62.0;258] 0.74

Postop-CD8+ (mL) 81.0 [38.0;153] 82.0 [38.0;156] 80.0 [36.8;146] 0.436

Postop-BC (mL) 128 [63.0;242] 128 [64.0;243] 127 [62.0;224] 0.603

Postop-NK (mL) 37.0 [18.0;73.0] 37.0 [17.0;74.0] 38.0 [20.0;68.2] 0.871

Postop-PH 7.41 [7.38;7.44] 7.41 [7.38;7.44] 7.41 [7.38;7.45] 0.467

Postop-PO2(mmHg) 106 [79.9;142] 107 [83.5;141] 101 [77.6;144] 0.568

Postop-PCO2(mmHg) 39.1 [35.9;42.8] 39.2 [35.9;43.0] 39.0 [36.0;42.0] 0.589

Postop-A-aDO2(mmHg) 94.5 [49.1;140] 92.0 [48.4;136] 103 [50.6;151] 0.276

HLA-IAb (n, %) 0.15

No 690 (96.2%) 486 (97.0%) 204 (94.4%)

Yes 27 (3.77%) 15 (2.99%) 12 (5.56%)

HLA-IIAb (n, %) 0.771

No 691 (96.4%) 484 (96.6%) 207 (95.8%)

Yes 26 (3.63%) 17 (3.39%) 9 (4.17%)

Induction regimen (n, %) 0.782

(Continued)
F
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analysis of ML models revealed that the SVM algorithm achieved

the optimal predictive accuracy, with AUC values of 0.881 (95% CI:

0.83–0.93) in the training set and 0.786 (95% CI: 0.69–0.88) in the

test set. Calibration demonstrated high predicted-observed risk

concordance. Furthermore, the SVM model demonstrated a high

specificity, sensitivity, and F1 score. These findings indicate that ML

models incorporating recipient-specific multidimensional data can

effectively stratify perioperative co-occurrence TCMR and

pneumonia, offering actionable insights for optimizing clinical

decision-making and postoperative management.

The comparative analysis demonstrated the substantial

advantage of ML models in prediction tasks (15, 20, 21). Torres

et al. developed a machine learning-based model (K-prototype

clustering algorithm) to predict post-l iver transplant

complications including acute rejection and infection,

demonstrating favorable performance (22). This advantage can be

attributable to ML’s ability to cope with complex data through

advanced regularization techniques and ensemble learning
Frontiers in Immunology 07
mechanisms (23). Particularly, ML exhibits higher accuracy in

capturing non-linear relationships, suggesting that statistical

models may simplify complex biomedical interactions. Previous

studies predominantly rely on clinical experience for variable

selection, have confirmed the utility of ML in predicting TCMR

or pneumonia prediction (17, 18). In contrast, this study integrated

preoperative and postoperative clinical characteristics,

immunological interventions, preoperative concurrent symptoms,

donor information, and dynamic changes in surgical procedures to

objectively identify key predictors (postoperative DBIL,

postoperative INR, postoperative ALT, HDL, NK, FK506, Na+,

operative time, anhepatic phase, induction regimen, and ICU

stay) through LASSO regression. These predictors originated

from objective data. A ML-based predictive model for

perioperative co-occurrence TCMR and pneumonia following LT

was subsequently developed.

As the most critical predictor in this model, the blood

concentration of FK506 is paramount for preventing
TABLE 1 Continued

Variable
All Training set Test set P value

(n=717) (n=501) (n=216)

No 236 (32.9%) 167 (33.3%) 69 (31.9%)

Yes 481 (67.1%) 334 (66.7%) 147 (68.1%)

Immunotherapy regimen (n,
%)

0.403

Pred+Tac+MMF 702 (97.9%) 492 (98.2%) 210 (97.2%)

Pred+Tac+others 15 (2.09%) 9 (1.80%) 6 (2.78%)

Ascites (n, %) 0.297

No 483 (67.4%) 344 (68.7%) 139 (64.4%)

Yes 234 (32.6%) 157 (31.3%) 77 (35.6%)

Hepatic encephalopathy (n,
%)

0.263

No 646 (90.1%) 456 (91.0%) 190 (88.0%)

Yes 71 (9.90%) 45 (8.98%) 26 (12.0%)

Donor age (years) 44.3 [26.8;52.3] 44.0 [26.2;52.7] 44.7 [26.5;52.6] 0.637

Donor gender (n, %) 0.452

Male 504 (70.3%) 378 (69.1%) 116 (72.5%)

Female 213 (29.7%) 169 (30.9%) 44 (27.5%)

Donor BMI (kg/m²) 23.5 [20.4;25.1] 23.2 [20.8;25.5] 23.6 [20.8;25.6] 0.217

Gender matched (n, %) 0.513

No 118 (16.5%) 85 (17.0%) 33 (15.2%)

Yes 599 (83.5%) 415 (83.0%) 184 (84.8%)

ABO incompatibility (n, %) 0 0 0 0
BMI, body mass index; TBIL, total bilirubin; DBIL, direct bilirubin; ALB, albumin; GGT, gamma-glutamyl transpeptidase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP,
alkaline phosphatase; PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin time; WBC, white blood cell; Hb, hemoglobin; PLT, platelet; NEUT,
neutrophil; LYM, lymphocyte; CK, creatine kinase; CKMB, creatine kinase-MB Isoenzyme; PCT, procalcitonin; CRP, C-reactive protein; TC, total cholesterol; TG, triglyceride; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; SCr, serum creatinine; BUN, blood urea nitrogen; UA, uric acid; CysC, cystatin C; CD4+, CD4+ T-lymphocyte; CD8, CD8+ T-lymphocyte; BC, B cell;
NK, natural killer cell; PRBC, packed red blood cells; FFP, fresh frozen plasma; MV, mechanical ventilation; HLA -IAb, human leukocyte antigen class I antibody; HLA -IIAb: human leukocyte
antigen class II antibody; Postop, Postoperative.
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graft rejection and reducing the risk of infection, particularly

pneumonia (24). A delicate therapeutic balance exists

between these competing outcomes. FK506 suppresses the cellular

immune response against the hepatic allograft primarily by

inhibiting T-lymphocyte activation and proliferation, achieved

through blockade of key cytokine transcription, including

interleukin-2 (25). Subtherapeutic concentrations result in

insufficient immunosuppression, failing to adequately inhibit

recipient T-cell recognition and attack of the donor liver. This

predisposes patients to acute cellular rejection, manifested by
Frontiers in Immunology 08
abnormal liver function tests (elevated transaminases and

bilirubin). Severe or recurrent rejection episodes can lead to graft

dysfunction or loss (5) . Conversely, supratherapeutic

concentrations, while theoretically offering enhanced rejection

prophylaxis, incur significant costs: a marked increase in drug

toxicity (26) and the risk of severe infections (27). Consequently,

indiscriminately maintaining excessively high concentrations solely

to achieve “absolute rejection avoidance” is clinically

contraindicated, as the associated risks substantially outweigh

potential benefits. FK506 exhibits a narrow therapeutic index
FIGURE 1

Demographic and clinical feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model.
(A) LASSO coefficient profiles of the 21 features. A coefficient profile plot was produced against the log (l) sequence. The vertical line was drawn
at the value selected using 10-fold cross-validation, where optimal resulted in 6 features with non-zero coefficients. (B) Tuning parameter (l)
selection in the LASSO model used 10-fold cross-validation via minimum criteria. The partial likelihood deviance (binomial deviance) curve was
plotted versus log(l).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1648993
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1648993
between effective immunosuppression (preventing rejection) and

toxic concentrations (predisposing to infection/toxicity) (28).

Furthermore, significant interindividual variability in blood

concentrations arises due to factors influencing drug metabolism,

including genetics (e.g., CYP3A5 polymorphisms), age, hepatic and

renal function, diet, and concomitant medications (29). Regular

monitoring of FK506 trough levels is therefore fundamental. Based

on these results, alongside individual rejection risk, infection

susceptibility, and manifestations of drug toxicity, transplant

clinicians must dynamically titrate the dosage through an

individualized approach. The therapeutic goal is to maintain

concentrations within a target range that effectively prevents

rejection while minimizing the risks of infection and drug-related

toxicity (27). ICU stay is also a significant predictor variable in our

study. The duration of ICU hospitalization following LT serves as a

critical indicator reflecting surgical complexity, graft functional

recovery, severity of early complications, and the patient’s overall

clinical status. While prolonged ICU stay itself is not a direct cause
Frontiers in Immunology 09
of rejection or pneumonia, it is strongly associated with and

significantly increases the risk of developing both severe

complications, with complex interactions existing between them.

Prolonged ICU hospitalization is a well-established, highly

significant independent risk factor for hospital-acquired

pneumonia (30, 31). It is generally not the initiating cause of

rejection; rather, severe rejection is often one of the primary

factors leading to extended ICU stay. Furthermore, the

complexity of the ICU environment and the patient’s critical

condition significantly increase the difficulty of maintaining

effective and stable immunosuppression, thereby indirectly

elevating the risk of TCMR both during the ICU stay and shortly

after transfer out of the ICU. Immunosuppression management

poses substantial challenges in patients requiring protracted ICU

care. In summary, the interplay between ICU length of stay,

rejection, and pneumonia frequently establishes a vicious cycle.

Severe rejection episodes often necessitate ICU admission and

prolong hospitalization. The ICU environment and associated risk
FIGURE 2

Receiver operating characteristic curves for the five models. (A)Training sets; (B) Test sets).
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TABLE 2 Evaluating the predictive performance of each model.

Model
AUC Specificity Sensitivity Accuracy Precision Recall F1-score

Training Test Training Test Training Test Training Test Training Test Training Test Training Test

LR
0.776
(95% CI:
0.72-0.84)

0.761
(95% CI:
0.66-0.86)

0.657 0.503 0.792 0.952 0.677 0.546 0.280 0.171 0.792 0.952 0.414 0.290

SVM
0.881
(95% CI:
0.83-0.93)

0.786
(95% CI:
0.69-0.88)

0.932 0.805 0.736 0.762 0.904 0.801 0.646 0.296 0.736 0.762 0.668 0.426

RF
0.881
(95% CI:
0.84-0.93)

0.743
(95% CI:
0.64-0.85)

0.762 0.610 0.889 0.810 0.780 0.630 0.386 0.183 0.889 0.810 0.538 0.299

GBM
0.880
(95% CI:
0.85-0.92)

0.769
(95% CI:
0.66-0.88)

0.688 0.718 0.903 0.810 0.719 0.727 0.327 0.236 0.903 0.810 0.480 0.366

XGBoost
0.874
(95% CI:
0.84-0.91)

0.766
(95% CI:
0.65-0.88)

0.711 0.687 0.889 0.810 0.737 0.699 0.340 0.218 0.889 0.810 0.492 0.344
F
rontiers in
 Immunology
 10
 frontier
LR, logistic regression; SVM, support vector machine; RF, random forest; GBM, gradient boosting machine; XGBoost, extreme gradient boosting.
FIGURE 3

Calibration curves of the predicted probability. (A) Training sets; (B) Test sets.
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factors markedly increase the susceptibility to pneumonia (32).

Severe pneumonia, in turn, necessitates reduction or

discontinuation of immunosuppressive therapy to control the

infection. Inadequate immunosuppression subsequently triggers

rejection episodes or exacerbates existing rejection, thus creating a

self-perpetuating cycle of adverse events. Operative time is also

recognized as a significant predictive factor. Prolonged surgical time

typically correlates with an extended anhepatic phase and increased

total ischemic time. Sustained ischemia-reperfusion injury (IRI)

leads to hepatic sinusoidal endothelial cell damage and

microcirculatory disturbances, triggering the substantial release of

damage-associated molecular patterns (33, 34). These damage-

associated molecular patterns robustly activate the innate immune

system, characterized by macrophage and neutrophil infiltration,

and complement activation, resulting in the release of large

quantities of pro-inflammatory cytokines (35). Damaged

hepatocytes and endothelial cells exhibit upregulated expression

of MHC molecules and co-stimulatory molecules (36), rendering

them more recognizable as “non-self” by the recipient’s immune
Frontiers in Immunology 11
system. This facilitates the accelerated presentation of donor

antigens to recipient T cells (37). Although the liver possesses

inherent immunotolerance properties, severe IRI disrupts this

microenvironment (38), significantly increasing the incidence and

severity of early acute cellular rejection (39). Furthermore,

prolonged operative duration is often associated with greater

blood loss and substantial transfusion requirements. Allogeneic

blood transfusion can induce complex immunomodulatory

effects. It may also increase the risk of alloimmunization,

including rejection directed against the graft, potentially through

the introduction of allogeneic leukocyte antigens or by activating

the recipient’s immune system (40). Extended operative time is a

strong independent risk factor for postoperative pneumonia. A

direct and well-established mechanistic link involves its association

with longer durations of mechanical ventilation and an increased

risk of pulmonary atelectasis (41). NK cells emerged as the fourth

most important predictive variable in this study, exhibiting a

negative regulatory role in the co-occurrence of TCMR and

pneumonia. NK cells possess the ability to recognize and lyse
FIGURE 4

Visual explanation of perioperative co-occurrence of TCMR and pneumonia model based on SVM. (A) The SHapley Additive explanation; (B) Feature
importance scores.
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virus-infected cells without requiring presensitization. They induce

target cell apoptosis either through the release of perforin and

granzymes or via the Fas ligand (FasL)/Fas pathway (42). Activated

NK cells robustly secrete interferon-gamma and tumor necrosis

factor-alpha. These cytokines not only exert direct antiviral effects

(43) but also recruit neutrophils, monocytes/macrophages, and T

cells to the site of infection, thereby amplifying the anti-infection

immune response. Furthermore, NK cells can mediate antibody-

dependent cellular cytotoxicity via FcgRIIIa (CD16a), enabling

more effective killing of infected cells (44). In summary,

insufficient NK cell counts can directly contribute to the

development of perioperative pneumonia following LT. Viral

infections themselves, particularly cytomegalovirus infection,

constitute a significant risk factor for rejection (45). This creates a

complex interplay: on the one hand, viral infection activates NK

cells to combat the virus; on the other hand, cytokines like IFN-g
secreted by activated NK cells may simultaneously promote

rejection. Conversely, the inflammation and tissue damage caused

by rejection reactions also heighten the risk of infection.

This paper demonstrated that ML models could predict

perioperative co-occurrence TCMR and pneumonia following LT.

ML models exhibit superior abilities to capture complex, non-linear

relationships and intricate interactions among clinical variables

compared to traditional methods, thus offering valuable insights
Frontiers in Immunology 12
into individual patient risk profiles. This information can

potentially inform personalized treatment strategies, optimize post-

LT surveillance protocols, and ultimately improve patient outcomes.
Clinical significance

The machine learning-based multidimensional prediction

model (utilizing the SVM algorithm) developed and validated in

this study holds paramount clinical value by providing a robust tool

for the precise prevention and individualized management of

TCMR-pneumonia comorbidity during the perioperative period

following LT. Upon successful integration into the hospital’s

electronic medical record (EMR) system as a clinical decision

support system, this model empowers clinicians to implement

preemptive alerts, accurate diagnosis, and early personalized

interventions for high-risk patients. This effectively disrupts the

vicious cycle of TCMR-pneumonia comorbidity, ultimately

improving the prognosis of LT recipients and substantially

alleviating familial and societal burdens. These outcomes

demonstrate the transformative potential of AI-driven precision

medicine in managing complex postoperative complications.

Real-time risk surveillance and early warning: the model’s core

strength lies in its integration of critical, dynamically changing
FIGURE 5

Force plot shows the contribution of each feature to the prediction result of using the SVM model. (A) One sample with a positive outcome
prediction; (B) One sample with a negative outcome prediction. Orange bars indicate features that contribute positively to the prediction, while
purple bars indicate negative contributions. Feature values are shown alongside their SHAP values.
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clinical indicators. Once deployed, the system automatically and

continuously retrieves real-time data from the EMR, including:

dynamic monitoring of FK506 blood concentration, dynamic

assessment of immune cell function, dynamic evolution of liver

function and coagulation parameters, surgical parameter

retrospectives, and ICU length of stay. This dynamic data

continuously updates risk assessments. Risk stratification based

on predictive modeling: leveraging the integrated SVM algorithm,

the system comprehensively analyzes the aforementioned real-time

multidimensional data to compute an individualized risk score for

current TCMR-pneumonia comorbidity occurrence. Patients are

then automatically stratified into predefined risk tiers based on

preset thresholds. Early identification and targeted intervention for

high-risk patients: the explicit early-warning signals provided by the

system offer clinicians precise diagnostic directionality. These alerts

heighten clinical vigilance regarding potential comorbidity,

prompting physicians to combine model outputs with specific

patient presentations and necessary ancillary tests for accurate

diagnosis at the disease’s earliest stage. Early diagnosis is

prerequisite for effective intervention; for TCMR, warnings enable

prompt judicious adjustment of immunosuppressive regimens.
Limitations

There are also limitations. The single-center retrospective

design may introduce selection bias, despite efforts to adjust for

known confounders through multivariate analysis. Additionally, the

primary limitation of this study is the absence of external validation

on an independent, multi-center, large-scale cohort. This constraint

impedes comprehensive assessment of our model’s generalizability

at this stage and its immediate clinical applicability.
Conclusions

This study developed a robust predictive model for perioperative

co-occurrence TCMR and pneumonia in LT, and the SVM model

achieved superior discriminative performance. Key predictors,

including postoperative DBIL, postoperative INR, HDL,

postoperative ALT, NK, FK506, Na+, operative time, anhepatic

phase, induction regimen, and ICU stay, were identified as critical

determinants of model. These results advance our understanding of

the multifactorial pathogenesis of perioperative co-occurrence TCMR

and pneumonia after LT, offering actionable insights for optimizing

clinical decision-making and postoperative management.
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