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Cancer-associated fibroblasts (CAFs) are key components of the tumor

microenvironment (TME) which promote drug resistance by remodeling the

extracellular matrix, generating an immunosuppressive microenvironment, and

activating metabolic signaling pathways. Nanomaterials provide an effective

method for specifically targeting CAF-mediated drug resistance because of

their unique targeted delivery capabilities, responsive release characteristics,

and multifunctional integration. Here, we describe the mechanisms underlying

the role of CAFs in drug resistance. The types of materials used and design

principles are described, and examples of the application of nanomaterials for

targeting CAFs are provided. Current challenges and future directions of

nanomaterials targeting CAFs for reversing tumor drug resistance are also

discussed to provide theoretical support for the development of effective

nanotherapies aimed at reversing drug resistance in cancer.
KEYWORDS

nanomaterials, cancer-associated fibroblasts, tumor microenvironment, tumor drug
resistance, reverse tumor drug
1 Introduction

Tumor drug resistance is closely related to the dynamic regulation of the tumor

microenvironment (TME) (1). The TME includes tumor cells and surrounding stromal

cells, immune cells, and secreted factors, which together affect tumor growth, invasion and

the response to treatment (1). Dynamic changes in the TME can promote tumor growth,

hinder immune surveillance, and lead to treatment resistance in targeted therapy and

immunotherapy (2). Cancer-associated fibroblasts (CAFs) are a heterogeneous group of

cells that are abnormally activated in the tumor stroma and play a crucial role in the TME.
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Because of their heterogeneity, CAFs confer a drug resistance

phenotype in tumor cells through many mechanisms, such as by

acting as a physical barrier, affecting signaling pathways, or by

affecting metabolic support and the immune microenvironment.

Complex CAF-mediated drug resistance networks are challenging

for traditional single-target therapy strategies.

Nanomaterials provide an innovative solution to this problem

by virtue of their unique size effect, surface modification and

functional integration advantages. Recent reviews highlight the

critical role of CAFs in mediating tumor drug resistance and the

promising applications of nanomaterials in targeting CAFs.

Nanotherapeutic strategies include surface modification with

CAF-specific ligands (e.g., FAP antibodies, peptide conjugates) for

precision delivery, stimuli-responsive systems (pH/enzyme-

sensitive nanoparticles) for controlled drug release, and

multimodal platforms co-loading CAF inhibitors and

chemotherapeutics (3).

Emerging evidence demonstrates that nanomaterials can

normalize the tumor stroma, enhance drug penetration, and

synergize with immunotherapy by reversing CAF-mediated immune

suppression (4). Nanomaterials possess significant advantages, such as

improved pharmacokinetics and biodistribution, long circulation,

targeting, and controlled release. Improved pharmacokinetics/

biodistribution: Nanomaterials (e.g., PEGylated polymeric micelles,

lipid nanoparticles) overcome small-molecule limitations (short

circulation, non-specific accumulation). They leverage the enhanced

permeability and retention(EPR) effect to accumulate in CAF-rich

tumor stroma, achieving a 40% higher tumor-to-plasma

concentration ratio than free drugs (5). Long circulation:

PEGylation reduces reticuloendothelial system(RES) clearance,

extending nanocarrier circulation to 10–24 h (vs. 1–2 h for free

drugs). This prolongs exposure, increasing tumor targeting chances

(5, 6). Precision targeting: Ligand-modified nanocarriers (e.g., FAP

antibody, RGD peptide) bind CAF markers (FAP, a-SMA), cutting

liver/spleen accumulation by 50% vs. non-targeted carriers and

avoiding normal fibroblast damage (5, 7). Controlled release:

Stimuli-responsive systems (pH/ROS-sensitive micelles) release

drugs (doxorubicin, TGF-b inhibitors) over 24–48 h in CAF-rich

TME, maintaining effective concentrations to inhibit CAF activation/

ECM synthesis (5, 7).
2 Biological characteristics of CAFs
and mechanisms of CAF-mediated
tumor drug resistance

2.1 Origin and heterogeneity of CAFs

CAFs are a group of abnormally activated fibroblasts in the

TME that arise from a diversity of cells, including tissue-resident

fibroblasts (8), mesenchymal stem cells (9, 10), epithelial cells

(through epithelial-mesenchymal transition, EMT) (11),

endothelial cells (through endothelial-mesenchymal transition),

adipocytes and perivascular cells (12, 13). These precursor cells

are transformed into activated CAFs in response to specific
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signaling factors in the TME, such as transforming growth factor

(TGF)-b, stromal cell-derived factor 1, and interleukin (IL-6)

(14, 15).

CAFs constitute a heterogeneous cell population that is divided

into subtypes according to phenotype and function. Myofibroblast-

like CAFs (myCAFs), which express high levels of a-SMA and

collagen fibers, regulate extracellular matrix (ECM) remodeling and

tumor mechanical stiffness (16, 17); they play an important role in

pancreatic cancer, breast cancer, and other stromal tumors.

Inflammatory CAFs (iCAFs) secrete pro-inflammatory factors

such as IL-6 and CXCL1, activate the JAK/STAT3 pathway,

recruit immunosuppressive cells such as MDSCs and M2

macrophages, and form an immune escape microenvironment

(18). Antigen-presenting CAFs (apCAFs) express high levels of

MHCII, which interacts with T cells and is involved in the

responsiveness to immunotherapy (19). Lipid-rich CAFs, which

promote tumor growth by transporting lipids, are induced in

SETD2-deficient pancreatic cancer cells (20). SETD2 is a histone

lysine methyltransferase whose deficiency leads to metabolic

reprogramming of tumor cells and immune escape (21). Vascular

CAFs localize predominantly to the core area of tumors and

promote angiogenesis by secreting various factors such as

vascular endothelial growth factor to support tumor growth and

spread (22, 23).
2.2 Key mechanisms of CAF-mediated
tumor drug resistance

CAFs are important components of the TME that promote drug

resistance through multi-dimensional mechanisms, including the

formation of physical barriers, activation of drug resistance

pathways, activation of signaling pathways promoting dryness and

invasion, generation of an immune escape microenvironment,

maintenance of the drug resistance phenotype, and tumor cell

resistance memory.

Physical barriers and drug delivery obstacles: CAFs secrete a

large number of ECM components such as collagen, thereby

increasing the stiffness of the matrix by regulating the

composition and structure of the ECM. This results in the

formation of a physical barrier that limits the penetration of

chemotherapeutic drugs, which is one of the key causes of

chemotherapy resistance in cancer (24, 25). CAF-secreted

collagen decreases the concentration of doxorubicin in the tumor

core; the resulting increase in matrix stiffness hinders drug

diffusion, resulting in partial survival of tumor cells and induction

of drug resistance (26, 27).

Metabolic reprogramming and energy support: lipid-rich CAFs

provide fatty acids to tumor cells via ATP-binding cassette

subfamily A member 8a (ABCA8a) , enhancing their

mitochondrial function, anti-metabolic drugs and mitochondrial

targeting drugs (28). iCAFs and myCAFs upregulate GLUT1 and

LDH, transport lactate to tumor cells through MCT4 (29), activate

the HIF-1a pathway, induce the expression of drug resistance genes

such as MDR1, and increase drug resistance in tumor cells (30, 31).
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CAFs increase glutathione (GSH) levels in cancer cells through

secretion mediators, decrease drug-induced reactive oxygen species

production and DNA damage, and promote chemotherapy

resistance (32).

Signaling pathway activation and tumor cell survival:

hepatocyte growth factor (HGF) secreted by CAFs activates the c-

Met receptor and restores PI3K/Akt and MAPK/ERK signaling,

leading to epidermal growth factor (EGFR)-tyrosine kinase

inhibitor (TKI) resistance (33). Combination treatment with c-

Met inhibitors increases the efficacy of EGFR-TKIs, thereby

inhibiting tumor cell growth and proliferation (34) and delaying

relapse in drug-resistant tumors (35). C-X-C Motif Chemokine

Ligand 12 (CXCL12) secreted by CAFs binds to tumor cell CXCR4,

thereby activating downstream signaling that enhances cancer stem

cell (CSC) drying and invasion, leading to tumor progression and

metastasis (36–38). Drug resistance in CSCs is acquired through

multiple mechanisms, including overexpression of molecules such

as aldehyde dehydrogenase 1 (ALDH1) and ATP-binding cassette

subfamily G member 2 (ABCG2). ALDH1 is an enzyme involved in

cellular redox reactions, and its high activity is closely related to

tumor invasiveness and drug resistance (39, 40). ABCG2 is a

transmembrane protein that pumps chemotherapy drugs out of

cells, thereby reducing their cytotoxicity (41, 42). CAFs promote

CSC enrichment by activating the CXCL12/CXCR4 axis and

increase the migratory ability and drug resistance of tumor cells

by inducing EMT, further aggravating the malignant progression of

tumors (43, 44).

Immunosuppressive microenvironment and immunotherapy

resistance: iCAFs secrete CCL2 to recruit MDSCs and inhibit T

cell activity by secreting multiple inhibitory factors in the TME (45).

IL-6 secreted by iCAFs promotes M2 macrophage polarization and

inhibits CD8 +T cell function through the inhibitory factor IL-10

(46, 47). Although apCAFs express MHCII, they often cannot

activate T cells effectively because of the expression of co-

inhibitory molecules (PD-L1, CTLA-4) or defects in antigen

processing, and they may even induce immune tolerance. For

example, the combination of PD-L1 and PD-1 can lead to T cell

failure and inhibit immune responses (48, 49). ApCAFs may be

deficient in antigen processing. Although some cell types can

continue to synthesize MHCII molecules after activation, they

lack effective antigen processing mechanisms, resulting in

ineffective presentation of exogenous antigens (50). Hypoxic

conditions in the TME may also help tumor cells evade immune

surveillance by downregulating the expression of MHCI and

MHCII to limit antigen presentation (51).

Epigenetic regulation and drug resistance memory: the

involvement of CAFs in drug resistance is mediated by several

mechanisms including epigenetic reprogramming (DNA

methylation and histone modification) (52). For example,

activation of the YAP/TAZ signaling pathway can promote tumor

cell growth (53), whereas histone deacetylase (HDAC) inhibitors

increase histone acetylation by inhibiting HDAC activity, thereby

affecting epigenetic reprogramming of CAFs (YAP/TAZ signaling

pathway) and interfering with their role in promoting drug

resistance (54). However, this process may trigger a compensatory
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drug action) and conserve the drug resistance-promoting function

(55). These processes highlight the complexity of CAF drug

resistance mechanisms.

The involvement of CAFs in drug resistance suggests that

targeting CAFs could be an important strategy to improve the

efficacy of cancer treatment.
3 Types and core strategies of
nanomaterials targeting CAFs

Nanomaterials are optimal carriers for targeting CAFs because

of their unique physicochemical properties and biocompatibility.

Nanomaterials can be divided into organic nanomaterials and

inorganic nanomaterials according to their chemical composition

and functional properties. Organic nanomaterials are carbon-based

molecules including lipid-based nanoparticles, polymer

nanoparticles, and dendrimers. They are biocompatible and can

be designed to specifically recognize and bind to CAFs, which

increases the efficacy of drug delivery and optimizes the therapeutic

effects (56). Inorganic nanomaterials do not contain carbon and can

modify the CAF microenvironment through optical and magnetic

effects, such as metal nanomaterials and carbon-based

nanomaterials. They can be developed into effective tools for

targeting CAFs due to their excellent stability and easily modified

surface characteristics (57). Other types of nanomaterials include

biological nanoparticles and hybrid nanomaterials. Nanomaterial-

based CAF targeting strategies aim to modulate CAF function and

reverse tumor drug resistance through multiple pathways, including

clearing and killing CAFs, inhibiting CAF activation and

reprogramming, and disrupting CAF function.Detailed

information regarding the types and core strategies of CAFs-

targeting nanomaterials is shown in Table 1.
3.1 Precision targeting strategies for
surface markers

CAF surface-specific markers (such as FAP, a-SMA, and

PDGFRb) are used to accurately identify and enrich CAFs through

nanomaterial surface modification using targeting ligands

(antibodies, aptamers, peptides). FAP antibody-modified liposomes

can specifically target CAFs and decrease the density of the tumor

stroma, thereby increasing membrane permeability and the

accumulation of chemotherapeutic drugs (58). Bismuth ferrite

harmonic nanoparticles conjugated with FAP antibody can be

designed to target pancreatic cancer CAFs and release

chemotherapy drugs, decreasing tumor interstitial hardness by

40%, and resulting in a 2.5-fold increase in gemcitabine penetration

(59). FAP siRNA encapsulated in chitosan nanoparticles can be

enriched in the tumor stroma through mucosal adhesion, where it

downregulates FAP expression in CAFs and blocks angiogenesis (60).

Navitoclax loaded with H-ferritin nanocages targets CAFs via FAP

antibody fragments, which markedly increases the cytotoxicity of the
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TABLE 1 Core strategies for nanomaterials targeting CAFs.

Material
type

Core strategy
Mechanism of
action

Specific materials Application effect Reference(s)

Organic
Nanomaterials Precise Targeting of

Surface Markers

Modify ligands (antibodies/
aptamers) of CAFs surface
markers for specific
recognition and enrichment

FAP antibody-modified
liposomes

Reduce tumor stroma density and
enhance chemotherapeutic drug
permeability

(53)

Chitosan nanoparticles
(encapsulating FAP siRNA)

Downregulate FAP expression and
block CAFs-induced angiogenesis

(55)

Responsive Release
System Design

Achieve controlled drug
release via TME-responsive
acidity or enzyme
concentration

Gelatin-encapsulated gold
nanoparticles (modified with
RGD peptide, responsive to
MMP-2/9)

Enzyme-degrade the carrier to
release doxorubicin, disrupt
extracellular matrix (ECM), and
enhance drug accumulation

(66–69)

Gene and Metabolic
Intervention

Deliver gene drugs or
metabolic inhibitors to
block CAFs functions

mPEG-PLGA nanoparticles
loaded with baicalin

Inhibit TGF-b/Smad2/3 pathway,
reduce CAFs activation and
migration

(70–72)

PLGA nanoparticles (loaded
with glutaminase inhibitor CB-
839, targeting PDGFR-b)

Reduce glutamine secretion and
enhance the efficacy of cisplatin in
gastric cancer

(77, 78)

Synergistic Strategy

Co-load drugs or enable
sequential release,
integrating chemotherapy/
immunotherapy/
photothermal therapy

Liposomes co-loaded with
nilotinib (CAFs inhibitor) and
doxorubicin

Inhibit CAF-secreted IL-6 and
enhance tumor cells' sensitivity to
chemotherapy

(85, 86)

Inorganic
Nanomaterials

Precise Targeting of
Surface Markers

Combine physical
properties of metal
nanomaterials with
targeting ligands

Bismuth ferrite harmonic
nanoparticles (conjugated with
FAP antibody)

MRI-guided targeting of pancreatic
cancer CAFs, reduce stromal
hardness by 40%, and enhance
gemcitabine permeability by 2.5-
fold

(54)

Superparamagnetic iron oxide
nanoparticles (SPIONs,
targeting CAF apoptosis)

Induce CAF apoptosis via
alternating magnetic field and
inhibit CAF activity

(62, 63)

Responsive Release
System Design

Trigger drug release or
photothermal effect via
photo/magnetic
responsiveness

pH-sensitive GO
Acidic environment triggers drug
release, targeting CAF
microenvironment

(65)

Gold nanorods (modified with
enzyme-responsive peptides)

Near-infrared light-triggered
photothermal effect disrupts ECM
and promotes drug penetration

(66)

Gene and Metabolic
Intervention

Deliver gene editing tools
or metabolic disruptors

CRISPR-Cas9 nanocarriers
(knockout of CXCR4 gene in
CAFs)

Block CXCL12/CXCR4 axis,
inhibit cancer stem cell (CSC)
stemness and epithelial-
mesenchymal transition (EMT)

(59–61)

Synergistic Strategy

Photothermal effect
combined with
chemotherapy/
immunotherapy

Liposome-AuNPs hybrid
system (AuNPs photothermal
effect + liposomal drug
delivery)

Near-infrared light softens the
stroma, enhances drug release and
immune cell infiltration

(93–96)

Hybrid
Nanomaterials

Surface Marker
Precise Targeting +
Responsive Release

Integrate multiple
properties of organic-
inorganic materials

FAP antibody-
modified liposome-AuNPs
complex

Target CAFs and combine
photothermal effect for dual
inhibition of CAF functions

(53, 93)

Multimodal
Synergistic Therapy

Magnetic targeting +
hyperthermia +
chemotherapy with multiple
mechanisms

Superparamagnetic iron oxide
(IONPs)-PLGA hybrid
nanoparticles

Magnetic field enrichment in CAF
regions, synergistic photothermal
and chemotherapeutic killing of
tumor cells

(97–102)

Biological
Nanoparticles

Natural Source
Targeted Delivery

Utilize biocompatible
carriers (e.g., ferritin)

H-ferritin nanocages (loaded
with Navitoclax, targeting FAP)

Specifically kill CAFs and enhance
drug cytotoxicity

(56)
F
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AuNPs, gold nanoparticles; CAFs, cancer-associated fibroblasts; CRISPR-Cas9, clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9; CSC, cancer stem cell;
CXCR4, c-x-c chemokine receptor type 4; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; FAP, fibroblast activation protein; GO, graphene oxide; IONPs, iron oxide
nanoparticles; MMP-2/9, matrix metalloproteinase-2/9; mPEG-PLGA, methoxy-Poly(Ethylene Glycol)-Poly(Lactic-co-Glycolic Acid); MRI, magnetic resonance imaging; siRNA, small
interfering RNA; SPIONs, superparamagnetic iron oxide nanoparticles; TME, tumor microenvironment.
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drug (61). Navitoclax loaded nanoliposomes can also achieve selective

apoptosis of CAFs by specifically binding to the tenascin C protein

secreted by CAFs (62). A CRISPR-Cas9 nanovector designed to

knock out the CXCR4 gene in CAFs blocks the effect of the

CXCL12/CXCR4 axis on maintaining stem cell dryness and EMT

induction (63–65). Some nanoparticles have the ability to kill CAFs,

such as superparamagnetic iron oxide nanoparticles (SPIONs) that

induce CAF apoptosis under the action of alternating magnetic fields

(66), effectively inhibiting CAF activity and altering the TME (67).

The precise targeting strategy of nanomaterials against CAF surface

markers is illustrated in Figure 1A and summarized in

Supplementary Table 1.

Current marker-based strategies (targeting FAP, a-SMA,

PDGFRb) face two core challenges due to CAF heterogeneity:

non-universal expression across pro-tumor CAF subtypes and off-

target expression in normal stromal cells. For non-universality,

FAP, a classic marker, is primarily enriched in myCAFs but barely

expressed in iCAFs (which secrete IL-6) or apCAFs (which express

MHCII) (28). FAP-targeted nanocarriers only reduce stromal

stiffness but fail to inhibit iCAF-mediated immunosuppression,

leaving a 45% gemcitabine resistance rate in tumor cells (68). For

off-target risks, a-SMA (a myCAF marker) is highly conserved in

normal vascular smooth muscle and cardiac fibroblasts, leading to

nanocarrier accumulation in the liver/spleen (16). PDGFRb,
expressed in multiple CAF subtypes, also exists in bone marrow

mesenchymal stem cells and pericytes, preventing distinction

between pro-tumor CAFs and normal stromal cells (22). Thus,

single-marker strategies are insufficient, and future designs should

use single-cell omics-identified subtype-specific markers (e.g., IL-6R

for iCAFs) for “combinatorial marker recognition” to enhance

specificity (61).
3.2 Responsive release system design
strategy

Nanoparticles can utilize the pH, enzyme concentration, and

other characteristics of the TME to achieve controlled drug release

and improve targeting. pH-sensitive nanoparticles can exploit the

acidic nature of the TME to achieve efficient drug delivery and

release, thereby overcoming chemotherapy resistance and reducing

side effects (69). The pH response characteristics of graphene oxide

(GO) are particularly important. pH-sensitive prodrug molecules

on the GO surface can be modified to achieve controlled release

under acidic conditions, which is important for the CAF

microenvironment in cancer therapy (70).

Matrix metalloproteinases (MMP-2/9) that are expressed at

high levels in CAFs are used for specific drug delivery and

targeted therapy in the TME. This strategy involves coating gold

nanoparticles with enzyme-degradable carriers, such as gelatin

modified with RGD peptides, to target CAFs and disrupt the

ECM (71, 72). Gelatin-based nanoparticles can achieve controlled

drug release through the action of MMP-2/9. These nanoparticles

can be specifically degraded in the TME to release loaded anticancer
Frontiers in Immunology 05
drugs such as doxorubicin (DOX) and increase drug accumulation,

thereby improving therapeutic efficacy in tumor cells (73, 74). In the

MMP-2/9-responsive delivery system, the nanoparticle carrier does

not directly disrupt the ECM; instead, its ECM-modulating effect

follows an indirect chain: MMP-2/9 (highly expressed by CAFs)

degrades the enzyme-sensitive carrier (gelatin-coated gold

nanoparticles modified with RGD peptides), triggering the release

of loaded drugs (DOX) (75). The released drugs then inhibit CAF

activation/proliferation (e.g., downregulating collagen-synthesis

gene COL1A1 in CAFs), reducing CAF-secreted ECM

components (collagen, fibronectin) (76). Simultaneously, targeted

elimination of CAFs impairs their ECM-remodeling ability,

decreasing tumor stromal density, and ultimately achieving

indirect ECM modulation. Responsive release system design

strategy is illustrated in Figure 1B and summarized in

Supplementary Table 2.
3.3 Genetic and metabolic intervention
strategies

Nanomaterials can deliver gene drugs or metabolic inhibitors to

block the ability of CAFs to promote drug resistance at the

molecular level. For example, mPEG-PLGA loaded baicalein can

block TGF-b signaling by inhibiting the phosphorylation of key

proteins in the TGF-b signaling pathway such as Smad2/3, thereby

inhibiting CAF activation (77, 78). Furthermore, baicalein can

inhibit CAF migration and invasion by downregulating TGF-b
expression and its downstream target genes such as N-cadherin

and vimentin (77, 79). SPIONs delivering fibroblast growth factor 2

interferes with TGF-b1-induced CAF activation (68).

Nanomaterials target myCAFs through “multivalent recognition-

efficient endocytosis”, blocking the communication between CAFs

and tumor cells and simultaneously loading gemcitabine and

CXCL12 antagonists to block the drug resistance signaling

pathway between CAFs and tumor cells (80, 81). The hollow

structure of carbon nanotubes is suitable for carrying gene drugs

such as siRNAs. Surface modification with hyaluronic acid is

performed to target the CD44 receptor on the surface of CAFs;

this achieves specific silencing of fibrosis-promoting genes such as

COL1A1, thereby improving the delivery of siRNAs and increasing

stability and targeting in vivo (82).

To interfere with the metabolic coupling between CAFs and

tumor cells (such as lactic acid shuttle and glutamine metabolism)

and deprive tumor cells of energy sources, PLGA nanoparticles

loaded with glutamine inhibitor (CB-839) can target PDGFR-b on

the CAF surface, decreasing glutamine secretion and increasing the

efficacy of cisplatin in gastric cancer (83, 84). Functional nucleic

acid (FNA)-based nanoplatforms combined with ZnO

nanoparticles can deplete GSH in the TME, activate ferroptosis,

and inhibit P-gp mediated drug efflux, thus overcoming multiple

drug resistance (85–90). Genetic and metabolic intervention

strategies is illustrated in Figure 1C and summarized in

Supplementary Table 3.
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3.4 Synergy strategies

Multiple therapeutic approaches can be integrated to

synergistically reverse CAF-mediated resistance networks through

co-loading or sequential release of nanomaterials. Combination

treatments based on chemotherapy targeting CAFs inhibit CAF

function and kill tumor cells simultaneously, blocking the

protective effect of CAFs on tumor cells. For example, liposomes

co-loaded with nilotinib (CAF activation inhibitor) and doxorubicin

inhibit the secretion of IL-6 by CAFs, thereby impairing the

protective effect of CAFs on tumor cells (91). IL-6 secreted by

CAFs can inhibit tumor cell sensitivity to chemotherapy drugs

through the JAK/STAT signaling pathway, and nilotinib enhances
Frontiers in Immunology 06
tumor cell sensitivity to doxorubicin by blocking the corresponding

signaling pathway (92). PCL-luteinizing hormone-releasing hormone

(LHRH) nanoparticles are a novel drug delivery system capable of

loading paclitaxel and the photothermal agent IR780; this system

targets ovarian cancer by modifying LHRH peptides. The system

utilizes the photothermal effect of near-infrared light to destroy the

tumor ECM, which increases drug penetration and release and

improves the inhibitory rate in drug-resistant tumors (93). Dual-

responsive nanoparticles can release FAP inhibitors in the TME to

decrease ECM stiffness, followed by the release of chemotherapeutic

drugs such as paclitaxel to kill tumor cells. This strategy is particularly

applicable to paclitaxel-resistant ovarian cancer models because it can

overcome drug resistance by altering the TME (94, 95).
FIGURE 1

Schematic illustration of nanomaterial-based targeting strategies for CAFs in reversing tumor drug resistance. (A) Precision targeting strategies for
surface markers nanomaterials are modified with ligands (e.g., antibodies, aptamers) to recognize CAF-specific surface markers such as FAP, a-SMA,
or PDGFRb. For example, FAP antibody-conjugated liposomes and bismuth ferrite nanoparticles enable specific binding to CAFs, reducing stromal
density and enhancing drug penetration. CRISPR-Cas9 nanovectors are used to knock out CXCR4 in CAFs, disrupting the CXCL12/CXCR4 axis and
inhibiting cancer stem cell properties. (B) Responsive release system design pH-sensitive nanoparticles (e.g., graphene oxide, GO) exploit the acidic
tumor microenvironment (TME) to trigger drug release. Enzyme-responsive systems (e.g., MMP-2/9-degradable gelatin-coated gold nanoparticles)
specifically degrade in the TME, releasing drugs like doxorubicin. These strategies enhance drug accumulation in tumors while minimizing systemic
side effects. (C) Genetic and metabolic intervention strategies nanomaterials deliver gene drugs (e.g., siRNA, CRISPR-Cas9) or metabolic inhibitors to
disrupt CAF functions. For instance, mPEG-PLGA nanoparticles loaded with baicalein inhibit TGF-b signaling, while PLGA nanoparticles carrying
glutamine inhibitors (CB-839) target PDGFR-b to deplete energy supply for tumor cells. Carbon nanotubes with hyaluronic acid modification silence
fibrosis-related genes (e.g., COL1A1) via CD44 receptor targeting. (D) Synergy strategies. Multifunctional nanosystems integrate chemotherapy,
photothermal therapy, and immunotherapy. Liposomes co-loading nilotinib and doxorubicin suppress CAF-secreted IL-6 to enhance tumor cell
sensitivity. Photothermal agents (e.g., IR780-loaded PCL nanoparticles) combined with near-infrared light disrupt the extracellular matrix, improving
drug penetration. Dual-responsive nanoparticles sequentially release FAP inhibitors and chemotherapeutics, remodeling the TME and enhancing
antitumor efficacy.
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Immune-targeting CAF combinations aim to reverse the CAF-

mediated immunosuppressive microenvironment and enhance

immune cell infiltration and function. PD-L1 is expressed on

tumor cells and in CAFs, providing a theoretical basis for

combined blockade of PD-L1/PD-1 signaling (96). a-PD-L1

antibodies are co-loaded with CAF targeting peptides in

nanopartic les to specifical ly attack tumors and their

microenvironments, ultimately improving antitumor immune

responses (97). This combination strategy not only enhances

CD8+T cell infiltration and activation, but also impairs tumor

immune escape by inhibiting CAF function (98).

Dual-response nanoparticles (such as pH/enzyme dual

response) and multi-drug co-loading with intelligent response

synergy mediate the sequential release of CAF inhibitors and

chemotherapy drugs to achieve “microenvironment remodeling

and tumor killing”. In the liposome-AuNP hybrid system, the

photothermal effect of AuNPs (gold nanoparticles) generates local

high temperatures under near infrared light irradiation; this softens

the tumor matrix and destroys its physical barrier, improving drug

release and penetration (99, 100). Liposomes can carry

chemotherapeutic drugs and immunomodulators, and drug

release is triggered through a photothermal effect. The liposome-

AuNP hybrid system is a promising cancer treatment strategy based

on different synergy mechanisms that can effectively overcome

physical and physiological obstacles in the TME to improve drug

delivery and therapeutic effects (101, 102). Superparamagnetic iron

oxide nanoparticles (IONPs)-poly (lactic acid-co-glycolic acid)

(PLGA) hybrid nanoparticles are a novel nano-drug delivery

system that combines magnetic targeting with sustained release of

chemotherapeutic drugs; it can enrich in CAF regions and achieve

synergistic killing via hyperthermia and chemotherapy (103, 104).

PLGA acts as a drug carrier and prolongs the release time of

chemotherapeutic drugs; the sustained release decreases the

systemic toxicity of drugs (105, 106). With the introduction of

IONPs, nanoparticles produce a thermal effect under an applied

magnetic field, and the resulting synergistic effect of hyperthermia

and chemotherapy improves the killing efficacy in tumor cells (107,

108). The synergistic strategies combining multiple therapeutic

approaches is illustrated in Figure 1D and summarized in

Supplementary Table 4.
5 Discussion

Targeting CAFs with nanomaterials provides an innovative

pathway to reverse tumor drug resistance; however, its clinical

translation is limited by a series of challenges. First, because of

the heterogeneity of CAFs, identifying a single marker for all drug

resistance subgroups is difficult, and there is overlap with normal

fibroblasts, resulting in off-target risk. Second, inorganic materials

are associated with liver and spleen toxicity; the biocompatibility of

the degradation products of organic materials needs to be verified,

and targeting ligands may cause immunogenicity. Third, uniformity
Frontiers in Immunology 07
and stability are difficult to achieve in the large-scale production of

nanomaterials; real-time monitoring technology of in vivo targeting

efficiency is insufficient, and elucidating the mechanisms underlying

the effect of combination therapy requires additional study and

biomarker guidance.

Among the nanomaterial-based strategies targeting CAFs,

stimuli-responsive release systems and multimodal synergy

strategies exhibit the most translational promise, and the reasons

are as follows. First, unlike surface marker-based precision targeting

limited by CAF heterogeneity and non-specific markers, these two

strategies adapt to the dynamic TME. Stimuli-responsive systems

(e.g., pH/MMP-2/9-sensitive nanoparticles) utilize inherent TME

features for controlled drug release, avoiding off-target risks from

static markers. Multimodal synergy (e.g., co-loading CAF inhibitors

with chemotherapeutics/immunomodulators) remodels the TME

while killing tumors, addressing single-target therapy limitations.

Second, they align with clinical needs: some stimuli-responsive

systems (e.g., pH-sensitive epirubicin micelles NC-6300) have

entered Phase I trials (109), and multimodal strategies can

combine with existing chemo/immunotherapies, reducing clinical

transformation barriers.

The perspective on key hurdles and paths forward: The core

bottleneck is not just “insufficient specificity” or “weak translational

evidence”, but the overreliance on “static, single-target” thinking in

traditional strategies. Future breakthroughs lie in shifting to

“dynamic, subtype-specific intervention”. Leveraging single-cell

omics to identify subtype markers (e.g., IL-6R for iCAFs) and AI

to design “combinatorial marker-recognition” multivalent

nanocarriers will solve heterogeneity issues. Meanwhile, using

patient-derived organoids instead of animal models to verify

targeting efficiency and safety can fill the “translational gap”

between preclinical and clinical studies, which is a more debatable

yet transformative path than incremental improvements to existing

strategies. Only in this way can CAF-targeted nanodrugs be

advanced from basic research to clinical application, truly

providing a transformative therapeutic approach for overcoming

tumor drug resistance.
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