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Objective: Perioperative T-cell-mediated rejection (TCMR) and pneumonia
occurrence significantly impair graft function and patient survival following
liver transplantation (LT). This article aims to develop a machine learning (ML)-
based model to predict perioperative co-occurrence of TCMR and pneumonia.
Methods: Recipient-related data were retrospectively collected. Predictive
Variables were identified through LASSO regression analysis. Five machine
learning algorithms, including support vector machine (SVM), were employed
to develop predictive models. Model performance was appraised via the receiver
operating characteristic (ROC) curve, and calibration curve. SHapley Additive
exPlanations (SHAP) method was employed to visualize model characteristics
and individual predictions.

Results: This study enrolled 717 LT recipients, including 93 patients with
perioperative co-occurrence of TCMR and pneumonia. LASSO regression
identified postoperative direct bilirubin, postoperative international normalized
ratio, high-density lipoprotein, postoperative alanine aminotransferase, natural
killer cell, tacrolimus (FK506) concentration, Na*, operative time, anhepatic
phase, induction regimen, and ICU stay as significant predictors. The SVM
model demonstrated superior predictive performance, with area under the
curve values of 0.881 (95% Cl: 0.83-0.93) and 0.786 (95% Cl: 0.69-0.88) in
the training and test sets, respectively. The calibration curve showed high
agreement between the predicted and observed risks. The SVM model
demonstrated superior specificity, sensitivity, F1 score, and recall compared to
other models. SHAP analysis identified variables that contributed to the
model predictions.
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Conclusions: This study constructed a robust predictive model for the
perioperative co-occurrence of TCMR and pneumonia. The SVM model
demonstrated superior predictive performance.

machine learning, liver transplantation, T-cell-mediated rejection, pneumonia,
perioperative period, predictive model

Introduction

Liver transplantation (LT) has become the optimal treatment
for end-stage liver disease. Although liver is considered an
immunologically privileged organ among solid organ transplants
(1), the incidence of acute rejection following LT can still reach 10—
30% (2, 3). Theoretically, T-cell-mediated rejection (TCMR)
typically occurs within 4 to 6 weeks post-transplantation,
representing the period of most intense immune rejection in LT
recipients (4). If not promptly intervened, it can lead to graft
dysfunction and even graft failure (5). Although Banff
classification criteria remain the gold standard for diagnosing
TCMR (6), percutaneous liver biopsy, has limitations in the
prompt identification. Concurrently, pneumonia is a common
infectious complication during the perioperative period. It
exacerbates hepatic ischemia-reperfusion injury, contributing to
delayed graft function recovery (7), adversely impacting clinical
outcomes of LT and posing a significant threat to recipient survival
(8). Hence, it is critically urgent to refine prognostic tools. Precise
risk stratification for TCMR and pneumonia occurrence is essential
for optimizing perioperative care. This may provide a framework
for elucidating the pathophysiological mechanisms of perioperative
TCMR and pneumonia in LT and developing individualized
dynamic surveillance protocols. Such advancements hold
significant implications for enhancing patient quality of life and
prolonging survival outcomes, thereby optimizing long-term
prognosis in this high-risk population. Postoperative pneumonia
risk stratification has been enhanced by recently developed scoring

Abbreviations: BMI, body mass index; TBIL, total bilirubin; DBIL, direct
bilirubin; ALB, albumin; GGT, gamma-glutamyl transpeptidase; AST, aspartate
aminotransferase; ALT, alanine aminotransferase; ALP, alkaline phosphatase; PT,
prothrombin time; INR, international normalized ratio; APTT, activated partial
thromboplastin time; WBC, white blood cell; Hb, hemoglobin; PLT, platelet;
NEUT, neutrophil; LYM, lymphocyte; CK, creatine kinase; CKMB, creatine
kinase-MB Isoenzyme; PCT, procalcitonin; CRP, C-reactive protein; TC, total
cholesterol; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density
lipoprotein; SCr, serum creatinine; BUN, blood urea nitrogen; UA, uric acid;
CysC, cystatin C; CD4+, CD4+ T-lymphocyte; CD8, CD8+ T-lymphocyte; BC, B
cell; NK, natural killer cell; PRBC, packed red blood cells; FFP, fresh frozen
plasma; MV, mechanical ventilation; HLA -I Ab, human leukocyte antigen class I
antibody; HLA -II Ab, human leukocyte antigen class II antibody;

Postop, Postoperative.
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systems, including the ISAN score (Intracerebral Hemorrhage, Sex,
Age, NIH Stroke Scale) (9), Pneumonia Risk Index (non-cardiac
surgery) (10), and Systemic Inflammation Score (post-gastrectomy)
(11). However, these scoring systems are not applicable for
assessing pneumonia after LT. They fail to account for the
multifactorial synergy driving the co-occurrence of TCMR and
pneumonia and struggle to capture nonlinear relationships or
higher-order interactions among variables. Furthermore,
conventional models exhibit low sensitivity in predicting TCMR
post-LT (12), making it difficult to optimize immunosuppressive
regimens for individual patients. For instance, while pulse steroid
therapy can reduce rejection risk, it increases infection probability;
traditional models are inadequate for quantifying such dynamic
trade-offs.

In contrast, machine learning (ML) algorithms—through
automated feature extraction and nonlinear modeling—
demonstrate superior prediction accuracy. Techniques such as
gradient-boosted ensembles outperform conventional scoring
systems in predicting perioperative TCMR and pneumonia
occurrence by decoding complex clinical variable interactions.
Compared to traditional scoring systems, ML models have shown
promising performance in predicting outcomes across various solid
organ transplantation (13, 14). Currently, ML is widely applied to
predict outcomes after LT (15, 16). Chen et al. (17) developed an
ML model to predict pneumonia occurrence after LT. Maryam et al.
(18) developed and validated an ML model demonstrating good
performance in predicting plasma cell-rich rejection after LT. To
mitigate the incidence of rejection following LT, Yoon et al. (19)
employed ML algorithms to predict the optimal therapeutic range
of tacrolimus, thereby advancing the clinical implementation of
personalized immunosuppressive regimens. However, ML models
specifically predicting the co-occurrence of perioperative TCMR
and pneumonia after LT are scarce.

This study aims to develop and validate an ML-based predictive
model for the co-occurrence of perioperative TCMR and
pneumonia after LT. Ensemble algorithms and SHapley Additive
exPlanations interpretability (SHAP) will be employed to identify
nonlinear interactions and latent risk patterns that conventional
methods may overlook, thereby addressing critical gaps in current
prognostic frameworks. The clinical significance of this study lies in
its potential to transform perioperative management strategies.
With precise risk stratification, the established model could guide
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personalized therapeutic interventions, optimize surveillance
protocols, inform immunosuppression regimen adjustments, and
optimize the rational use of antimicrobial agents. These advances
hold promise for reducing serious complications arising from
perioperative TCMR and pneumonia after LT, thereby providing

a basis for clinical decision-making.

Methods
Study cohort

This retrospective study obtained clinical data from LT patients
at the Institute of Transplantation Medicine, Second Affiliated
Hospital of Guangxi Medical University, between November 1,
2019, and June 1, 2025. All allografts originated from deceased
donors, with allocation governed by the China Organ Transplant
Response System. The study was conducted in accordance with
both the Declarations of Helsinki and Istanbul and the study
protocol was ratified by the Institutional Review Board of the
hospital (Approval No.: 2019-(KY-0113)), and all participants
provided informed consent. Inclusion criteria encompassed: (1)
age 218 years at the time of primary deceased-donor allogeneic LT;
(2) absence of active infection at transplantation: negative blood
cultures within 48 hours preoperatively and no radiological
evidence of infection; (3) normal preoperative immune status:
CD4+ T-cell count >200/uL; (4) TCMR meeting either criterion:
histologically confirmed per Banft 2023 criteria (biopsy-proven);
clinical diagnosis: ALT/AST elevation >3x baseline and FK506 <5
ng/mL; (5) pneumonia diagnosis requiring: radiological
confirmation and/or microbiological evidence; (6) co-occurrence
requirement: TCMR and pneumonia diagnoses within the
perioperative period and interval between TCMR and pneumonia
<7 days; (7) availability of standardized postoperative follow-up
data. Exclusion criteria encompassed: (1) combined multi-organ
transplantation; (2) pre-existing structural lung disease or chronic
respiratory failure; (3) active systemic infection at transplantation;
(4) mortality or retransplantation within perioperative period
(excluding cases caused by TCMR and pneumonia); (5) ABO-
incompatible LT. In this study, the perioperative period was
defined as 30 days after LT.

Data collection

The following information was retrospectively collected: (1)
demographic parameters: gender; age; body mass index (BMI);
blood type; (2) preoperative laboratory parameters: white blood
cell (WBC) count; hemoglobin (Hb); platelet (PLT) count;
neutrophil (NEUT) count; lymphocyte (LYM) count; creatine
kinase (CK); creatine kinase-MB isoenzyme (CK-MB);
procalcitonin (PCT); C-reactive protein (CRP); total cholesterol
(TC); triglyceride (TG); high-density lipoprotein (HDL); low-
density lipoprotein (LDL); serum creatinine (SCr); blood urea
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nitrogen (BUN); uric acid (UA); cystatin C (Cys C); CD4+ T-
lymphocyte (CD4+) count; CD8+ T-lymphocyte (CD8+) count; B
cell (BC) count; natural killer cell (NK) count; K*; Na*; Cl*; Ca®*;
Mg2+; PH; PO, PCO, A-aDO,; (3) preoperative concurrent
symptoms: hepatic encephalopathy; ascites; (4) postoperative
laboratory parameters (postoperative day 7): postoperative total
bilirubin (TBIL); postoperative direct bilirubin (DBIL);
postoperative albumin (ALB); postoperative gamma-glutamyl
transpeptidase (GGT); postoperative aspartate aminotransferase
(AST); postoperative alanine aminotransferase (ALT);
postoperative alkaline phosphatase (ALP); postoperative
prothrombin time (PT); postoperative international normalized
ratio (INR); postoperative activated partial thromboplastin time
(APTT); postoperative CD4+; postoperative CD8+; postoperative
BC; postoperative NK; postoperative PH; postoperative PO,;
postoperative PCO,; postoperative A-aDO,; (5) surgical metrics:
operation time; anhepatic phase; blood loss; packed red blood cells
(PRBC); fresh frozen plasma (FFP); apheresis platelets; mechanical
ventilation (MV); ICU stay; (6) immunosuppressive management:
human leukocyte antigen class I antibody (HLA-I Ab); human
leukocyte antigen class II antibody (HLA-II Ab); induction therapy;
immunotherapy regimen; tacrolimus (FK506); (7) donor gender;
donor age; donor BMI; (8) gender matched.

Statistical analysis

All data were processed and visualized in the R statistical
computing environment 4.4.0. The ggplot2 package was utilized
for graphical representations. Two-tailed analyses were utilized for
hypothesis testing, with P<0.05 implying statistical significance. The
normality of continuous variables was determined via the Shapiro-
Wilk test. Variables in normal distribution were depicted as mean +
standard deviation (SD), while non-normally distributed variables
were depicted as median (interquartile range [IQR]) and compared
with the Mann-Whitney U test. Categorical data were reported as
frequencies (percentages), and pairwise comparisons were
performed via Pearson’s %* test or Fisher’s exact test, as
appropriate. For variables exceeding the predetermined 20%
missingness threshold, imputation was performed using the
Random Forest algorithm within the Multivariate Imputation by
Chained Equations (MICE) package (v3.16.2).

Feature variable screening

LASSO regression identified significant predictors between clinical
characteristics of LT recipients and the perioperative co-occurrence of
TCMR and pneumonia following LT. The iterative analysis was
conducted via a 10-fold cross-validation method, A-min (minimum
lambda): 0.01906806. Variables with statistical significance (P < 0.05) in
both LASSO regression and comparative analyses were selected for
multivariate modeling. These variables were subsequently incorporated
into predictive model development.
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Development and evaluation of predictive
models

Predictive models were constructed for perioperative co-
occurrence of TCMR and pneumonia after LT (binary outcome:
1=co-occurrence, 0=no co-occurrence). Five classical ML algorithms
were implemented: logistic regression (LR), support vector machine
(SVM), random forest (RF), gradient boosting machine (GBM), and
extreme gradient boosting (XGBoost). The cohort was randomly
stratified into training (70%) and test (30%) sets.

Receiver operating characteristic (ROC) curves assessed model
performance, with the AUC and 95% CI reckoned to quantify
discrimination accuracy. The optimal diagnostic cutoff was
identified by the Youden index (J=sensitivity + specificity - 1),
from which corresponding sensitivity and specificity values were
derived. The calibration curve was implemented to estimate high
agreement between the predicted and observed risks. Model
performance was additionally evaluated using specificity,
sensitivity, F1-score, and recall rate. Comparative analysis of these
metrics across all algorithms was made to identify the optimal
model for subsequent clinical assessment.

Interpretability analysis

A swarm plot was created using the SHAP method to present
the individual contribution of each feature to the prediction. SHAP
evaluations revealed the degree to which each feature influenced
specific samples, thereby elucidating the model’s decision-making
procedures. Ultimately, feature recursive elimination was utilized to
screen variables to simplify the model.

Results
Clinical characteristics

This study enrolled 717 patients who underwent LT, including 600
males (83.7%) and 117 females (16.3%). Based on perioperative co-
occurrence of TCMR and pneumonia after LT, patients were allocated
into a co-occurrence group (93 cases) and a no co-occurrence group
(624 cases). Biopsy-proven TCMR: 56 cases (accounting for 60.2% of
total TCMR cases); clinically diagnosed TCMR: 37 cases (accounting
for 39.8% of total TCMR cases). Demographic and clinical traits are
listed in Table 1. Most variables showed comparable distributions
between training and test sets (P > 0.05). However, the following
variables demonstrated statistically significant differences (p < 0.05)
between the training and testing cohorts: blood type, WBC, PLT,
NEUT, TG, UA, CysC, CD8+, and Mg**.

Feature selection

LASSO regression analysis in the training cohort (70% of the
total sample) identified postoperative DBIL, postoperative INR,

Frontiers in Immunology

10.3389/fimmu.2025.1648993

HDL, postoperative ALT, NK, FK506, NA®, operative time,
anhepatic phase, induction regimen, and ICU stay as significant
predictors of perioperative co-occurrence TCMR and pneumonia
(Figures 1A, B). These variables were subsequently integrated into
ML algorithms to establish a robust prediction model.

Model performance assessment

To determine the optimal model for predicting perioperative
co-occurrence TCMR and pneumonia, five distinct algorithms were
compared. The predictive power of these models was
comprehensively evaluated via ROC curves and AUC values.
Results demonstrated that the SVM model consistently achieved
superior AUC values of 0.881 (95% CI: 0.83-0.93) in the training
dataset and 0.786 (95% CI: 0.69-0.88) in the test dataset,
outperforming all other models (Figures 2A, B). Furthermore,
additional binary classification metrics—including AUC,
sensitivity, recall, specificity, accuracy, precision, and F1-score—
were evaluated (Table 2). The SVM model exhibited statistically
significant advantages across these metrics compared to alternative
models (Figures 3A, B), further validating its predictive capability
for co-occurrence TCMR and pneumonia.

Interpretability analysis

In the swarm diagram (Figure 4A), the horizontal axis was
SHAP values, and the vertical axis demonstrated features. Each data
point reflected a specific instance, with its position on the x-axis
representing the SHAP value for a particular feature. The analysis
identified FK506, ICU stay, operation time, and NK cell as the four
most influential predictors (Figures 4A, B). Notably, NK cell exerted
a negative effect on perioperative co-occurrence TCMR and
pneumonia. To demonstrate the SHAP calculation process,
representative samples were selected: one with a positive outcome
prediction (Figure 5A) and one with a negative outcome prediction
(Figure 5B). The SVM-derived SHAP plot illustrates feature
contributions for two patients. Orange/purple bars denote
positive/negative impacts, with actual values alongside
SHAP values.

Discussion

Accurate prediction of risk factors for perioperative co-
occurrence TCMR and pneumonia following LT is critical for
timely intervention and improved outcomes. This study focused
on recipients undergoing LT and validated a predictive model for
assessing the simultaneous occurrence of TCMR and pneumonia
during the perioperative period. The model integrated preoperative
clinical characteristics, immunological interventions, dynamic
changes in surgical parameters, preoperative concurrent
symptoms, postoperative clinical characteristics, and donor
information utilizing multiple ML algorithms. Comparative
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TABLE 1 Clinical characteristics of recipients.

Training set Test set P value

Variable

(n=501)

(n=216)

Gender (n, %) 0.349
Male 600 (83.7%) 424 (84.6%) 176 (81.5%)

Female 117 (16.3%) 77 (15.4%) 40 (18.5%)

Age (years) 51.0 [43.0;57.0] 51.0 [43.0;56.0] 50.0 [42.0;57.2] 0.707
Blood type (n, %) 0.021
A 169 (23.6%) 118 (23.6%) 51 (23.6%)

B 169 (23.6%) 103 (20.6%) 66 (30.6%)

(@) 42 (5.86%) 33 (6.59%) 9 (4.17%)

AB 337 (47.0%) 247 (49.3%) 90 (41.7%)

BMI (kg/m?) 23.0 [20.9;25.3] 23.1 [21.0;25.2] 22.9 [20.8;25.5] 0.891
WBC (10°/L) 4.56 [3.30;6.53] 4.79 [3.40:6.56] 4.10 [3.01;6.38] 0.013
Hb (g/L) 101 [81.0;123] 102 [82.0;124] 100 [78.0;120] 031
PLT (10°/L) 0.0 [50.0;130] 81.0 [51.5;141] 75.5 [43.0;113] 0.02
NEUT(10°/L) 3.03 [1.98;4.57] 3.14 [2.08;4.67] 2.62 [1.85;4.36] 0.013
LYM(10°/L) 0.85 [0.57;1.24] 0.86 [0.58;1.25] 0.82 [0.53;1.23] 0.352
CK (u/L) 77.0 [46.0;124] 79.0 [46.0;127] 71.5 [44.8;115] 0.214
CKMB (u/L) 30.0 [17.0;48.0] 30.0 [17.0;48.0] 29.0 [16.0;48.0] 0918
PCT (ng/mL) 0.16 [0.07;0.44] 0.17 [0.08;0.44] 0.15 [0.07:0.42] 0.22
CRP (mg/L) 7.78 [2.6521.2] 8.08 [2.76;22.9] 6.42 [2.45;17.8] 0.127
TC (mmol/L) 3.10 [2.19;4.09] 3.05 [2.19;4.16] 3.12 [2.20;3.88] 0.635
TG (mmol/L) 0.90 [0.68;1.30] 0.88 [0.66;1.24] 0.96 [0.79;1.53] 0.007
HDL (mmol/L) 0.89 [0.50;1.23] 0.90 [0.48;1.26] 0.88 [0.52;1.18] 0.475
LDL (mmol/L) 1.77 [1.18;2.53] 1.83 [1.17;2.63] 1.69 [1.21;2.39] 0.162
SCr (umol/L) 78.0 [64.0;101] 78.0 [64.0;100] 79.0 [65.0;101] 0.455
BUN (mmol/L) 5.13 [3.85;7.51] 5.09 [3.76;7.22) 522 [4.03;7.93] 0.297
UA (umol/L) 283 [209;378] 272 [202;370] 302 [220;393] 0.012
CysC (mg/L) 1.19 [0.95;1.60] 1.18 [0.92;1.57] 1.27 [1.00;1.70] 0.028
CD4+ (uL) 314 [176;497] 315 [179;510] 304 [172;482] 0.435
CD8+ (uL) 162 [87.0;274] 173 [95.0;280] 145 [75.8;258] 0.017
BC (uL) 131 [70.0:210] 137 [76.0:219] 112 [64.8;197] 0.066
NK (uL) 76.0 [40.0;151] 80.0 [41.0;159] 67.0 [39.0;134] 0.158
K* (mmol/L) 3.83 [3.57:4.12] 3.81 [3.5514.11] 3.90 [3.64:4.13] 0.1
Na* (mmol/L) 138 [135;140] 138 [135;140] 138 [135;140] 0.862
CI" (mmol/L) 105 [102;108] 105 [102;108] 106 [102;109] 0.202
Ca®* (mmol/L) 2.15 [2.05;2.25] 2.14 [2.05;2.25) 2.16 [2.06:2.27] 0.368
Mg?* (mmol/L) 0.81 [0.75;0.88] 0.82 [0.76;0.88] 0.80 [0.72:0.87] 0.035
PH 7.43 [7.40;7.46) 7.43 [7.40:7.46) 7.43 [7.40:7.46] 0.86
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TABLE 1 Continued

Training set Test set P value
NaHaBie (n=501) (n=216)
PO, (mmHg) 93.8 [80.0;107] 94.2 [81.0;108] 93.0 [78.7;106] 0.394
PCO,(mmHg) 349 [31.1;38.2] 349 [31.1;38.7] 34.9 [31.2;37.8] 0.522
A-aDO,(mmHg) 28.0 [14.6:60.2] 27.9 [13.6:60.2] 28.1 [15.6;59.7] 0411
Operation time (minutes) 443 [400;506] 444 [399;505] 442 [403;514] 0.74
Anhepatic phase (minutes) 40.0 [35.0;48.0] 41.0 [35.0;48.0] 40.0 [35.8;47.0] 0.389
Blood loss (mL) 500 [400;800] 500 [400;800] 500 [400;800] 0.744
PRBC (u) 4.00 [0.00;7.50] 4.00 [0.00;7.00] 4.00 [0.00;8.00] 0.141
FFP (mL) 610 [0.00;1020] 610 [0.00;1010] 625 [0.00;1050] 0.2
Apheresis platelets (u) 0.00 [0.00;1.00] 0.00 [0.00;1.00] 0.00 [0.00;1.00] 0.667
MV (hours) 12.5 [9.00;20.0] 12.0 [9.00;20.0] 13.0 [9.00;23.0] 0.206
ICU stay (hours) 163 [139;193] 162 [139;190] 164 [138;209] 0.859
FK506 (ng/mL) 4.00 [2.50;5.70] 4.00 [2.60;5.80] 3.85 [2.48;5.40] 0.126
Postop-TBIL (itmol/L) 35.1 [15.0;133] 34.4 [14.7;131] 36.2 [15.4;142] 0.554
Postop-DBIL (itmol/L) 18.0 [7.30;88.7] 17.5 [6.90;88.7] 19.2 [8.00;87.8] 0.51
Postop-ALB (g/L) 33.9 [29.9;37.7] 34.0 [30.0;38.0] 33.2 [29.1;37.3] 0.152
Postop-GGT (u/L) 60.0 [31.0;123] 62.0 [31.0;121] 57.5 [31.8;125] 0.737
Postop-AST (u/L) 50.0 [33.0;88.0] 52.0 [33.0;90.0] 45.0 [32.0;82.0] 0.11
Postop-ALT (u/L) 33.0 [20.0;56.0] 35.0 [22.0;57.0] 30.0 [19.0;55.0] 0.098
Postop-ALP (u/L) 129 [96.0;189] 128 [96.0;184] 132 [97.5;198] 0.439
Postop-PT (seconds) 15.2 [13.0;19.4] 15.1 [12.9;19.5] 15.6 [13.1;19.0] 0.632
Postop-INR 1.38 [1.17;1.76] 1.37 [1.17;1.77] 1.40 [1.18;1.74] 0.677
Postop-APTT (seconds) 35.3 [32.0;40.7] 35.3 [31.8;40.8] 35.4 [32.1;40.5] 0.74
Postop-CD4+ (uL) 121 [61.0;252] 123 [59.0;246] 115 [62.0;258] 0.74
Postop-CD8+ (uL) 81.0 [38.0;153] 82.0 [38.0;156] 80.0 [36.8;146] 0.436
Postop-BC (1L) 128 [63.0,242] 128 [64.0;243] 127 [62.0;224] 0.603
Postop-NK (1L) 37.0 [18.0:73.0] 37.0 [17.0:74.0] 38.0 [20.0:68.2] 0.871
Postop-PH 7.41 [7.38;7.44] 741 [7.38:7.44] 741 [7.38;7.45] 0.467
Postop-PO,(mmHg) 106 [79.9;142] 107 [83.5;141] 101 [77.6;144] 0.568
Postop-PCO,(mmHg) 39.1 [35.9;42.8] 39.2 [35.9;43.0] 39.0 [36.0;42.0] 0.589
Postop-A-aDO,(mmHg) 94.5 [49.1;140] 92.0 [48.4;136] 103 [50.6;151] 0.276
HLA-IAD (n, %) 0.15
No 690 (96.2%) 486 (97.0%) 204 (94.4%)
Yes 27 (3.77%) 15 (2.99%) 12 (5.56%)
HLA-IIAD (n, %) 0.771
No 691 (96.4%) 484 (96.6%) 207 (95.8%)
Yes 26 (3.63%) 17 (3.39%) 9 (4.17%)
Induction regimen (n, %) 0.782

(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1648993

Training set Test set P value
NariaBe (n=501) (n=216)
No 236 (32.9%) 167 (33.3%) 69 (31.9%)
Yes 481 (67.1%) 334 (66.7%) 147 (68.1%)
i/:)l)lmunotherapy regimen (n, 0.403
Pred+Tac+MMF 702 (97.9%) 492 (98.2%) 210 (97.2%)
Pred+Tac+others 15 (2.09%) 9 (1.80%) 6 (2.78%)
Ascites (n, %) 0.297
No 483 (67.4%) 344 (68.7%) 139 (64.4%)
Yes 234 (32.6%) 157 (31.3%) 77 (35.6%)
i/{o;patic encephalopathy (n, 0.263
No 646 (90.1%) 456 (91.0%) 190 (88.0%)
Yes 71 (9.90%) 45 (8.98%) 26 (12.0%)
Donor age (years) 44.3 [26.8;52.3] 44.0 [26.2;52.7] 44.7 [26.5;52.6] 0.637
Donor gender (n, %) 0.452
Male 504 (70.3%) 378 (69.1%) 116 (72.5%)
Female 213 (29.7%) 169 (30.9%) 44 (27.5%)
Donor BMI (kg/m?) 23.5 [20.4;25.1] 23.2 [20.8;25.5] 23.6 [20.8;25.6] 0.217
Gender matched (n, %) 0.513
No 118 (16.5%) 85 (17.0%) 33 (15.2%)
Yes 599 (83.5%) 415 (83.0%) 184 (84.8%)
ABO incompatibility (n, %) 0 0 0 0

BMI, body mass index; TBIL, total bilirubin; DBIL, direct bilirubin; ALB, albumin; GGT, gamma-glutamyl transpeptidase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; ALP,
alkaline phosphatase; PT, prothrombin time; INR, international normalized ratio; APTT, activated partial thromboplastin time; WBC, white blood cell; Hb, hemoglobin; PLT, platelet; NEUT,
neutrophil; LYM, lymphocyte; CK, creatine kinase; CKMB, creatine kinase-MB Isoenzyme; PCT, procalcitonin; CRP, C-reactive protein; TC, total cholesterol; TG, triglyceride; HDL, high-density
lipoprotein; LDL, low-density lipoprotein; SCr, serum creatinine; BUN, blood urea nitrogen; UA, uric acid; CysC, cystatin C; CD4+, CD4+ T-lymphocyte; CD8, CD8+ T-lymphocyte; BC, B cell;
NK, natural killer cell; PRBC, packed red blood cells; FFP, fresh frozen plasma; MV, mechanical ventilation; HLA -IAb, human leukocyte antigen class I antibody; HLA -ITAb: human leukocyte

antigen class II antibody; Postop, Postoperative.

analysis of ML models revealed that the SVM algorithm achieved
the optimal predictive accuracy, with AUC values of 0.881 (95% CI:
0.83-0.93) in the training set and 0.786 (95% CI: 0.69-0.88) in the
test set. Calibration demonstrated high predicted-observed risk
concordance. Furthermore, the SVM model demonstrated a high
specificity, sensitivity, and F1 score. These findings indicate that ML
models incorporating recipient-specific multidimensional data can
effectively stratify perioperative co-occurrence TCMR and
pneumonia, offering actionable insights for optimizing clinical
decision-making and postoperative management.

The comparative analysis demonstrated the substantial
advantage of ML models in prediction tasks (15, 20, 21). Torres
et al. developed a machine learning-based model (K-prototype
clustering algorithm) to predict post-liver transplant
complications including acute rejection and infection,
demonstrating favorable performance (22). This advantage can be
attributable to ML’s ability to cope with complex data through
advanced regularization techniques and ensemble learning
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mechanisms (23). Particularly, ML exhibits higher accuracy in
capturing non-linear relationships, suggesting that statistical
models may simplify complex biomedical interactions. Previous
studies predominantly rely on clinical experience for variable
selection, have confirmed the utility of ML in predicting TCMR
or pneumonia prediction (17, 18). In contrast, this study integrated
preoperative and postoperative clinical characteristics,
immunological interventions, preoperative concurrent symptoms,
donor information, and dynamic changes in surgical procedures to
objectively identify key predictors (postoperative DBIL,
postoperative INR, postoperative ALT, HDL, NK, FK506, Na*,
operative time, anhepatic phase, induction regimen, and ICU
stay) through LASSO regression. These predictors originated
from objective data. A ML-based predictive model for
perioperative co-occurrence TCMR and pneumonia following LT
was subsequently developed.

As the most critical predictor in this model, the blood
concentration of FK506 is paramount for preventing
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Demographic and clinical feature selection using the least absolute shrinkage and selection operator (LASSO) binary logistic regression model.
(A) LASSO coefficient profiles of the 21 features. A coefficient profile plot was produced against the log (A) sequence. The vertical line was drawn
at the value selected using 10-fold cross-validation, where optimal resulted in 6 features with non-zero coefficients. (B) Tuning parameter (A)
selection in the LASSO model used 10-fold cross-validation via minimum criteria. The partial likelihood deviance (binomial deviance) curve was

plotted versus log(A).

graft rejection and reducing the risk of infection, particularly
pneumonia (24). A delicate therapeutic balance exists
between these competing outcomes. FK506 suppresses the cellular
immune response against the hepatic allograft primarily by
inhibiting T-lymphocyte activation and proliferation, achieved
through blockade of key cytokine transcription, including
interleukin-2 (25). Subtherapeutic concentrations result in
insufficient immunosuppression, failing to adequately inhibit
recipient T-cell recognition and attack of the donor liver. This
predisposes patients to acute cellular rejection, manifested by

Frontiers in Immunology

abnormal liver function tests (elevated transaminases and
bilirubin). Severe or recurrent rejection episodes can lead to graft
dysfunction or loss (5). Conversely, supratherapeutic
concentrations, while theoretically offering enhanced rejection
prophylaxis, incur significant costs: a marked increase in drug
toxicity (26) and the risk of severe infections (27). Consequently,
indiscriminately maintaining excessively high concentrations solely
to achieve “absolute rejection avoidance” is clinically
contraindicated, as the associated risks substantially outweigh
potential benefits. FK506 exhibits a narrow therapeutic index
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Receiver operating characteristic curves for the five models. (A)Training sets; (B) Test sets).

between effective immunosuppression (preventing rejection) and
toxic concentrations (predisposing to infection/toxicity) (28).
Furthermore, significant interindividual variability in blood
concentrations arises due to factors influencing drug metabolism,
including genetics (e.g., CYP3A5 polymorphisms), age, hepatic and
renal function, diet, and concomitant medications (29). Regular
monitoring of FK506 trough levels is therefore fundamental. Based
on these results, alongside individual rejection risk, infection
susceptibility, and manifestations of drug toxicity, transplant
clinicians must dynamically titrate the dosage through an
individualized approach. The therapeutic goal is to maintain
concentrations within a target range that effectively prevents
rejection while minimizing the risks of infection and drug-related
toxicity (27). ICU stay is also a significant predictor variable in our
study. The duration of ICU hospitalization following LT serves as a
critical indicator reflecting surgical complexity, graft functional
recovery, severity of early complications, and the patient’s overall
clinical status. While prolonged ICU stay itself is not a direct cause
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of rejection or pneumonia, it is strongly associated with and
significantly increases the risk of developing both severe
complications, with complex interactions existing between them.
Prolonged ICU hospitalization is a well-established, highly
significant independent risk factor for hospital-acquired
pneumonia (30, 31). It is generally not the initiating cause of
rejection; rather, severe rejection is often one of the primary
factors leading to extended ICU stay. Furthermore, the
complexity of the ICU environment and the patient’s critical
condition significantly increase the difficulty of maintaining
effective and stable immunosuppression, thereby indirectly
elevating the risk of TCMR both during the ICU stay and shortly
after transfer out of the ICU. Immunosuppression management
poses substantial challenges in patients requiring protracted ICU
care. In summary, the interplay between ICU length of stay,
rejection, and pneumonia frequently establishes a vicious cycle.
Severe rejection episodes often necessitate ICU admission and
prolong hospitalization. The ICU environment and associated risk
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TABLE 2 Evaluating the predictive performance of each model.

AUC Specificity Sensitivity Accuracy Precision Recall F1-score
Training Training = Test Training Test Training Test Training Test Training Test Training Test
0.776 0.761

LR (95% CI: (95% CI: 0.657 0.503 | 0.792 0.952 | 0.677 0.546 = 0.280 0.171 | 0.792 0952 | 0414 0.290
0.72-0.84) 0.66-0.86)
0.881 0.786

SVM (95% CI: (95% CI: 0.932 0.805 = 0.736 0.762 | 0.904 0.801 | 0.646 0.296 | 0.736 0.762 | 0.668 0.426
0.83-0.93) 0.69-0.88)
0.881 0.743

RF (95% CI: (95% CI: 0.762 0.610 = 0.889 0.810 | 0.780 0.630 = 0.386 0.183 | 0.889 0.810 = 0.538 0.299
0.84-0.93) 0.64-0.85)
0.880 0.769

GBM (95% CI: (95% CI: 0.688 0.718 | 0.903 0.810 | 0.719 0.727 | 0.327 0.236 | 0.903 0.810 = 0.480 0.366
0.85-0.92) 0.66-0.88)
0.874 0.766

XGBoost | (95% CIL: (95% CI: 0.711 0.687 | 0.889 0.810 | 0.737 0.699 = 0.340 0.218 | 0.889 0.810 = 0.492 0.344
0.84-0.91) 0.65-0.88)

LR, logistic regression; SVM, support vector machine; RF, random forest; GBM, gradient boosting machine; XGBoost, extreme gradient boosting.
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FIGURE 3
Calibration curves of the predicted probability. (A) Training sets; (B) Test sets.
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FIGURE 4

Visual explanation of perioperative co-occurrence of TCMR and pneumonia model based on SVM. (A) The SHapley Additive explanation; (B) Feature

importance scores.

factors markedly increase the susceptibility to pneumonia (32).
Severe pneumonia, in turn, necessitates reduction or
discontinuation of immunosuppressive therapy to control the
infection. Inadequate immunosuppression subsequently triggers
rejection episodes or exacerbates existing rejection, thus creating a
self-perpetuating cycle of adverse events. Operative time is also
recognized as a significant predictive factor. Prolonged surgical time
typically correlates with an extended anhepatic phase and increased
total ischemic time. Sustained ischemia-reperfusion injury (IRI)
leads to hepatic sinusoidal endothelial cell damage and
microcirculatory disturbances, triggering the substantial release of
damage-associated molecular patterns (33, 34). These damage-
associated molecular patterns robustly activate the innate immune
system, characterized by macrophage and neutrophil infiltration,
and complement activation, resulting in the release of large
quantities of pro-inflammatory cytokines (35). Damaged
hepatocytes and endothelial cells exhibit upregulated expression
of MHC molecules and co-stimulatory molecules (36), rendering
them more recognizable as “non-self” by the recipient’s immune
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system. This facilitates the accelerated presentation of donor
antigens to recipient T cells (37). Although the liver possesses
inherent immunotolerance properties, severe IRI disrupts this
microenvironment (38), significantly increasing the incidence and
severity of early acute cellular rejection (39). Furthermore,
prolonged operative duration is often associated with greater
blood loss and substantial transfusion requirements. Allogeneic
blood transfusion can induce complex immunomodulatory
effects. It may also increase the risk of alloimmunization,
including rejection directed against the graft, potentially through
the introduction of allogeneic leukocyte antigens or by activating
the recipient’s immune system (40). Extended operative time is a
strong independent risk factor for postoperative pneumonia. A
direct and well-established mechanistic link involves its association
with longer durations of mechanical ventilation and an increased
risk of pulmonary atelectasis (41). NK cells emerged as the fourth
most important predictive variable in this study, exhibiting a
negative regulatory role in the co-occurrence of TCMR and
pneumonia. NK cells possess the ability to recognize and lyse
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Force plot shows the contribution of each feature to the prediction result of using the SYM model. (A) One sample with a positive outcome
prediction; (B) One sample with a negative outcome prediction. Orange bars indicate features that contribute positively to the prediction, while
purple bars indicate negative contributions. Feature values are shown alongside their SHAP values.

virus-infected cells without requiring presensitization. They induce
target cell apoptosis either through the release of perforin and
granzymes or via the Fas ligand (FasL)/Fas pathway (42). Activated
NK cells robustly secrete interferon-gamma and tumor necrosis
factor-alpha. These cytokines not only exert direct antiviral effects
(43) but also recruit neutrophils, monocytes/macrophages, and T
cells to the site of infection, thereby amplifying the anti-infection
immune response. Furthermore, NK cells can mediate antibody-
dependent cellular cytotoxicity via FcyRIIla (CD16a), enabling
more effective killing of infected cells (44). In summary,
insufficient NK cell counts can directly contribute to the
development of perioperative pneumonia following LT. Viral
infections themselves, particularly cytomegalovirus infection,
constitute a significant risk factor for rejection (45). This creates a
complex interplay: on the one hand, viral infection activates NK
cells to combat the virus; on the other hand, cytokines like IFN-y
secreted by activated NK cells may simultaneously promote
rejection. Conversely, the inflammation and tissue damage caused
by rejection reactions also heighten the risk of infection.

This paper demonstrated that ML models could predict
perioperative co-occurrence TCMR and pneumonia following LT.
ML models exhibit superior abilities to capture complex, non-linear
relationships and intricate interactions among clinical variables
compared to traditional methods, thus offering valuable insights
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into individual patient risk profiles. This information can
potentially inform personalized treatment strategies, optimize post-
LT surveillance protocols, and ultimately improve patient outcomes.

Clinical significance

The machine learning-based multidimensional prediction
model (utilizing the SVM algorithm) developed and validated in
this study holds paramount clinical value by providing a robust tool
for the precise prevention and individualized management of
TCMR-pneumonia comorbidity during the perioperative period
following LT. Upon successful integration into the hospital’s
electronic medical record (EMR) system as a clinical decision
support system, this model empowers clinicians to implement
preemptive alerts, accurate diagnosis, and early personalized
interventions for high-risk patients. This effectively disrupts the
vicious cycle of TCMR-pneumonia comorbidity, ultimately
improving the prognosis of LT recipients and substantially
alleviating familial and societal burdens. These outcomes
demonstrate the transformative potential of Al-driven precision
medicine in managing complex postoperative complications.

Real-time risk surveillance and early warning: the model’s core
strength lies in its integration of critical, dynamically changing
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clinical indicators. Once deployed, the system automatically and
continuously retrieves real-time data from the EMR, including:
dynamic monitoring of FK506 blood concentration, dynamic
assessment of immune cell function, dynamic evolution of liver
function and coagulation parameters, surgical parameter
retrospectives, and ICU length of stay. This dynamic data
continuously updates risk assessments. Risk stratification based
on predictive modeling: leveraging the integrated SVM algorithm,
the system comprehensively analyzes the aforementioned real-time
multidimensional data to compute an individualized risk score for
current TCMR-pneumonia comorbidity occurrence. Patients are
then automatically stratified into predefined risk tiers based on
preset thresholds. Early identification and targeted intervention for
high-risk patients: the explicit early-warning signals provided by the
system offer clinicians precise diagnostic directionality. These alerts
heighten clinical vigilance regarding potential comorbidity,
prompting physicians to combine model outputs with specific
patient presentations and necessary ancillary tests for accurate
diagnosis at the disease’s earliest stage. Early diagnosis is
prerequisite for effective intervention; for TCMR, warnings enable
prompt judicious adjustment of immunosuppressive regimens.

Limitations

There are also limitations. The single-center retrospective
design may introduce selection bias, despite efforts to adjust for
known confounders through multivariate analysis. Additionally, the
primary limitation of this study is the absence of external validation
on an independent, multi-center, large-scale cohort. This constraint
impedes comprehensive assessment of our model’s generalizability
at this stage and its immediate clinical applicability.

Conclusions

This study developed a robust predictive model for perioperative
co-occurrence TCMR and pneumonia in LT, and the SVM model
achieved superior discriminative performance. Key predictors,
including postoperative DBIL, postoperative INR, HDL,
postoperative ALT, NK, FK506, Na¥, operative time, anhepatic
phase, induction regimen, and ICU stay, were identified as critical
determinants of model. These results advance our understanding of
the multifactorial pathogenesis of perioperative co-occurrence TCMR
and pneumonia after LT, offering actionable insights for optimizing
clinical decision-making and postoperative management.
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