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Use of regulatory cells for
achieving functional tolerance
of pig heart xenotransplants
in humans: a literature review
Gheorghe Traian Braileanu*

Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
Xenotransplantation of pig hearts may help address the current human shortage of

human donors once rejection is controlled. One innovative approach to combat

rejection in humans is the use of regulatory cell (RC) therapy. The term RC refers to

all cell populations that share immunosuppressive functions. The use of RC,

including mesenchymal stem cells (MSC) and CD4+CD125lowCD25highFoxp3+ T

cells (Treg), may potentially reduce or eliminate the need for chronic general

immunosuppression (IS). This approach is hypothesized to act by augmenting

suppressive immune mechanisms that maintain tolerance by prevailing over the

immune effector mechanisms responsible for rejection. Increasing RC numbers

through adoptive cell transfer (ACT) and enhancing their functions via chimeric

antigen receptor (CAR) technology are two promising strategies for RC therapy

applications. During the various steps of rejection, monitoring specific biomarkers

can guide the use of the corresponding RC subpopulation, preferably available off-

the-shelf, either alone or in combination, administered once ormultiple times. In the

future, exosomes or RC-derived active molecules (or their antagonists) may

supplement or replace whole-cell therapy. With further research, RC therapy,

which has not yet been used in clinics to induce functional tolerance to pig heart

xenotransplants in humans, has the potential to become a routine,

personalized treatment.
KEYWORDS

pig heart xenotransplantation, regulatory cells therapy, adoptive cell transfer,
xenotransplant tolerance, CAR transformed regulatory cells, human recipients,
multianalyte biomarkers
1 Introduction

Heart transplantation may be required in patients with advanced heart failure.

Currently, more than 6,000 qualified patients for cardiac allotransplantation die each

year in the USA due to the shortage of available donors. One possible solution is the use of

pigs as potentially life-saving organ donors (1), based on existing anatomical and

physiological similarities (2) and general ethical acceptance (3). However, due to

antigenic differences between species, a pig heart xenotransplanted into a nonhuman
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primate (NHP) host without immunosuppressive treatment is likely

to be acutely rejected within minutes to hours (4). The use of

genetically modified (GM) pigs as donors, together with improved

immunosuppressive (IS) treatments of the host, prevented rejection

of a pig heart for 9 months in baboons (5) and for 40–60 days in the

first two human patients treated at the University of Maryland (1, 6,

7). The development of GM pigs—an important scientific

achievement under continuous improvement (8) that contributed

to the delay of heart xenotransplant rejection (9)—will not be

detailed further, but interested readers are directed to existing

reviews (5, 6, 10). IS treatments, by directly reducing the number

of available T and/or B effector cells or by blocking costimulatory

signals, are a valuable tool to combat acute rejection. However,

toxicity, nonspecificity, and side effects (including increased risk for

infections, malignancy, or metabolic complications) impede its

extended use for chronic rejection treatments (11).

Tolerance without treatment occurs only during normal fetal

development as an allograft during gestation (12), in kidney

transplants between identical twins (13), or when it appears

spontaneously in a minority of liver transplant recipients (14).

Novel approaches for induction and maintenance of functional

transplant tolerance are being researched and developed.

Currently, continuous antigenic stimulation induced by allo- or

xenografts cannot be completely prevented (15). Consequently, the

corresponding reactive immune effector responses are continuously

amplified. Rejection occurs when the effector mechanisms prevail

over inhibitory immune mechanisms at the graft level. Tolerance, in

contrast, entails graft persistence despite a progressive increase in

effector immune rejection mechanisms. Therefore, a strategy to

maintain tolerance should consider the targeted amplification of

immunosuppressive mechanisms, specifically, regulatory cell (RC),

to act on the immune effector cells during the effector steps of

rejection. The specific augmentation of immunosuppressive

mechanisms represented by RC, through ACT with one or more

populations, to a level prevalent on immune effector mechanisms,

could maintain graft tolerance as a possible solution to combat graft

rejection without the need for chronic IS.

In this review, the collective term “RC” is used to cover the

heterogeneous group of various immune cell populations, each

identified by specific morphologic and functional markers, which

share immunosuppressive properties. Each RC population, owing

to its specific immunoinhibitory effects, has the potential to become

instrumental in maintaining tolerance when applied at the

corresponding step of rejection. Over the last three decades, an

increasing number of RC populations have been discovered,

including immune cell precursor populations such as

mesenchymal stem cells (MSC) (16) or myeloid-derived

suppressor cells (MDSC) (17), as well as immunosuppressors that

affect nearly every innate or acquired immune effector mechanism

(18–21), which are briefly discussed below.

RC therapy has proven instrumental in clinical use due to its

immunosuppressive effects. It is used to treat a wide variety of

immune-related diseases, such as GVHD and allergies, or for

combating graft rejection in transplantation models (19). Recent

successes regarding clinical trials using RC therapy were reported in
Frontiers in Immunology 02
combating solid organ allograft rejection, especially for the kidney

(22, 23). However, for cardiac transplants, only one clinical trial was

initiated last year (2024) that uses thymus-derived T regulatory cells

(Treg) population to combat allograft rejection in children

(NCT04924491). At this point, the use of RC to achieve tolerance

to pig heart xenotransplanted in humans has not been studied in

NHP models or in the clinical setting. However, based on their

mechanisms of action and strong experimental results obtained in

different models, RC therapy has the potential to become a routine,

effective, and personalized therapeutic tool to combat xenograft

rejection. The present review offers arguments in favor of future use

of RC as therapy (once or repeatedly, alone or in combination), with

emphasis on better studied MSC and Treg, to induce functional

tolerance to pig heart xenografts in humans.
2 The context of tolerance induction
to transplanted grafts

Xenotransplantation activates the existing immune system’s

cellular and humoral mechanisms (24, 25) in the background of

existing variations due to graft characteristics and host

individuality. Host variability (characterized by differences in

genetics, age, sex, previous diseases, and antigenic exposure), in

addition to early induced postsurgical inflammation and

continuous antigenic stimulation generated by the graft,

highlights the complexity of immune responses. At the local graft

microenvironment, the permanent interactions between inducing

factors and reactive effector immune mechanisms can be tentatively

grouped into a dynamic succession of general immune steps

progressing toward rejection (Table 1).

Each step (26) may be characterized by the resulting effects of

a cascade of immune-reactive mechanisms, each driven by a

specific set of cellular subpopulations. Surgery initiates an

inflammatory environment (27) (Table 1, step 1), which may

change the threshold for subsequent innate immune cell

activation. Meanwhile, preexisting activated immune cells and

antibodies generated by previous encounters with antigens like

those of the graft (trained immunity (28)) act immediately,

potentially inducing hyperacute or acute graft rejection (Table 1,

step 2). Activation of innate immune cells (neutrophils,

monocytes, dendritic cells, and killer cells) responses (18, 29) is

stronger when induced by xenoantigens (30) than when induced

by alloantigens (Table 1, step 3). Antigen-presenting cells (APC),

by direct (31), indirect (32), or semidirect (33, 34) antigen

recognition pathway mechanisms, present graft antigens to

receptor T lymphocytes. This activation leads to the initiation of

cellular and humoral acquired immune mechanisms (Table 1, step

4), which, besides antigenic stimulation (signal 1), include

costimulation (signal 2) and cytokine secretion (signal 3) (35).

Continuous antigenic stimulation induced by the graft (15) leads

to continuous amplification of effector mechanisms (Table 1, step

5) that, when it prevails over the suppressive action of RC, may

induce graft rejection (Table 1, step 6) (Figure 1). The cellular

aspects of the effector immune system are mostly represented by T
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and B cells. Activated CD4 helper T cells stimulate CD8 cytotoxic

effector T cells, which induce cellular-mediated graft rejection

through various mechanisms such as specific programmed cell

death (36), cell lysis by direct contact (granzymes), and necrosis of

graft cells. Rejection also involves the secretion of antibodies by B

cells that induce antibody-dependent directed cytotoxicity
Frontiers in Immunology 03
(ADDC) as the main antibody-mediated rejection mechanism.

In NHP, the incidence of antibody-mediated rejection compared

to that of acute cellular rejection is much higher after

xenotransplantation (46% vs. 7%) than after allotransplantation

(3% vs. 63%) (37). Humoral responses, in addition to specific

antibody production, also include changes in the cytokine
TABLE 1 Tentative enumeration of general immune response steps oriented toward xenograft rejection.

Step Induced by Mechanism Effects Treatments

1 Sudden inflammation Surgery Cellular + humoral Inflammatory background
Early anti-inflammatory
therapy

2
Hyperacute/acute graft
rejection

Earlier encounter with antigens
similar to the graft ones

Cellular + humoral Rapid graft damage
Use of IS and genetically
engineered pigs successfully
delayed acute rejection

3
Activation of innate immune
cells (DC, N, M, KC)

Xenoantigens and injury
recognition signals

Cellular
Decreased threshold for
activation of acquired immune
effector cells

Use of DC, N, M, KC
regulatory cells

4
Induction of acquired immune
effector cell activation

Earlier step Cellular
Immune effector cell activation.
Secretion of cytokines

Costimulation blockade
treatments

5
Amplification of acquired
immune response

Permanent antigenic
stimulation on a dynamic
background. Cytokine
secretion. Metabolic changes.

Cellular + humoral
Disequilibrium between RC
and effector cells in favor of
effector cells

Augmentation of RC
compartment. Use of
cytokines, active molecules

6
Effective phase of acquired
immune response

Prevalence of effectors versus
RC actions. Cytokine secretion.
Metabolic changes

Cellular + humoral
Tissue destruction by direct
cellular contact and ADDC

After early detection of
rejection by new biomarkers,
use specific adoptive RC
compartment transfer
treatments
Dendritic cells (DC). Neutrophils (N), monocytes (M), killer cells (KC), antibody-dependent directed cytotoxicity (ADDC).
FIGURE 1

Possible roles of RC in tolerance induction to a transplanted xenograft. Continuous antigenic stimulation due to the presence of the xenograft induces
a continuous increase in size or efficiency of the immune effector mechanisms (represented by T and B effector cells and cytokines). When the effects
of this increase became stronger than existing local immune suppressive mechanisms (represented by RC—including MSC and Treg), it induced the
effective step of graft rejection. ACT of RC therapy increases the size of local immunosuppressive mechanisms. When the cumulative effects of
existing and supplemented immunosuppressive mechanisms prevail over the immune effector ones, it may induce tolerance.
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network, which, af ter interact ions with the exis t ing

neuroendocrine humoral networks, lead to changes in cellular

activation and metabolic modifications (24).

The simultaneous presence of steps 3–5 (Table 1) complicates

the identification of a specific time or mechanism for targeted

prevention of rejection and maintenance of tolerance. Modern

molecular techniques can provide data to identify new complex

biomarkers that may diagnose and predict graft rejection before

visible changes occur. Values above the threshold for one or more

specific markers may be tracked during the continuous monitoring

of the cumulative effects of complex graft rejection mechanisms and

be used as an additional tool to determine when and what

treatments or interventions are needed to maintain tolerance. A

detected disequilibrium, in addition to ACT therapy with one or

more specific RC subpopulation(s) (38–40), may require the use of

additional corresponding tools, such as cytokines (41), metabolites,

active molecules (specific microRNAs (42, 43) or glycoproteins

(44)), or even short-term IS, in order to delay rejection. Therefore,

more than one specific intervention may be necessary to achieve

tolerance, possibly with one or more RC products ideally available

off the shelf.

At any given time point, the net balance between applied

therapy and the existing immune cell subpopulations, along with

modifications of antibody production, cytokine secretion, or

metabolic changes, determines the next step of the immune

reactive response. Each effector phase of a reactive immune

response may be modulated by immunosuppressive mechanisms

of a specific RC subpopulation. When differentiation of effector

immune cells and RC is not coordinated (45–47), and the

suppressive activity of existing RC (48) is overwhelmed by an

increasing number of effector immune cells, rejection may occur.

Conversely, stronger immunosuppressive mechanisms of RC over

effector immune responses oriented toward rejection may preserve

and maintain graft functionality.

In this paper, it is hypothesized that the augmentation of the

immunosuppressive mechanisms can induce operational tolerance

(Figure 1). Prolonged tolerance was obtained by increasing the

number, as well as the quality, of RC used as treatment (49) in

different allotransplantation clinical settings. ACT with RC, by

augmentation of immunosuppressive mechanisms, is proposed to

maintain functional tolerance also in human patients who have

received pig xenografts (Figure 1), especially during the effective

rejection step 6 (Table 1). Protective mechanisms of RC against heart

xenograft rejection are better understood in the context of the

complex local cardiac microenvironment and existing inflammation.
2.1 Complexity of the heart
microenvironment

Immune effector mechanisms of transplanted heart rejection

can be better studied and understood at the level of the local cardiac

microenvironment (50), besides the secondary lymphoid organs

(SLO) (51, 52). The healthy mammalian heart has an estimated two

to three billion cardiac myocytes, representing approximately 75%
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of the normal myocardial tissue volume (50, 53, 54). Other cell types

include fibroblasts, resident macrophages, endothelial cells, and

perivascular cells (50, 53, 54). Resident immune cells originate

from progenitor cells during development and comprise 5% of

the cellular population in the human ventricular tissue (50, 55, 56).

In healthy mouse cardiac tissue, the number of mononuclear

phagocytes, neutrophils, B cells, and T cells is 12-fold higher than

that in skeletal muscle, demonstrating the importance of immune

cells in maintaining heart homeostasis (50, 57, 58). Immune cells,

particularly Treg, also play an important role in various heart

pathologies. For example, compared to healthy myocardium, the

number of Treg that peaks on day 7 after an infarct, presumably in

an antigen-dependent manner, has been shown to be protective

(59). In monkeys, the Treg percentage from CD3 cells is elevated in

the heart allograft at rejection compared with peripheral blood

(PB) (60).

The microenvironment of the heart xenograft reflects various

immune-mediated intercellular interactions and epigenetic

modifications (46), as well as changes in immune humoral

mechanisms of action that influence RC and all constitutive cells.

The immune cell secretion of specific antibodies, cytokines, and

other soluble mediators (TGF-b, retinoic acid), and their

concentrations influence the graft microenvironment and depend

on metabolite availability. Immune rejection mechanisms can be

further complicated by the simultaneous presence of injury or

repair processes, such as dysregulation of fibrosis, which

contribute to dynamic changes of local graft microenvironment

throughout the lifespan of a transplant (26). The concept of an

organized immunological microenvironment, or niche, may help to

better characterize the complexity of various rejection steps (61, 62).

Focusing on specific compartments, such as adventitial vascular

niches, may be useful in understanding and treating rejection.

Further characterization of the differences in cellular

composition of the heart between healthy and diseased states (50)

by single-cell analysis may identify new biomarkers for rejection

and possible new therapeutic targets. Detection of new specific RC

subpopulations at the level of the grafted heart during rejection is

currently an active field of research (63, 64).

Maintenance of xenograft tolerance may be hypothetically

achieved when the immunosuppressive effects of existing local

cells are supplemented by ACT of a specific RC population and

become more potent than the immune effector mechanisms of

rejection (Figure 1).

The balanced interactions of various immune mechanisms create a

dynamic microenvironment that can be characterized from a

functional point of view as proinflammatory or immunosuppressive.
2.2 Inflammation and transplant tolerance

The importance of the inflammatory effects on local graft

rejection is well established (65). Activated innate immune cells, a

major source of proinflammatory cytokines, are considered a

barrier to successful pig-to-primate xenotransplantation (66).

While the initial inflammatory response and influx of immune
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cells are essential for limiting and clearing tissue damage, excessive

or prolonged inflammation can be detrimental. It may lead to

increased cardiac rupture, disproportionate collagen degradation,

infarct expansion through phagocytosis of healthy cardiomyocytes,

increased left ventricular dilatation (50, 58, 67), and adverse cardiac

remodeling (68). Excessive inflammation acts by directly

influencing the regulation of effector immune cells, as well as by

inducing the production of active cytokines (66).

On the other hand, RC are attracted to the graft and influences

rejection mechanisms by suppressing the negative effects of

excessive immune cell responses. Prolonged inflammation during

an active immune response increases the ability of APC to stimulate

e ff ec to r ce l l mechan i sms , which in turn overcome

immunosuppressive controls. RC continuously and proactively

(69) suppresses excessive immune responses. A timed increase in

the number and functions of specific immunosuppressive RC

subpopulations during the different steps of the immune response

has the potential to reduce inflammation, which may help maintain

xenograft tolerance.

In addition, the interaction between inflammation and

coagulation can initiate a cascade of reactions (70), resulting in

the uncontrolled production of inflammatory mediators and

coagulation factors (30). Theoretically, the systemic inflammatory

response precedes, and most likely promotes, activation of

coagulation in xenograft recipients (30). The coagulation

dysregulation induced by xenografts, leading to thrombotic

microangiopathy, may be a cause of graft failure (71). The use of

transgenic pigs expressing human coagulation-regulatory proteins

(such as tissue factor pathway inhibitor, thrombomodulin,
Frontiers in Immunology 05
endothelial protein C receptor, or CD39) reduces the

dysregulation of coagulation and decreases the amplification of

inflammation after xenotransplantation (30), which increases graft

survival but does not induce functional tolerance. Other genetic

modifications in pigs are currently underway (72). The regulation of

inflammation and coagulation in xenograft recipients may be

mutually beneficial (30), with possible therapeutic actions on

different RC subpopulations oriented toward tolerance induction.

However, continuous antigenic stimulation, accompanied by

corresponding cellular and humoral changes, may lead to graft

destruction through progressive amplification of effector

mechanisms and other consequences of chronic inflammation,

such as immune cell exhaustion.
3 Use of RC to prevent graft rejection

The idea that the immune system normally includes cell

populations with specific inhibitory activity is over 50 years old.

Results from day-3 thymectomy experiments in mice published in

1969 (73) led to the discovery of the first population of immune

suppressor cells, later identified as CD4+CD127lowCD25highFoxp3+

and named regulatory T cells (Treg) (74). To date, they are the best-

studied RC subpopulation. Over the past three decades, other distinct

cell populations with immunosuppressive functions have been

identified that could potentially be used in transplantation (Table 2).

In addition to immune cells, precursor populations that have

immunosuppressive effects, such as MDSC (17, 75) and

mesenchymal stem cells (MSC) (76), may also be used to combat
TABLE 2 Abbreviated list of RC populations with their roles in transplantation.

Category RC population Evidence level

Immune cell precursors
MDSC Demonstrated role in transplantation tolerance induction (17)

MSC In 2018, 12 clinical trials were registered to study their potential in solid organ allotransplantation settings (114).

Innate immunity

Nreg
Described an intestinal regulatory neutrophil population that reduced acute graft versus host disease for allogeneic
hematopoietic cell transplantation in mice (77).

Mreg They were administered as immune-conditioning therapy for renal transplant recipients (205).

DCreg Their use is proposed for the induction of human kidney or liver graft tolerance (206)

NKreg Expanded in vitro and proposed as therapy to combat chronic graft versus host disease (80).

Acquired cellular
immunity and TRC

CD4+ Treg (Treg)
Successful clinical trials for kidney and liver allotransplantation (173), and one for heart in children (NCT04924491).
CAR Treg first clinical trial approved for kidney transplants in 2022 (NCT04817774).

CD8+Treg In 2021, they were used in the first human phase I therapy trial in kidney transplant patients (82).

DPTreg
Identified in the human thymus with roles in the development of single positive TCR (207). The percentage of CD4
+CD8+CD127lowCD25highFoxp3+ cells in cynomolgus monkeys’ heart heterotopic allotransplanted graft at rejection
was increased compared with PB or LN (60).

DNTreg
Involved in the long-term survival of rat cardiac xenografts in mice (208). Ameliorate hepatic ischemia-reperfusion
injury in mice (209).

Acquired humoral
immunity and BRC

Breg populations
CD19+CD5+CD1d high Breg correlated with better kidney graft function (210). CD19+CD24(high)CD38(high)Breg
associated with long-term lung graft survival (211). CD19+CD5+CD1dhigh Breg have a protective role in heart
transplantation (212).
MDSC, myeloid-derived suppressor cells; MSC, mesenchymal stem cells; Nreg, regulatory neutrophils; Mreg, regulatory macrophages; DCreg, regulatory dendritic cells; NKreg, NK regulatory
cells; TRC, T-regulatory cells; Treg, CD4+CD127lowCD25highFoxp3+ cells; CD4+ regulatory cells; DPTreg, double positive (CD4+CD8+) regulatory cells; DNTeg, double negative (CD4−CD8−)
regulatory cells; BRC, B regulatory cells; Breg, B-specific regulatory cell populations.
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graft rejection. RC related to innate immune responses mechanisms

include: a regulatory neutrophil population (RN) (77), regulatory

macrophages (RM) (18, 78), tolerogenic dendritic cells (TDC) (18,

79), and regulatory-like NK cells (RLNK) (80). Acquired immune

response mechanisms, generated mostly by T and B cells, include

actions of corresponding RC populations. Among T regulatory cell

(TRC) lymphocytes, besides Treg, other populations identified

as RC include CD8+ regulatory T cells (CD8+Treg) (20, 81, 82),

CD4+CD8+regulatory T cells (DPTreg) (83), CD4-CD8-regulatory T

cells (DNTreg) (84–86), and natural killer T regulatory cells (NKTreg)

(87). Other T-cell subpopulations, such as interleukin (IL)-10-

secreting T regulatory 1 (Tr1) cells (88), transforming growth

factor-beta-secreting T helper 3 cells (Th3) (89), and CD8+CD28−

regulatory T cells (90), are adaptively regulatory. Specifically, they

acquire regulatory functions following specific antigenic stimulation in

a particular cytokine milieu. In addition to TRC lymphocytes, were

described B regulatory cells (BRC) lymphocytes (91, 92), represented

by different B-specific regulatory cell populations (Breg) that exhibit

immunosuppressive regulatory activities (93).

Each of the mentioned RC populations has the potential to

contribute to transplant tolerance by specifically suppressing

effector immune mechanisms at different steps of the immune

responses that led to graft rejection. However, their specific roles

in xenotransplantation require further investigation. The diversity

of these cell populations may allow for tailored RC therapy to meet

the needs of each patient (94). Ongoing efforts to discover and

characterize new RC subpopulations with local characteristics (41)

may reveal new possibilities for combating rejection (64). For

example, based on gd T-cell mechanisms of action (95, 96),

detailed characterization of one or more cell subpopulations with

immunosuppressive effects (97) is still pending.

Despite their heterogeneity, some RC populations share

common immunosuppressive mechanisms. For example, cell-to-

cell contact can induce lysis of target cells through granzyme B

secretion, as observed in Treg (98), Tr1 (99), and Breg (100). IL-10-

related mechanisms have been demonstrated in MSC (101), MDSC

(17), Treg (102), Tr1 (88), and Breg (103). However, the effects of

these common mechanisms are distinct (69) because they act on

specific cell types present in the local graft microenvironment at

particular times.

Moreover, almost every RC population has been shown to be

heterogeneous, with distinct subpopulations that differ depending

on their origin, mechanisms of action, or localization within specific

microenvironments. For example, using the FlowSOM tool for

morphologically characterizing human Treg in the blood of

patients with systemic lupus erythematosus revealed specific

differences among 12 analyzed clusters in terms of their

phenotypes and sensitivity to treatment with low doses of IL-2

(41). Likewise, a specific enrichment was reported in two of 14

clusters of CD4+CD8+CD127lowCD25highFoxp3+ cells in

cynomolgus monkeys’ heterotopic heart allotransplanted grafts at

rejection compared with PB or lymph nodes (LN) (60). The

identificat ion of specific RC subpopulat ions and the

characterization of their specific roles for the induction of

xenograft tolerance requires more research. Furthermore, single-
Frontiers in Immunology 06
cell analysis using exhaustive “omics” methods revealed differences

at the individual cell level (104). Continuing this analytic approach,

it is probable that the use of only active RC-derived molecules may

prove effective in maintaining tolerance.

Every immune effector mechanism appears to have, besides

augmentation, a corresponding inhibitory response represented by

a cellular population, generally termed as regulatory, that allows for

fine-tuning of its mechanisms of action. Consequently, each RC

subpopulation, through its specific mechanisms of action, has the

potential to combat rejection by acting at a specific step of the

immune response (Figure 2).

Permanent antigenic stimulation induced by the graft causes an

imbalance between the efficacy of continuously amplified immune

effector responses and the potency of the inhibitory components of

immune responses represented by existing RC (Figure 1). When

this disequilibrium favors effector responses, graft rejection is

induced (Table 1, step 6). Detection of an imbalance during

continuous blood monitoring after graft transplantation, using

specific biomarkers such as cytokines or microRNAs (miRNAs),

may signal the need for early intervention. For instance, during step

6 of rejection (Table 1), characterized by a severe inflammatory

response and tissue damage requiring prompt medical attention,

local augmentation of specific RC subpopulations in number (by

ACT) as well as qualities (by CAR technology) may maintain

tolerance. Further research is needed to improve our

understanding of specific immunosuppressive functions of

different RC subpopulations (Table 2).
3.1 ACT of RC and transplantation
tolerance

The numeric increase of RC by ACT, particularly for the best-

studied MSC and Treg, may be an effective tool for maintaining

tolerance in various transplantation settings.

3.1.1 Use of MSC to prevent graft rejection
The possible use of MSC as an approach to maintain tolerance

to pig hearts xenotransplanted in humans is supported by the

specific properties of these cells and by experimental results.

MSC, originally identified in bone marrow (105), are multipotent

cells that have the capacity to differentiate into adipocytes,

chondrocytes, and osteoblasts (106). Exogenous growth factors

added in vitro induce the differentiation of MSC into

cardiomyocytes, endothelial cells, or smooth muscle cells (107).

MSC may function as a cellular reserve, allowing for adaptation to

local challenges when needed. The local microenvironment

influences MSC via their pathogen-recognition or immune-

activation sensing receptors, which generate adaptive changes in

their functions. For example, toll-like receptor (TLR)3 activation

induces an anti-inflammatory MSC2 phenotype, whereas TLR4

activation induces a proinflammatory MSC1 phenotype (108).

The capacity of these cells to promote inflammation when the

immune system is underactivated or restrain inflammation when

the immune system is overactivated to avoid self-attack (109), is
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known as their role as “sensor and switcher of the immune

system” (110).

MSC infused pretransplant will localize predominantly in

lymphoid organs, whereas MSC administered posttransplant

migrate preferentially to the graft. Locally, MSC stimulate the

proliferation and differentiation of resident progenitor cells and

induce immunosuppressive effects by interacting with cells of the

immune system. Their suppressive roles prompt their inclusion as

RC, especially given their decrease in T and B cells proliferation or

activation, increase of T-cell apoptosis (111), induction of a shift in

T helper cell balance, and increase in the number of Treg (112, 113)

or Breg (103) (F igure 2) . Inflammatory loca l gra f t

microenvironments induced by xenotransplantation attract

various cell populations, including RC, which begin to influence

the existing cellular networks. For instance, MSC, after activating

their TLRs that sense damage signals, and their receptors for TNF-

a, interferon gamma (IFN-g), or IL-1b that sense inflammatory

status, initiate corresponding adaptive modifications, such as the

activation of specific immunosuppressive mechanisms of other

existing RC (Figure 2). The direct increase of the existing RC

pool, induced by activated MSC (Figure 1), is hypothesized that

in turn influence MSC, forming a putative positive feedback

loop (Figure 2).

MSC induce the suppression of T lymphocyte proliferation by

direct contact and via the secretion of IL-10, tumor growth factor

(TGF)-b, hepatocyte growth factor (HGF), and prostaglandin E2
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(PGE2) (114) (Figure 2). MSC are influenced by, and at the same

time influence, different segments of the innate immune response, such

as the complement system, toll-like receptor signaling, and various

cellular components, including macrophages, dendritic cells,

neutrophils, and natural killer cells. For example, MSC can change

macrophage phenotypes from a proinflammatory (M1) to a

regenerative and anti-inflammatory (M2) state (115). MSC can skew

the balance between CD4 effector memory T cells and CD4+Foxp3+

Treg (116) by polarizing both naïve and memory T cells toward a Treg

phenotype in vitro and by promoting the immune response toward

long-term allograft acceptance in vivo (112, 117, 118). Interactions

between MSC and Treg (119) may help both cell subpopulations

survive after ACT (120).

MSC are not recognized by the host immune system because

they do not express HLA class II (107) or costimulatory molecules

CD80, CD86, or CD40, even after IFN-g stimulation, making them

suitable as an abundant source for off-the-shelf treatment

approaches. MSC used for ACT are typically obtained from bone

marrow, adipose tissue, gingiva (121), or the umbilical cord blood

(122) and are a heterogeneous group of cell subpopulations (108).

The present lack of specific markers makes the isolation of a specific

subgroup difficult for deeper characterization or treatment (109).

However, the use of clonal lines instead of whole-cell populations

diminishes variability and enhances the scalability and

reproducibility of MSC production and treatments (123). This

can be exploited to achieve personalized therapy (124). The
FIGURE 2

Interactions between MSC and Treg immunosuppressive mechanisms at the xenograft level. Each RC subpopulation has specific mechanisms of
action, as well as common inhibitory ones (cell contact, secretion of immunosuppressive cytokines IL-10, IL-35, or TGF-b). It has been demonstrated
that the direct effect of MSC on the number of Treg, as well as a synergistic action between the immunoinhibitory effects of these two types of cells,
should be taken into consideration when designing specific RC therapies. TRL, toll-like receptor; TNF-a, tumor necrosis factor alpha; IFN-g, interferon
gamma; IL-1b, interleukin 1 beta; iNOS, inducible nitric oxide synthase; IDO, indoleamine 2,3-dioxygenase; PD-L1, programmed cell death ligand 1;
PD-L2, programed cell death ligand 2; IL-10, interleukin 10; TGF-b, transforming growth factor beta; CTLA4, cytotoxic T-lymphocyte-associated
protein 4.
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quantification of extracellular metabolites (proline, phenylalanine,

and pyruvate) in culture and intracellular metabolites

(sphingomyelins) can be used as markers to identify MSC lines

with high immunomodulatory potency (40).

MSC preferentially migrate toward a graft’s inflammatory

environment, where they suppress immune effector responses

(114, 125, 126). MSC also have low immunogenicity, are

relatively easy to obtain, and are susceptible to transformation by

genetic engineering to improve their efficiency (127). Their specific

homing mechanisms toward inflammatory environments can also

be enhanced in vitro (123). The inclusion of bispecific antibodies

may be used as a cell-based, specific delivery vehicle for therapeutic

molecules (117, 128, 129), such as miRNAs or specific

glycoproteins. MSC-derived extracellular vesicles have emerged as

promising therapeutic agents for treating cardiovascular diseases

(123). Additionally, only MSC-derived exosome miRNAs have

demonstrated the potential to modulate immune responses (130)

and improve allogeneic heart transplantation outcomes (131). MSC

therapy has proven to be an effective tool for controlling graft-

versus-host disease (132), treating autoimmune diseases and

ischemia reperfusion injury, and mediating wound healing and

cardiac repair (133). The immunosuppressive functions of MSC

also promote graft survival and, in some instances, have led to

functional tolerance (16, 132). Before 2009, there were no clinical

reports on their use in transplantation; as of 2018, 12 registered

ongoing clinical trials were studying their potential benefits in solid

organ allotransplantation settings (114), of which five were for

kidney transplants, four for liver, one for lungs, and none for the

heart. Preliminary results from kidney allotransplantation

demonstrated reduced rejection at 6 months and a partial

reduction of tacrolimus doses used for IS (122). Currently, there

have been no experiments reported on the use of MSC to induce

tolerance to pig heart xenotransplantation in humans, though this is

likely to change soon with new innovations.

3.1.2 Use of Treg to prevent graft rejection
Treg make up around 4%–7% of the circulating CD4+ T

lymphocytes in healthy mice, NHP, and humans (134), and are

proven to be active players in the establishment of peripheral

tolerance (135). They prevent low-grade immune activation from

becoming an overt immune response if not necessary, suppress

ongoing immune responses when no longer needed, limit the

negative effects of immune-mediated overreactions induced by

chronic inflammation (19), reduce inflammation, and contribute to

tissue homeostasis (19, 136). There is a significant correlation between

the proportion of Treg and the prognosis and evolution of various solid

tumors (137). Specific immunosuppressive effects of Treg have been

utilized to prevent rejection of allotransplanted kidneys (138), lungs

(139), and livers (140) in humans. In 2022, completed clinical trials

investigated the use of Treg to increase tolerance for allotransplanted

solid organs—including five for kidney and two for liver—presented

positive outcomes and indicated the potential of ACT to induce

operational tolerance, although not consistently (141).

Insufficient numbers or compromised functions of RC in the

graft may appear due to defects in proliferation (142), increased
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susceptibility to apoptosis (143), or failure of thymic Treg

differentiation or dysregulation (46). Dysfunctional Treg can lead

to various immunopathological conditions, including autoimmune

diseases, allergies (144), and lethal immunodysregulation

polyendocrinopathy enteropathy X-linked syndrome in male

subjects (145).

3.1.2.1 Treg mechanisms of action

Treg prevent the activation, expansion, and acquisition of

effector functions in a wide range of immune cells, including Th1,

Th2, Th17, T follicular helper cells, CD8+ T cells, natural killer cells

(146, 147), B cells, and antigen-presenting cells (148), both in vitro

and in vivo (19) (Figure 2).

One major action of Treg is the inhibition of autoreactive

lymphocytes that escape the thymus or bone marrow checkpoints

via contact-dependent and contact-independent mechanisms (149)

(Figure 2). Their suppressive mechanisms include the production of

immunosuppressive cytokines (IL-10, IL-35 (102), TGF-b), the
secretion of ectoenzymes CD39 and CD73 that degrade

extracellular ATP (a potent pro-inflammatory mediator) to

adenosine, which suppresses the immune response (150), and the

expression of granzymes or perforins (98) for the destruction of

APC (151). In vitro assays suggest that Treg do not produce IL-2;

however, IL-2 is required by Treg for costimulation and activation

(152). The constitutive high expression of CD25 (the alpha chain of

the IL-2 receptor) causes these cells to exhibit high-affinity binding

to low amounts of IL-2 present during the initiation of an immune

reaction; this is a way to suppress the expansion and acquisition of

effector functions of conventional T cells (151). Increased

constitutive expression of cytotoxic T lymphocyte antigen 4 on

the Treg membrane, which binds to the costimulatory ligands CD80

and CD86 on the surface of APC, increases the threshold for T-cell

activation. Treg may also act by depleting peptide–major

histocompatibility complex (MHC) class II from dendritic cells,

which in turn alters costimulation and antigen presentation (153).

They also secrete amphiregulin, which supports stem cell

proliferation and differentiation (154) by acting on epidermal

growth factor receptors (154), and promotes tissue repair (155).

Upon activation under inflammatory conditions, Treg cells

express higher levels of effector molecules and become markedly

potent suppressors (69). Locally, Treg may enable the establishment

of an immunosuppressive environment (102, 156, 157). As

previously described, after antigen-specific activation of Treg,

some of their immunosuppressive mechanisms can act in a

nonspecific mode (i.e., bystander suppression) (102); that is, they

may have suppressive effects on neighboring effector cells with

different antigen specificities (i.e., dominant suppression) (151).

Studies have also demonstrated the survival of Treg beyond the

postinfusion time (33): a month for liver transplantation (158), four

months in type 1 diabetes patients (159), and one year for kidney

transplantation (160). Adoptively transferred Treg may have a

lasting effect, even after their disappearance (19), by conferring

suppressive capacity to other immune cells located in the graft

(102), i.e., infectious tolerance (161), such as Treg with different

antigen specificities (162) or Tr1 cells (163). Treg with direct
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alloantigen specificity are important for tolerance induction, while

those with indirect alloantigen specificity are important for long-

term tolerance maintenance (151).

Signaling through Foxp3 inmice and humans is essential for Treg

suppressive activities (164), although not all cells expressing forkhead

box P3 protein (Foxp3) exhibit suppressive activities. This

intracellular protein, a transcription factor discovered in 2003,

influences the expression of more than 200 genes, including T-cell

receptor (TCR)-induced genes. By interacting with over 300 proteins

(165), it controls key molecules mediating suppression, influencing

differentiation, maintenance, and functional maturation of Treg (19).

Studies have demonstrated a complex gene regulation program for

Foxp3 that extends beyond the simple model of a transcription factor

binding to a gene promoter (46). Specifically, this includes the

complex transcription factors RUNX1 and CBFb, which interact

with the demethylated and highly conserved noncoding sequence 2

(166, 167), critical for Foxp3 locus activation during Treg cell

maturation (168, 169). SATB1 expression, a pan-histone

deacetylase inhibitor that has been shown to increase the

acetylation of histones at the regulatory elements of Foxp3,

precedes Foxp3 expression in Treg precursors (170) and enhances

Treg cell suppressive function, both in vivo and in vitro (171).

Tolerance induction must also consider the complexity of Treg

interactions with corresponding effector cells at different steps of the

immune response during graft rejection, as well as the existence of

multiple Treg subpopulations (134), each with its specific effects,

which act in the local heart graft microenvironment (172).

Naturally occurring CD4+Foxp3+ Treg are developmentally

determined in the thymus as a distinct cell subpopulation

specialized in suppressive functions and form the majority of

Foxp3+ Treg in the periphery. In addition, under specific

conditions, conventional T cells (T conv) at peripheral sites, such

as the intestinal mucosa, can gain stable Foxp3 expression and

differentiate into peripherally derived Treg. T conv can also

differentiate in vitro to express Foxp3 under specific conditions,

forming in vitro-induced Treg (19). Based on their differentiation

status, Treg can be classified as naive, central memory, or effector

(173, 174). Naive Treg cells have not yet encountered their cognate

antigens and reside in the SLO. After activation by antigen

encounters, they differentiate into effector Treg that migrate out

of the SLO via circulation into target tissues or become memory

Treg (19, 175). The effector Treg are highly proliferative, exhibit

strong in vitro suppressive activity, and possess a highly

demethylated Treg-specific DNA region (CNS2) (19).

Treg have a high capacity to adapt locally to their environment

(176) and contribute to tissue homeostasis by controlling

inflammation and more specialized mechanisms, such as the

production of growth factors (19). For example, there are

differences in phenotype, origin, and function between the four

well-characterized nonlymphoid Treg populations: visceral adipose

tissue Treg (177), intestinal Treg, skin Treg, and skeletal muscle

Treg (178). A comparison of Treg taken from the blood, tissue, and

tumors demonstrated that while tissue and tumor Treg have greater

similarity owing to an activated phenotype, the three groups remain

relatively distinct (179). Treg that accumulate in the mouse
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myocardium after an infarct have a different transcriptome than

Treg located in lymphoid organs (172). Additionally, subclinical

atherosclerotic plaques are associated with specific Treg

subpopulations (180). There are also human Treg subsets with

distinct functional and tissue-homing characteristics (41). This

demonstrated tissue specificity may suggest that off-the-shelf Treg

products that could possibly be designed for organ specific cell

therapy (134).

3.1.2.2 Isolation of Treg for ACT

The lack of specific markers for Treg has made their availability

for transfer challenging (134). Surface expression of CD25, which

correlates with intracellular expression of Foxp3 (39) in mice, NHPs

(181), and pigs (182), and is used as a marker for Treg identification

from blood, is not highly specific. The use of Foxp3 as a marker is

also problematic because it can be transiently expressed in other

activated T-effector cell subpopulations. This has led to the

identification of additional markers for Treg isolation, such as low

CD127 expression, CD49d, CD45RA, LAP (183), GARP (184),

Helios (185), Neuropilin 1, CD27 (186), and CD137 (187). The

combined use of these markers may increase the purity of Treg

suspensions. Single-cell analyses may also lead to future discoveries

of new and unique markers for each specific RC subpopulation.

Currently, rigorous protocols for isolating highly purified human

Treg for clinical applications require further investigation (39).

Due to the low precursor frequency of Treg in circulation,

different multiplication attempts have been initiated. Direct in vivo

use of vitamin D (188), rapamycin (189), and low-dose IL-2 (190)

had limited success in transplantation because of the small size of

their effects, which are also not specific enough to influence the

frequency of only one cell subpopulation. As an alternative, in vitro

Treg multiplication protocols have been developed (191) for patient

cells obtained from peripheral blood (192) and other sources (193).

It has also been suggested that CD4+ Treg or CD8+ Treg used for

immunotherapy in the future may be derived in vitro from

embryonic or induced pluripotent stem cells (82).

ACT therapy with Treg can use either the host regulatory cells

or cells from another human donor (194), live or deceased, and be

utilized as is or multiplied (195), and transformed in vitro.

Currently, Treg for ACT are isolated usually from peripheral

blood by leukapheresis through magnetic- or fluorescence-

activated cell sorting using a battery of markers, and subsequently

expanded ex vivo, typically by stimulation with IL-2 and anti-CD3/

anti-CD28 coated beads (122) using different GMP protocols (196,

197). The resulting cells, preferably made specific for donor

antigens and transformed by CAR technology to improve their

functions, can be either administered directly or cryopreserved until

near-patient thawing and infusion.

3.1.2.3 Use of Treg in heart transplantation

Considering Treg mechanisms of action and the positive results

obtained when used in solid-organ transplantation, it is surprising

that ACT with Treg is not in practice to improve heart

allotransplantation outcomes in clinics, with only one exception

mentioned. The use of Treg in xenotransplantation has been
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suggested only for the induction (181) and maintenance (39) of

tolerance. Reports in the literature support this hypothesis and

suggest its application for heart xenotransplants (198). However,

the use of Treg to attain tolerance to pig hearts xenotransplanted in

humans has not been initiated. Due to ethical considerations,

answers to this question must be obtained indirectly, first through

NHP experiments. However, the number of tests in monkeys,

including baboons, to evaluate this approach is limited. The

availability of genetically engineered pigs as potential donors for

humans has increased interest in the use of ACT with Treg to

induce tolerance to heart xenotransplants (199, 200). The ability of

in vitro expanded human Treg to inhibit T-cell-mediated rejection

of porcine islet xenografts (201) in a humanized mouse model can

be regarded as a proof of concept in this direction. The number of

Treg in baboon peripheral blood may also be linked with long-term

survival of pig heart xenograft (198).

Regarding efficiency, Treg with acquired antigen specificity have

proved to be more potent inhibitors than polyclonal Treg (202,

203). Baboon Treg expanded and made specific in vitro with pig

antigens were 4–10-fold more effective inhibitors of the

proliferation of CD4+CD25− baboon T cells than freshly isolated

Treg cells (181, 199). Consequently, the use of autologous human

Treg exposed in vitro to pig antigens may lower the cell count

required for effective ACT therapy to induce tolerance to

xenotransplanted pig hearts in clinical settings.

Currently, the use of ACT with Treg therapy in human diseases

(19) or for inducing tolerance in allotransplanted grafts (33) has

been proven safe (141). This supports their application in the

context of tolerance induction for xenotransplanted pig hearts.

Given the importance and urgency of addressing pig heart

xenograft rejection in humans, and given recent experimental

results, safety records, potential elimination of IS, and CAR

technology improvements, the use of ACT with Treg is expected

to expand in the future (204), potentially making pig heart

xenotransplantation a routine procedure in humans.

The application of other RC subpopulations to enhance heart

xenograft tolerance through ACT at specific rejection steps in

humans requires further development and characterization.

3.1.3 Use of other RC populations in
transplantation

Targeting ACT toward one specific immune cell effector

population (starting with cells that build innate immunity and

ending with effector cells of acquired immune responses) has

demonstrated the potential of various RC populations to become

important tools for the induction of graft tolerance. However, with

few exceptions other than MSC and Treg, such treatments are

generally at the initial stages of clinical development (Table 2).

MDSC are a group of heterogeneous precursor immune cells

differentiated from hematopoietic stem cells in the bone marrow

that mainly inhibit T-cell proliferation and activity, as well as

promote angiogenesis (75). In peripheral immune organs, MDSCs

become dendritic cells, granulocytes, and macrophages. Their

immunosuppressive functions are mediated via multiple
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pathways, such as arginase-1, nitric oxide synthase, reactive

oxygen species, indoleamine-2,3-dioxygenase, heme oxygenase-1,

prostaglandin E2, cyclooxygenase-2, or cytokine secretion, such as

IL-10 and TGF-b (17). At the local organ microenvironment,

MDSCs are part of the immunosuppressive network, interact with

other immune cells, and may generate positive feedback loops. For

instance, their survival and proliferation have been proven to be

compatible and mutually complementary with Treg (213),

potentially increasing their common effects on T-cell suppression.

ACT with MDSC expanded in vitro has also been proven to be

useful to maintain allograft tolerance (17, 214).

As innate immune RC populations, regulatory macrophages

(Mreg) are a subtype of macrophages that are involved in regulating

the immune response by inhibiting activated T lymphocyte

proliferation (215). After the administration of Mreg to two renal

transplant recipients, the authors suggested this approach as

immune-conditioning therapy for solid organ transplantation that

requires further study (205). Regulatory dendritic cells (DCreg) may

induce the differentiation and expansion of Treg and secrete

immunomodulatory cytokines, such as IL-10 and TGF-b (216).

The manipulation of DCreg was proposed for the induction of

human renal and liver transplantation tolerance (206). In other

studies, regulatory natural killer cells were expanded in vitro and

proposed as a clinical therapy to combat chronic graft-versus-host

disease (80). Neutrophils have been described as central regulators

across all stages of tumor evolution (217) and the different steps of

graft rejection. In recent years, a growing number of neutrophil

subpopulations have been described (218), some of which may have

regulatory functions. For example, an intestinal regulatory

neutrophil population that reduced acute graft-versus-host disease

in allogeneic hematopoietic cell transplantation has been identified

in mice (77).

TRC subpopulations suppress various effector mechanisms of

acquired immune responses (39). CD8+Treg are considered true

Treg with cytotoxic function (20). In a xenotransplantation pig-to-

rat corneal model, xenograft survival was prolonged by the adoptive

transfer of T regulatory CD8+CD28− cells (219). The role of CD8+

Treg (20) has led to their use in the first human phase I therapy trial

in kidney transplant patients in 2021 (82). Donor double-negative

Foxp3+ Treg that promote allogeneic mixed chimerism and

tolerance (220) have been proposed as a potential tool in

xenotransplantation (39). Double-positive (DP) (CD4+CD8+)

cells have been associated with graft rejection in a nonhuman

primate model of islet transplantation (83). Their numbers also

increased in the blood of liver transplanted patients (221). In the

human thymus, a DP population with regulatory properties, with

assumed roles in single positive regulatory cells development, has

been described (207). Single-cell RNA sequencing in a cynomolgus

monkey model has demonstrated the heterogeneity of DP cells,

some of which exhibit a phenotype consistent with regulatory

functions (222).

Tr1 cells are classified as a distinct subset of T cells that lack

constitutive Foxp3 expression and exert suppressive functions

primarily via the secretion of IL-10 and TGF-b. They are
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susceptible to CAR technologies after multiplication in vitro and

maintain a stable phenotype in inflammatory environments.

Findings also suggest possible heterogeneity among Tr1 cells.

Their capacity to suppress immune responses against specific

antigens was confirmed in mouse and rhesus monkey models of

pancreatic islet transplantation (88) and was used in two clinical

trials for kidney transplantation (223).

B cells are major players in antibody-mediated graft rejection

mechanisms through the production of specific antibodies by plasma

cells, known as B effector cells (224). B cells are also known as secondary

antigen-presenting cells and as sources of immunoregulatory cytokines

(91). Consequently, immunosuppressive Breg appear as an important

immunomodulatory tool. By suppressing inflammation and/or antibody

production, theymay induce positive effects onmechanisms of tolerance

induction in xenotransplants (225). Their immunosuppressive effects are

induced through the secretion of soluble molecules, such as cytokines

(IL-10, IL-35, or TGF-b) (226) and cytotoxic enzymes (granzyme B), or

by direct cellular contact through the molecules expressed on their

surface (MHC II, costimulatory CD80, CD86, CD40, or ligands for Fas

or PD-1) (100). Studies on chronic inflammatory responses in patients

with systemic lupus erythematosus, other autoimmune diseases, and

allergies (227) documented a lack or functional deficit of circulating

Breg. In various animal models, Breg have been shown to suppress

autoimmune responses in experimental autoimmune encephalomyelitis

(228), collagen-induced arthritis (229), and spontaneous colitis (230). In

humans, Breg are also involved in multiple sclerosis (231), atopic

dermatitis (232), allergic diseases (233), and kidney transplantation

(234). Breg are, in fact, composed of a pool of different B-cell

subpopulations with rather heterogeneous phenotypic and

transcriptional properties (176). For instance, there is a difference in

the dynamics of three subclasses of Breg cells during acute cellular

rejection and chronic allograft dysfunction after lung transplantation

(47). Assessment of Breg/Beffector balance may identify patients who

require more immunosuppression (225). The role of Breg in the

induction of immune tolerance to solid-organ transplantation is not

completely understood (235) but was presented as a possible key

regulator (93, 235–237). The use of B regulatory cells as a tool to

combat heart pig xenograft rejection in humans was only proposed last

year (37). So far, no therapeutic approach uses the intentional

modulation of the frequency or activity of Breg in clinical heart

xenotransplantation settings (227), but this is expected to change in

the near future.
3.2 Use of CAR-transformed RC to improve
long-term graft survival

Augmentation of RC immunosuppressive effects can be

achieved by increasing their number and by enhancing their

qualities. CAR technology has revolutionized the field of targeted

cellular therapy (238). RCs are susceptible to molecular

transformation to achieve desired characteristics by using CAR

technology, an approach studied notably using Treg (134). CAR is a

synthetic protein that consists of the fusion of: an extracellular
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domain that is specific for antigen recognition, a hinge region that

provides molecular flexibility, a transmembrane domain that

anchors the receptor in the plasmalemma, and an intracellular

signaling domain (specifically, CD3zeta, a component of the T-cell

receptor) (239). Five generations of CAR have been developed with

continuous structure optimization of mainly the intracellular

domain (240). The Treg transformed in vitro with CAR

technology are more efficient than polyclonal Treg for ACT (241).

An advantage of CAR-transformed cells is that they bind to antigen

in anMHC-independent manner, increasing the number of patients

that could be treated with the same batch of cells ready for an off-

the-shelf approach (102). The pig heart xenotransplant model offers

a major advantage: it allows for the targeted delivery of CAR-

transformed RC to the graft because of its unique antigenic

properties. Engineering a chimeric receptor that recognizes a

swine histocompatibility antigen could potentially direct RC

specifically to the heart xenograft. Alternatively, targeting a pig-

specific molecule found in the vascular niche could provide even

more precise localization. A second transformation may offer the

possibility to create a specific carrier of useful molecules (such as a

specific cytokine, miRNA, glycoprotein, or a tissue repair molecule)

to be delivered at the local graft microenvironment to complement

RC suppressive activity. Another important advantage of CAR

technology is its potential to achieve targeted immunosuppression

that may not interfere with the recipient’s general immune system

response, unlike IS (242).

CAR-transformed cells were recently improved by the use of

other procedures other than viral vectors for transformation, such

as clustered regularly interspaced short palindromic repeats

(CRISPR)/CRISPR-associated protein 9 (Cas9) technology (243).

There are ongoing efforts to design a “super” Treg (244) by

genetically engineering it (245) to increase RC qualities, such as

viability, stability, efficiency, or trafficking (134, 203). The use of

such specific cells as a “living drug” (246), due to their improved

qualities, is expected to reduce the number of RC needed at the level

of the graft to prevent rejection. Also in use are Treg designed for

Foxp3 overexpression (247, 248), enhanced IL-2, IL-10, IL-35, or

granzyme B secretion (249), and antigen-specific receptors

overexpression (203).

Currently, multiple editing events are being studied to assess if

they can better modulate RC functions. Strategies include the

development of dual antigen-activating systems, induction of

bioactive protein switches (such as AND or NO) (250), and the

addition of a suicide cassette to prevent or block potential adverse

events. CAR RC therapy may benefit from the tests of new mRNA-

based CAR T therapies that induce cellular changes in vivo,

avoiding the costs of in vitro modifications (251), or from the use

of intracellular synthetic circuits proven to regulate protein

secretion in human cells (252) by enabling control over local

microenvironments. Finally, a drug-induced regulation of

engineered cytokines (253) was presented as proof of concept that

CAR-T-cell proliferation and activation could be turned on and off

at a precise location, in a time-dependent manner via drug

administration (254).
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CAR-transformed T-cell therapies that have been used

successfully to treat hematological malignancies (255) are on

course to become potential treatments against solid tumors (256)

and are being tested in a large number of clinical studies for other

practical applications beyond cancer. Tailoring RC properties with

CAR constructs to increase tolerance to organ transplantation is an

active field of research (257–260). Applying this strategy to the

different RC populations may be helpful in transplantation. For

example, CAR-transformed regulatory NK cells may possess greater

off-the-shelf potential (240, 261), and regulatory CAR-macrophage

cells may have superior tissue infiltration capabilities, enabling

them to more effectively penetrate dense tissues (240, 262).

Recommended by specific biomarkers, ACT with a small number

of corresponding CAR-transformed RC has the potential to balance

a specific, detected disequilibrium. However, CAR-modified RC

therapy to induce tolerance to heart pig xenograft in humans has yet

to be initiated.
3.3 The ACT of RC may be replaced with
its active molecules

Building on the positive results obtained with cell-based

therapies, the use of immune cell-derived exosomes was proposed

as an effective substitute for whole cells (263). This approach,

compared with cell therapy, is relatively easier to apply and is

inexpensive. Exosomes were shown to improve cardiac tissue repair

after myocardial damage (264) and enhance the immunotolerance

of cardiac allografts (131). However, the use of RC-derived

exosomes for heart xenotransplantation requires further

investigation (265).

The use of only one specific active molecule (266) for functional

tolerance may be a viable alternative. The pig xenotransplanted

heart in cynomolgus monkeys exhibited a total of 3784 differentially

expressed genes compared to the non-transplanted heart

transcriptome, of which 2443 were upregulated and 1305 were

downregulated (24). Their analysis, together with single-cell RNA

technology, may identify new tolerance-inducing molecules based

on the immune mechanisms at each step of rejection, which can be

applied to future clinical trials. For example, the activation of

inflammasome-related components, including caspase-1

expression, is seen in allografts during the first 7-day

posttransplantation. Administration of a caspase-1 inhibitor,

VX765, during this interval has been shown to improve graft

heart survival and function (267).

The dynamics of cytokine secre t ion in the loca l

microenvironment, influenced by the immune response or IS

treatments, change RC activities, which, in turn, change the

cytokine balance (268). This chain of reactions can be targeted for

tolerance-induction therapies. For example, IL-35 stabilizes the

Treg phenotype to protect cardiac allografts in mice (269), IL-7

improves the fitness of regulatory T cells for adoptive transfer (270),

and IL-10 or IL-27 exhibits anti-inflammatory activity (271).

miRNAs, as small noncoding RNA molecules, can be used as

promising biomarkers (42) for the detection and prognosis of
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humoral as well as cellular heart graft rejection in humans (272).

They may assess the efficiency of antirejection treatments and may

also be used as therapy to induce or maintain tolerance (42).

Analysis of their effects on immune responses may lead to the

discovery of new mechanisms of rejection (273). For example,

miRNAs can directly or indirectly down- or upregulate Foxp3

expression. miR-155 is a promising theranostic agent as its levels

are upregulated during both acute rejection and vasculopathy

development (274, 275). Specific RC-derived miRNAs or their

antagonists could potentially be used in certain circumstances

instead of whole-cell therapy. Different RC-derived glycoproteins

(44) may have similar potentials.

Recent findings have suggested that metabolite availability is a

fundamental determinant of adaptive immune responses (276). The

metabolic influences, which regulate the switch between Th17 cells

and Treg, include changes in several pathways, such as fatty acid

and lipid synthesis (277), polyamine metabolism (278), glycolysis,

and ROS control (279). Using differentially expressed gene analysis

(570 million raw RNA sequence reads), 21 key biological pathways

involved in the terminal stage of pig heart tissue graft rejection on

day nine in cynomolgus monkeys were detected (24). Among these

that represent cellular interactions in porcine rejected

xenotransplanted hearts, some were downregulated, such as

arrhythmogenic right ventricular cardiomyopathy, calcium

signaling pathways, natural killer cell-mediated cytotoxicity,

and the renin–angiotensin system, and some were upregulated,

such as pyrimidine metabolism and the p53 signaling pathway (24).

Extracellular matrix receptor interactions are involved in signaling

events that regulate cell survival, growth, shape, differentiation,

migration, or motility (280), as well as in heart remodeling (24,

281). Furthermore, the metabolites produced by commensal

bacteria promote the generation of peripheral Treg (282).

New therapeutic interventions at the metabolic level may

improve clinical outcomes of rejection at the molecular level.

In addition, harnessing the nutrient-mediated influence,

described as signal 4 in T-cell immunity (35), as a possible

adjuvant strategy for the treatment of different diseases (283) has

the potential to be used for tolerance induction too. Small-molecule

inducible gene regulatory systems in mammalian cells may be an

important tool in the future for precise regulation of biological

systems (284).
3.4 Potential biomarkers for the use of
personalized therapy with RC

From the multitude of existing possibilities, the use of a certain

RC subpopulation might be directed by specific biomarkers.

Ideal biomarkers should detect rejection before the appearance

of morphological modifications of the graft, signaling the need for

the use of a specific RC subpopulation to correct a defined, detected

disequilibrium of the effector immune response or to track

treatment. They should also be easy to operate and manufacture.

Such biomarkers for heart pig xenograft in humans still need to be

discovered and validated.
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The proteins currently used for the evaluation of heart health

have limitations. Troponins detect myocardial injury only after

necrosis, creatine kinase is less specific than troponins, natriuretic

brain peptide is influenced by age or kidney function, and C-reactive

protein is a marker of inflammation with low specificity. Recently,

glycoproteins have been considered as an additional possible

biomarker (44). A gene expression panel to detect rejection,

approved by the FDA, requires specialized personnel, is expensive,

and may give uncertain results in unique circumstances. The

detection of circulating nucleic acids offers possibilities for new

biomarkers that are easy to detect in liquid biopsies (285). From

these, donor-derived cell-free DNA effectively identifies acute cellular

rejection and antibody-mediated rejection, yet cannot distinguish

between the two (286) and is not useful for diagnosing patients who

have had numerous transplants (263). miRNAs are emerging as the

most promising future biomarkers that, by suppressing the

expression of specific mRNAs, offer many possibilities for precision

medicine. A multitude of miRNAs have been proposed as biomarkers

for cardiac development and pathology. Of more than 1,817 human

miRNAs associated with various diseases, 150 were identified as

playing a critical role in cardiovascular system physiology. For

instance, miR-1, miR-133a, miR-208, and miR-499 were identified

as the most abundant miRNAs expressed in myocardial tissue,

involved in the regulation of cardiomyocyte differentiation in the

early stages of heart development (285). In heart allotransplant

patients, miR-139-5p, miR-151a-5p, and miR-186-5p demonstrated

increased expression at rejection (287). Circulating miR-182a-5p was

also identified as a potential biomarker of acute cellular rejection in

heart transplantation (288). In the serum of alloheart transplanted

patients, 12 miRNAs that accurately discriminate acute cellular

rejection, and 17 miRNAs for antibody-mediated rejection, were

identified and proposed to be used together under a provisional

patent (272). New miRNA biomarkers are continuously being

discovered that, after validation, may be used for developing

targeted personalized therapy.

The best diagnostic and prognostic data of heart graft rejection

in the future may be from multianalyte biomarkers. This means a

specific panel of complementary biomarkers that integrate data

from multiple assays (such as genomics, transcriptomics,

proteomics, specific miRNAs, epigenetic modifications, or extent

of nucleosome fragmentation), all obtained simultaneously from

the same liquid biopsy sample. All this may be possible to obtain

due to modern technical advances, such as new-generation

sequencing, digital PCR, and high-throughput data analysis tools.

Integrated molecular signatures (263, 289) presumptively answer a

question better than each individual component. The use of

confirmed miRNAs for the diagnosis or prognosis of heart graft

rejection has not been validated for large clinical use, although with

further research, this might change.

When expression of specific biomarkers (for example, miRNAs)

for an immune effector mechanism (such as excessive

inflammation) in the recipient’s serum is matched with the

therapeutic effects of a unique RC population, selected from the

multitude of existing possibilities based on mechanisms of action,

effective precision medicine therapy may be applied.
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3.5 Challenges and future research
directions

Future research experiments are necessary to advance granular

knowledge regarding the steps of immune rejection mechanisms to

effect ive ly apply RC therapy. Addit ional ly , in-depth

characterization and validation of the specific effects of different

RC subpopulations in clinical trials are also needed. For example,

future studies may focus on identifying unique immune inhibitory

effects of regulatory mesenchymal stem cell subpopulations to

determine which subpopulation, and when, should be used in the

prevention of rejection. In addition, validation of specific and

combined biomarkers is essential for the targeted use of RC

subpopulations and for monitoring their effects.

As with any other type of cell therapy (241), mechanistic studies

regarding RC-based interventions face challenges in terms of logistics

(i.e., timing, dosage, frequency) and design of good manufacturing

practices for their production and standardization (290). For example,

RC administration should consider the circadian rhythms of leukocyte

activity, as demonstrated in the literature for CD8+ T cells (291).

Furthermore, multiple infusions of ex vivo-expanded polyclonal Treg

within the first few weeks after transplantation result in inferior graft

function (292), most likely due to the early posttransplantation

inflammatory environment. Existing clinical trials with RC test

different doses (between 105 and 107 cells/kg) and different

frequencies of administration to establish the best-use guidelines.

The biological variability of RC subpopulations may represent

another challenge; the use of clones may ensure better result

consistency. More research is also needed for a better understanding

of unforeseen off-target immunosuppressive activities (33).

An important question that must be fully addressed before

clinical application of RC therapy is its safety profile (240). In rare

cases, the ACT of CAR T cells directed against tumor antigens

resulted in adverse effects such as cytokine storms and cytotoxicity

(293). Further study of T-cell exhaustion induced by tonic signaling

of CAR (294) may be important to ensure consistent results of the

proposed cell therapy. The in vivo stability of transferred RC

subpopulations, especially the CAR-transformed ones, also

requires more research (295). It is important to overcome the

difficulty in establishing the persistence of infused therapy cells in

the patient. The use of deuterium, which proved useful in tracking

Treg in patient blood or grafted kidney (NCT02088931), was also

suggested to track CD8+ Treg (82). An additional challenge is

establishing how the local inflammatory background (30, 66, 296)

may impacts the phenotype and functions of infused Treg (297).

Finally, specifically in the case of using GM pigs as heart donors for

humans, the possibility of reactivation of porcine endogenous

retroviruses (298) or cytomegalovirus (7) within the xenograft

must be addressed (3).

Special attention should be given to the availability and

production of necessary therapeutic cells. As for autologous

therapy, not all patients are able to donate a sufficient volume

of blood to obtain the necessary cells, or intrinsic Treg

dysfunction may be present in some patients. The preparation

of products ready for an off-the-shelf approach must use a GMP
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protocol. These protocols should provide solutions to address the

timeframe (several weeks in culture) needed to obtain a sufficient

number of cells, as well as ensure the purity and sterility necessary

for clinical administration, and reduce the high cost of

production driven by the need for specific facilities and skilled

personnel (173).
4 Discussion

Specific and dynamic therapy using the appropriate RC

subpopulations is hypothetically an effective approach to maintain

graft tolerance. Continuous antigenic stimulation generated by the

graft, in an inflammatory background, induces continuous

amplification of local reactive effector immune mechanisms.

Rejection is hypothesized to occur when these harmful immune

effector mechanisms outweigh the immunosuppressive effects of

existing RC (Figure 1). Consequently, detecting such a

disequilibrium through a set of specific biomarkers should trigger

a timely intervention with the corresponding RC subpopulation to

prevent the chain of immune reactions from progressing toward

graft destruction (Table 1). This viewpoint highlights the possibility

that continuous posttreatment monitoring, in addition to assessing

the effects of the initial intervention, may detect new, specific

disequilibria in the patient over time. This may require a new

specific intervention with the same or another RC subpopulation or

other corresponding approaches. The repetition of this pattern, as

necessary, may ensure tolerance maintenance based on

precision therapy.

The hypothesis that enhancement of existing local

immunosuppressive mechanisms, when needed to overcome the

immune effector mechanisms of rejection by ACT using RC

therapy, may help maintain graft tolerance (Figure 1) is

supported by theoretical considerations, existing experimental

results, and ongoing clinical trials.

ACT using specific RC subpopulations therapy has multiple

advantages. It targets specific immune effector mechanisms, in

contrast to IS, which nonspecifically dampens the entire immune

response. By amplifying existing immune suppressive mechanisms,

RC therapy has the potential to be safe and effective within defined

parameters, as demonstrated by current evidence. The considerable

number of RC subpopulations enables targeted interventions at

each stage of rejection, tailored to individual needs. The low

immunogenicity of several RC subpopulations makes them

suitable for application to many recipients and is ready for an off-

the-shelf approach.

RC therapy by ACT is continuously improving. Early attempts

using polyclonal RC populations, which had the potential to induce

larger-than-intended suppressive effects, have been replaced with

the use of antigen-specific populations instructed in vitro. The

advent of CAR technology has further increased the specificity

and efficacy of RC therapy. The initial use of viral vectors to

improve RC qualities had the potential of oncogenesis due to the
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possible random insertion of added genetic material near

oncogenes, and has since been replaced with the introduction of

CRISPR/Cas9 technologies. The potential apparition of unforeseen

effects can be avoided by the insertion of a suicide cassette that can

be activated as needed. Using more than one modification provides

focused approaches to further improve RC qualities. However, these

challenging refinements imply higher costs, specialized personnel,

and expensive equipment, although continuous improvements are

being made. The main challenge before any clinical application is to

validate the safety of RC therapy.

There are other challenges related to standardization and

quality control in cell production, such as cell source (which can

potentially be mitigated with the use of stem cells), variability

(which can potentially be mitigated with the use of cell lines), and

ensuring sterility. There is a need for uniform good laboratory

practice (GLP) protocols along with clarifications of ethical and

regulatory issues (299).

Ideally, an effective RC treatment should maintain functional

tolerance by transferring a reduced number of cells with improved

qualities, predictable, specific, and long-lasting effects, as well as be

cheap and easy to manufacture following GLP protocols. Existing

RC therapies have proved helpful in increasing graft tolerance in

different transplant settings.

RC therapy will continue to move forward for the induction of

functional tolerance with an improved understanding of the

different steps of graft immune effector rejection mechanisms

(300), detailed characterization of the existing RC populations’

specific roles in suppression, as well as discovery of new RC

subpopulations (69) and new specific biomarkers. This knowledge

will allow targeted interventions for specific situations as an effective

and personalized strategy. As the borders between the rejection

steps (Table 1) are not well defined, the first challenge for RC

cellular therapy to induce tolerance consists of accurate

identification of the critical disequilibrium that needs correction.

This challenge could be solved by the discovery of new biomarkers.

Specific molecules such as cytokines, glycoproteins (44), one or

more donor-derived cell-free DNAs (301), or miRNAs (302) are the

best candidates to build a battery of multianalyte biomarkers.

Further research is needed to analyze which combinations of

signals need to be monitored to better characterize a specific

immune effector mechanism (69). The combinatorial

multibiomarker approach offers higher sensitivity than each

component alone, ensuring the highest area under the curve (303)

for the detection of a specific endpoint important for tolerance

treatment. The next challenge is to choose the appropriate RC

subpopulation or product for ACT, based on its specific mechanism

of action. Continuous monitoring of serum levels (liquid biopsies)

may indicate when and what interventions are required, based on

individual threshold values. Consequently, maintenance of

functional tolerance is a dynamic process that involves

suppression of various immune effector mechanisms at different

steps of rejection and may require multiple interventions. These

could include using various cell subpopulations or their off-the-
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shelf products as indicated by specific biomarkers. The

enhancement of immunosuppressive effects of a specific RC

subpopulation can be achieved by increasing cell numbers via

ACT, as well as by improving their qualities via CAR technology.

Considering their mechanisms of action, combined therapy with

two or more RC populations when needed, may represent a

promising strategy to maintain tolerance. For example, synergistic

effects were reported when MSC were used in conjunction with

Treg (120). Although RC therapy has the potential to be successful

as monotherapy, it may be combined with other existing

complementary approaches (anticoagulants, anti-inflammatory,

chemical immunosuppression) when appropriate.

Although ACT with RC therapy was successfully evaluated in

different clinical transplant settings and offers the possibility for

individual therapy with obvious advantages, it is currently not used

to induce tolerance to xenotransplanted pig hearts in humans.

Additionally, this approach has not yet been assessed in NHP

models. This current gap is surprising and will, hopefully, be

addressed soon. After overcoming the existing challenges, its large

use may become routine to attain tolerance without the need for

chronic IS.

Determination of which cell subpopulation should be used for

therapy requires a granular understanding of the immune

mechanisms (304) at the local heart graft microenvironment. For

this, a systemic approach may be necessary to complete an

interactive dynamic immune network. This should include

interactions at the cellular (immune, stromal, endothelial),

humoral (cytokines, antibody), and molecular (metabolic, gene

regulatory, protein–protein interaction, signaling) levels,

integrated into multiple hierarchical mechanisms. This will

hypothetically improve the statistical significance of predictions

about the impact of each cellular intervention on graft tolerance

induction. Additionally, assessment of combined responses to

multiple factors, rather than one stimulus one response approach,

will determine the best cellular intervention(s) for maintaining

immune graft tolerance. This complexity, in addition to the

simultaneous existence of a myriad of intracellular molecular

reactions that have been revealed by exhaustive “omics”

techniques at the single-cell level (305), suggests the use of

artificial intelligence to enhance diagnosis and prognosis of

rejection (306) or the development of effective management

strategies toward tolerance.

In conclusion, the importance and urgent need to use pig hearts

to save human life requires innovative solutions to address chronic

xenograft rejection. Specific enhancement of the immunosuppressive

mechanisms at the graft level holds the promise of suppressing local

immune effector rejectionmechanisms without the nonspecific effects

of chronic IS treatments. Based on mechanisms of action and

advantages, RC therapy is proposed to be one of the best

approaches to maintain pig heart xenograft tolerance in humans.

More research is required to solve current challenges before their

application. Recommended by multianalyte biomarkers, the use of
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ACT therapy with a specific RC population or off-the-shelf RC

product (alone or in combination, once or repeated) has the

potential to become a routine personalized treatment to achieve

tolerance to xenotransplanted pig heart in the clinical settings. In

the future, exosomes or only RC-derived active molecules (or their

antagonists) may supplement or replace whole-cell RC therapy.
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