? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Emanuele Bizzi,
Vita-Salute San Raffaele University, Italy

REVIEWED BY
Angela Mauro,

ASST Fatebenefratelli-Sacco, Italy
Yue Zhai,

Air Force Medical University, China

*CORRESPONDENCE
Kira Astakhova
kiraas@kemi.dtu.dk

RECEIVED 17 June 2025
REVISED 31 October 2025
accepTeD 05 November 2025
PUBLISHED 25 November 2025

CITATION

Bustos AH, Bruner M, Kragstrup TW and
Astakhova K (2025) Citrullinated peptides as
drug candidates for rheumatoid arthritis.
Front. Immunol. 16:1648913.

doi: 10.3389/fimmu.2025.1648913

COPYRIGHT

© 2025 Bustos, Bruner, Kragstrup and
Astakhova. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TYPE Review
PUBLISHED 25 November 2025
D01 10.3389/fimmu.2025.1648913

Citrullinated peptides
as drug candidates for
rheumatoid arthritis

Adrian H. Bustos®, Mads Briiner?, Tue Wenzel Kragstrup®**
and Kira Astakhova™

‘Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark, 2Department of
Biomedicine, Aarhus University, Aarhus, Denmark, *Department of Molecular Medicine, Aarhus
University Hospital, Aarhus, Denmark, “Section of Rheumatology, Medical Diagnostic Center,
Silkeborg, Denmark

Rheumatoid arthritis (RA) involves a breakdown of immune tolerance to
citrullinated proteins, leading to chronic inflammation and joint damage.
Despite advances in treatment, achieving long-term remission remains a major
challenge. Restoring immune tolerance to citrullinated proteins represents a
promising strategy to halt disease progression and establish lasting remission.
This review examines the potential of using citrullinated proteins or peptides to
reestablish immune tolerance in RA. It explores the potential role of anti-
citrullinated protein antibodies (ACPAs) in disease pathology and how utilizing
or targeting specific citrullinated antigens could modulate immune responses.
The review also highlights the therapeutic relevance of altering T and B cell
function to regulate immune state. We explore mechanisms through which
tolerance can be induced, including the use of citrullinated peptides to
promote regulatory T (Treg) cell expansion and alter pathogenic B cell subsets.
Emerqging strategies aimed at re-educating the immune system are discussed,
focusing on their potential to provide effective and durable treatment outcomes.
These tolerance-based approaches are evaluated for their capacity to shift the
immune response away from autoimmunity and towards sustained remission.
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1 Introduction

RA is a chronic, systemic, autoimmune disease characterized by synovial inflammation
and joint destruction, which affects approximately 18 million patients worldwide (1).
Patients often grapple with fatigue, depression, and the fear of progressive disability,
contributing to a lower quality of life (2, 3).

RA is subcategorized into seropositive and seronegative forms based on the serological
presence of the autoantibodies rheumatoid factor (RF) and ACPAs (4-10). Approximately
70% of RA patients test positive for these antibodies (4-10). ACPA positivity is especially
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relevant, as this is associated with a more severe disease course and
involvement of other organs (11, 12). ACPAs appear up to 10 years
before disease onset (6, 12, 13) and they have great value in clinic
practice as diagnostic tools (14).

Loss of immune tolerance is a central event in RA pathogenesis,
leading to persistent activation of autoreactive T and B cells and
production of autoantibodies such as ACPAs. Unlike conventional
therapies that broadly suppress the immune system, restoring
immune tolerance offers a targeted strategy to reprogram
autoreactive responses while preserving protective immunity.
Antigen-specific immunotherapies aim to achieve this by
inducing T cell exhaustion, expanding Treg cells, or modulating
antigen-presenting cells toward a tolerogenic profile. In recent
years, several approaches -ranging from tolerogenic vaccines and
peptide-based antigen presentation to therapeutic ACPAs- have
shown promise in preclinical and early clinical settings. This review
summarizes emerging strategies that leverage citrullinated peptides
and other autoantigen-based interventions to restore immune
tolerance in RA, with a focus on their mechanisms, efficacy and
translational potential.

2 Breach of immune tolerance in
rheumatoid arthritis

Rheumatoid arthritis is widely recognized as a T cell mediated
disease. In genetically predisposed individuals, modified self-antigens
can be presented via major histocompatibility complex (MHC) to
self-reactive T cells, initiating a series of immunological events that
progressively involves other cell types and ultimately leads to
stablished RA. Preclinical stages are marked by expansions of
distinct T cell subsets, including CCR2" CD4" T, T peripheral
(Tph), T helper 1 (Th1) and CXCR5" CD8" T cells (15, 16). CD4"
T cells differentiate into multiple effector lineages -Th1, Th2, Th17
and T follicular helper (Tth) cells- to coordinate immune responses.
Imbalances in these subsets cause a proinflammatory response (17-
20). Consistent with this, both early and stablished RA display
elevated frequences of CD4"T cells in synovium compared to blood
(15, 21, 22), accompanied to skewed Th cell profiles (15, 23). Th1 cells
are involved in the release of proinflammatory cytokines (such IFN-y,
IL-2 or TNF-o), leading to bone erosion; while Th17 cells also
stimulate the production of proinflammatory cytokines in synovial
fibroblasts, with IL-17A being the predominant one. Similar
alterations are observed in cytotoxic CD8" T cells, with RA patients
exhibiting different populations of CD27 CD62L", CXCR5" GZMB"*
and GZMK"' CD8" T cell subsets, among others (15, 16, 24, 25).

While T cell dysregulation is central to RA pathogenesis,
abnormal B cell subset composition and function are also closely
linked to the breakdown of self-tolerance. Small subsets
representing as little as 0.6% and 5% of blood B cells population
as it is the case of B10 and B1Opro cells, respectively, can have a
major role in autoimmune regulation. Found within the
CD24™CD27"* B cell subpopulation, ex vivo B10 and B10pro cells
were reported to negatively regulate monocyte related in vitro
cytokine production through IL-10 dependent pathways (26). IL-
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10 knock out in B cells of collagen induced arthritis (CIA) murine
models has also been shown to cause disease exacerbation
characterized by an increase in inflammatory Thl and Thl17 cells,
as well as a reduction in CD4" T regulatory type 1 induced IL-10
production and increase in IL-17 levels (27). Other IL-10 knockout
mice models such as the tamoxifen-induced model also proved the
paper of IL-10 from Breg cells in CD4" and CD8" T cell mediated
inflammatory cytokine expression (28). Subsequently, Aoun et al.
reported natural autoreactive B cells specific for collagen type II Cl1
epitope (C1-B cells) present in the spleen, bone marrow and PBMCs
of healthy mice, rats and humans, indicating its regulative role.
However, RA patients showed an eight-fold decrease of C1-B cells
while increasing the number of RA specific antibodies to C1
collagen epitope (29). Transfer of C1-B cells from anti-C1 mice
into autoimmune prone mice model protected these against
collagen type II arthritis induction (29). Antagonizing the
previously described results on IL-10’s role in prevention of self-
tolerance breach, IL-10 knockout C1-B cells from anti-C1 mice also
suppressed collagen type II arthritis induction and increased
activated T cells, pointing out that C1-B cells may tolerize T cells
independently of IL-10 (29).

Autoimmune checkpoint molecule programmed cell death 1
(PD-1), expressed by T cells, B cells and other immune cells, plays a
crucial role in maintaining immune tolerance and autoimmunity
prevention by downregulating immune responses. Several
publications pointed out the role of PD-1, its ligands or Cytotoxic
T-lymphocyte Associated protein 4 (CTLA-4) overexpression, in T
cell exhaustion (30-32), as well as synovium infiltration of PD-
1™Tph cells in early RA (21). Nettersheim et al. identified higher
expression of PD-1 and CD73 in self-specific CD4" T cells from
healthy mice, compared to exogenous-specific CD4" T cells (33).
After blockade of both PD-1 and CD73, vaccine-expansion of self-
specific CD4" T cells resulted into CD4" T cells with transcriptomes
of exogenous-specific CD4" T cells, showing that PD-1 and CD73
co-operationally limit CD4" T to self-antigens (33). PD-1 and its
ligands PD-L1 and PD-L2 expression has also been found
upregulated in RA synovial tissue (34). Downregulation of PD-1
pathway was also observed during RA progression, attributed to
increased levels of serum soluble (s)PD-1 in ACPA-positive
(ACPA/+) RA patients (34, 35). sPD-1 was connected to severe
CIA through Thl and Th17 pathways (35), while PD-1 expression
on CD4" and CD8" from PBMCs negatively correlated to disease
activity (36). Further underlining the role of PD-1 in RA immune
regulation, cases have been reported of RA occurring after PD-1
inhibiting cancer treatment (37). PD-1 can also drive T cells into
apoptosis or a regulatory phenotype upon PD-L1, except in the case
of RA patients (38). Generation of monocyte derived tolerogenic
dendritic cells (tolDCs) with superior capacity to induce Th17 cells
were obtained when precursor monocytes from peripheral blood of
RA patients were treated with either P-selectin, IL-10 or PD-1 (39).

Upregulated levels of B cell activating factor (BAFF) in the
peripheral blood was related to the survival of autoreactive B cells
and further production of autoantibodies, exacerbating the disease
(40, 41). Along with BAFF, toll-like receptor (TLR) ligands boost B
cell activation, immunoglobulin isotype class switching, somatic
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hypermutation, and their transformation into plasma cells, which
results in the production of harmful autoantibodies (42, 43).
Likewise, in vivo studies on CIA mice indicate that silencing
BAFF receptors expression lowers B cell counts and autoantibody
levels significantly, which further reduces joint inflammation (44).

Furthermore, IL-6 produced by B cells and macrophages in the
synovial fluid (SF) of RA patients, is needed for B cell differentiation
and the formation of plasma cells (45). IL-21, secreted by subsets of
helper T (Th) cells and found in higher levels on serum and SF of
RA patients, is also essential for B cell activation, proliferation,
differentiation and antibody production (46).

2.1 Environmental factors — smoking,
neutrophil extracellular traps formation
and role of mucosal immunity

The loss of immune tolerance in RA related to the impaired
clearance and excessive presence neutrophil extracellular traps
(NETs) has been previously reviewed (47-49). When NET
removal is compromised, they accumulate at inflammatory sites,
thereby prolonging inflammation and producing new autoantigens
(47). Elevated NET formation has been observed in the sputum of
both individuals at risk for developing RA (being first degree
relatives of RA patients) and in RA patients themselves (50, 51).
This local NET buildup correlates with the generation of mucosal
autoantibodies such as IgA and IgG ACPAs, suggesting that the
airway may serve as an initiation site for systemic autoimmunity. In
fact, high levels of both NETs and ACPAs have been detected in the
sputum of at-risk patients, supporting a direct association between
NET formation and autoantibody production (50-53).
Environmental factors such as cigarette smoking exacerbate this

10.3389/fimmu.2025.1648913

process by inducing NET formation via protein arginine deaminase
(PAD) 4-dependent pathways, which in turn increases the
production of citrullinated antigens in the lung (Figure 1) (54).
Smoking not only elevates the risk of ACPA development but also
intensifies the inflammatory response by triggering spontaneous
NETosis in neutrophils (54-56).

In addition to environmental triggers, infectious agents have been
noticed for their role in breaking immune tolerance (Figure 1) (57-
59). Multiple pathogens -including Epstein-Barr virus (EBV),
Mycobacterium tuberculosis (MTB), Porphyromonas gingivalis
(Pg) and others- have been implicated as potential instigators of
RA (57-59). Antibodies towards these infections and dysbiosis of
mucosae’s microbiota have been found in higher titters on RA and
early RA patients, compared to healthy controls (60-64). These
microorganisms may trigger autoimmunity through mechanisms
such as molecular mimicry, where the structural similarities
between microbial antigens and self-proteins provoke a cross-
reactive immune response to self-antigens; epitope spreading,
which broadens the autoimmune response to additional self-
antigens; and bystander activation, where infection-induced
inflammation and cytokine release non-specifically activate T cells
(65). Together with NET formation, these mechanisms expand the
pool of autoreactive T and B cells, lowering the threshold for
autoimmunity (48, 58). As an example, high sequence homology
between these microorganism’s antigens and key host molecules like
interferon regulatory factor 5 (IRF5), involved in macrophage and
dendritic cells (DCs) inflammatory response as well as B cell antibody
production, has been found (66). This similarity results in cross-
reactivity towards antigens from EBV, MAP and self-IRF5 (66, 67).

The mucosal endotype hypothesis further explains RA
pathogenesis by emphasizing the role of different mucosal sites:
lungs, gut and oral cavity (58). Each of these sites exhibits unique
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smoking or some types of pollution and genetic factors mediate the loss of immune tolerance towards self-epitopes before disease onset. APCs,
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inflammatory responses that may contribute to the systemic
generation of autoantibodies. As it has already been covered, early
inflammatory changes and local antibody production in lungs have
been linked to both smoking and chronic respiratory infections.
Similarly, in the oral cavity, periodontal disease driven by pathogens
such as Pg not only damages the local mucosal barrier but also
promotes NETosis and subsequent citrullination of bacterial as well
as host proteins (68-70). This process can initiate a B cell response
that eventually leads to the production of autoantibodies, setting the
stage for joint inflammation (69). Moreover, the gut microbiome in
patients with RA often shows distinct patterns of dysbiosis that are
associated with metabolic changes and immune activation (71-73).
These gut bacteria alterations can further contribute to the systemic
inflammatory setting that underlies RA. Autoreactive B cells,
generated autoantibodies or new self-epitopes resulting from
these mucosal inflammatory processes can migrate systemically
towards the joint (52, 74-79). Collectively, these observations
underscore a multifaceted interplay between genetic
predisposition and environmental attacks - including smoking,
microbial infections and possibly even exposure to inorganic
particles like silica (80, 81) - that collectively disrupts immune
tolerance, culminating in the onset and progression of RA. Given
the multitude of factors and mechanisms capable of breaking
tolerance, RA is inherently a heterogeneous and complex disease.
Breach of tolerance is characterized by the aberrant
presentation of citrullinated proteins, which primes both innate
and adaptive immune responses, ultimately leading to the chronic
production of inflammatory cytokines, autoantibodies and
perpetuation of tissue damage. Consequently, restoring immune
tolerance, particularly to citrullinated proteins, represents a
promising therapeutic avenue for achieving remission in RA.

3 Role of ACPAs in pathogenesis of
rheumatoid arthritis

While ACPAs are well established as diagnostic biomarkers for
RA (14), increasing experimental and clinical evidence indicates that
ACPAs are not just markers of disease but active contributors of joint
pathology. Beyond their value in diagnostics, ACPAs are associated
with disease severity or treatment outcome (82). In addition, epitope
spreading reflects ongoing activation of autoreactive B and T cells,
pointing towards their active role in disease (83).

The following section examines evidence on processes leading to
the generation of citrullinated antigens that drive ACPA generation,
the B-cell subsets involved in ACPA production, their structural
diversity and the cellular and molecular pathways by which ACPAs
contribute to synovial inflammation and joint destruction.

3.1 Generation of citrullinated antigens

Citrullination of proteins is a posttranslational modification
consisting of the deamination of arginine by PAD enzymes. Under
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physiological conditions, this modification serves as a regulatory
mechanism for protein function and is well tolerated by the
immune system (84). However, when citrullination overcomes
physiological regulation, changes in conformation and charge
distribution of peptides leads to disrupted protein interactions,
converting citrullinated epitopes into self-antigens (85).

Excessive citrullination can promote protein autophagy and
subsequent presentation by DCs, macrophages and thymic DCs,
driving CD4" T cell activation (86). It can also enhance peptide
binding affinity to MHC-II (87), leading as well to CD4™ T cell
activation and contributing to tolerance breakdown.

Normally, dominant factors of self-antigens interact with the
MHC-II of antigen presenting cells (APCs), while “cryptic” epitopes
remain unrecognized. As a result, dominant epitopes become
available for recognition during thymic T-cell tolerance, while a
population of CD4" T cells remain capable of recognizing cryptic
epitopes. As it has been mentioned, citrullination can unmask these
epitopes by increasing their MHC-II binding affinity, enabling their
presentation and recognition by autoreactive T cells (85).

Interestingly, overcitrullination does not only disrupt tolerance
when it happens on a self-antigen; PAD2 enzyme has been reported
to citrullinate transcription factors responsible for CD4" T cell
differentiation into Th1, Th2 and Th17, altering the differentiation
itself and the populations of the resulting type helper T cells (85,
88). Citrullination of cytokines CXCL10 and CXCL11 reduce their
interaction with T cells, hindering their chemotaxis to inflammation
site (85, 89).

Overall, there are subpopulations of both B and T cells reacting
towards citrullinated epitopes in the synovial of RA patients, being
the last ones commonly found mainly as Th1 and Th17 phenotypes
(90-93). Several efforts have been carried out to identify pathogenic B
cell subsets in ACPA/+ RA patients. By single cell RNA-sequencing
of CD45" hematopoietic cells, Wu et al. found differences between the
synovial immune cell subsets of ACPA/+ and ACPA/- RA patients,
pointing out different immunopathological mechanisms related to
these autoantibodies (94). Aiming to find pathogenic B cell subsets,
Thorarinsdottir et al. found that in ACPA/+ RA patients most of the
B cells in SF belonged to a CD217°" subset. Under IL-6 stimulation,
these cells expressed CXCR3 and RANKIL, leading to osteoclast
differentiation and bone destruction (95). Among this subset,
ACPA/+ patients displayed CD217"°"CD271gG" class significantly
increased in peripheral blood and comprising 40% of the CD217""
cells in SF (95), matching posterior studies in which CD27IgD" and
memory CD27" IgD™ B cells were found in higher ratios in the SF
compared to peripheral blood, suggesting these subgroups are key
players in RA synovium inflammation (96). Consistent with previous
results, Floudas et al. further proved the reduced presence of CD27"
IgD™ B cells along with the accumulation of PD-1" B cells in SF and
synovial tissue of RA patients, compared to healthy controls (97).
Other subtypes found in higher percentages in ACPA/+ patients were
CD19" B cells (91); and for patients with early RA, human leukocyte
antigen (HLA)-DR"-peripheral type helper T cells, PD-1" CD8* T
cells, CXCR5~ CD11c” CD38" naive B cells (98) and CD19" CD24™
CD3sg™ regulatory B cells (99).
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3.2 Diversity and glycosylation of ACPAs

ACPAs isolated from serum, plasma and SF of RA patients have
been found as targeting over 100 citrullinated proteins (100-104).
Notably, the affinities of these antibodies vary significantly both
among patients and as disease progresses (83, 105-107). While
some ACPAs only bind a single target such as citrullinated
vimentin, fibrinogen or collagen (108, 109), most are highly
promiscuous towards multiple citrullinated epitopes (110-112) or
even other posttranslational modifications as acetylation and
carbamylation (10, 112-114). Structurally, ACPAs are heavily N-
glycosylated in their fragment antigen-binding (Fab) domain. Over
90% of ACPAs (compared to 15-25% of IgGs in human serum) are
N-glycosylated in their variable domain (115, 116), and over 80% of
receptors on ACPA-producing B cells contains N-glycosylation
sites (116, 117). It is suggested that N-glycosylation provides
ACPA-producing B cells with a selective advantage, enabling
them to escape negative selection of the B cell receptor, thereby
promoting autoimmunity (116, 118). On the other hand, Zhao et al.
unveiled the complexity N-glycosylation in ACPAs by proving that
upregulating sialylation of the crystallizable fragment (Fc) of
ACPAs in B cells from collagen induced arthritis CIA mice
attenuates disease progression (119), correlating to previous
literature reporting decreased sialylation in the Fc region of
serum ACPAs from RA patients and how this desialylation is
related to inflammatory processes (119-122).

3.3 Mechanisms of ACPA-mediated
pathogenesis

The presence and pathogenesis of ACPA in murine arthritic
models has been debated (108, 123). Their proposed pathogenic
mechanisms include direct targeting and degradation of
citrullinated proteins in joint cartilage, such as type II collagen;
enhancing fibroblast-like synoviocyte migration and adhesion
within the synovium, where they release proinflammatory
cytokines, create an erosive interphase and are involved in the
citrullination of new self-antigens (124, 125); direct targeting of
osteoclast precursors promoting their differentiation (108, 126); or,
as it will be further discussed, interaction with several immune
system components resulting in a feedback loop that enhances the
production of more ACPAs and proinflammatory agents such as
cytokines, reactive oxygen species (ROS) and degradative enzymes,
among others (Figure 2). Interestingly, ACPAs have different
mechanisms when they interact on their own or via Fc gamma
receptor (FcyR) after forming immune complex (IC) with RF
(Figure 2). A protective role of ACPAs has also been suggested
(127), highlighting the functional diversity of these autoantibodies.

Pointing out the effect of ACPA in different immune subsets,
evidence shows that T follicular Th cells responses were reported
higher in ACPA/+ than in ACPA/- (96). On the other hand,
percentage of disease relevant Th17 was not dependent on
seropositivity (91, 92).
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ACPAs interaction with citrullinated glucose-regulated protein
78 (grp78) on macrophages’ surface reported activation of
extracellular signal-regulated kinases (ERK)1/2 and c-Jun N-
terminal kinase (JNK) signaling pathways, as well as enhancing
NEF-xB activity and tumor necrosis factor-alpha (TNF-0) secretion
(128-130). ACPAs can also activate macrophages via TLR4- and
MyD88- dependent (131-133) or CDI147-integrinbl-PI3K-Akt
pathways, this last one activating NF-«B signaling and NLRP3
inflammasome cascade and pro-IL-1P release (134). Otherwise,
when found as ICs with RF, monocytes were also stimulated by
binding FcyRs which enhanced proinflammatory cytokine release in
synovial membrane (135) as well as regulating differentiation into
osteoclasts (136, 137). Breedveld et al. stimulated monocytes with
SF isolated ICs, resulting in IL-6 and IL-8 release and subsequent
activation of osteoclast activation (133, 138). Connection of PAD4
and macrophages in RA has been described. Enzymatically active
PAD4 was found present on the monocyte surface, being a source of
novel ACPA autoantigens by citrullinating both soluble and surface
proteins (139). These findings correlate with the already reported
role of SF and lymphoid tissue macrophages in citrullination of
proteins and ACPA production (140). Interestingly,
autocitrullination of PAD4, which is found in SF ACPA/-
patients, exacerbated inflammatory arthritis in mice models
through monocyte recruitment, suggesting an ACPA-independent
role of PAD4 in RA pathogenesis (141).

Neutrophiles are another immune cell type targeted by ACPAs
(142, 143). The already mentioned ICs have been reported to activate
neutrophiles leading to cartilage and tissue destruction due to
neutrophil degranulation, release of degradative enzymes, ROS, as
well as activation of soluble receptors and cytokines causing general
tissue inflammation (144, 145). NET formation has also been observed
on SF and sera of RA patients (146-149), correlating to ACPA levels
and their immune complexes, which enhances inflammatory response
in synovial fibroblasts via activation of IL-6, IL-8 and adhesion
molecules, among others (138, 147-149). Some forms of NETosis
rely on PAD4 activity (150, 151) and results into citrullination of
proteins (specially histones) in the synovial space, engaging a positive
feedback loop for which either synovial autoreactive ACPA-producing
B cells or direct presentation of citrullinated antigens to T cells by
fibroblast-like synoviocytes leads to the production of more
autoantibodies (148). Indirectly, neutrophils can also get activated
through ACPA binding to osteoclasts, as this leads to secretion of
CXCLS8, promoting neutrophil attraction and NET release, which
again increases ACPA activity through binding to citrullinated
histones in the released NETs (152).

Even though the appearance of ACPAs has been linked to
environmental factors as smoking and some viral infections (among
others) (153, 154), ACPA/+ RA patients have shown a gene
signature based on the already mentioned HLA complex, which is
crucial for antigen presentation between immune cells. Both RA
and ACPA development were found to be connected to HLA
haplotypes expressing the shared epitope (SE), which codes for a
QKRAA peptide motif on the MHC (153-157). Similarly, both
humanized and non-humanized mice models expressing different
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Representation of ACPA-mediated pathogenesis in synovium and crosstalk of different immune and structural components in seropositive RA. Main
ACPA-derived response on different cell types is stated. APCs, antigen presenting cells; CXCR3, chemokine receptor 3; ERK, extracellular signal-
regulated kinase; FcyR, Fc gamma receptor; FLS, fibroblast-like synoviocytes grp78, glucose regulated protein 78; JNK, Jun kinase; MHC, major
histocompatibility complex; MCS, macrophage colony stimulator; NETs, neutrophil extracellular traps; NF-kB, nuclear factor-kappa B; PAD, protein
arginine deaminase; PI, proinflammatory; RF, rheumatoid factor; ROS, reactive oxygen species; TLR4, Toll-like receptor 4; *reported via IC
mediation; **reported both via IC and ACPA mediation. Created with BioRender.

RA-related haplotypes of HLA containing the SE generated ACPAs
to a greater extent upon disease induction with PAD rather than
those with haplotypes lacking SE (158, 159).

4 Current treatment landscape for
rheumatoid arthritis

Current pharmacologic treatment options for RA can be
divided into three major groups: steroids and disease-modifying
antirheumatic drugs (DMARDs). Steroids are only symptomatic
and are not able to change the long-term course of the disease,
therefore the European League Against Rheumatology (EULAR)
recommendations for RA treatment utilizes conventional synthetic
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DMARDs (csDMARDs) methotrexate (MTX) as initial treatment,
eventually in combination with short-term glucocorticoids during
disease flares. In the case that csDMARDs are not effective,
biological DMARDs (bDMARDs) (which are related mainly to
cytokine regulation) or targeted synthetic DMARDs (tsDMARDs)
such as Janus Kinase (JAK) inhibitors are employed. Here, multiple
modes of action are available, underlining the immunopathological
heterogeneity of RA (160). As it is illustrated in different cohorts,
most of RA patients receive MTX while smaller fraction receive
bDMARD:s (161-163).

Treatments are aimed to reduce disease activity and prevent
joint damage; managing RA follows treat-to-target strategies (164).
If treatment target (which is based on remission in early disease and
low disease activity in long-standing disease), is not achieved at 3
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and 6 months, respectively, EULAR guidelines (2022) recommend a
change in treatment regime.

The persistence of different groups of therapeutics in clinic has
been reviewed over the last 6 years by several nation-wide
organizations, with cohort ranging from 900 to 5100 RA patients.
Depending on the cohort, TNF-o inhibitors (- DMARDs targeting
TNF-o) have a retention rate of 29% to 58%, while in the case of
JAK inhibitors, retention rates are 40% to 72% (165-167). Still,
discontinuation rates due to adverse events are similar between
TNF-o inhibitors and JAK inhibitors (168).

4.1 Challenges in achieving immunological
remission

Existing treatments such as MTX and several costly biological
therapies can slow disease progression but do not cure the disease.
Depending on the cohort, range from 39% to 70% patients do not
reach the preferred goal of sustained remission or low disease
activity (161-163).

The effect of bDMARDs and JAK inhibitors can also be
dependent on ACPA seropositivity. For example, drugs like the
JAK inhibitor tofacitinib (169), B cell depletor rituximab (170, 171)
and T cell modulator abatacept (172) have better efficacy on
seropositive groups, compared to seronegative groups. TNF
inhibitors show similar efficacy in seropositive and seronegative
disease (172).

In a cross-sectional analysis of RA patients treated with various
c¢sDMARD:s and/or JAK inhibitors, Neppelenbroek et al. suggested
that ACPA"™ B cells retained their activated and proliferative
phenotype, despite effective control of inflammation and clinical
disease. The absence of immunological remission might explain
why ACPA/+ patients rarely reach sustained drug-free remission.
This continued activated state of ACPA-B cells indicates chronic
exposure of these cells to stimulating triggers along disease course,
which in this study was 11 years (average) (173). Tocilizumab,
another FDA-approved bDMARD, managed to decrease synovial T
cells and disease activity on patients after 8 weeks of treatment, but
did not manage neither to decrease the count of CD68"
macrophages or CD20" B cells in synovium, maintaining
unchanged local levels of RANKL and significantly increasing
systemic levels of IL-6 and RANKL (174), two cytokines that as
previously mentioned, are expressed by synovial macrophages and
B cells and are related to joint erosion (45, 133, 138).

Despite significant advances, current RA therapies do not
achieve durable, immunological remission across all patient
groups. Their effectiveness often depends on ACPA status, with
seropositive individuals responding more favorably, yet still without
showing immunological remission despite clinical improvement.
To address this disparity, emerging antigen-specific therapeutic
strategies are proposed as considerable therapeutics toward
sustained immunological and disease-modifying remission.
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5 Restoring immune tolerance:
emerging mechanisms and therapeutic
approaches

5.1 Fundamental mechanisms of tolerance
restoration

Tolerogenesis or tolerance recovery is understood as the process
by which the immune system re-establishes its ability to recognize
and tolerate self-antigens, thereby preventing autoimmune
responses and maintaining immune homeostasis. Mechanisms of
immune tolerance can be broadly divided into central and
peripheral tolerance. Central tolerance occurs primarily in the
bone marrow and thymus, where autoreactive T cells undergo
clonal deletion before entering the circulation (175, 176).
Peripheral tolerance, by contrast, regulates mature T cells in the
periphery through multiple mechanisms, including (i) T cell anergy,
where T cells become non-proliferative upon antigen stimuli,
commonly lack co-stimulatory molecules and are functionally
inactive (177, 178); (ii) T cell ignorance, being ignorant T cells
unresponsive to their autoantigens yet potentially able to be
activated again (179); (ili) T cell exhaustion, associated with
constant antigen exposure (180, 181); (iv) clonal deletion of
mature T cells in the periphery, mediated through antigen
presentation (182, 183).

Treg cells can suppress local immune responses elicited by Th
cells upon receptor activation of disease-causing antigen (184, 185).
Additionally, Treg expansion has been proved to reinduce tolerance
(177, 186, 187). Highlighting the pivotal role of antigen-specific
Treg expansion in tolerance recovery, imbalances in Th1/Treg and
Th17/Treg (as well as Th1/Th2 ratios) are often associated with loss
of tolerance in RA (17-20).

5.2 Established therapies with tolerogenic
potential

The bDMARD abatacept targets CD80 and CD86 on the surface
APCs including B cells. CD80 and CD86 are key co-stimulatory
molecules for antigen presentation and T cell activation. In a study
by Lorenzetti et al, in vitro abatacept treatment was shown to
decrease CD80-CD86 expression on B cells in a dose-dependent
manner. In contrast, clinical assessment revealed only a moderate
reduction in ACPA levels but a significant decrease in the ACPA-
specific B cell population, suggesting a restoration of tolerance
(Figure 3) (188). The bDMARD rituximab targets CD20, leading to
a depletion of B cell populations for 6-9 months (189), yet without
elevating the likelihood of infections in patients relative to other
forms of bDMARD treatment (190, 191). Tolerance recovery is
suggested by the posterior regeneration of the B cell subpopulations,
finding different subset composition than found before treatment
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(Figure 3) (192). Naive B cell population increased, while CD27"
memory cells stayed significantly reduced (0.5-fold) for up to 2
years (192).

6 Novel drug candidates and
strategies for tolerance induction

Current RA treatments do not effectively target the underlaying
immunologic causes of the disease, being reflected in the high relapse
incidence and the large RA population that does not achieve complete
remission. One study found that after 5 years of treatment, 55% of RA
patients had switched treatment due to treatment failure or, to a lesser
extent, due to adverse events (193). Given RA heterogeneity and that
patients may require multiple successive therapies throughout life
(160), there is a need for treatments employing different modes of
action. This need is reflected in the several trials for RA treatment that
have been reported during the last 10 years, where the main goal is to
restore tolerance and “re-educate” the immune system rather than
decrease inflammation by targeting its components (Figure 3, Table 1).

6.1 Cell-based tolerance recovery
therapies

In a small trial consisting of three patients with treatment
resistant RA, CD19-directed Chimeric antigen receptor (CAR)-T
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cell treatment caused B cell depletion and reduced the pathogenic
interleukins IL-6 and TNF-o as well as RF and ACPA levels (194).
Along with lowering joint inflammation and the absence of relapse,
the progressive repopulation of B cells non-associated to an increase
of pathogenic antibodies 9 months after treatment makes CAR-T
therapy a promising tool to restore tolerance in difficult to treat
cases (Table 1 for detailed information) (194). A reported case with
this outcome described one RA patient treated with CD20/CD19-
directed CAR-T cell therapy following a diagnosis of diffuse large B
cell lymphoma (205). However, most available data for this type of
treatment in RA come from very small cohorts, sometimes down to
individual case reports (206, 207). In vitro data of similar CAR-T
cell therapies backs up the previous results by eliminating
autoreactive B cell populations from RA patients’ serum (208).
However, longer and bigger trials need to be carried out to dismiss
the serious toxic effects that this type of therapy is suspected to have
in rheumatic autoimmune disease treatment (206, 209).

Ex vivo-generated autologous tolDCs introduced to a specific
antigen have been explored due to their capacity to present antigens
to T cells (210). TolDCs are not only able to cause T cell anergy or
the expansion of Treg cells by providing constant exposition to the
specific antigen in CIA murine model (211, 212), but they also
express PD-1 and anti-inflammatory cytokines IL-10 and IL-35
(213). Thus, it is understandable that peptide loaded tolDCs have
been successfully utilized in multiple clinical trials aimed at
restoring tolerance in autoimmune diseases such as multiple
sclerosis (214) and type I diabetes (215, 216). In the case of RA
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TABLE 1 Overview of therapeutic candidates discussed in this review with tolerogenic effects, either approved or under clinical investigation for RA.

Drug Type of Regulatory status =~ Mechanism/ Formulation Cohort size Outcome
candidate therapeutic target and dosage [ACPA/+
patients] Inflammation Immunomodulatory
reduction regulation
Abatacept bDMARD FDA- and EMA- Inhibition of Infusion, 10 mg/kg 9 RA refractory Reduction in DAS28 score to low  Leucocytes and lymphocytes did not (188)
approved antigen patients disease activity or remission significantly change.
presentation and (DRKS00012864) ranges (< 3.2 and < 2.6). Significant decrease (1.55-fold) in
T cell activation (78% under ACPA-specific B cell populations
via CD80/CD86 prednisone, 100% sustained over observation time (42
expression under MTX) months).
downregulation. [100% ACPA/+]
Rituximab bDMARD FDA- and EMA- B cell depletion Infusion 4x375 mg/ | 17 RA refractory DAS28 score improved from 6.1 B cell depletion for 6-9 months and (192)
approved via CD20 m? (weekly) or patients to 4.1; CRP levels were reduced posterior regeneration of naive B cells.
targeting. 2x1000 mg (every (70% patients were 80% from baseline. CD27" memory cell population
two weeks) under MTX) remained reduced (<50%) after
regeneration for more than 2 years.
CAR-T cell therapy [-] CD-19 targeting Cell infusion, 3 RA patients, Number of swollen joints CD19" B cell depletion and reduced IL- ~ (194)
and secretion of 1.0x10° CAR T- (under csDMARD decreased for all patients. 6, TNF- o, RF (not found after
antibodies against  cells/kg and bDMARD DAS28-CPR scores decreased up  treatment) and ACPAs (35,6- to 865-
IL-6 and TNF-o. treatments) to 66%, 48% and 34% of the fold) levels. RA-related antibodies were
[100% ACPA/+] initial value. No relapse was significantly reduced for 6 months.
observed during observation B cell reconstitution was observed from
period-9 months. 60 to 90 days.
Rheumavax Ex vivo-generated Phase I Reduction in T, Intradermal 34 RA patients: Treated patients with active Reduction in Teff population by at least = (195)
autologous tolDCs (ACTRN12610000373077) | potentially via -9, 1x10° DCs disease (DAS28 > 2.4), DAS28 25% in 11 out of 15 treated patients.
clonal deletion or -9, 5x10° DCs had a median change of -0.84 in Increase in Treg population by >25% in
anergy. - 16, placebo 1 month and -0.45 in 6 months. only 5 of 15 treated patients.
(under TNFi and/or Increase in Treg/Teff ratio by >25% in
csDMARDs) 11 of 15 treated patients.
[100% ACPA/+]
Dazodalibep Binding protein Phase II, complete B cell activation Intravenous 57 RA patients: DAS28-CRP score improved with | Reduction in B cell proliferation (196)
(NCT04163991) inhibition via infusion - 12, 1500mg a 2.3-2.2 point reduction for (specially within IgD"CD27" memory B
CD40 targeting. - 12, 1000 mg groups treated with the highest cells) and T cell dependent antibody
- 10, 500 mg doses over 12 weeks. production upon immunization with
-8,75 mg keyhole limpet hemocyanin (KLH) two
- 15, placebo weeks after treatment. 43 days after
[96% ACPA/+] immunization, anti-KHL IgG titters
were undetectable for 15000 mg dosed
group.
78 RA patients: DAS28-CRP score showed [-] (197)
- 15, 2x3000mg improvement (1.83 to 1.90
- 16, 1x3000mg points) in all treatment groups at
- 15, 4x1500mg day 113; reductions from DAS28-
(Continued)
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TABLE 1 Continued

Drug
candidate

Type of
therapeutic

Regulatory status

Mechanism/
target

Formulation
and dosage

Cohort size
[ACPA/+

patients]

- 16, 2x1500mg
- 16, placebo

Outcome

Inflammation
reduction

CPR baseline were also present at
day 309.

Immunomodulatory
regulation

IRL201805

Jusvinza

DNAJP1

DEN-181

Antibody

Peptide

Phase II (RVLO 221-02)

Phase 11T
(RPCEC00000433,
RPCEC00000404)

Phase II, (NCT07013110)

Phase I, complete
(ACTRN12617001482358)

Antigen
presentation
capacities of DCs
reduction via
inhibition of
HLA-DR and
CD86 expression.

PAD-4 mediated
inhibition of
NETosis.

Antigen specific
tolerance
recovery to HSP
epitope and
shared epitope
homologue.

Antigen specific
tolerance
recovery.

Intravenous
infusion

Subcutaneous 4
doses/weekly, 5
doses/monthly

Oral, 6 months/
daily.

Liposomal injection
containing CII-
derived peptide and
NF-kB inhibitor
calcitriol,
subcutaneous

24 RA refractive
patients

-6, 15 mg

-6, 5 mg

-6, 1 mg

-6, placebo

(under csDMARDs)

20 RA patients
-6, 1 mg
-5,2.5 mg

-9, 5 mg

[60% ACPA/+]

160 active RA
patients with
immunologic
reactivity towards
DNAJP1

-36, 25 mg

-45, 25 mg + HCQ
-33, placebo

-46, placebo + HCQ

56 RA patients under
MTX treatment.

- 4,12.6 mg CII

- 3,42 mg CII

- 4,126 mg CII

- 6, placebo

[100% ACPA/+]

DAS28 score reduction bellow
3.2 after 12 weeks in responding
RA patients (43%).

DAS28 score reduction greater
than 1.2 for all patients by end of
observation period (6 months);
as well as achievement of ACR50
and ACR70 by 28% and 61% of
patients, respectively.

At approximately 6 months, 33%
and 49% of patients treated with
DNAJP1 and HCQ achieved

ACR50 and ACR20, respectively.

Patients on low and medium
dose had a remission of < 2.6
DAS28-CRP on day 57. DAS28-
CRP for patients treated with
high dose increased over the first
15 days.

Overexpression of CD39 in Tregs (198, 199)
(related to Treg activity) in responding

patients, after 12 weeks.

Significant reduction in serum ACPA (200-202)
levels.

Ex vivo assays showed a 1.5-fold

increase of Treg cells when PBMCs of

RA patients were exposed to Jusvinza.

Alterations in T-cell differentiation (203)
clusters associated with self-reactivity,

decreased TNF-ot and increased IL-10,

PD-1 and CTLA-4 expression.

Reduction on citrullinated vimentin- (204)
reactive T cells and memory B cell,

along with serum ACPA levels. Increase

of ClI-specific PD-1" T cells within 28

days of treatment and identification of

T cell transcripts relating to TCR

signaling and T cell exhaustion.

CII, collagen type II.
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treatment, it is important to mention the few candidates that
showed promising results in small cohort clinical trials phase I (9
to 18 patients), currently recruiting for further studies or ongoing
clinical trials: Rheumavax (ACTRN12610000373077),
AuToDeCRA (ISRCTN14999554) and CreaVax-RA
(KCT0000894). AutoDeCRA tolDCs have been exposed to the
antigens of the patients’ SF, while CreaVax-RA tolDCs have been
exposed to PAD4, RA33 (heterogeneous nuclear ribonucleoprotein
A2/B1 (hnRNP A2/B1)), citrullinated filaggrin and vimentin (217).
AutoDeCRA trial failed to show efficacy on clinical inflammation
parameters, changes in serum cytokine levels or in peripheral T cell
phenotype (218). In the case of Rheumavax, consisting on tolDCs
with the NF-xB pathway inhibited and exposed to citrullinated
peptides derived from vimentin, collagen type II, aggrecan and
fibrinogen, better results were observed. 1 month after Rheumavax
treatment, T effector (Teff) cells were reduced compared to
untreated controls, while the ratio of Treg/Teff increased,
pointing to a shift in the immune balance (195). Cytokine IL-15,
IL-29, CX3CL1 and CXCLI11 levels as well as T cell mediated IL-6
response towards the citrullinated vimentin peptide found in
Rheumavax were reduced (195). It is also worth mentioning the
TOLERANT clinical study, which is in recruiting stage (phase I,
NCT05251870). As well as the previously mentioned therapies, in
this trial HSP70 peptide loaded DCs will be employed in order to
induce and/or expand Treg populations (219).

6.2 Tolerogenic monoclonal antibodies
and binding proteins

Peresolimab, an IgG monoclonal antibody that stimulates PD-1
pathway, showed a positive primary outcome by reducing DAS28
score compared to the placebo group 12 weeks after treatment in a
phase II clinical trial. However, in secondary outcome measures,
peresolimab was only significantly better than placebo with respect
to ACR20 responses, but not with respect to ACR50 or ACR70
responses (220). Aiming for T cell activation suppression,
peresolimab is intended to reset the immune response to restore
immune tolerance (221). Differently, inhibiting B cell activation and
plasma cell differentiation by means of CD40L binding protein
targeting, dazodalibep was tested in a phase I trial (196). CD40 is
expressed on many APCs (incl. DCs, macrophages and B cells) and
non-hematopoietic cells. Effective humoral response to T cell-
depending antigens rely heavily on CD40/CD40L interactions
between B cells and T cells. Not only DAS28-CRP went down to
-2.3 compared to baseline, but a significant reduction in B cell
proliferation and T cell-dependent antibody production were
reported (196). Further clinical trial (phase II, NCT04163991)
confirmed the reduction of DAS28-CRP score over 309 days on a
bigger cohort of 62 treated RA patients and 16 disease
controls (197).

Part of HSP70 family, binding immunoglobulin protein (BiP) is
involved in the peripheral blood monocytes differentiation into DCs
and osteoclasts. Treatment of maturing monocytes with BiP results
in reduced antigen presentation capacities of DCs due to lower
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expression of HLA-DR and CD86. Recombinant human BiP
administration has been reported to prevent and ameliorate
disease in murine CIA models (222, 223). BiP analogue
IRL201805 was administrated to RA patients and its effects were
monitored for 12 weeks in a phase I/Ila trial. DAS28 score was
consistently reduced in the fraction of patients that responded to
treatment (43%) (198) without any serious adverse drug reactions
reported (199). When the 4 week-after treatment PBMCs of
responder RA fraction was incubated with their own PBMCs
before treatment, these ones produced significantly less IFN-y
than RA patients treated with placebo. As a part of the
inflammatory response regulation, serum levels of pro-
inflammatory cytokines IL-1f, TNF-ot and IFN-y were reduced
while SCTLA-4 increased. Related to the pro- to anti-inflammatory
shift observed in serum cytokine levels, Treg stability and potency
related CD39 was found overexpressed in the Tregs of the patients
responding to the treatment (198).

6.3 Peptide and antigen-based
immunomodulatory therapies: emphasis
on citrullination

Peptides emerge as highly specific and versatile drug candidates
for tolerance recovery in RA and other autoimmune diseases (224-
231). Their high specificity minimizes potential drug-drug
interactions, making them suitable for combination with other
RA therapeutics. Preliminary and exploratory trials in RA
patients have employed them in combination with different
c¢sDMARDs reporting treatment efficacy and no concerning
adverse effects (200, 203, 204). Compared to antibodies, their
small size, enhanced stability, scalable production and
customizable structure make peptides particularly attractive for
achieving precise interactions with immune targets while
maintaining relatively low immunogenicity and lower production
cost characteristic of small molecules (232, 233).

The T cell-activating peptide based on the immunogenic HSP60
Jusvinza, approved in Cuba for cases of COVID-19 with
hyperinflammation, is currently under clinical trials (phase III,
RPCEC00000433) to treat RA patients. As it has been mentioned
previously, NETosis is related to inflammation in RA as well as
citrullination of new antigens and production of new ACPAs.
Protein expression of neutrophiles from patients treated with
Jusvinza was found to be differently modulated, including
differences on the already mentioned NF-xB pathway (234).
Overall, RA patients treated with Jusvinza displayed PAD4-
mediated inhibition of NETosis, which was further confirmed
with in vitro experiments (234). Phase I clinical trials in RA
patients treated with Jusvinza showed a reduction on blood
ACPA levels DAS28 score and achievement of ACR50 and
ACR70 in 6 months (200, 201). Complementary, ex vivo assays
showed a 1.5-fold increase of Treg cells when PBMCs of RA patients
were exposed to Jusvinza (202), suggesting that tolerance recovery
towards citrullinated antigens could be mediated by NETosis
inhibition. Also derived from an HSP, T cell proinflammatory
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epitope DNAJP1 peptide was used to treat RA patients with PBMCs
reactive towards the candidate (75% of the tested participants) in a
clinical trial phase II (203). Upon treatment, TNF-o. expressed by T
cells decreased significantly while IL-10 expressed by T cell
increased, along with PD-1 and CTLA-4 (203). These results
match previous phase I outcomes for the same peptide, where
DNAJP1-specific T cell number did not change over treatment
(hence, there was no clonal deletion) but changes on clusters of
differentiation on them pointed that immune reactivity towards the
self-peptide did (235).

DEN-181, a subcutaneous formulation consisting of RA-joint
HLA-DRB1*04:01- and *01:01-haplotypes specific collagen type
1,59 273 peptide and NF-xB pathway inhibitor calcitriol in
liposome formulation, reduced the population of citrullinated
vimentin-specific T cells in MTX-treated patients under a phase I
clinical trial (204). The improvement in disease activity observed in
RA patients was associated with the tolerogenic effects of the
peptide-based therapy DEN-181, including an early expansion of
PD1" collagen type II- and citrullinated vimentin-specific T cells,
followed by a reduction in ACPAs, an increase in CCR7" naive T
cells and a decrease in memory B cells (204). CCR7" expression in T
cells is related to T cell migration from peripheral tissue to lymph
node (236). Disruptions in this migratory process lead to peripheral
tissue Teff cell accumulation in inflammation and autoimmunity,
incl. RA (237). Used in DEN-181, calcitriol is a metabolite of
vitamin D. Vitamin D has been reported to elevate the percentage

10.3389/fimmu.2025.1648913

of Tregs and lower the DAS-28 score just after 3 months of
supplementation along MTX and hydroxychloroquine in RA
patients, compared to a group that were just treated with the
c¢sDMARDs (238).

Citrullinated antigens have also demonstrated potential in
promoting tolerance recovery. This process is typically achieved
through the persistent exposure to the antigen via repeated
administration of low doses, aiming to modulate T cell
population by depleting or causing T cell exhaustion on
pathologic Thl and Thl7 cells, reducing the expression of
proinflammatory cytokines that mediate these, or increasing the
population of Tregs (239). Gertel et al. utilized a multiepitope
citrullinated peptide, containing motifs from key citrullinated
proteins in RA such as filaggrin, fibrinogen, vimentin and
collagen. Their approach successfully improved the clinical status
of adjuvant-induced RA rats (Table 2). The increase of Treg and
reduction in Th17 cells, previously associated with reactivity
towards citrullinated epitopes (90-93), indicated tolerance
induction (239).

CEL-4000 consists of a proteoglycan (PG) non-citrullinated
epitope derived from cartilage PG aggrecan (PG70) conjugated to a
ligand specific for CD4" T cells. This design allows the T cell
presentation of the immunomodulatory peptide to an APC via
MHC II while the CD4" ligand modulates T- cell activity. CEL-4000
was tested in PG-induced arthritis (PGIA) and G1 domain-induced
arthritis (GIA) mice models, switching cytokine production from

TABLE 2 Summary of preclinical studies evaluating tolerogenic peptides and monoclonal ACPAs in murine RA models.

Outcome

Therapeutic agent

Study
duration

Inflammation reduction

Immune cell and related
cytokine regulation

Multiepitope (filaggrin, AIA rat 29 days Mean paw diameter of treated group was Significant increase in splenic CD4" CD25" (239)
fibrinogen, vimentin and 19% (p < 0.002) and 11% (p < 0.03) Foxp3" Treg populations was observed in
collagen) citrullinated smaller than untreated and non- treated rats, compared to untreated and non-
peptide citrullinated multiepitope peptide controls, | citrullinated multiepitope peptide controls (p
respectively. Trend was confirmed over < 0.01). Parallelly, splenic IL-17* CD4" T
inflammation indices measured with H&E | cells (Th17) were significantly reduced in
immunostaining. treated group compared to untreated
controls (p < 0.03).
CEL-4000 (proteoglycan GIA mice 35 days By the end of observation period, arthritis Cytokine profile production switch from Thl | (240)
epitope + CD4™ T cell score* (based on swelling and redness of and Th17 to Th2 and Treg. Compared to
ligand) paws, visual) for CEL-4000 and CEL-5000 adjuvant treatment control, splenic cells
treatment groups was lower than in from CEL-4000 mice had elevated IL-10:
CEL-5000 adjuvant treatment control group (p = IFN-v ratios (p < 0.05); while in CEL-5000,
(citrullinated proteoglycan 0.0114 and 0.0671, respectively). elevations on IL-4:IFN-y and IL-4:IFN-y
epitope + CD4" T cell ratios were observed (p < 0.05).
ligand)
CPEP2 CIA rat 56 days At study termination, arthritis score* of Upon treatment with CPEP2, TFN-o. serum (241)
(Cyclic citrullinated rats treated with CPEP2 was 90% lower levels were decreased compared to disease
fibrinogen derived epitope than control groups treated with PBS, control. Serum and synovial fluid levels of
formulated in chitosan- MTX or unloaded nanoparticles. IL-10 were found increased as well.
based nanoparticle)
Citrullinated peptides from HLA-DR mice 14 days [-] Expansion of CD4"T cells binding to HLA- (242)
human cartilage DRcitrullinated peptides; decrease of Thl
intermediate layer protein cells and increase of Treg cell populations.
(CILP) or fibrinogen
(Continued)
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TABLE 2 Continued

Animal
model

Therapeutic agent

Study
duration

ACPAs isolated from RA
patients

CAIA mice 14 days

Outcome

Inflammation reduction

Compared to controls, different
recombinant ACPA administration 3 and
7 days after CAIA induction reduced both
paw thickness and disease severity (1.4
fold, p <0.001) and bone erosion,
synovitis, and cartilage damage (p <0.01)
regardless of ACPA specificities;
preventing overall break of tolerance.

10.3389/fimmu.2025.1648913

Immune cell and related
cytokine regulation

(127)

28 days

Monoclonal ACPAs derived from patients
did not show arthritogenicity nor pain
signals on mice. ACPA clones E4 reduced
osteoclastogenesis and protected mice from

Clone E4 strongly binds to macrophages and
RA proteins from synovial fluid as o-enolase,
resulting in increased IL-10 secretion by
macrophages (p = 0.0013).

(243)

14 days

disease peak.

Several monoclonal ACPA inhibited CATIA = [-]
or quantitatively ameliorated disease 2
days post-injection, if administrated at

CAIA induction using different
arthritogenic cocktails.

(244)

13 days

‘When NETosis inhibitor monoclonal [-]
ACPA was injected 3 days posterior of
arthritogenic antibody cocktail, arthritis

score was reduced up to 94% compared to
disease control (p <0.01).

(245)

*based on swelling and redness of paws, visual; ATA, Adjuvant-Induced Arthritis; GIA, glucose-6-phosphate isomerase — Induced Arthritis; CIA, Collagen-Induced Arthritis; CAIA, Collagen

Antibody-Induced Arthritis.

Thl and Thl7 pro-inflammatory (TNF-o, IL-17 and IFN-y)
signature to an Th2 and Treg anti-inflammatory (IL-10, IL-4 and
TGF-B) one, as well as an increase in Treg cells (240, 246). CEL-
5000, which introduces a citrullinated PG epitope was also tested in
PGIA and GIA mice models. CEL-4000 and CEL-5000 developed
different immune responses, since mice did not produce high
antibody titters for the citrullinated epitope conjugate while they
did for CEL-4000’s. However, both treatments lowered arthritic
score, reduced inflammation levels (assessed by
immunohistochemistry) and achieved the same Th2-like anti-
inflammatory cytokine response (240).

Fibrinogen-derived citrullinated peptides have been intensively
investigated due to their high capacity to scavenge ACPA isolated
from RA patients, showing that cyclized structures bind with higher
affinities (247, 248). A fibrinogen-derived citrullinated cyclic
peptide have also been reported to treat CIA rat, showing a
significant decrease of joint swelling when compared to untreated
or non-citrullinated peptide control groups, along with an increase
of IL-10 (241). Data obtained from McElwee et al. suggests that
citrullinated fibrinogen may have potent tolerogenic properties
(242). When they immunized a transgenic HLA-DR mice model
with citrullinated peptides derived from cartilage intermediate layer
protein or fibrinogen, the arthritis-initiating response from CD4" T
cells upon presentation of citrullinated antigens was not observed.
Instead, expansion of CD4" T cell population binding to these
HLA-DRccitrullinated peptides was observed, with lower levels of
Th1 and higher levels of Treg cells. These results were not observed
when same mice model was immunized with citrullinated vimentin
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or enolase 1 peptides (242). Restoration of Treg over Th or Teft cell
populations and balance recovery was also seen in the already
discussed Gertel et al. study, where the multiepitope used to treat
adjuvant-induced RA rats contained citrullinated fibrinogen (239);
or on the successful Rheumavax trial, which contained tolDCs
introduced to citrullinated fibrinogen, among other citrullinated
peptides (195).

6.4 Modulating ACPAs

Gomez et al. recently showed that the injection of several
ACPAs isolated from RA patients ameliorated inflammation and
disease severity in collagen antibody-induced arthritis (CAIA)
model (127) adding up to a long list of examples where ACPAs
had therapeutic or preventive effects in RA murine models (243,
244,249). It is worth mentioning that in the experiments carried out
by Gomez et al, patients derived ACPAs were grouped and dosed
based on the predominant citrullinated antigen they targeted and all
groups had similar effects specially when injecting in early steps of
CAIA (127).

This seems to point out that in a target independent manner,
ACPAs have the ability to induce tolerance (in earlier stages) or
prevent break of tolerance that will exacerbate the disease in a CAIA
model (Figure 4A). He et al. also injected patient derived ACPAs in
healthy mice to observe neither arthritogenicity nor pain signs. One
of the antibodies protected the mice from antibody-induced arthritis
(CATA model) by forming ICs with citrullinated a-enolase and other
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A)

\)(/
ACPAs from RA
patients

o)

CAIA model \/'
murine joint
Controls
’ \\(/

Treatment

with tACPA
CAIA and CIA
models
mouse joint

ICs of
ACPAs with
cit. protein

Macrophage

Prevented break
of tolerance

Osteoclast

Reduced NETosis and
inflammatory response

Prevented break of
tolerance

histones 2A and 4
produced during

Neutrophile from healthy
individuals incubated with
SF of RA patients and tACPA

FIGURE 4

Inhibition of NET formation

Role of ACPAs in prevention of tolerance breach in murine RA models. (A) Injection of ACPAs isolated from RA patients prevented inflammation and
disease progression in CAIA model (127, 243). ACPAs were shown to form ICs with citrullinated proteins and interact with FcyRs IIB from osteoclasts,
promoting IL-10 release and reducing their osteoclastogenesis (136, 243). (B) Treatment with tACPA targeting citrullinated histones citH2A and citH4
prevented the development of inflammatory response in CAIA mice and inhibited NETosis in both murine model and human neutrophile stimulated
with SF from RA patients and other disease stimuli. IC, Immune Complex; tACPA, therapeutic ACPA; cit., citrullinated (245). Created with BioRender.

few citrullinated proteins from SF which posteriorly bound to
macrophages in the joints, resulting in increased secretion of anti-
inflammatory IL-10 and reduced osteoclastogenesis (243). Authors
attributed the reduction of osteoclastogenesis to the interaction of
the interaction of these ICs with FcyRIIB in macrophages
(Figure 4A) (136, 243). Another example of ACPA usage to
prevent the development of inflammation not only in CAIA RA
model but also in other NET-mediated pathologies as inflammatory
bowel disease, pulmonary fibrosis and sepsis, was reported by Chirivi
et al. (245) They developed an ACPA that specifically targets
citrullinated histones citH2A and citH4, which are generated
during NET release. Their lead therapeutic ACPA prevented the
inflammatory response in several autoimmune models (incl. CAIA),
reduced inflammation in CIA mice RA model, inhibited NET
formation in both murine models and in vitro experiments where
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healthy individuals neutrophiles were stimulated with different
disease-related stimuli (including SF containing ACPAs from RA
patients) and potentially favoured macrophage mediated clearance
of NETs (Figure 4B) (245).

7 Conclusions and future perspectives

Restoring immune tolerance in RA marks a meaningful
transition in therapeutic strategies, focusing on re-educating the
immune system rather than just suppressing its activity. Promising
preclinical and early clinical evidence supports this approach,
indicating that targeting the underlaying mechanisms of
autoimmunity may provide durable disease control with reduced
systemic immunosupresion.
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Peptide-based immunotherapies, such as Jusvinza, DNAJP1,
Rheumavax and DEN-181 have demonstrated the capacity to
modulate key immune pathways, Treg populations, lowering Th1/
Th17-driven inflammation, and, in some cases, reducing circulating
ACPA levels. Parallelly, tolerogenic cell therapies and monoclonal
antibodies targeting co-stimulatory pathways (e.g., abatacept,
peresolimab, dazodalibep) further highlight the feasibility of
antigen-specific or pathway-guided tolerance induction.
Collectively, these advances mark a gradual yet meaningful
transition toward tolerogenic disease-modifying strategies.

Among these emerging modalities, peptide-based therapies
offer several advantages over extensively used monoclonal
antibodies. Tolerogenic peptides engage with autoreactive T and
B cells with high specificity while being synthetically accessible,
structurally well defined, and easier to rationalize for epitope
optimization. Compared to monoclonal antibodies or binding
proteins, their lower production costs and stability further
enhance their suitability for long-term or preventive use.

Dose requirements also illustrate peptides efficiencies for the
described preliminary and exploratory trials. As summarized in
Table 1, DEN-181 achieved immunomodulatory effects at only 126
pg of CII peptide in a single dose, and Jusvinza demonstrated
clinical tolerogenic benefits with 5 doses of 5 mg, both markedly
lower than conventional ¢sDMARDs (e.g., 27.5 mg/week for
methotrexate or 400 mg/day for hydroxychloroquine, both
according to FDA label) and substantially below the 2 g required
for B-cell depletion with rituximab.

Administration routes constitute another advantage of peptide-
based tolerogenic approaches. Subcutaneous formulations, as
shown for DEN-181, Jusvinza and CPEP02 (in preclinical
development), successfully induced immune modulation, while
oral administration of DNAJP1 achieved significant T-cell
phenotypic and cytokine profile shifts. Although daily dosing over
six months was required, the total 4.5 g peptide exposure remains
feasible considering the production scales of peptides compared to
those of monoclonal antibodies. The DNAJPI trials thus represent a
key milestone in advancing orally delivered tolerogenic
immunotherapies, with future peptide design optimization likely
to improve dosage efficiency and patient compliance.

Despite these advances, achieving long-term immune tolerance
requires a deeper understanding of the immune regulation, ACPA
biology and the precise mechanisms that drive autoimmunity in RA.
The absence of a prevalent murine model used in preclinical research
(Table 2), complicates preclinical translation. Therefore, quantitative
joint swelling measurements (paw diameter) and harmonized disease
scoring systems should be adopted as standardized endpoints to
facilitate cross-study comparison. Splenic or synovial cell profiling,
which is not carried out in most preclinical studies described, is
essential to elucidate the tolerogenic effects of these treatments in
immune cell differentiation and regulation.

Future research must address these gaps through systems-level
analyses integrating multi-omics, single-cell immunophenotyping,
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and spatial transcriptomics to map the dynamics of tolerance
restoration in vivo. Such efforts will be critical to distinguish true
immune reprogramming from transient immunomodulation.

In summary, the combination of peptide-based therapies with
conventional DMARDs or targeted biologics also represents a
promising therapeutic framework to enhance efficacy and maintain
remission while minimizing systemic immunosuppression, reducing
the risk of relapsing and improving the quality of life for patients
with RA.
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