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Ferroptosis, an iron-dependent form of regulated cell death driven by lipid

peroxidation, is increasingly recognized as a pivotal immunomodulatory

mechanism within the tumor microenvironment (TME). Beyond its well-

established role in tumor cell elimination, emerging evidence reveals that

immune cell subsets exhibit distinct susceptibility to ferroptosis, with profound

consequences for antitumor immunity. This review systematically delineates

the dual and cell-type-specific roles of ferroptosis across innate and

adaptive immune populations: while ferroptosis-mediated depletion of

immunosuppressive cells potentiates antitumor responses, immunostimulatory

cells critically depend on ferroptosis defense pathways to sustain their survival

and function—their dysfunction exacerbates immune evasion. We further

decode the metabolic and signaling networks that govern immune cell

ferroptosis and their dynamic interplay with immunotherapy and engineered

nanomaterials. Finally, we critically addressed key challenges in clinical

translation, including biomarker development, cell-specific delivery, and design

of nanomaterials to minimize off-target effects. By elucidating the immune

context-dependence of ferroptosis, this review provides a framework for

developing precision therapies that harness ferroptosis-immune crosstalk to

improve cancer therapy in the clinic.
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1 Introduction

Tumor microenvironment (TME), a multifaceted system, is not limited to the immediate

habitat of tumor cells themselves, diverse immune components but also is characterized by its

dynamic complexity, which means it can promote the expansion and metastasis of tumors, as

well as directly modulates their receptiveness to therapeutic interventions, while its effect is

highly dependent on the host’s immune status. In detail, the anti-tumor immune system can be

divided into two major parts: innate immunity and adaptive immunity, whereas the immune
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cells in the TME are stratified as immunosuppressive cells and

immunostimulatory cells, and the balance between them determines

the occurrence and development of cancer. More importantly, the

quest to debilitate suppressive functionalities whilst fortifying

stimulatory counterparts is still an urgent problem to be solved. At

present, with the emergence of various forms of cell death, especially

iron-dependent ferroptosis, has catalyzed a paradigm shift, presenting

novel avenues for addressing this critical dilemma.

Ferroptosis is an iron-dependent programmed cell death mode,

which is characterized by excessive Reactive Oxygen Species (ROS)

accumulation and lipid peroxidation (1–3). Many metabolites produced

by ferroptosis and various immune cells in the TME interact with each

other. This interaction plays a dual role in innate and adaptive immune

responses. For example, CD8+T cells, Natural Killer (NK) cells and

Dendritic cells (DCs) are involved in antitumor immune responses,

therefore, ferroptosis of these cells promotes immune evasion (4). On

the contrary, M2 macrophages, regulatory T (Treg) cells, and myeloid-

derived suppressor cells (MDSCs) inhibit antitumor immunity and

promote the progression of cancer, therefore, the ferroptosis of these

cells could enhance the effectiveness of immunotherapy (5, 6). The

therapeutic exploitation of ferroptosis in the TME is complicated by its

dichotomous effects on immune cells and their overlapping antioxidant

defenses, requiring cell-selective approaches to simultaneously promote

ferroptosis in immunosuppressive populations while protecting

immunostimulatory cells. Selective cell-targeting strategies can balance

the dual roles of ferroptosis in the TME by leveraging metabolic

differences, surface markers, and microenvironment responses.

Moreover, the combination of ferroptosis with immunotherapy

and nanomaterials has received substantial attention in recent years.

On the one hand, Nano-carriers represent a novel type of nano-scale

drug delivery system with the advantages of suitable size, easy

modification, strong targeting ability, high cellular uptake, and good

biocompatibility (7). Iron nanoparticles mediate Fenton reaction and

the decomposition of hydrogen peroxide into highly active hydroxyl

radicals. Nano-carriers have been successfully used in diagnosis and

accurate treatment of drug delivery. On the other hand, regulating

ferroptosis in combination with immunotherapy can help regulate the

immune system and improve the anti-cancer effects of immunotherapy

(8). Although the use of ferroptosis regulators in combination with

immunotherapy or nanomaterials offers novel avenues for precisely

control in specific immune cells, developing these combination

strategies for clinical applications remains challenging.

Hence, in this review, we mainly focus on the ferroptosis of

immune cells in the TME and discuss the precise potential of anti-

cancer strategies involving the combination of ferroptosis in

immunotherapy or nanomaterials, which could provide novel

insights into the clinical diagnosis and treatment of cancer.
2 Ferroptosis

2.1 Mechanism of ferroptosis

Ferroptosis, a recently discovered form of cell death, exhibits

distinct morphological and biochemical characteristics (2) (Figure 1).
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Morphologically, ferroptosis is characterized by reduced

mitochondrial volume, mitochondrial membrane shrinkage, an

increased bilayer membrane density, and fewer or absent

mitochondrial cristae, without nuclear condensation or chromatin

margination (9). With regard to biochemical features, lipid-based

ROS/Phospholipid hydroperoxides (PLOOHs) are the main factors

leading to ferroptosis. Iron accumulation and lipid peroxidation, two

key mechanisms of ferroptosis, cause oxidative damage to the cell

membrane by promoting the production of PLOOHs (10). The

accumulation of ROS and lipid peroxides during ferroptosis is

promoted via dual mechanisms. On the one hand, the iron-

dependent Fenton reaction catalyzes the generation of ROS. On the

other hand, the activation of iron-dependent enzymes like

lipoxygenases (LOXs) and cytochrome P450 oxidoreductase catalyze

the production of PLOOHs and other oxidized lipid species, such as 1-

steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine

(SAPE-OOH) (3). Thus, cellular iron homeostasis and the metabolism

of PLOOHs are crucial for the occurrence of ferroptosis.
2.2 Antioxidant pathways of ferroptosis

Ferroptosis can be inhibited by dual antioxidant pathways:

Glutathione peroxidase 4 (GPX4)-dependent and non-GPX4-

dependent pathways (Figure 2). Glutathione (GSH) metabolism

plays a vital role in the GPX4-dependent antioxidant pathway,

whereas CoQ regeneration serves as a cornerstone in non-GPX4

dependent antioxidant pathways (11).

2.2.1 The canonical GPX4-regulated ferroptosis
pathway

GPX4, a selenoprotein essential for cellular redox homeostasis,

neutralizes PLOOHs on biological membranes by utilizing GSH as its

obligate co-substrate (12). The cystine/glutamate transporter XC-, a

heterodimeric complex composed of Solute Carrier Family 7 Member

11 (SLC7A11) and Solute Carrier Family 3 Member 2 (SLC3A2),

mediates cystine uptake in exchange for intracellular glutamate efflux

(1, 13). Notably, SLC7A11 serves as the central regulator of ferroptosis

by maintaining redox homeostasis through GSH synthesis (14).Multiple

regulatory mechanisms govern the expression of transporter XC-,

encompassing targeted reduction of SLC7A11 levels, inhibition of

SLC7A11 degradation and promotion of SLC7A11 expression,

indicating that transporter XC- can determine the susceptibility to

ferroptosis (15, 16). Overall, both the biosynthesis/uptake of

selenocysteine and the synthesis of GSH affect the homeostasis of

GPX4, indicating that GPX4 plays a significant role in regulating

ferroptosis (17, 18). Thus, the SLC7A11–GSH–GPX4 axis is believed

to constitute the major cellular system defending against ferroptosis.

Paradoxically, upon GPX4 ablation, some cancer cell lineages

remain resistant to ferroptosis revealing the existence of compensatory

GPX4 independent defense mechanisms (19).

2.2.2 GPX4-independent surveillance pathways
Emerging research has established the Ferroptosis inhibitor

protein 1 (FSP1)- Ubiquinone (CoQ) axis as a parallel antioxidant
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system that functions as a compensatory mechanism specifically in

GPX4-deficient cellular contexts (20). FSP1, originally characterized

as apoptosis-inducing factor mitochondrial-associated protein 2

(AIFM2), has been redefined as a critical ferroptosis inhibitor

through its N-terminal myristoylation-mediated membrane

targeting. This membrane-localized oxidoreductase enzymatically

reduces CoQ10, a mevalonate pathway-derived metabolity, to its

reduced form ubiquinol. Apart from its well-known function in

mitochondrial electron transport, it has been proposed that FSP1

exerts its potent anti-ferroptosis activity through generating the extra-

mitochondrial CoQH2 pool as radical-trapping antioxidants (21, 22).

The sources of the extra-mitochondrial CoQ harnessed by FSP1 for

ferroptosis defense remain to be established.

Recent studies have positioned GTP cyclohydroxylase-1

(GCH1) as another critical regulator of ferroptosis (23, 24).

Tetrahydrobiopterin (BH4), an essential redox cofactor, functions

canonically in aromatic amino acid hydroxylation and nitric oxide

synthase activity. Additionally, it serves as a critical mediator of

ferroptosis resistance by catalyzing the rate-limiting step in the BH4

metabolic pathway (25). It was proposed that GCH1 confers
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ferroptosis resistance through the biosynthesis of BH4, which acts

as a radical-trapping antioxidant, as well as through GCH1-

mediated production of CoQH2 and Phospholipids (PLs)

containing two Polyunsaturated Fatty Acid (PUFA) tails (23). The

subcellular compartment wherein the GCH1–BH4 system operates

needs to be investigated.

A recent study uncovered a mitochondria-localized antioxidant

system mediated by Dihydroorotate Dehydrogenase (DHODH)

capable of compensating for GPX4 deficiency by neutralizing

lipid peroxidation within mitochondria (26). DHODH, a

pyrimidine biosynthesis enzyme in the mitochondrial inner

membrane, reduces CoQ to CoQH2. Therefore, DHODH

functions as mitochondrial antioxidant system that protects

against oxidative damage.

In addition, the crosstalk between ferroptosis and other

signaling pathways has only been extensively studied in cancer.

Key pathways such as PI3K-AKT-mTOR, LKB1-AMPK, E-

cadherin-Hippo-YAP/TAZ, and VHL-HIF critically modulate

ferroptosis in cancers via metabolic regulation and stress-response

mechanisms (27).
FIGURE 1

Significant Timeline for the Development of Ferroptosis. RSL3, RAS-selective lethal compound 3; DFO, Deferoxamine; VitE, Vitamin E; GPX4,
Glutathione Peroxidase 4; PUFA, Polyunsaturated Fatty Acids; ACSL4, Acyl-CoA Synthetase Long Chain Family Member 4; FSP1, Ferroptosis
Suppressor Protein 1; DHODH, Dihydroorotate Dehydrogenase; MYCN, MYCN Proto-Oncogene.
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In the future, integrating strategies to target ferroptosis defense

pathways and enhance the efficacy of cancer immunotherapy will

represent a promising therapeutic approach.
3 The ferroptosis of immune cells

The TME comprises a complex network of tumor cells, immune

cells, and stromal components, where ferroptosis acts as a dual-

edged sword—directly eliminating tumor cells while indirectly

shaping immune responses. When tumor cells undergo

ferroptosis, they release damage-associated molecular patterns

(DAMPs) such as high mobility group box 1 (HMGB1),

adenosine triphosphate (ATP), and KRASG12D, which engage
Frontiers in Immunology 04
pattern recognition receptors (e.g., toll-like receptor 4,TLR4; P2X

Ligand-Gated Ion Channel 7,P2X7) on innate immune cells to

trigger immunogenic cell death (ICD) or modulate polarization

states (e.g., STAT3-driven M2 macrophage skewing via AGER/

RAGE) (28–32). However, immune cells themselves exhibit cell-

type-specific susceptibility to ferroptosis, governed by distinct

metabolic and antioxidant pathways (Figure 3). Emerging

evidence reveals a dichotomy: studies have shown that

macrophages, CD8+T cells, B cells and Treg cells tend to resist

ferroptosis through the canonical GPX4-regulated ferroptosis

pathway and neutrophils, DCs and NK cells prefer the GPX4-

independent surveillance pathways (33–36). Therefore, we dissect

these mechanisms across immune subsets and discuss therapeutic

strategies to exploit ferroptosis-immune crosstalk.
FIGURE 2

Mechanisms and regulatory pathways of ferroptosis. Ferroptosis is mainly caused by the peroxidation of PUFAs on specific membrane lipids. ACSL4
and LPCAT3 are crucial enzymes involved in the synthesis of PUFAs for membrane lipids. Hitherto, four regulatory pathways that reverse ferroptosis
have been identified: the GPX4-GSH pathway, the FSP1-CoQH2 pathway, the GCH1-BH4 pathway, and the DHODH-CoQH2 pathway. Moreover,
some signaling pathways including PI3K-AKT-mTOR pathway, LKB1-AMPK pathway, E-cadherin-Hippo-YAP/TAZ pathway, and VHL-HIF pathway
also regulate ferroptosis through metabolic and stress-response mechanisms. PUFAs, Polyunsaturated Fatty Acids; ACSL4, Acyl-CoA Synthetase
Long Chain Family Member 4; LPCAT3, Lysophosphatidylcholine Acyltransferase 3; GPX4, Glutathione Peroxidase 4; GSH, Glutathione; FSP1,
Ferroptosis Suppressor Protein 1; CoQH2, Ubiquinol; BH4, Tetrahydrobiopterin; DHODH, Dihydroorotate Dehydrogenase; PI3K, Phosphoinositide
3-Kinase; AKT, Protein Kinase B; mTOR, Mechanistic Target of Rapamycin; LKB1, Liver Kinase B1; AMPK, AMP-activated Protein Kinase; E-cadherin,
Epithelial Cadherin; Hippo, Hippo Signaling Pathway; YAP, Yes-associated Protein; TAZ, Transcriptional Co-activator with PDZ-binding Motif; VHL,
Von Hippel-Lindau Tumor Suppressor Protein; HIF, Hypoxia-Inducible Factor; KEAP1, Kelch-like ECH-associated protein 1; NRF2, Nuclear factor
erythroid 2-related factor 2; MafG, Musculoaponeurotic fibrosarcoma G; ARE, Antioxidant Response Element.
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3.1 Innate immunity

3.1.1 Dendritic cells
Ferroptosis of early tumor cells can promote the maturation

and activation of DCs, enhance the antigen-presenting function of

DCs, and stimulate effector T cells to exert anti-tumor effects (37).

However, this beneficial effect appears to be context-dependent, as

Wiernicki found that during the maturation of bone marrow-

derived DCs (BMDCs), the expression of 12/15-LOX and the
Frontiers in Immunology 05
production of lipid peroxides increased, reversing cell maturations

(38). This paradoxical finding suggests that ferroptosis may have

dual roles in DC biology depending on cellular context and timing.

Indeed, ferroptosis can impair DCs antigen presentation through

multiple mechanisms. Early lipid ROS accumulation downregulates

CD86, CD40, and MHC II expression while reducing Interleukin-12

(IL-12) and Interferon-g(IFN-g) secretion, impairing T cell activation

(37). Beyond maturation inhibition, disrupted phosphatidylserine

exposure and delayed calreticulin translocation (synchronized with
FIGURE 3

Regulatory mechanisms of ferroptosis in various immune cells. The figure depicts different regulation of ferroptosis in immune inhibitory cells and
immune stimulating cells and its different function in innate immunity and adaptive immunity. In innate immunity, M1 and M2 macrophages show
disparate sensitivity to ferroptosis. Mature DC cells express higher levels of CD86, CD80, MCHII. Ferroptosis in PMN-MDSCs plays an immunosuppressive
role, which is mediated through the release of oxidized lipids and promoted by FATP2.Phosphatidylethanolamine widely exists on the ferroptosis of cell
membranes, especially SAPE-OOH. Tregs play an important role in maintaining immune tolerance. Activating the function of NRF2 in NK cells can reverse
the inhibitory effect on NK cells in the TME. In adaptive immunity, CD8+T cells release IFN-g which can be suppressed by p38.Tregs suppress immune
response and promote tumor immune escape by secreting cytokines such as IL-10 and TGF-b.GPX4-deficient B1 and MZ B cells are more sensitive
to ferroptosis because of the higher expression of the fatty acid transporter CD36 while GPX4-deficient follicular (FO) B cells are less susceptible to
ferroptosis due to reduced expression of intracellular fatty acids. DC, dendritic cell; FO B cell, follicular B cell; iNOS, inducible nitric oxidesynthase;
M-MDSC, monocytic myeloid-derived suppressor cell; PMN-MDSC, polymorphonuclear myeloid-derived suppressor cell; MZ B cell, marginal zone B cell;
NK, natural killer; ROS, reactive oxygen species; Treg, regulatory T cell; SAPE-OOH,1-steaoryl-2-15-HpETE-sn-glycero-3-phosphatidylethanolamine;
NRF2, Nuclear factor erythroid 2-related factor2; TME, tumor microenvironment.
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membrane rupture) reduce phagocytic efficiency. The metabolic

consequences are equally significant, with Oxidized Phospholipids

(oxPL) uptake inducing lipid droplet accumulation while Acyl-CoA

Synthetase Long-Chain Family Member 4 (ACSL4)-mediated

membrane remodeling destabilizes immune synapses. These

changes are compounded by transcriptional reprogramming, where

coordinated NF-kB/STAT4/CCR7 downregulation and CCL3/4

upregulation, combined with ROS-induced mitochondrial/

Endoplasmic Reticulum(ER) damage, collectively suppress antigen

processing and MHC presentation (37, 39).

The progression of ferroptosis in DCs follows a distinct

temporal pattern. Initially, lipid ROS accumulation impairs DC

maturation and phagocytic capacity. As the process continues,

transient calreticulin (CRT) exposure and ATP release occur

during an intermediate phase, though immunogenicity remains

limited. Ultimately, terminal membrane rupture releases DAMPs

(High Mobility Group Box 1, HMGB1, Lactate Dehydrogenase,

LDH) and cytokines (Tumor Necrosis Factor, TNF, IFN-b), while
permanently impairing cross-presentation capability. This phased

deterioration of DC function helps explain why the timing of

ferroptosis induction is so critical for immune outcomes (37).

This timing dependence is clearly demonstrated by Efimova’s

team, who showed that the GPX4 inhibitor RAS-Selective Lethal

compound 3 (RSL3) stimulated ICD in tumor cells to activate DCs

and induce anti-tumor immunity in an animal tumor model (40).

Their work revealed that while early ferroptotic tumor cells (1 h

post-RSL3) induced BMDC maturation, late ferroptotic cells (24 h

post-RSL3) were simply phagocytosed without immunostimulatory

effects. Importantly, the anti-tumor protection conferred by early

ferroptotic cells depended on ATP-Purinergic Receptor P2X7

signaling, as blockade with oxidized-ATP abolished this effect,

highlighting how DCs process and present tumor antigens via

MHC complexes to activate T cells (41).

While DCs can enhance anti-tumor immunity through multiple

mechanisms including NK cell activation, their function is

particularly vulnerable in the tumor microenvironment. Tumor-

infiltrating DCs, which tend to accumulate more lipids, show

increased susceptibility to ferroptosis and consequent antigen

presentation failure (42, 43). This vulnerability can be modulated,

RSL3-induced DC dysfunction is reversible with Peroxisome

Proliferator-Activated Receptor Gamma (PPARG) knockout, while

Sestrin2 protects against Lipopolysaccharide (LPS)-induced

ferroptosis (44). The accumulation of 4-Hydroxynonenal (4-HNE)-

protein complexes in tumor-associated DCs further illustrates how

oxidative stress can trigger DCs dysfunction through X-box Binding

Protein 1 (XBP1) activation (45). Together, these findings paint a

complex picture where ferroptosis-related molecules critically

regulate DCs maturation and function, with important implications

for both tumor immunology and therapeutic development.

3.1.2 Natural killer cells
NK cells, which are considered inherently immunized cells, are

involved in the perforin/granzyme pathway, Factor Associated

Suicide (Fas) and Factor Associated Suicide Ligand (FasL)

interactions, TNF-a and TNFR-1 interactions, and antibody-
Frontiers in Immunology 06
dependent cytotoxicity (46). As they play an important role in anti-

tumor immunity, their functional inhibition can promote tumor

growth. It was found that the tumor-infiltrating NK cells contain

higher levels of ferroptosis and lipid oxidation-related proteins, and

the cell morphology was typical of ferroptosis (47). They have higher

oxidative stress levels and weaker glucose metabolism, which

eventually results in their dysfunction in the TME. Nuclear factor

erythroid 2–related factor 2 (NRF2) helps NK cells regain anti-tumor

activity in the TME (48). Therefore, ferroptosis of NK cells leads to

insufficient anti-tumor immune function, which prevents the

elimination and inhibition of tumor cells in a timely manner and

helps tumor cells evade immune surveillance.

3.1.3 PMN-MDSCs
Neutrophils, originating from the bone marrow, are the first line

of defense against microbial infection (49). In addition to other

myeloid cells, neutrophils have been extensively investigated for

their important role in cancer. Neutrophils have been shown to

exert direct and indirect anti-tumor effects during the initiation of

tumorigenesis and the early stages of tumor growth (50). Ly6G+

neutrophils inhibit B cell ferroptosis by secreting IL-6, which binds

to the IL-6R on B cells and activates the downstream STAT3/

SLC7A11 pathway. Molecules such as B-cell activating factor

(BAFF) and A Proliferation-Inducing Ligand (APRIL) may also

participate in the interaction between neutrophils and B cells, but

IL-6 is the dominant signal. Treatment with anti-IL-6 antibodies

significantly increases ferroptosis markers in B cells and reduces the

GSH/Glutathione Disulfide (GSSG) ratio (51).

However, tumor-derived signals can alter bone marrow

formation, leading to the expansion and pathological activation of

neutrophils, called polymorphonuclear MDSCs (PMN-MDSCs) (52).

PMN-MDSCs play an immunosuppressive role by attenuating

immune responses mediated by T cells, B cells, and NK cells. PMN-

MDSCs employ three distinct but interconnected mechanisms to

mediate immunosuppression. First, through metabolic regulation,

their lipid peroxidation products (4-HNE and Malondialdehyde,

MDA) directly activate arginase-1 (ARG1) and inducible nitric

oxide synthase (iNOS), effectively suppressing T cell function (53).

Second, by secreting inflammatory mediators, they upregulate

Prostaglandin E2 (PGE2) biosynthesis genes, leading to enhanced

PGE2 release that simultaneously inhibits T cell proliferation/

function (54) and promotes the production of immunosuppressive

cytokines IL-10 and transforming growth factor-b(TGF-b) (55).

Finally, they exert direct cytotoxicity by impairing T cell antigen

responsiveness through ROS generation and inducing Cytotoxic T

cells (CTL) apoptosis via the Fas/FasL pathway (56).

Ferroptosis-related genes have been associated with genes found

in PMN-MDSCs in various cancer types (54). A study analyzed liver

metastases and adjacent normal tissues from a 63-year-old male

Colorectal Cancer patient. Tissues were digested into single-cell

suspensions, then processed by flow sorting and single-cell RNA

sequencing, which revealed a significant increase in the death

proportion of neutrophils. Additionally, pathways linked to

ferroptosis, iron metabolism and glutathione metabolism were

notably enriched in these granulocytes, providing the first
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evidence of immune cell ferroptosis in the TME (57). Previous

studies suggested that N-Acylsphingosine Amidohydrolase 2

(ASAH2) is highly expressed in MDSC cells. Its inhibition

enhances the stability of the p53 protein and upregulates Heme

Oxygenase 1 (Hmox1), thereby inhibiting the production of lipid

ROS and preventing the ferroptosis of MDSCs (58). In immunized

mice, inhibition of ferroptosis through genetic and pharmacological

means has been shown to counteract the immunosuppressive effects

of PMN-MDSCs, inhibit tumor progression, and cooperate with

immune checkpoint blockers (ICBs) to inhibit tumor growth (59).

Tumor-infiltrating PMN-MDSCs exhibit complex dual

functions in anti-tumor immunity through ferroptosis-dependent

mechanisms. These cells can promote tumor cell ferroptosis

(particularly in glioblastoma), inducing tumor death and growth

inhibition. Conversely, when PMN-MDSCs themselves undergo

ferroptosis in the tumor microenvironment, they release lipid

oxides via fatty acid transporter (FATP2)-mediated pathways,

creating an immunosuppressive niche that paradoxically supports

tumor progression. This immunosuppression involves the secretion

of oxidized phospholipids and immunomodulatory factors that

activate ARG1 and iNOS to suppress T cell proliferation (53).

However, some studies have indicated that ferroptosis may suppress

(rather than enhance) the immunosuppressive function of PMN-

MDSCs (54). Notably, the net immunological impact appears

context-dependent: while hepatocellular carcinoma models show

that ferroptosis inhibition abolishes PMN-MDSC-mediated T cell

suppression and synergizes with checkpoint inhibitors (60), non-

small cell lung cancer studies demonstrate that ferroptosis inducers

can simultaneously reduce MDSC accumulation and enhance T cell

function (61). These divergent outcomes highlight tumor-type

specific regulation of PMN-MDSC biology by ferroptosis, where

the balance between direct tumoricidal effects and indirect immune

modulation determines the ultimate therapeutic outcome.

A comprehensive elucidation of the mechanistic interplay

between PMN-MDSCs and ferroptosis, particularly regarding

their tumor-type-specific regulation of immune suppression

versus activation, represents a crucial unmet need in the field.

3.1.4 Tumor-associated macrophages
Tumor-associated macrophages (TAMs) are the main immune

cells in the TME, and a high degree of TAM infiltration often

indicates a poor prognosis (62). Monocytes and mononuclear

MDSCs (M-MDSCs) exhibit the same classical and pathologically

activation patterns as the aforementioned neutrophils and PMN-

MDSCs, respectively. They promote anti-tumor immunity by

activating T cells and TAMs. Studies have shown that TAMs

derived from M-MDSCs retain their immunosuppressive activity

when compared with those derived from classical monocytes

(63).M-MDSCs derived TAMs maintain immunosuppressive

activity mainly by secreting various mediators, which promote

angiogenesis and metastasis and facilitate tumor progression (64).

3.1.4.1 Ferroptosis susceptibility in M1/M2 macrophages

TAMs exhibit high plasticity, whereas the development and

homeostasis of resident macrophages in lung, peritoneum, spleen
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and bone marrow (which can be regarded as M0 state) are not

affected (62). LPS/IFN-g stimulation can activate the polarization of

M0 macrophages to the M1 macrophages, which promotes

inflammation and inhibits tumor growth. IL-4 stimulation can

activate the polarization of M0 macrophages to the M2

macrophages, which suppresses inflammation and promotes

tumor growth.

In addition, CD44 is a key molecule linking ferroptosis and

macrophage polarization. By regulating cell adhesion and ROS

generation, it promotes the recruitment of M1 macrophages.

Anti-CD44 antibodies can reduce M1 accumulation and suppress

ferroptosis. Enhancer of Zeste Homolog 2 (EZH2), through

epigenetic modifications, inhibits pro-inflammatory genes and

may promote M2 polarization. Peroxisome Proliferator-Activated

Receptor Alpha (PPARa) may indirectly reduce macrophage

inflammatory responses by suppressing lipid peroxidation upon

activation (65).

The sensitivity of these two macrophage subtypes to ferroptosis

is different. In most tumors, M2 macrophages express ARG1 and

CD206 while secreting IL-10 and TGF-b, thereby promoting

angiogenesis, matrix remodeling, and immunosuppression to

maintain tumor cell growth. On the contrary, M1 macrophages

express CD86 and iNOS, exerting tumor-suppressive effects by

producing IL-1a/b, IL-6, TNF-a, and ROS (66). M2 macrophages

are more susceptible to ferroptosis owing to the lower expression of

iNOS and the production of less NO free radicals. NO radicals react

with lipid free radicals to suppress intracellular lipid peroxidation

and inhibit the occurrence of ferroptosis (6). Given that M1

macrophages produce more NO radicals, which inhibit 15- LOX

catalyzed PUFA peroxidation, thereby being resistant to ferroptosis.
3.1.4.2 Therapeutic implications of macrophage
ferroptosis

Ferroptosis inducers (such as the GPX4 inhibitor RSL3) can lead

to the elimination of M2 macrophages, but do not affect M1

macrophages, resulting in synergistic anti-tumor effects. Given that

M1 macrophages have antitumor activity, it is necessary to focus on

the transformation of M2 macrophages into the M1 phenotype in the

context of ferroptosis. Studies have demonstrated that ferumoxytol,

an iron oxide nanoparticle formulation, (the detailed mechanism of

Fenton reaction in Section 4.2) modulates intracellular iron

homeostasis and induces M1 macrophage polarization, ultimately

triggering ferroptosis (67).

Shi and Hu developed iron-doped mesoporous silica

nanoparticles loaded with citrate and dextran (DFHC) (68),

which, similar to the FePt@MnO@DSPE-PEG5000-FA system

described in Section 4.2, induces ferroptosis by modulating iron

metabolism in TAMs. Nanomaterials regulate the ferroptosis

sensitivity of macrophages by modulating iron metabolism,

inducing lipid peroxidation, or delivering ferroptosis inducers

(e.g., RSL3, iFSP1) in a targeted manner. For specific design

strategies of nanomaterials, we will further discussed in detail in

Section 4.2. In addition, a study reported the development of the

albiziabioside A–DCA (AlbA-DCA) conjugate to inhibit breast

cancer cell proliferation (69). Mechanistically, this conjugate
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inhibited GPX4, a key ferroptosis-related gene, and the activity of

M2 macrophages to induce ferroptosis of breast cancer cells.

Furthermore, the monocyte-phagocyte system is not sensitive to

ferroptosis in some cases. For instance, human peripheral blood

mononuclear cells (PBMCs) are resistant to ferroptosis induced by

erastin. On the contrary, erastin promotes the proliferation and

differentiation of human PBMCs into B cells and NK cells by

regulating bone morphogenetic protein (BMP), thereby

enhancing anti-tumor immunity (70). Similarly, macrophages

harboring the p53P47S mutation are resistant to ferroptosis (71).

Recent studies have shown that when ferroptotic PMN-MDSCs in

the TME induce ferroptosis of TAMs, the ferroptotic TAMs exert

strong tumor-promoting effects. However, loss of myeloperoxidase

(MPO) and 12/15-Arachidonate Lipoxygenase (ALOX) in PMN-

MDSCs significantly inhibits these tumor-promoting effects (54).

The evidence demonstrates that pharmacological modulation of

macrophage polarization toward the M1 phenotype by targeting

ferroptosis sensitivity or epigenetic reprogramming represents a

promising approach to enhancing tumoricidal immunity.
3.2 Adaptive immunity

3.2.1 CD8+T cells
3.2.1.1 Ferroptosis promotes CD8+ T cells depletion

CTLs, also known as CD8+ T cells, are the primary executors of

adaptive immunity. Ferroptosis regulates the infiltration of CD8+ T

cells in the TME, thereby affecting their recruitment and anti-tumor

immune function. Depletion of CD8+ T cells is associated with an

increase in lipid uptake and intracellular lipid peroxidation (72, 73).

Liao et al. further demonstrated that IFN-g released by CD8+ T cells

synergizes with arachidonic acid to effectively induce ferroptosis

across multiple cancer types (74). Recently, Cui’s team revealed a

novel immunosuppressive mechanism in cancer (75), the TME

produces a large amount of oxidized low-density lipoprotein (Ox-

LDL), which is internalized by CD8+ T cells with high expression of

CD36 (a fatty acid transport molecule). Upregulation of

intracellular lipid peroxidation triggers the activation of p38, a

stress-reactive protein, and T cell ferroptosis, leading to

downregulation of IFN-g and TNF-a, which results in the

dysfunction of CD8+ T cells and tumor immune escape. The

expression of CD36 is positively correlated with the expression of

PD-1 and TIM-3. Moreover, DEP Domain Containing 5 (DEPDC5)

regulates the homeostasis of CD8+ T cells in peripheral blood,

protecting them from ROS induced ferroptosis and exerting anti-

tumor effects (76). Consequently, blocking CD36 or maintaining

DEPDC5 can inhibit ferroptosis in CD8+ T cells and restore their

anti-tumor immune function.

In summary, ferroptosis-related factors interact with cytotoxic

T lymphocytes (CTLs), modulating their activity and function,

while CTLs reciprocally influence ferroptosis levels in tumor cells.

3.2.1.2 CD8+ T cells promote ferroptosis in tumor cells

IFN-g downregulates the expression of SLC3A2 and SLC7A11 on

tumor cell surfaces through the JAK-STAT1 pathway (34). This
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negative regulation reduces the intracellular transport of cystine and

the production of intracellular glutathione, resulting in excessive ROS

accumulation, tumor cell ferroptosis, and the release of DAMPs.

DAMPs, in turn, increase CD8+ T cells infiltration in tumors and

improve the anti-tumor effects of immunotherapy. Phospholipid

profiling revealed that arachidonic acid is preferentially incorporated

into phosphatidylethanolamine (PE) and phosphatidylcholine (PC)

species containing C16 and C18 acyl chains in an ACSL4-dependent

manner (77). Palmitoleic acid and oleic acid, two common C16 and

C18 fatty acids in circulation, enhance the abundance of arachidonic

acid (d5)-bound PE and PC in tumor cells. Notably,

Lysophosphatidylcholine Acyltransferase 3 (LPCAT3) and LOX are

respectively involved in the incorporation of arachidonic acid into

membrane phospholipids and the oxidation of these phospholipids,

collectively promoting ACSL4-dependent tumor ferroptosis induced

by IFN-g and arachidonic acid (78). For example, compared with

wild-type mice, ACSL4-knockout mice exhibited reduced CD8+ T cell

infiltration in tumors, decreased IFN-g and TNF-a expression, lower

tumor cell lipid peroxide levels, and accelerated tumor growth (74).

Altogether, these findings suggest that inducing the ferroptosis of

tumor cells can improve anti-tumor immunity and enhance the

efficacy of immunotherapy.

CD8+ T cells exhibit seemingly paradoxical roles in ferroptosis

regulation: they promote tumor cell ferroptosis while remaining

vulnerable to ferroptosis themselves. This delicate balance is jointly

regulated by T cell activation status and TME metabolic

characteristics. Naive/memory T cells, being metabolically

quiescent and reliant on mitochondrial oxidative phosphorylation

(OXPHOS) with strong antioxidant capacity, are resistant to

ferroptosis. In contrast, effector T cells with high glycolysis and

ROS production are susceptible to ferroptosis. Exhausted T cells

face exacerbated ferroptosis as PD-1 signaling further suppresses

antioxidant pathways (e.g., NRF2) (79). Glutamine-addicted

effector T cells become more susceptible to ferroptosis under

glutamine-deprived conditions in the tumor microenvironment

due to impaired GSH synthesis (80). GSH plays a crucial role in

maintaining regulatory T cell function by restricting serine

metabolism (81).

Notably, the sensitivity of tumor cells and CTLs to ferroptosis in

the TME remains controversial. Some studies suggest ferroptosis

inducers selectively target tumor cells without compromising CTL

function, thereby enhancing immunotherapy efficacy (82).

Conversely, other evidence shows GPX4 inhibitors can trigger

CTL ferroptosis in vitro, impairing their anti-tumor activity and

promoting immune escape (83, 84). This cell type-specific

susceptibility may stem from metabolic heterogeneity:

metabolically, CD8+ T cell function is intricately regulated by the

interplay of lipid, glucose, and amino acid metabolism. When facing

amino acid or glucose limitation, the GAP Activity Toward Rags 1

(GATOR1) complex acts as a metabolic sensor to suppress mTOR

complex 1 (mTORC1) activation. This mTORC1-dependent

metabolic reprogramming produces numerous biochemical

intermediates that are mechanistically connected to ferroptosis

pathways (76). Thus, the specificity of ferroptosis inducers and

their mechanistic underpinnings demand systematic investigation
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to reconcile these disparities. Future investigations employing

single-cell metabolomics approaches will be essential to delineate

subset-specific metabolic signatures and optimize precision

therapeutic strategies.

3.2.2 Regulatory T cells
Treg cells are key inhibitory cells that maintain immune

tolerance and escape of tumor cells. They are a subset of CD4+ T

cells with immunosuppressive function and are composed of

thymus-derived natural Treg cells and peripherally induced Treg

cells. In the TME, Treg cells suppress the immune response and

promote tumor immune escape by secreting cytokines such as IL-10

and TGF-b (85, 86). Treg cells deliver inhibitory signals through

direct contact with antigen presenting cells or effector T cells via

surface molecules (Cytotoxic T-Lymphocyte-Associated Protein 4,

CTLA-4; PD-1). This contact-dependent suppression requires

intercellular communication (e.g., cAMP transfer through gap

junctions). During ferroptosis, Treg cells exhibit elevated

mitochondrial superoxide (mitoSOX), disrupting OXPHOS and

Fatty Acid Oxidation (FAO) - critical metabolic pathways that

maintain Treg cells survival and suppressive function (35).Under

the co-stimulation of the T-cell receptor/CD28, knockout of GPX4

in Treg cells increases the level of lipid oxidation and ferroptosis,

resulting in the ferroptosis of Treg cells and suppression of their

immunoregulatory function. Treg cells with GPX4 knockout can

enhance TH17 cell-mediated inflammatory responses by secreting

IL-1b. Furthermore, they can activate the function of DCs and

CD8+ T cells, potentiating anti-tumor immune responses. Specific

knockout of GPX4 in Treg cells has been shown to inhibit the

growth of MC38 colon cancer and B16F10 melanoma xenografts in

animal models (87).

Treg cells shape the immunosuppressive TME through multiple

mechanisms, with their metabolic vulnerabilities (particularly

ferroptosis sensitivity) offering a critical breakthrough for

reversing tumor immune escape. Targeted modulation of Treg

cell survival and function holds promise for reprogramming the

TME from immunosuppressive to immunostimulatory states,

thereby opening new avenues for cancer immunotherapy.

3.2.3 B cells
B cells produce and release antibodies against specific antigens,

playing an important role in humoral immune responses (88).

Upon activation, conventional B cells (usually called B2 cells)

differentiate into plasma and memory B cells. Other B cell

subtypes include B1 cells, marginal zone (MZ) B cells, follicular B

cells, and regulatory B (Breg) cells. Follicular B cells are the largest

group of B cells and are mainly involved in humoral immunity.

Different subtypes of B cells exhibit varying sensitivity to

ferroptosis (89). A recent study showed that GPX4 is not required

for the development and immune function of follicular B cells.

However, it is required for both processes in B1 and MZ B cells

because the loss of GPX4 expression in B1 and MZ B cells promotes

lipid peroxidation and ferroptosis. Moreover, compared with

follicular B cells, B1 and MZ B cells have higher expression of the
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fatty acid transporter CD36, which enhances their ability to

internalize fatty acids.

Following CD36 binding to PUFAs, APT1-mediated

depalmitoylation promotes the formation of a signaling complex

between CD36 and spleen tyrosine kinase, triggering caveolae-

mediated endocytosis. This process significantly increases

intracellular PUFA accumulation, leading to a “lipid peroxidation

storm” under GPX4-deficient conditions. While B1/MZ B cells can

activate parallel antioxidant systems through exogenous CoQ10

supplementation or FSP1 overexpression, this pathway exhibits

limited efficacy in follicular B cells (22). Concurrently, DAMPs

such as HMGB1 released from ferroptotic B1/MZ B cells promote

DC maturation via the TLR4/Myeloid differentiation primary

response 88(MyD88) pathway while inducing IFN-g secretion.

IFN-g inhibits GSH synthesis by downregulating SLC7A11,

establishing a pro-ferroptotic positive feedback loop. Nuclear

Receptor Coactivator 4(NCOA4)-mediated ferritinophagy

increases free iron levels, which not only enhances Fenton

reactions but also upregulates Transferrin Receptor 1(TfR1)

expression through iron-responsive element (IRE) activation,

further exacerbating iron overload (90). Follicular B cells

maintain high IL-10 expression, which preserves reduced

glutathione pools through STAT3 signaling while suppressing

NADPH Oxidase 2(NOX2) activity, creating a dual antioxidant

defense system (91). As an immunosuppressive cytokine, IL-10

inhibits the activity of T cells and NK cells to modulate immune

responses and maintain immune homeostasis. Future studies

should investigate combined CD36 inhibition and PD-L1

targeting strategies to protect B1 and MZ B cells from ferroptosis.

Altogether, ferroptosis is involved in the survival and potential

anti-cancer effects of B cells. However, the specific underlying

mechanisms warrant further investigation.
4 Ferroptosis in combination with
immunotherapy and nanomaterials

4.1 Ferroptosis in combination with
immunotherapy

Immunotherapy is a recently developed anti-cancer strategy,

following surgery, chemotherapy, and radiotherapy. Ferroptosis of

tumor cells can enhance the anti-tumor responses of immune cells

in the TME. Therefore, combining the induction of tumor cell

ferroptosis with immunotherapy presents significant potential for

clinical application in cancer therapy (Table 1).

Programmed deathligand1 (PD-L1) is highly expressed in most

tumor tissues and is closely related to the development of malignant

tumors (107). Wang’s team found that treatment with PD-L1

inhibitor significantly decreased tumor volume and counteracted

the immunosuppressive effects of PD-L1 (34). In ID8 and B16

subcutaneous tumor-bearing mouse models treated with PD-L1

inhibitor every three days, lipid ROS levels were significantly

elevated in the anti-PD-L1 group. However, subsequent treatment
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with the ferroptosis inhibitor liproxstatin-1 restored the

immunosuppressive effects of PD-L1. These findings suggest that

ferroptosis plays an important role in regulating the effects of

immunotherapy. A study showed that Ubiquitin-Specific Peptidase

8(USP8) interacts with GPX4 and mediates its deubiquitination,

leading to GPX4 stabilization. Consequently, USP8 inhibition

destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro.

The combination of USP8 inhibition with ferroptosis inducers

delayed tumor growth and enhanced CD8+ T cell infiltration,

which indicated the tumor response to anti-PD-1 immunotherapy

in vivo (108). Thus, targeting the transporter XC-/GSH/GPX4

pathway combined with the use of an anti-PD-1/PD-L1 antibody

has been reported as a promising therapeutic strategy for cancer.

However, a recent study showed that treatment with PD-L1 inhibitor

not only inhibited the activity of transporter XC- in melanoma cells

but also induced the polarization of macrophages to the M2

phenotype by increasing the production of PD-like exocrine 1,

which leads to resistance to PD-L1 inhibitors (109). Mice bearing

subcutaneous B16F10 melanoma tumors (n=5 per group) were

treated with a PD-L1 inhibitor combined with sulfasalazine via

intraperitoneal injection every three days and lipid peroxidation

levels were not directly assessed. This discrepancy may stem from

several factors. Tumor-Type Dependencies and Microenvironmental

Regulation: The transporter XC⁻/GSH/GPX4 axis exhibits tissue-

specific regulation across cancers. For instance, melanomas, driven by

hyperactive MAPK signaling (e.g., BRAF mutations), often show

constitutive PD-L1 upregulation independent of IFN-g, predisposing
them to exosomal PD-L1-mediated resistance. In EGFR-mutant lung

adenocarcinoma, PD-L1 promotes proliferation and autophagy via
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MAPK signaling, leading to poor clinical outcomes (110). Conversely,

in ovarian cancer, IFN-g from T cells upregulates PD-L1 while

downregulating SLC7A11, sensitizing cells to ferroptosis (111).

Metabolic heterogeneity further shapes responses: tumors with high

cysteine dependency or elevated baseline ROS may favor ferroptosis

upon PD-L1 blockade. Temporal Dynamics of PD-L1 Blockade: Early

PD-L1 inhibition transiently induces ferroptosis, releasing DAMPs to

activate dendritic cells, but prolonged treatment selects for resistant

clones secreting PD-L1-rich exosomes, driving M2 macrophage

polarization. This highlights the need for clinical monitoring of

treatment timing. Microenvironment Crosstalk and Clinical

Implications: Stromal cells (e.g., fibroblasts) further complicate the

landscape by secreting cytokines that modulate macrophage

polarization independently of PD-L1 (112). Future studies must

leverage multi-omics and patient-derived models to dissect tumor-

specific mechanisms and optimize precision therapies. In addition,

Cai verified the anti-tumor effects of statins in non-small cell lung

cancer (NSCLC) (113). Specifically, statins can inhibit the expression

of PD-L1 at the transcriptional level, thereby contributing to the

formation of a pro-inflammatory TME and enhancing the efficacy of

anti-PD-1 therapy in NSCLC. BALB/c mice subcutaneously

inoculated with A549 cells, oral gavage of 40 mg/kg lovastatin

combined with intraperitoneal administration of 200 mg per dose

of PD-L1 antibody resulted in downregulation of GPX4 expression

and increased lipid peroxidation levels in the tumor tissue.

High CD36 expression impairs PD-1 efficacy through multiple

mechanisms: In T cells, CD36-mediated lipid peroxidation triggers

ferroptosis, while PD-1 signaling inhibits AKT-mTOR pathway to

downregulate phospholipid phosphatase 1(PLPP1), exacerbating lipid
TABLE 1 Selected ferroptosis-inducing compounds/drugs in preclinical and clinical development.

Compound/Drug Caner type Target Function Type of test Reference

Gemcitabine Pancreatic cancer GPX4 Inhibit the level of GPX4 Preclinical Research (92)

Etoposide Myelogenous leukemia GPX4 Inhibit the level of GPX4 Preclinical Research (93)

Sorafenib
Hepatocellular
carcinoma

SLC7A11 Reduce cysteine uptake Preclinical Research (94)

Cisplatin
Ovarian cancer, lung cancer,
thyroid cancer, lymphosarcoma,

GSH Reduce GSH Preclinical Research (95)

Siramesine, Lapatinib Breast cancer Fe Increase the intracellular iron level Preclinical Research (96, 97)

Decitabine Myelodysplastic syndrome GPX4, GSH
Decreases GSH levels and inhibits
GPX4 activity

Preclinical Research (98)

Sulfasalazine
Head neck cancer, Glioblastoma,
Fibrosarcoma

SLC7A11 Inhibit transporter XC- Phase I clinical trial
NCT04205357

(99–101)

Altretamine Diffuse large B cell lymphoma GPX4 Inhibit the level of GPX4 Preclinical Research (102)

Statins Lung cancer GPX4 Inhibit the level of GPX4 Preclinical Research (103)

Vorinostat Lung cancer SLC7A11 Inhibit SLC7A11 expression Preclinical Research (104)

Olaparib Ovarian cancer SLC7A11
Suppress SLC7A11 mediated GSH
synthesis

Preclinical Research (105)

Temozolomide Glioblastoma GSH Reduce GSH
Phase II clinical trial
NCT06218524

(106)
NRF2, Nuclear factor erythroid 2-related factor 2; GSH, Glutathione; HO-1, Heme Oxygenase-1; ROS, Reactive Oxygen Species; GPX4, Glutathione peroxidase 4; SLC7A11, Solute carrier family
7 membrane 11.
The bolded NCT04205357 and NCT04205357 represent the ongoing clinical trials mentioned in the main text.
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accumulation and forming a vicious cycle of “lipid metabolism-

ferroptosis-immune suppression”; In ovarian/gastric cancers, CD36-

high tumor cells competitively consume lipid resources in the TME,

starving T cells and inducing ferroptosis to evade immune

surveillance; CD36 upregulates PD-L1 via peroxisome proliferator-

activated receptor gamma (PPARg) signaling, creating dual resistance
through “lipid metabolism-immune checkpoint” crosstalk

(114).Targeting this pathway (via CD36 blockade or nano-delivery)

can restore T cell function and overcome resistance. Future studies

should develop personalized combination therapies guided by multi-

omics analysis.

However, immunotherapy has both advantages and disadvantages.

On one hand, it enhances anti-tumor immunity by modulating CD8+

T cells through the aforementioned mechanisms. On the other hand,

tumor cells suppress Akt signaling in CD8+ T cells via the PD-L1/PD-1

axis, promoting GATA1 nuclear translocation and downregulating

PLPP1 expression. This leads to the accumulation of unsaturated fatty

acids, ultimately triggering ferroptosis in CD8+ T cells (115).

This paradox may stem from spatiotemporal differences in

metabolic competition and oxidative stress. Wang’s team

demonstrated that both human and murine CD4+ and CD8+ T

cells exhibit resistance to ferroptosis, and Ferrostatin-1 does not

affect T cell survival (34), suggesting distinct susceptibility to

ferroptosis induction between tumor cells and CD8+ T cells. We

will further elaborate on this aspect in the conclusions.

Additionally, we can identify potential biomarkers for patient

stratification. For instance, Yi et al. demonstrated that the proportion

of CD36+CD8+ T cells in the TME is closely associated with patient

prognosis. Melanoma patients with longer survival showed lower

CD36 expression on tumor-infiltrating CD8+ T cells compared to

those with shorter survival. In bone marrow and peripheral blood

samples frommultiple myeloma patients, CD36 was found to be highly

expressed on tumor-infiltrating CD8+ T cells (73).Furthermore, Tang

et al. discovered that the ferroptosis inducer N6F11 specifically triggers

GPX4 degradation in cancer cells without affecting GPX4 levels in

immune cells (116). Studies have shown that low SLC3A2 expression is

associated with average survival rate in patients (34).

Notably, ferroptosis may exacerbate immune-related adverse

effects. Through lipid peroxidation and dysregulation of antioxidant

systems, ferroptosis contributes to the pathogenesis of various

autoimmune diseases. For example: In inflammatory bowel disease

(IBD), PUFA accumulation increases intestinal epithelial cell

susceptibility to ferroptosis. In rheumatoid arthritis (RA),

neutrophils oxidative stress exacerbates joint damage. In systemic

lupus erythematosus (SLE), ferroptosis of neutrophils promotes renal

and cutaneous lesions. Targeted strategies can be employed to

mitigate immune-related side effects of ferroptosis. Antibody-

targeted approaches using anti-CD36/PD-L1 nanoparticles precisely

act on tumor or immunosuppressive cells while avoiding damage to

immune cells. Microenvironment-responsive designs enable pH/

ROS-triggered nanocarriers for localized drug release, thereby

reducing systemic toxicity. Antioxidant protection can be achieved

by delivering Ferrostatin-1 or vitamin E to normal tissues (117).

Furthermore, spatiotemporal control through light/ultrasound-

triggered release allows selective protection of immune cells.
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4.2 Ferroptosis in combination with
nanomaterials

As mentioned in Section 3.1.4.2, nanomaterials such as

ferumoxytol and DFHC can enhance ferroptosis by targeting iron

metabolism of macrophages. This section will systematically

categorize the design mechanisms of these nanomaterials and

analyze their relationship with immunomodulation. Advances in

cancer ferroptosis and nanotechnology have propelled the design of

both iron-based and non-ferrous nanomaterials for ferroptosis

regulation as a major research frontier. (Table 2).

4.2.1 Iron-based nanomaterials
Iron-based nanomaterials account for a large proportion of

nanoscale ferroptosis inducers, as iron itself is the key component of

ROS produced by Fenton reaction and the process of ferroptosis

depends on iron.

Iron oxide nanoparticles (IONPs) are key iron-based

nanomaterials capable of inducing tumor ferroptosis (130). Shen’s

team fabricated FeGd-HN@Pt@LF/RGD2 nanoparticles that crossed

the blood-brain barrier via lactoferrin receptor-mediated transport and

entered cancer cells through integrin endocytosis (118). These

nanoparticles released Fe²+/Fe³+ for direct Fenton reactions and

cisplatin-derived H2O2 for enhanced ROS generation, while enabling

MRI-guided treatment monitoring. Wang’s team created Mn3[Co

(CN)6]2@MIL-100(Fe) to co-deliver artesunate and Fe³+, where Fe²+

from Fenton reactions triggered ferroptosis via ROS accumulation

(119). Yang’s team constructed an acid-sensitive nano-diagnostic agent

(named FePt@MnO@DSPE-PEG5000-FA, [FMDF NPs]) to monitor

the response of tumor cells to ferroptosis and chemotherapy via MRI

(120). FA receptor-targeted nanocomposites enabled tumor-specific

Fe²+ delivery, triggering Fenton-driven ROS generation from H2O2 to

induce ferroptosis, while Mn²+ enhanced MRI contrast for real-time

tumor localization. Sun’s team synthesized bcc-USINPs via pyrolysis to

enhance Fenton reactions and intracellular Fe²+ cycling for ferroptosis

induction (123). SFT nanoparticles were created by coating SRF with

Fe³+/TA complexes, enabling tumor-selective ferroptosis (125). These

nanoparticles selectively caused tumor cells ferroptosis and had

minimal toxic effects on normal cells. Ascorbate combined with

Fe³+/RSL3-loaded CaP nanocarriers synergistically increased tumor-

specific H2O2 and GPX4 inhibition for ferroptosis (131). FA-targeted

exosomes (erastin@FA-exo) improved erastin delivery to TNBC cells,

depleting glutathione and elevating ROS to promote ferroptosis while

reducing systemic toxicity (127).

4.2.2 Non-ferrous nanomaterials
While iron-free nanomaterials show biomedical potential, their

application in ferroptosis-targeted cancer therapy remains limited

due to iron’s central role in this process.

Kim et al. engineered sub-10 nm peptide/PEG-modified SiO2

nanoparticles that triggered ferroptosis in nutrient-deprived cancer

cells and murine tumors, validating their therapeutic efficacy (126).

Ou’s LDL-DHA nanoparticles selectively induced hepatoma cell

death and suppressed liver tumors via iron-dependent lipid

peroxidation, GSH depletion, and GPX4 inactivation in cellular/
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animal models (121). Leveraging Mn-O bonds’ redox sensitivity to

GSH depletion (consuming 2 GSH per bond) (132), Tang’s MMSNs

depleted intracellular GSH to drive hepatocellular carcinoma

ferroptosis (122).

4.2.3 Previous work of our team
Our team has advanced tumor ferroptosis-regulation

nanomaterials, mirroring current research trends. We pioneered

lactose-modified TCLM nanomicelles co-delivering Triapine/Ce6

as the first nano-DDS for Triapine-based therapy (128).

Additionally, we engineered liver-targeting RF@LA-Fe-MOF

nanoparticles integrating RSL3 and iFSP1 for precision ferroptosis

modulation (129). Our team’s nanomaterials significantly reduce

off-target toxicity through precise drug delivery. Compared to non-

targeted nanomaterials, we’re the first to systematically achieve

synergistic ferroptosis induction and immune microenvironment

remodeling. Our advantages include: asialoglycoprotein receptor

(ASGPR)-mediated efficient hepatic uptake, pH-responsive drug

release for enhanced tumor accumulation, dual-target inhibition

(GPX4 and FSP1) to overcome single-pathway resistance, and

synergistic chemo-photodynamic therapy with Triapine and Ce6.

While current ferroptosis-inducing nanomaterials show preclinical

promise in animal models, their clinical translation requires

rigorous validation to bridge the experimental-therapeutic gap.

We summarized common design principles emerging from

research. In the field of targeted delivery, ligands such as lactobionic

acid, folic acid, and apolipoproteins or targeting antibodies (e.g., PD-

L1) have been utilized, thereby enhancing antitumor efficacy,
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improving tumor accumulation, and reducing off-target toxicity.

Regarding stimuli-responsive strategies, leveraging TME features

such as low pH, high GSH, and high ROS, Wang’s team

constructed a dual tumor-feature (ATP and acidity) unlocked

nanoplatform to amplify ferroptotic damage for efficient ferroptosis-

based therapy (133). Zhang’s group reported a dual GSH/GPX4

depletion strategy using GSH-responsive polydopamine-based

hybrid nanoparticles (CACuPDA) to induce tumor ferroptosis

(134). Additionally, studies have identified the immune-enhancing

properties of modulating TME ROS levels, guiding the selection of

nanocarrier materials for nanodrug construction (135). For Fenton

catalysis enhancement, iron-based nanoparticles (118)or manganese-

based materials (e.g., MnO2) have been integrated to promote •OH

generation (120, 122). In terms of GPX4 inhibition, GPX4 inhibitors

(e.g., RSL3, ML162) have been delivered (127, 129), or SLC7A11 has

been modulated to promote tumor cell ferroptosis (125). For

combination therapies, photothermal/photodynamic therapies (e.g.,

Ce6-loaded systems) (128)or chemotherapeutic drugs (e.g., cisplatin)

have been combined for synergistic antitumor effects (136).

However, clinical translation faces several challenges: difficulties

in large-scale production of complex nanostructures requiring precise

control of layered compositions (118), systemic oxidative damage

(e.g., hepatotoxicity) caused by free iron ions (137), long-term

retention issues of certain metal nanoparticles (138), potential

complement system activation or inflammatory responses triggered

by nanoparticles (139) and limited delivery efficiency due to tumor

stromal barriers and immunosuppressive TME (140). To address

these issues, synthesis processes can be simplified by using liposomes
TABLE 2 Examples of ferroptosis-modulating nanomaterials categorized by material type and mechanism.

Nanoparticle Material type Encapsulation Mechanism Reference

FeGd-HN@Pt@LF/RGD2 IONPS Fe3O4, Gd2O3 Promote Fenton reaction (118)

Mn3[Co(CN)6]2@MIL-100 (Fe) MOFS Artesunate, Fe3+ Promote Fenton reaction (119)

FePt@MnO@DSPE-PEG5000-FA FePt Fe2+, Mn2+, Folic acid
Promote Fenton reaction and Increase
ROS

(120)

LDL-DHA Self-assembled nanoparticles
low-density, lipoprotein,
docosahexaenoic acid

GSH depletion, GPX4 inhibition and
Lipid peroxidation

(121)

MMSNs Self-assembled nanoparticles Mn2+, SiO2 GSH exhaustion and ROS overloading (122)

bcc-USINPs Single-Crystal Fe Nanoparticle Fe2+
Fe2+ increasing and Promote Fenton
reaction

(123)

Carbon Nanoparticles−Fe (II) Self-assembled nanoparticles Fe2+
ROS overgeneration,
Phase I clinical trial/NCT06048367

(124)

SRF@FeIIITA (SFT) Self-assembled nanoparticles Fe3+, TA, Sorafenib LPO increasing (125)

Silica nanoparticles Self-assembled nanoparticles Poly (ethylene glycol), peptides ROS overgeneration (126)

Erastin@FA-exo Exosome Erastin
GPX4 inhibition, CDO1 increasing
and ROS overloading

(127)

TCLMS Self-assembled nanoparticles Lactose, Triapine, Ce6
Promote Fenton reaction, Increase
chemophotodynamic therapy and
Increase ROS

(128)

RF@LA-Fe-MOF Self-assembled nanoparticles Fe, lactobionic acid, RSL3 and iFSP1
GPX4 and FSP1 inhibition, Lipid
peroxidation

(129)
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or polymeric micelles (e.g., PLGA) instead of complex metal

nanoparticles to reduce costs, organ targeting can be optimized to

mitigate side effects from specific accumulation, biodegradable

materials can be employed, surface modifications of nanomaterials

can minimize antibody recognition, and co-delivery of hyaluronidase

or collagenase can enhance penetration depth combined with PD-1

inhibitors to reverse immunosuppression.
4.3 Ongoing clinical trials

Current clinical trials investigating ferroptosis in oncology remain

limited in number and are predominantly in early-phase

development, such as NCT06218524, phase II clinical trial, based

on the Shi’s team previous work (106). Combined haloperidol and

temozolomide (TMZ) may effectively treat glioblastoma by

simultaneously targeting tumor cells and blocking TMZ-induced

chemoresistance. The clinical data also proved that the dopamine

D2 receptor (DRD2) expression in recurrent glioblastoma is

significantly higher than that in primary glioblastoma. Haloperidol

triggers dose-dependent ferroptosis (in vivo/in vitro), mirroring

ferrostatin-1’s lipid peroxidation inhibition that attenuates its cell

death effects. In addition, NCT06048367, evaluating the safety and

efficacy of carbon nanoparticle-loaded iron [CNSI-Fe(II)] in advanced

solid tumors (particularly Kras-mutant types, Phase I) based on Xie’s

team previous work, is progressing in an orderly, systematic manner.

The study also aims to evaluate the dose-limiting toxicity (DLT) of

CNSI-Fe(II) to determine the maximum tolerated dose (MTD) or

highest injectable dose in humans, providing dosing guidance for

future clinical research (124). NCT04205357, is exploring that

sulfasalazine enhances the radiotherapeutic efficacy against glioma

by targeting transporter XC ⁻ to induce GSH depletion and ROS

accumulation. Developing new strategies to selectively enhance

radiation’s effects on tumor cells without increasing radiation-

induced damage to normal brain tissue would be valuable. A newly

identified NCT05924074 analyze ferroptosis levels in SF3B1-mutated

myelodysplastic syndrome patients. During diagnosis, additional bone

marrow samples will be aspirated. Ferroptosis will be analyzed by flow

cytometry using C11-BODIPY to label lipid peroxides. Several

preclinical models have demonstrated ferroptosis-enhanced

antitumor immunity, such as GPX4 knockout mouse models,

validating that the ferroptosis of Treg cells enhances anti-tumor

immunity (141, 142). Alternatively, future studies could integrate

patient-derived tumor tissues with immune cells (e.g., PDX models)

to evaluate the synergistic effects of ferroptosis inducers (such as

RSL3) with immune checkpoint inhibitors, as well as establish tumor

organoid-immune cell (e.g., CAR-T) co-culture systems to

quantitatively assess the impact of ferroptosis on immune cell

infiltration and cytotoxic function.

Current clinical trials in ferroptosis research encounter multiple

significant challenges. The absence of reliable ferroptosis-specific

biomarkers complicates patient stratification, introducing

substantial experimental variability. Methodological limitations

persist, as conventional lipid peroxidation detection techniques

such as fluorescent probes prove inadequate for tissue analysis or
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in vivo studies. Researchers must also contend with pronounced

cell-type-dependent variations in ferroptosis susceptibility. A

particularly troubling translational gap exists between in vitro and

in vivo systems, where ferroptosis inhibitors demonstrating

complete efficacy in cell cultures show inconsistent performance

in animal models, largely due to pharmacokinetic variables and

tissue-specific distribution patterns. Furthermore, interpatient

response heterogeneity and potential adverse effects necessitate

rigorous clinical assessment to establish therapeutic safety

profiles. Although the number of clinical trials is small, the

induction of ferroptosis in tumor cells in conjunction with

immunotherapy and nanomaterials represents a promising

strategy to overcome these challenges.
5 Concluding remarks and future
perspectives

Ferroptosis is a recently discovered iron-dependent programmed

cell deathmode. In this review, we further summarized the ferroptosis

of innate and adaptive immune cells in the TME and discussed key

genes regulating the sensitivity of these cells to ferroptosis. In recent

years, traditional anti-cancer therapies, such as chemotherapy and

radiotherapy, are not always effective owing to the wide range of

targets and tumor cell resistance. Compared with these therapies,

immunotherapy has the advantages of remarkable curative effects,

long-lasting effects and fewer side effects. Ferroptosis has been shown

to enhance the anti-tumor effects of immune cells, inhibit tumor

growth, prolong the survival time of patients and improve the quality

of life. Meanwhile, the combined application of ferroptosis and

nanomaterials is currently a research hotspot, nanomaterials have

both promising therapeutic avenues and major challenges. Moreover,

clinical trials investigating the therapeutic potential of ferroptosis

regulators in cancer are underway (NCT06048367, NCT06218524,

NCT04205357, and NCT05924074). Findings from the initial phases

of both trials have validated that ferroptosis plays a major role in anti-

cancer therapy. However, ferroptosis serves as a double-edged sword

in cancer by both promoting and inhibiting anti-cancer immunity.

The central challenge in harnessing ferroptosis for immunotherapy

lies in achieving cellular selectivity within the TME. Current strategies

often lack specificity, risking collateral damage to immunostimulatory

cells. Future work should focus on: Biomarker-guided targeting:

Studies indicate that activated lymphocytes exhibit higher expression

of TfR1 (143). This suggests that biomarker-directed drug delivery

could enable precise therapeutic intervention. Exploiting metabolic

reprogramming differences: Immunosuppressive cells, such as M2

macrophages, rely on glutaminase (GLS) to maintain antioxidant

capacity. GLS inhibitors can selectively induce ferroptosis in M2

macrophage. Additionally, M2 macrophages depend on

mitochondrial metabolism, whereas immunostimulatory cells (M1

macrophages, DCs, T cells, B cells, and NK cells) primarily utilize

glycolysis for functional activation (144). Targeting these distinct

metabolic pathways may allow selective ferroptosis induction. In

addition, Shi and Hu team developed iron/aluminum-layered double

hydroxide (Fe/Al-LDH) nanodrugs that degrade selectively in acidic
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microenvironments, inducing tumor cell ferroptosis while

simultaneously promoting M1 macrophages polarization. This dual

action synergistically enhances T-cell immunity and reverses

immunosuppressive microenvironments (145).Modulating

intercellular communication: Gastric cancer-derived exosomal let-7g-

5p, mediated by SERPINE1, promotes M2 macrophage polarization

and tumor progression (146). Conversely, exosomes like Exo@

MnIO&BG, with Mn²+ assistance, activate the cGAS-STING

pathway, inducing dendritic cell maturation and enhancing

antitumor immunity (147). Thus, targeting exosomes represents a

promising strategy for reshaping the TME. Epigenetic regulation: The

epitranscriptional factor PCIF1 modulates m6Am modification,

influencing ferroptosis-suppressing genes and the expression of

CD8+ T cell activation markers (CD69). This regulatory mechanism

negatively impacts CD8+ T cell activation, making them more

susceptible to ferroptosis (148). Future studies should explore

epigenetic approaches to selectively induce ferroptosis in

immunosuppressive versus immunostimulatory cells. Temporal

control strategies: Synchronizing ferroptosis induction with immune

checkpoint therapy could leverage the transiently enhanced ferroptosis

defense in activated CD8+ T cells. Combining cystine deprivation with

anti-PD-L1 treatment could synergistically promote CD8+ T cell

infiltration and establish a positive feedback loop to amplify

antitumor immunity. Recent studies suggest that traditional non-

selective ferroptosis induction strategies need to evolve towards more

precise approaches. We propose developing a ‘Ferroptosis

Immunomodulation Index’ (FII) scoring system based on GPX4/

FSP1/CD36 expression profiles to better quantify the therapeutic

window. A study employed the optogenetic tool Opto-GPX4Deg to

demonstrate that ferroptosis can propagate to neighboring cells

through a-catenin-dependent cell membrane contact, a process

driven by iron-mediated lipid peroxidation and inhibitable by either

a-catenin depletion or iron chelators. Liposome experiments further

confirmed that lipid components alone are sufficient to mediate this

transmission. These findings provide novel insights for the treatment

of ferroptosis-related diseases and advance both mechanistic research

and therapeutic development (149).

This review is the first to systematically delineate the differential

ferroptosis responses among immune cell subsets, revealing their

dual role in antitumor immunity. By innovatively proposing the

“Ferroptosis Immunomodulation Index (FII)”, we provide a novel

benchmark for precision cancer therapy. Beyond deciphering the

metabolic and signaling networks of immune cell ferroptosis, we

introduced a groundbreaking “biomarker-guided, cell-selective

modulation” strategy, bridging the gap between mechanism and

clinical translation. This framework, integrating theoretical depth

and therapeutic innovation, offers a transformative perspective for

the combined application with immunotherapy and nanomaterials.

Future directions should focus on developing humanized

models (e.g., organoid-immune cocultures), combination

strategies to accelerate clinical implementation. Create targeted

ferroptosis therapies through three key approaches: first, by

designing cell-specific inducers with advanced delivery platforms

to achieve precise tumor targeting; second, by discovering definitive

ferroptosis biomarkers and developing dynamic imaging modalities
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for accurate disease monitoring; finally, by addressing therapeutic

resistance pathways including FSP1-mediated defense mechanisms

in malignant cells to maintain long-term treatment effectiveness.

Together, these strategic approaches will bridge the gap between

ferroptosis research and clinical translation, ultimately enabling

precision cancer therapies that selectively exploit this vulnerability

while overcoming treatment barriers.
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