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Rheumatoid arthritis (RA) involves a breakdown of immune tolerance to

citrullinated proteins, leading to chronic inflammation and joint damage.

Despite advances in treatment, achieving long-term remission remains a major

challenge. Restoring immune tolerance to citrullinated proteins represents a

promising strategy to halt disease progression and establish lasting remission.

This review examines the potential of using citrullinated proteins or peptides to

reestablish immune tolerance in RA. It explores the potential role of anti-

citrullinated protein antibodies (ACPAs) in disease pathology and how utilizing

or targeting specific citrullinated antigens could modulate immune responses.

The review also highlights the therapeutic relevance of altering T and B cell

function to regulate immune state. We explore mechanisms through which

tolerance can be induced, including the use of citrullinated peptides to

promote regulatory T (Treg) cell expansion and alter pathogenic B cell subsets.

Emerging strategies aimed at re-educating the immune system are discussed,

focusing on their potential to provide effective and durable treatment outcomes.

These tolerance-based approaches are evaluated for their capacity to shift the

immune response away from autoimmunity and towards sustained remission.
KEYWORDS

rheumatoid arthritis, citrullinated peptides, tolerance recovery, anti-citrullinated
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1 Introduction

RA is a chronic, systemic, autoimmune disease characterized by synovial inflammation

and joint destruction, which affects approximately 18 million patients worldwide (1).

Patients often grapple with fatigue, depression, and the fear of progressive disability,

contributing to a lower quality of life (2, 3).

RA is subcategorized into seropositive and seronegative forms based on the serological

presence of the autoantibodies rheumatoid factor (RF) and ACPAs (4–10). Approximately

70% of RA patients test positive for these antibodies (4–10). ACPA positivity is especially
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relevant, as this is associated with a more severe disease course and

involvement of other organs (11, 12). ACPAs appear up to 10 years

before disease onset (6, 12, 13) and they have great value in clinic

practice as diagnostic tools (14).

Loss of immune tolerance is a central event in RA pathogenesis,

leading to persistent activation of autoreactive T and B cells and

production of autoantibodies such as ACPAs. Unlike conventional

therapies that broadly suppress the immune system, restoring

immune tolerance offers a targeted strategy to reprogram

autoreactive responses while preserving protective immunity.

Antigen-specific immunotherapies aim to achieve this by

inducing T cell exhaustion, expanding Treg cells, or modulating

antigen-presenting cells toward a tolerogenic profile. In recent

years, several approaches -ranging from tolerogenic vaccines and

peptide-based antigen presentation to therapeutic ACPAs- have

shown promise in preclinical and early clinical settings. This review

summarizes emerging strategies that leverage citrullinated peptides

and other autoantigen-based interventions to restore immune

tolerance in RA, with a focus on their mechanisms, efficacy and

translational potential.
2 Breach of immune tolerance in
rheumatoid arthritis

Rheumatoid arthritis is widely recognized as a T cell mediated

disease. In genetically predisposed individuals, modified self-antigens

can be presented via major histocompatibility complex (MHC) to

self-reactive T cells, initiating a series of immunological events that

progressively involves other cell types and ultimately leads to

stablished RA. Preclinical stages are marked by expansions of

distinct T cell subsets, including CCR2+ CD4+ T, T peripheral

(Tph), T helper 1 (Th1) and CXCR5+ CD8+ T cells (15, 16). CD4+

T cells differentiate into multiple effector lineages -Th1, Th2, Th17

and T follicular helper (Tfh) cells- to coordinate immune responses.

Imbalances in these subsets cause a proinflammatory response (17–

20). Consistent with this, both early and stablished RA display

elevated frequences of CD4+T cells in synovium compared to blood

(15, 21, 22), accompanied to skewed Th cell profiles (15, 23). Th1 cells

are involved in the release of proinflammatory cytokines (such IFN-g,
IL-2 or TNF-a), leading to bone erosion; while Th17 cells also

stimulate the production of proinflammatory cytokines in synovial

fibroblasts, with IL-17A being the predominant one. Similar

alterations are observed in cytotoxic CD8+ T cells, with RA patients

exhibiting different populations of CD27−CD62L−, CXCR5+, GZMB+

and GZMK+ CD8+ T cell subsets, among others (15, 16, 24, 25).

While T cell dysregulation is central to RA pathogenesis,

abnormal B cell subset composition and function are also closely

linked to the breakdown of self-tolerance. Small subsets

representing as little as 0.6% and 5% of blood B cells population

as it is the case of B10 and B10pro cells, respectively, can have a

major role in autoimmune regulation. Found within the

CD24hiCD27+ B cell subpopulation, ex vivo B10 and B10pro cells

were reported to negatively regulate monocyte related in vitro

cytokine production through IL-10 dependent pathways (26). IL-
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10 knock out in B cells of collagen induced arthritis (CIA) murine

models has also been shown to cause disease exacerbation

characterized by an increase in inflammatory Th1 and Th17 cells,

as well as a reduction in CD4+ T regulatory type 1 induced IL-10

production and increase in IL-17 levels (27). Other IL-10 knockout

mice models such as the tamoxifen-induced model also proved the

paper of IL-10 from Breg cells in CD4+ and CD8+ T cell mediated

inflammatory cytokine expression (28). Subsequently, Aoun et al.

reported natural autoreactive B cells specific for collagen type II C1

epitope (C1-B cells) present in the spleen, bone marrow and PBMCs

of healthy mice, rats and humans, indicating its regulative role.

However, RA patients showed an eight-fold decrease of C1-B cells

while increasing the number of RA specific antibodies to C1

collagen epitope (29). Transfer of C1-B cells from anti-C1 mice

into autoimmune prone mice model protected these against

collagen type II arthritis induction (29). Antagonizing the

previously described results on IL-10’s role in prevention of self-

tolerance breach, IL-10 knockout C1-B cells from anti-C1 mice also

suppressed collagen type II arthritis induction and increased

activated T cells, pointing out that C1-B cells may tolerize T cells

independently of IL-10 (29).

Autoimmune checkpoint molecule programmed cell death 1

(PD-1), expressed by T cells, B cells and other immune cells, plays a

crucial role in maintaining immune tolerance and autoimmunity

prevention by downregulating immune responses. Several

publications pointed out the role of PD-1, its ligands or Cytotoxic

T-lymphocyte Associated protein 4 (CTLA-4) overexpression, in T

cell exhaustion (30–32), as well as synovium infiltration of PD-

1hiTph cells in early RA (21). Nettersheim et al. identified higher

expression of PD-1 and CD73 in self-specific CD4+ T cells from

healthy mice, compared to exogenous-specific CD4+ T cells (33).

After blockade of both PD-1 and CD73, vaccine-expansion of self-

specific CD4+ T cells resulted into CD4+ T cells with transcriptomes

of exogenous-specific CD4+ T cells, showing that PD-1 and CD73

co-operationally limit CD4+ T to self-antigens (33). PD-1 and its

ligands PD-L1 and PD-L2 expression has also been found

upregulated in RA synovial tissue (34). Downregulation of PD-1

pathway was also observed during RA progression, attributed to

increased levels of serum soluble (s)PD-1 in ACPA-positive

(ACPA/+) RA patients (34, 35). sPD-1 was connected to severe

CIA through Th1 and Th17 pathways (35), while PD-1 expression

on CD4+ and CD8+ from PBMCs negatively correlated to disease

activity (36). Further underlining the role of PD-1 in RA immune

regulation, cases have been reported of RA occurring after PD-1

inhibiting cancer treatment (37). PD-1 can also drive T cells into

apoptosis or a regulatory phenotype upon PD-L1, except in the case

of RA patients (38). Generation of monocyte derived tolerogenic

dendritic cells (tolDCs) with superior capacity to induce Th17 cells

were obtained when precursor monocytes from peripheral blood of

RA patients were treated with either P-selectin, IL-10 or PD-1 (39).

Upregulated levels of B cell activating factor (BAFF) in the

peripheral blood was related to the survival of autoreactive B cells

and further production of autoantibodies, exacerbating the disease

(40, 41). Along with BAFF, toll-like receptor (TLR) ligands boost B

cell activation, immunoglobulin isotype class switching, somatic
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hypermutation, and their transformation into plasma cells, which

results in the production of harmful autoantibodies (42, 43).

Likewise, in vivo studies on CIA mice indicate that silencing

BAFF receptors expression lowers B cell counts and autoantibody

levels significantly, which further reduces joint inflammation (44).

Furthermore, IL-6 produced by B cells and macrophages in the

synovial fluid (SF) of RA patients, is needed for B cell differentiation

and the formation of plasma cells (45). IL-21, secreted by subsets of

helper T (Th) cells and found in higher levels on serum and SF of

RA patients, is also essential for B cell activation, proliferation,

differentiation and antibody production (46).
2.1 Environmental factors – smoking,
neutrophil extracellular traps formation
and role of mucosal immunity

The loss of immune tolerance in RA related to the impaired

clearance and excessive presence neutrophil extracellular traps

(NETs) has been previously reviewed (47–49). When NET

removal is compromised, they accumulate at inflammatory sites,

thereby prolonging inflammation and producing new autoantigens

(47). Elevated NET formation has been observed in the sputum of

both individuals at risk for developing RA (being first degree

relatives of RA patients) and in RA patients themselves (50, 51).

This local NET buildup correlates with the generation of mucosal

autoantibodies such as IgA and IgG ACPAs, suggesting that the

airway may serve as an initiation site for systemic autoimmunity. In

fact, high levels of both NETs and ACPAs have been detected in the

sputum of at-risk patients, supporting a direct association between

NET formation and autoantibody production (50–53).

Environmental factors such as cigarette smoking exacerbate this
Frontiers in Immunology 03
process by inducing NET formation via protein arginine deaminase

(PAD) 4-dependent pathways, which in turn increases the

production of citrullinated antigens in the lung (Figure 1) (54).

Smoking not only elevates the risk of ACPA development but also

intensifies the inflammatory response by triggering spontaneous

NETosis in neutrophils (54–56).

In addition to environmental triggers, infectious agents have been

noticed for their role in breaking immune tolerance (Figure 1) (57–

59). Multiple pathogens -including Epstein-Barr virus (EBV),

Mycobacterium tuberculosis (MTB), Porphyromonas gingivalis

(Pg) and others- have been implicated as potential instigators of

RA (57–59). Antibodies towards these infections and dysbiosis of

mucosae’s microbiota have been found in higher titters on RA and

early RA patients, compared to healthy controls (60–64). These

microorganisms may trigger autoimmunity through mechanisms

such as molecular mimicry, where the structural similarities

between microbial antigens and self-proteins provoke a cross-

reactive immune response to self-antigens; epitope spreading,

which broadens the autoimmune response to additional self-

antigens; and bystander activation, where infection-induced

inflammation and cytokine release non-specifically activate T cells

(65). Together with NET formation, these mechanisms expand the

pool of autoreactive T and B cells, lowering the threshold for

autoimmunity (48, 58). As an example, high sequence homology

between these microorganism’s antigens and key host molecules like

interferon regulatory factor 5 (IRF5), involved in macrophage and

dendritic cells (DCs) inflammatory response as well as B cell antibody

production, has been found (66). This similarity results in cross-

reactivity towards antigens from EBV, MAP and self-IRF5 (66, 67).

The mucosal endotype hypothesis further explains RA

pathogenesis by emphasizing the role of different mucosal sites:

lungs, gut and oral cavity (58). Each of these sites exhibits unique
FIGURE 1

Representation of breach of tolerance during pre-articular stage in rheumatoid arthritis. Infective agents, environmental factors such cigarette
smoking or some types of pollution and genetic factors mediate the loss of immune tolerance towards self-epitopes before disease onset. APCs,
antigen presenting cells; NETs, Neutrophil Extracellular Traps; PAD, protein arginine deaminase. Created with BioRender.
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inflammatory responses that may contribute to the systemic

generation of autoantibodies. As it has already been covered, early

inflammatory changes and local antibody production in lungs have

been linked to both smoking and chronic respiratory infections.

Similarly, in the oral cavity, periodontal disease driven by pathogens

such as Pg not only damages the local mucosal barrier but also

promotes NETosis and subsequent citrullination of bacterial as well

as host proteins (68–70). This process can initiate a B cell response

that eventually leads to the production of autoantibodies, setting the

stage for joint inflammation (69). Moreover, the gut microbiome in

patients with RA often shows distinct patterns of dysbiosis that are

associated with metabolic changes and immune activation (71–73).

These gut bacteria alterations can further contribute to the systemic

inflammatory setting that underlies RA. Autoreactive B cells,

generated autoantibodies or new self-epitopes resulting from

these mucosal inflammatory processes can migrate systemically

towards the joint (52, 74–79). Collectively, these observations

underscore a mult i faceted interplay between genet ic

predisposition and environmental attacks - including smoking,

microbial infections and possibly even exposure to inorganic

particles like silica (80, 81) - that collectively disrupts immune

tolerance, culminating in the onset and progression of RA. Given

the multitude of factors and mechanisms capable of breaking

tolerance, RA is inherently a heterogeneous and complex disease.

Breach of tolerance is characterized by the aberrant

presentation of citrullinated proteins, which primes both innate

and adaptive immune responses, ultimately leading to the chronic

production of inflammatory cytokines, autoantibodies and

perpetuation of tissue damage. Consequently, restoring immune

tolerance, particularly to citrullinated proteins, represents a

promising therapeutic avenue for achieving remission in RA.
3 Role of ACPAs in pathogenesis of
rheumatoid arthritis

While ACPAs are well established as diagnostic biomarkers for

RA (14), increasing experimental and clinical evidence indicates that

ACPAs are not just markers of disease but active contributors of joint

pathology. Beyond their value in diagnostics, ACPAs are associated

with disease severity or treatment outcome (82). In addition, epitope

spreading reflects ongoing activation of autoreactive B and T cells,

pointing towards their active role in disease (83).

The following section examines evidence on processes leading to

the generation of citrullinated antigens that drive ACPA generation,

the B-cell subsets involved in ACPA production, their structural

diversity and the cellular and molecular pathways by which ACPAs

contribute to synovial inflammation and joint destruction.
3.1 Generation of citrullinated antigens

Citrullination of proteins is a posttranslational modification

consisting of the deamination of arginine by PAD enzymes. Under
Frontiers in Immunology 04
physiological conditions, this modification serves as a regulatory

mechanism for protein function and is well tolerated by the

immune system (84). However, when citrullination overcomes

physiological regulation, changes in conformation and charge

distribution of peptides leads to disrupted protein interactions,

converting citrullinated epitopes into self-antigens (85).

Excessive citrullination can promote protein autophagy and

subsequent presentation by DCs, macrophages and thymic DCs,

driving CD4+ T cell activation (86). It can also enhance peptide

binding affinity to MHC-II (87), leading as well to CD4+ T cell

activation and contributing to tolerance breakdown.

Normally, dominant factors of self-antigens interact with the

MHC-II of antigen presenting cells (APCs), while “cryptic” epitopes

remain unrecognized. As a result, dominant epitopes become

available for recognition during thymic T-cell tolerance, while a

population of CD4+ T cells remain capable of recognizing cryptic

epitopes. As it has been mentioned, citrullination can unmask these

epitopes by increasing their MHC-II binding affinity, enabling their

presentation and recognition by autoreactive T cells (85).

Interestingly, overcitrullination does not only disrupt tolerance

when it happens on a self-antigen; PAD2 enzyme has been reported

to citrullinate transcription factors responsible for CD4+ T cell

differentiation into Th1, Th2 and Th17, altering the differentiation

itself and the populations of the resulting type helper T cells (85,

88). Citrullination of cytokines CXCL10 and CXCL11 reduce their

interaction with T cells, hindering their chemotaxis to inflammation

site (85, 89).

Overall, there are subpopulations of both B and T cells reacting

towards citrullinated epitopes in the synovial of RA patients, being

the last ones commonly found mainly as Th1 and Th17 phenotypes

(90–93). Several efforts have been carried out to identify pathogenic B

cell subsets in ACPA/+ RA patients. By single cell RNA-sequencing

of CD45+ hematopoietic cells, Wu et al. found differences between the

synovial immune cell subsets of ACPA/+ and ACPA/- RA patients,

pointing out different immunopathological mechanisms related to

these autoantibodies (94). Aiming to find pathogenic B cell subsets,

Thorarinsdottir et al. found that in ACPA/+ RA patients most of the

B cells in SF belonged to a CD21-/low subset. Under IL-6 stimulation,

these cells expressed CXCR3 and RANKL, leading to osteoclast

differentiation and bone destruction (95). Among this subset,

ACPA/+ patients displayed CD21-/lowCD27-IgG- class significantly

increased in peripheral blood and comprising 40% of the CD21-/low

cells in SF (95), matching posterior studies in which CD27-IgD- and

memory CD27+ IgD- B cells were found in higher ratios in the SF

compared to peripheral blood, suggesting these subgroups are key

players in RA synovium inflammation (96). Consistent with previous

results, Floudas et al. further proved the reduced presence of CD27+

IgD+ B cells along with the accumulation of PD-1+ B cells in SF and

synovial tissue of RA patients, compared to healthy controls (97).

Other subtypes found in higher percentages in ACPA/+ patients were

CD19+ B cells (91); and for patients with early RA, human leukocyte

antigen (HLA)-DR+-peripheral type helper T cells, PD-1hi CD8+ T

cells, CXCR5− CD11c− CD38+ naive B cells (98) and CD19+ CD24hi

CD38hi regulatory B cells (99).
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3.2 Diversity and glycosylation of ACPAs

ACPAs isolated from serum, plasma and SF of RA patients have

been found as targeting over 100 citrullinated proteins (100–104).

Notably, the affinities of these antibodies vary significantly both

among patients and as disease progresses (83, 105–107). While

some ACPAs only bind a single target such as citrullinated

vimentin, fibrinogen or collagen (108, 109), most are highly

promiscuous towards multiple citrullinated epitopes (110–112) or

even other posttranslational modifications as acetylation and

carbamylation (10, 112–114). Structurally, ACPAs are heavily N-

glycosylated in their fragment antigen-binding (Fab) domain. Over

90% of ACPAs (compared to 15-25% of IgGs in human serum) are

N-glycosylated in their variable domain (115, 116), and over 80% of

receptors on ACPA-producing B cells contains N-glycosylation

sites (116, 117). It is suggested that N-glycosylation provides

ACPA-producing B cells with a selective advantage, enabling

them to escape negative selection of the B cell receptor, thereby

promoting autoimmunity (116, 118). On the other hand, Zhao et al.

unveiled the complexity N-glycosylation in ACPAs by proving that

upregulating sialylation of the crystallizable fragment (Fc) of

ACPAs in B cells from collagen induced arthritis CIA mice

attenuates disease progression (119), correlating to previous

literature reporting decreased sialylation in the Fc region of

serum ACPAs from RA patients and how this desialylation is

related to inflammatory processes (119–122).
3.3 Mechanisms of ACPA-mediated
pathogenesis

The presence and pathogenesis of ACPA in murine arthritic

models has been debated (108, 123). Their proposed pathogenic

mechanisms include direct targeting and degradation of

citrullinated proteins in joint cartilage, such as type II collagen;

enhancing fibroblast-like synoviocyte migration and adhesion

within the synovium, where they release proinflammatory

cytokines, create an erosive interphase and are involved in the

citrullination of new self-antigens (124, 125); direct targeting of

osteoclast precursors promoting their differentiation (108, 126); or,

as it will be further discussed, interaction with several immune

system components resulting in a feedback loop that enhances the

production of more ACPAs and proinflammatory agents such as

cytokines, reactive oxygen species (ROS) and degradative enzymes,

among others (Figure 2). Interestingly, ACPAs have different

mechanisms when they interact on their own or via Fc gamma

receptor (FcgR) after forming immune complex (IC) with RF

(Figure 2). A protective role of ACPAs has also been suggested

(127), highlighting the functional diversity of these autoantibodies.

Pointing out the effect of ACPA in different immune subsets,

evidence shows that T follicular Th cells responses were reported

higher in ACPA/+ than in ACPA/- (96). On the other hand,

percentage of disease relevant Th17 was not dependent on

seropositivity (91, 92).
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ACPAs interaction with citrullinated glucose-regulated protein

78 (grp78) on macrophages’ surface reported activation of

extracellular signal-regulated kinases (ERK)1/2 and c-Jun N-

terminal kinase (JNK) signaling pathways, as well as enhancing

NF-kB activity and tumor necrosis factor-alpha (TNF-a) secretion
(128–130). ACPAs can also activate macrophages via TLR4- and

MyD88- dependent (131–133) or CD147-integrinb1-PI3K-Akt

pathways, this last one activating NF-kB signaling and NLRP3

inflammasome cascade and pro-IL-1b release (134). Otherwise,

when found as ICs with RF, monocytes were also stimulated by

binding FcgRs which enhanced proinflammatory cytokine release in

synovial membrane (135) as well as regulating differentiation into

osteoclasts (136, 137). Breedveld et al. stimulated monocytes with

SF isolated ICs, resulting in IL-6 and IL-8 release and subsequent

activation of osteoclast activation (133, 138). Connection of PAD4

and macrophages in RA has been described. Enzymatically active

PAD4 was found present on the monocyte surface, being a source of

novel ACPA autoantigens by citrullinating both soluble and surface

proteins (139). These findings correlate with the already reported

role of SF and lymphoid tissue macrophages in citrullination of

prote ins and ACPA product ion (140) . Interest ingly ,

autocitrullination of PAD4, which is found in SF ACPA/-

patients, exacerbated inflammatory arthritis in mice models

through monocyte recruitment, suggesting an ACPA-independent

role of PAD4 in RA pathogenesis (141).

Neutrophiles are another immune cell type targeted by ACPAs

(142, 143). The already mentioned ICs have been reported to activate

neutrophiles leading to cartilage and tissue destruction due to

neutrophil degranulation, release of degradative enzymes, ROS, as

well as activation of soluble receptors and cytokines causing general

tissue inflammation (144, 145). NET formation has also been observed

on SF and sera of RA patients (146–149), correlating to ACPA levels

and their immune complexes, which enhances inflammatory response

in synovial fibroblasts via activation of IL-6, IL-8 and adhesion

molecules, among others (138, 147–149). Some forms of NETosis

rely on PAD4 activity (150, 151) and results into citrullination of

proteins (specially histones) in the synovial space, engaging a positive

feedback loop for which either synovial autoreactive ACPA-producing

B cells or direct presentation of citrullinated antigens to T cells by

fibroblast-like synoviocytes leads to the production of more

autoantibodies (148). Indirectly, neutrophils can also get activated

through ACPA binding to osteoclasts, as this leads to secretion of

CXCL8, promoting neutrophil attraction and NET release, which

again increases ACPA activity through binding to citrullinated

histones in the released NETs (152).

Even though the appearance of ACPAs has been linked to

environmental factors as smoking and some viral infections (among

others) (153, 154), ACPA/+ RA patients have shown a gene

signature based on the already mentioned HLA complex, which is

crucial for antigen presentation between immune cells. Both RA

and ACPA development were found to be connected to HLA

haplotypes expressing the shared epitope (SE), which codes for a

QKRAA peptide motif on the MHC (153–157). Similarly, both

humanized and non-humanized mice models expressing different
frontiersin.org
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RA-related haplotypes of HLA containing the SE generated ACPAs

to a greater extent upon disease induction with PAD rather than

those with haplotypes lacking SE (158, 159).
4 Current treatment landscape for
rheumatoid arthritis

Current pharmacologic treatment options for RA can be

divided into three major groups: steroids and disease-modifying

antirheumatic drugs (DMARDs). Steroids are only symptomatic

and are not able to change the long-term course of the disease,

therefore the European League Against Rheumatology (EULAR)

recommendations for RA treatment utilizes conventional synthetic
Frontiers in Immunology 06
DMARDs (csDMARDs) methotrexate (MTX) as initial treatment,

eventually in combination with short-term glucocorticoids during

disease flares. In the case that csDMARDs are not effective,

biological DMARDs (bDMARDs) (which are related mainly to

cytokine regulation) or targeted synthetic DMARDs (tsDMARDs)

such as Janus Kinase (JAK) inhibitors are employed. Here, multiple

modes of action are available, underlining the immunopathological

heterogeneity of RA (160). As it is illustrated in different cohorts,

most of RA patients receive MTX while smaller fraction receive

bDMARDs (161–163).

Treatments are aimed to reduce disease activity and prevent

joint damage; managing RA follows treat-to-target strategies (164).

If treatment target (which is based on remission in early disease and

low disease activity in long-standing disease), is not achieved at 3
FIGURE 2

Representation of ACPA-mediated pathogenesis in synovium and crosstalk of different immune and structural components in seropositive RA. Main
ACPA-derived response on different cell types is stated. APCs, antigen presenting cells; CXCR3, chemokine receptor 3; ERK, extracellular signal-
regulated kinase; FcgR, Fc gamma receptor; FLS, fibroblast-like synoviocytes grp78, glucose regulated protein 78; JNK, Jun kinase; MHC, major
histocompatibility complex; MCS, macrophage colony stimulator; NETs, neutrophil extracellular traps; NF-kB, nuclear factor-kappa B; PAD, protein
arginine deaminase; PI, proinflammatory; RF, rheumatoid factor; ROS, reactive oxygen species; TLR4, Toll-like receptor 4; *reported via IC
mediation; **reported both via IC and ACPA mediation. Created with BioRender.
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and 6 months, respectively, EULAR guidelines (2022) recommend a

change in treatment regime.

The persistence of different groups of therapeutics in clinic has

been reviewed over the last 6 years by several nation-wide

organizations, with cohort ranging from 900 to 5100 RA patients.

Depending on the cohort, TNF-a inhibitors (bDMARDs targeting

TNF-a) have a retention rate of 29% to 58%, while in the case of

JAK inhibitors, retention rates are 40% to 72% (165–167). Still,

discontinuation rates due to adverse events are similar between

TNF-a inhibitors and JAK inhibitors (168).
4.1 Challenges in achieving immunological
remission

Existing treatments such as MTX and several costly biological

therapies can slow disease progression but do not cure the disease.

Depending on the cohort, range from 39% to 70% patients do not

reach the preferred goal of sustained remission or low disease

activity (161–163).

The effect of bDMARDs and JAK inhibitors can also be

dependent on ACPA seropositivity. For example, drugs like the

JAK inhibitor tofacitinib (169), B cell depletor rituximab (170, 171)

and T cell modulator abatacept (172) have better efficacy on

seropositive groups, compared to seronegative groups. TNF

inhibitors show similar efficacy in seropositive and seronegative

disease (172).

In a cross-sectional analysis of RA patients treated with various

csDMARDs and/or JAK inhibitors, Neppelenbroek et al. suggested

that ACPA+ B cells retained their activated and proliferative

phenotype, despite effective control of inflammation and clinical

disease. The absence of immunological remission might explain

why ACPA/+ patients rarely reach sustained drug-free remission.

This continued activated state of ACPA-B cells indicates chronic

exposure of these cells to stimulating triggers along disease course,

which in this study was 11 years (average) (173). Tocilizumab,

another FDA-approved bDMARD, managed to decrease synovial T

cells and disease activity on patients after 8 weeks of treatment, but

did not manage neither to decrease the count of CD68+

macrophages or CD20+ B cells in synovium, maintaining

unchanged local levels of RANKL and significantly increasing

systemic levels of IL-6 and RANKL (174), two cytokines that as

previously mentioned, are expressed by synovial macrophages and

B cells and are related to joint erosion (45, 133, 138).

Despite significant advances, current RA therapies do not

achieve durable, immunological remission across all patient

groups. Their effectiveness often depends on ACPA status, with

seropositive individuals responding more favorably, yet still without

showing immunological remission despite clinical improvement.

To address this disparity, emerging antigen-specific therapeutic

strategies are proposed as considerable therapeutics toward

sustained immunological and disease-modifying remission.
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5 Restoring immune tolerance:
emerging mechanisms and therapeutic
approaches

5.1 Fundamental mechanisms of tolerance
restoration

Tolerogenesis or tolerance recovery is understood as the process

by which the immune system re-establishes its ability to recognize

and tolerate self-antigens, thereby preventing autoimmune

responses and maintaining immune homeostasis. Mechanisms of

immune tolerance can be broadly divided into central and

peripheral tolerance. Central tolerance occurs primarily in the

bone marrow and thymus, where autoreactive T cells undergo

clonal deletion before entering the circulation (175, 176).

Peripheral tolerance, by contrast, regulates mature T cells in the

periphery through multiple mechanisms, including (i) T cell anergy,

where T cells become non-proliferative upon antigen stimuli,

commonly lack co-stimulatory molecules and are functionally

inactive (177, 178); (ii) T cell ignorance, being ignorant T cells

unresponsive to their autoantigens yet potentially able to be

activated again (179); (iii) T cell exhaustion, associated with

constant antigen exposure (180, 181); (iv) clonal deletion of

mature T cells in the periphery, mediated through antigen

presentation (182, 183).

Treg cells can suppress local immune responses elicited by Th

cells upon receptor activation of disease-causing antigen (184, 185).

Additionally, Treg expansion has been proved to reinduce tolerance

(177, 186, 187). Highlighting the pivotal role of antigen-specific

Treg expansion in tolerance recovery, imbalances in Th1/Treg and

Th17/Treg (as well as Th1/Th2 ratios) are often associated with loss

of tolerance in RA (17–20).
5.2 Established therapies with tolerogenic
potential

The bDMARD abatacept targets CD80 and CD86 on the surface

APCs including B cells. CD80 and CD86 are key co-stimulatory

molecules for antigen presentation and T cell activation. In a study

by Lorenzetti et al, in vitro abatacept treatment was shown to

decrease CD80-CD86 expression on B cells in a dose-dependent

manner. In contrast, clinical assessment revealed only a moderate

reduction in ACPA levels but a significant decrease in the ACPA-

specific B cell population, suggesting a restoration of tolerance

(Figure 3) (188). The bDMARD rituximab targets CD20, leading to

a depletion of B cell populations for 6-9 months (189), yet without

elevating the likelihood of infections in patients relative to other

forms of bDMARD treatment (190, 191). Tolerance recovery is

suggested by the posterior regeneration of the B cell subpopulations,

finding different subset composition than found before treatment
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(Figure 3) (192). Naïve B cell population increased, while CD27+

memory cells stayed significantly reduced (0.5-fold) for up to 2

years (192).
6 Novel drug candidates and
strategies for tolerance induction

Current RA treatments do not effectively target the underlaying

immunologic causes of the disease, being reflected in the high relapse

incidence and the large RA population that does not achieve complete

remission. One study found that after 5 years of treatment, 55% of RA

patients had switched treatment due to treatment failure or, to a lesser

extent, due to adverse events (193). Given RA heterogeneity and that

patients may require multiple successive therapies throughout life

(160), there is a need for treatments employing different modes of

action. This need is reflected in the several trials for RA treatment that

have been reported during the last 10 years, where the main goal is to

restore tolerance and “re-educate” the immune system rather than

decrease inflammation by targeting its components (Figure 3, Table 1).
6.1 Cell-based tolerance recovery
therapies

In a small trial consisting of three patients with treatment

resistant RA, CD19-directed Chimeric antigen receptor (CAR)-T
Frontiers in Immunology 08
cell treatment caused B cell depletion and reduced the pathogenic

interleukins IL-6 and TNF-a as well as RF and ACPA levels (194).

Along with lowering joint inflammation and the absence of relapse,

the progressive repopulation of B cells non-associated to an increase

of pathogenic antibodies 9 months after treatment makes CAR-T

therapy a promising tool to restore tolerance in difficult to treat

cases (Table 1 for detailed information) (194). A reported case with

this outcome described one RA patient treated with CD20/CD19-

directed CAR-T cell therapy following a diagnosis of diffuse large B

cell lymphoma (205). However, most available data for this type of

treatment in RA come from very small cohorts, sometimes down to

individual case reports (206, 207). In vitro data of similar CAR-T

cell therapies backs up the previous results by eliminating

autoreactive B cell populations from RA patients’ serum (208).

However, longer and bigger trials need to be carried out to dismiss

the serious toxic effects that this type of therapy is suspected to have

in rheumatic autoimmune disease treatment (206, 209).

Ex vivo-generated autologous tolDCs introduced to a specific

antigen have been explored due to their capacity to present antigens

to T cells (210). TolDCs are not only able to cause T cell anergy or

the expansion of Treg cells by providing constant exposition to the

specific antigen in CIA murine model (211, 212), but they also

express PD-1 and anti-inflammatory cytokines IL-10 and IL-35

(213). Thus, it is understandable that peptide loaded tolDCs have

been successfully utilized in multiple clinical trials aimed at

restoring tolerance in autoimmune diseases such as multiple

sclerosis (214) and type I diabetes (215, 216). In the case of RA
FIGURE 3

Principal mode of action of some of the tolerogenic drugs and drug candidates reviewed in this work. APCs, antigen presenting cells; CAR, Chimeric
Antigen Receptor; CTLA-4, Cytotoxic T-lymphocyte Associated protein 4; PD-1, Programmed death cell protein; NETs, Neutrophil Extracellular
Traps. Created with BioRender.
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TABLE 1 Overview of therapeutic candidates discussed in this review with tolerogenic effects, either approved or under clinical investigation for RA.
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treatment, it is important to mention the few candidates that

showed promising results in small cohort clinical trials phase I (9

to 18 patients), currently recruiting for further studies or ongoing

cl inical tr ia ls : Rheumavax (ACTRN12610000373077) ,

AuToDeCRA ( ISRCTN14999554 ) and Cre aVax -RA

(KCT0000894). AutoDeCRA tolDCs have been exposed to the

antigens of the patients’ SF, while CreaVax-RA tolDCs have been

exposed to PAD4, RA33 (heterogeneous nuclear ribonucleoprotein

A2/B1 (hnRNP A2/B1)), citrullinated filaggrin and vimentin (217).

AutoDeCRA trial failed to show efficacy on clinical inflammation

parameters, changes in serum cytokine levels or in peripheral T cell

phenotype (218). In the case of Rheumavax, consisting on tolDCs

with the NF-kB pathway inhibited and exposed to citrullinated

peptides derived from vimentin, collagen type II, aggrecan and

fibrinogen, better results were observed. 1 month after Rheumavax

treatment, T effector (Teff) cells were reduced compared to

untreated controls, while the ratio of Treg/Teff increased,

pointing to a shift in the immune balance (195). Cytokine IL-15,

IL-29, CX3CL1 and CXCL11 levels as well as T cell mediated IL-6

response towards the citrullinated vimentin peptide found in

Rheumavax were reduced (195). It is also worth mentioning the

TOLERANT clinical study, which is in recruiting stage (phase I,

NCT05251870). As well as the previously mentioned therapies, in

this trial HSP70 peptide loaded DCs will be employed in order to

induce and/or expand Treg populations (219).
6.2 Tolerogenic monoclonal antibodies
and binding proteins

Peresolimab, an IgG monoclonal antibody that stimulates PD-1

pathway, showed a positive primary outcome by reducing DAS28

score compared to the placebo group 12 weeks after treatment in a

phase II clinical trial. However, in secondary outcome measures,

peresolimab was only significantly better than placebo with respect

to ACR20 responses, but not with respect to ACR50 or ACR70

responses (220). Aiming for T cell activation suppression,

peresolimab is intended to reset the immune response to restore

immune tolerance (221). Differently, inhibiting B cell activation and

plasma cell differentiation by means of CD40L binding protein

targeting, dazodalibep was tested in a phase I trial (196). CD40 is

expressed on many APCs (incl. DCs, macrophages and B cells) and

non-hematopoietic cells. Effective humoral response to T cell-

depending antigens rely heavily on CD40/CD40L interactions

between B cells and T cells. Not only DAS28-CRP went down to

-2.3 compared to baseline, but a significant reduction in B cell

proliferation and T cell-dependent antibody production were

reported (196). Further clinical trial (phase II, NCT04163991)

confirmed the reduction of DAS28-CRP score over 309 days on a

bigger cohort of 62 treated RA patients and 16 disease

controls (197).

Part of HSP70 family, binding immunoglobulin protein (BiP) is

involved in the peripheral blood monocytes differentiation into DCs

and osteoclasts. Treatment of maturing monocytes with BiP results

in reduced antigen presentation capacities of DCs due to lower
Frontiers in Immunology 11
expression of HLA-DR and CD86. Recombinant human BiP

administration has been reported to prevent and ameliorate

disease in murine CIA models (222, 223). BiP analogue

IRL201805 was administrated to RA patients and its effects were

monitored for 12 weeks in a phase I/IIa trial. DAS28 score was

consistently reduced in the fraction of patients that responded to

treatment (43%) (198) without any serious adverse drug reactions

reported (199). When the 4 week-after treatment PBMCs of

responder RA fraction was incubated with their own PBMCs

before treatment, these ones produced significantly less IFN-g
than RA patients treated with placebo. As a part of the

inflammatory response regulation, serum levels of pro-

inflammatory cytokines IL-1b, TNF-a and IFN-g were reduced

while sCTLA-4 increased. Related to the pro- to anti-inflammatory

shift observed in serum cytokine levels, Treg stability and potency

related CD39 was found overexpressed in the Tregs of the patients

responding to the treatment (198).
6.3 Peptide and antigen-based
immunomodulatory therapies: emphasis
on citrullination

Peptides emerge as highly specific and versatile drug candidates

for tolerance recovery in RA and other autoimmune diseases (224–

231). Their high specificity minimizes potential drug–drug

interactions, making them suitable for combination with other

RA therapeutics. Preliminary and exploratory trials in RA

patients have employed them in combination with different

csDMARDs reporting treatment efficacy and no concerning

adverse effects (200, 203, 204). Compared to antibodies, their

small size, enhanced stability, scalable production and

customizable structure make peptides particularly attractive for

achieving precise interactions with immune targets while

maintaining relatively low immunogenicity and lower production

cost characteristic of small molecules (232, 233).

The T cell-activating peptide based on the immunogenic HSP60

Jusvinza, approved in Cuba for cases of COVID-19 with

hyperinflammation, is currently under clinical trials (phase III,

RPCEC00000433) to treat RA patients. As it has been mentioned

previously, NETosis is related to inflammation in RA as well as

citrullination of new antigens and production of new ACPAs.

Protein expression of neutrophiles from patients treated with

Jusvinza was found to be differently modulated, including

differences on the already mentioned NF-kB pathway (234).

Overall, RA patients treated with Jusvinza displayed PAD4-

mediated inhibition of NETosis, which was further confirmed

with in vitro experiments (234). Phase I clinical trials in RA

patients treated with Jusvinza showed a reduction on blood

ACPA levels DAS28 score and achievement of ACR50 and

ACR70 in 6 months (200, 201). Complementary, ex vivo assays

showed a 1.5-fold increase of Treg cells when PBMCs of RA patients

were exposed to Jusvinza (202), suggesting that tolerance recovery

towards citrullinated antigens could be mediated by NETosis

inhibition. Also derived from an HSP, T cell proinflammatory
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epitope DNAJP1 peptide was used to treat RA patients with PBMCs

reactive towards the candidate (75% of the tested participants) in a

clinical trial phase II (203). Upon treatment, TNF-a expressed by T

cells decreased significantly while IL-10 expressed by T cell

increased, along with PD-1 and CTLA-4 (203). These results

match previous phase I outcomes for the same peptide, where

DNAJP1-specific T cell number did not change over treatment

(hence, there was no clonal deletion) but changes on clusters of

differentiation on them pointed that immune reactivity towards the

self-peptide did (235).

DEN-181, a subcutaneous formulation consisting of RA-joint

HLA-DRB1*04:01- and *01:01-haplotypes specific collagen type

II259-273 peptide and NF-kB pathway inhibitor calcitriol in

liposome formulation, reduced the population of citrullinated

vimentin-specific T cells in MTX-treated patients under a phase I

clinical trial (204). The improvement in disease activity observed in

RA patients was associated with the tolerogenic effects of the

peptide-based therapy DEN-181, including an early expansion of

PD1+ collagen type II– and citrullinated vimentin–specific T cells,

followed by a reduction in ACPAs, an increase in CCR7+ naïve T

cells and a decrease in memory B cells (204). CCR7+ expression in T

cells is related to T cell migration from peripheral tissue to lymph

node (236). Disruptions in this migratory process lead to peripheral

tissue Teff cell accumulation in inflammation and autoimmunity,

incl. RA (237). Used in DEN-181, calcitriol is a metabolite of

vitamin D. Vitamin D has been reported to elevate the percentage
Frontiers in Immunology 12
of Tregs and lower the DAS-28 score just after 3 months of

supplementation along MTX and hydroxychloroquine in RA

patients, compared to a group that were just treated with the

csDMARDs (238).

Citrullinated antigens have also demonstrated potential in

promoting tolerance recovery. This process is typically achieved

through the persistent exposure to the antigen via repeated

administration of low doses, aiming to modulate T cell

population by depleting or causing T cell exhaustion on

pathologic Th1 and Th17 cells, reducing the expression of

proinflammatory cytokines that mediate these, or increasing the

population of Tregs (239). Gertel et al. utilized a multiepitope

citrullinated peptide, containing motifs from key citrullinated

proteins in RA such as filaggrin, fibrinogen, vimentin and

collagen. Their approach successfully improved the clinical status

of adjuvant-induced RA rats (Table 2). The increase of Treg and

reduction in Th17 cells, previously associated with reactivity

towards citrullinated epitopes (90–93), indicated tolerance

induction (239).

CEL-4000 consists of a proteoglycan (PG) non-citrullinated

epitope derived from cartilage PG aggrecan (PG70) conjugated to a

ligand specific for CD4+ T cells. This design allows the T cell

presentation of the immunomodulatory peptide to an APC via

MHC II while the CD4+ ligand modulates T- cell activity. CEL-4000

was tested in PG-induced arthritis (PGIA) and G1 domain-induced

arthritis (GIA) mice models, switching cytokine production from
TABLE 2 Summary of preclinical studies evaluating tolerogenic peptides and monoclonal ACPAs in murine RA models.

Therapeutic agent Animal
model

Study
duration

Outcome Ref

Inflammation reduction Immune cell and related
cytokine regulation

Multiepitope (filaggrin,
fibrinogen, vimentin and
collagen) citrullinated
peptide

AIA rat 29 days Mean paw diameter of treated group was
19% (p < 0.002) and 11% (p < 0.03)
smaller than untreated and non-
citrullinated multiepitope peptide controls,
respectively. Trend was confirmed over
inflammation indices measured with H&E
immunostaining.

Significant increase in splenic CD4+ CD25+

Foxp3+ Treg populations was observed in
treated rats, compared to untreated and non-
citrullinated multiepitope peptide controls (p
< 0.01). Parallelly, splenic IL-17+ CD4+ T
cells (Th17) were significantly reduced in
treated group compared to untreated
controls (p < 0.03).

(239)

CEL-4000 (proteoglycan
epitope + CD4+ T cell
ligand)

GIA mice 35 days By the end of observation period, arthritis
score* (based on swelling and redness of
paws, visual) for CEL-4000 and CEL-5000
treatment groups was lower than in
adjuvant treatment control group (p =
0.0114 and 0.0671, respectively).

Cytokine profile production switch from Th1
and Th17 to Th2 and Treg. Compared to
adjuvant treatment control, splenic cells
from CEL-4000 mice had elevated IL-10:
IFN-g ratios (p ≤ 0.05); while in CEL-5000,
elevations on IL-4:IFN-g and IL-4:IFN-g
ratios were observed (p ≤ 0.05).

(240)

CEL-5000
(citrullinated proteoglycan
epitope + CD4+ T cell
ligand)

CPEP2
(Cyclic citrullinated
fibrinogen derived epitope
formulated in chitosan-
based nanoparticle)

CIA rat 56 days At study termination, arthritis score* of
rats treated with CPEP2 was 90% lower
than control groups treated with PBS,
MTX or unloaded nanoparticles.

Upon treatment with CPEP2, TFN-a serum
levels were decreased compared to disease
control. Serum and synovial fluid levels of
IL-10 were found increased as well.

(241)

Citrullinated peptides from
human cartilage
intermediate layer protein
(CILP) or fibrinogen

HLA-DR mice 14 days [-] Expansion of CD4+T cells binding to HLA-
DR:citrullinated peptides; decrease of Th1
cells and increase of Treg cell populations.

(242)

(Continued)
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Th1 and Th17 pro-inflammatory (TNF-a, IL-17 and IFN-g)
signature to an Th2 and Treg anti-inflammatory (IL-10, IL-4 and

TGF-b) one, as well as an increase in Treg cells (240, 246). CEL-

5000, which introduces a citrullinated PG epitope was also tested in

PGIA and GIA mice models. CEL-4000 and CEL-5000 developed

different immune responses, since mice did not produce high

antibody titters for the citrullinated epitope conjugate while they

did for CEL-4000’s. However, both treatments lowered arthritic

s c o r e , r e d u c e d i nfl amma t i o n l e v e l s ( a s s e s s e d b y

immunohistochemistry) and achieved the same Th2-like anti-

inflammatory cytokine response (240).

Fibrinogen-derived citrullinated peptides have been intensively

investigated due to their high capacity to scavenge ACPA isolated

from RA patients, showing that cyclized structures bind with higher

affinities (247, 248). A fibrinogen-derived citrullinated cyclic

peptide have also been reported to treat CIA rat, showing a

significant decrease of joint swelling when compared to untreated

or non-citrullinated peptide control groups, along with an increase

of IL-10 (241). Data obtained from McElwee et al. suggests that

citrullinated fibrinogen may have potent tolerogenic properties

(242). When they immunized a transgenic HLA-DR mice model

with citrullinated peptides derived from cartilage intermediate layer

protein or fibrinogen, the arthritis-initiating response from CD4+ T

cells upon presentation of citrullinated antigens was not observed.

Instead, expansion of CD4+ T cell population binding to these

HLA-DR:citrullinated peptides was observed, with lower levels of

Th1 and higher levels of Treg cells. These results were not observed

when same mice model was immunized with citrullinated vimentin
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or enolase 1 peptides (242). Restoration of Treg over Th or Teff cell

populations and balance recovery was also seen in the already

discussed Gertel et al. study, where the multiepitope used to treat

adjuvant-induced RA rats contained citrullinated fibrinogen (239);

or on the successful Rheumavax trial, which contained tolDCs

introduced to citrullinated fibrinogen, among other citrullinated

peptides (195).
6.4 Modulating ACPAs

Gomez et al. recently showed that the injection of several

ACPAs isolated from RA patients ameliorated inflammation and

disease severity in collagen antibody-induced arthritis (CAIA)

model (127) adding up to a long list of examples where ACPAs

had therapeutic or preventive effects in RA murine models (243,

244, 249). It is worth mentioning that in the experiments carried out

by Gomez et al, patients derived ACPAs were grouped and dosed

based on the predominant citrullinated antigen they targeted and all

groups had similar effects specially when injecting in early steps of

CAIA (127).

This seems to point out that in a target independent manner,

ACPAs have the ability to induce tolerance (in earlier stages) or

prevent break of tolerance that will exacerbate the disease in a CAIA

model (Figure 4A). He et al. also injected patient derived ACPAs in

healthy mice to observe neither arthritogenicity nor pain signs. One

of the antibodies protected the mice from antibody-induced arthritis

(CAIAmodel) by forming ICs with citrullinated a-enolase and other
TABLE 2 Continued

Therapeutic agent Animal
model

Study
duration

Outcome Ref

Inflammation reduction Immune cell and related
cytokine regulation

ACPAs isolated from RA
patients

CAIA mice 14 days Compared to controls, different
recombinant ACPA administration 3 and
7 days after CAIA induction reduced both
paw thickness and disease severity (1.4
fold, p ≤ 0.001) and bone erosion,
synovitis, and cartilage damage (p ≤ 0.01)
regardless of ACPA specificities;
preventing overall break of tolerance.

[-] (127)

28 days Monoclonal ACPAs derived from patients
did not show arthritogenicity nor pain
signals on mice. ACPA clones E4 reduced
osteoclastogenesis and protected mice from
CAIA induction using different
arthritogenic cocktails.

Clone E4 strongly binds to macrophages and
RA proteins from synovial fluid as a-enolase,
resulting in increased IL-10 secretion by
macrophages (p = 0.0013).

(243)

14 days Several monoclonal ACPA inhibited CAIA
or quantitatively ameliorated disease 2
days post-injection, if administrated at
disease peak.

[-] (244)

13 days When NETosis inhibitor monoclonal
ACPA was injected 3 days posterior of
arthritogenic antibody cocktail, arthritis
score was reduced up to 94% compared to
disease control (p < 0.01).

[-] (245)
frontier
*based on swelling and redness of paws, visual; AIA, Adjuvant-Induced Arthritis; GIA, glucose-6-phosphate isomerase – Induced Arthritis; CIA, Collagen-Induced Arthritis; CAIA, Collagen
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few citrullinated proteins from SF which posteriorly bound to

macrophages in the joints, resulting in increased secretion of anti-

inflammatory IL-10 and reduced osteoclastogenesis (243). Authors

attributed the reduction of osteoclastogenesis to the interaction of

the interaction of these ICs with FcgRIIB in macrophages

(Figure 4A) (136, 243). Another example of ACPA usage to

prevent the development of inflammation not only in CAIA RA

model but also in other NET-mediated pathologies as inflammatory

bowel disease, pulmonary fibrosis and sepsis, was reported by Chirivi

et al. (245) They developed an ACPA that specifically targets

citrullinated histones citH2A and citH4, which are generated

during NET release. Their lead therapeutic ACPA prevented the

inflammatory response in several autoimmune models (incl. CAIA),

reduced inflammation in CIA mice RA model, inhibited NET

formation in both murine models and in vitro experiments where
Frontiers in Immunology 14
healthy individuals neutrophiles were stimulated with different

disease-related stimuli (including SF containing ACPAs from RA

patients) and potentially favoured macrophage mediated clearance

of NETs (Figure 4B) (245).
7 Conclusions and future perspectives

Restoring immune tolerance in RA marks a meaningful

transition in therapeutic strategies, focusing on re-educating the

immune system rather than just suppressing its activity. Promising

preclinical and early clinical evidence supports this approach,

indicating that targeting the underlaying mechanisms of

autoimmunity may provide durable disease control with reduced

systemic immunosupresion.
FIGURE 4

Role of ACPAs in prevention of tolerance breach in murine RA models. (A) Injection of ACPAs isolated from RA patients prevented inflammation and
disease progression in CAIA model (127, 243). ACPAs were shown to form ICs with citrullinated proteins and interact with FcgRs IIB from osteoclasts,
promoting IL-10 release and reducing their osteoclastogenesis (136, 243). (B) Treatment with tACPA targeting citrullinated histones citH2A and citH4
prevented the development of inflammatory response in CAIA mice and inhibited NETosis in both murine model and human neutrophile stimulated
with SF from RA patients and other disease stimuli. IC, Immune Complex; tACPA, therapeutic ACPA; cit., citrullinated (245). Created with BioRender.
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Peptide-based immunotherapies, such as Jusvinza, DNAJP1,

Rheumavax and DEN-181 have demonstrated the capacity to

modulate key immune pathways, Treg populations, lowering Th1/

Th17-driven inflammation, and, in some cases, reducing circulating

ACPA levels. Parallelly, tolerogenic cell therapies and monoclonal

antibodies targeting co-stimulatory pathways (e.g., abatacept,

peresolimab, dazodalibep) further highlight the feasibility of

antigen-specific or pathway-guided tolerance induction.

Collectively, these advances mark a gradual yet meaningful

transition toward tolerogenic disease-modifying strategies.

Among these emerging modalities, peptide-based therapies

offer several advantages over extensively used monoclonal

antibodies. Tolerogenic peptides engage with autoreactive T and

B cells with high specificity while being synthetically accessible,

structurally well defined, and easier to rationalize for epitope

optimization. Compared to monoclonal antibodies or binding

proteins, their lower production costs and stability further

enhance their suitability for long-term or preventive use.

Dose requirements also illustrate peptides efficiencies for the

described preliminary and exploratory trials. As summarized in

Table 1, DEN-181 achieved immunomodulatory effects at only 126

µg of CII peptide in a single dose, and Jusvinza demonstrated

clinical tolerogenic benefits with 5 doses of 5 mg, both markedly

lower than conventional csDMARDs (e.g., ≥7.5 mg/week for

methotrexate or 400 mg/day for hydroxychloroquine, both

according to FDA label) and substantially below the 2 g required

for B-cell depletion with rituximab.

Administration routes constitute another advantage of peptide-

based tolerogenic approaches. Subcutaneous formulations, as

shown for DEN-181, Jusvinza and CPEP02 (in preclinical

development), successfully induced immune modulation, while

oral administration of DNAJP1 achieved significant T-cell

phenotypic and cytokine profile shifts. Although daily dosing over

six months was required, the total 4.5 g peptide exposure remains

feasible considering the production scales of peptides compared to

those of monoclonal antibodies. The DNAJP1 trials thus represent a

key milestone in advancing orally delivered tolerogenic

immunotherapies, with future peptide design optimization likely

to improve dosage efficiency and patient compliance.

Despite these advances, achieving long-term immune tolerance

requires a deeper understanding of the immune regulation, ACPA

biology and the precise mechanisms that drive autoimmunity in RA.

The absence of a prevalent murine model used in preclinical research

(Table 2), complicates preclinical translation. Therefore, quantitative

joint swelling measurements (paw diameter) and harmonized disease

scoring systems should be adopted as standardized endpoints to

facilitate cross-study comparison. Splenic or synovial cell profiling,

which is not carried out in most preclinical studies described, is

essential to elucidate the tolerogenic effects of these treatments in

immune cell differentiation and regulation.

Future research must address these gaps through systems-level

analyses integrating multi-omics, single-cell immunophenotyping,
Frontiers in Immunology 15
and spatial transcriptomics to map the dynamics of tolerance

restoration in vivo. Such efforts will be critical to distinguish true

immune reprogramming from transient immunomodulation.

In summary, the combination of peptide-based therapies with

conventional DMARDs or targeted biologics also represents a

promising therapeutic framework to enhance efficacy and maintain

remission while minimizing systemic immunosuppression, reducing

the risk of relapsing and improving the quality of life for patients

with RA.
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