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Background: Immune checkpoint inhibitors (ICls) have revolutionized cancer
treatment, but their association with infectious adverse events (IAEs) remains
incompletely characterized. These infections may arise from immune
dysregulation or immunosuppressive therapies used to manage immune-
related toxicities, posing significant clinical challenges. This study aims to
define the spectrum, proportion, timing, and clinical outcomes of iAEs in
patients treated with ICls.

Method: Data from the first quarter of 2011 to the fourth quarter of 2023 in FAERS
database were extracted to conduct disproportionality analysis. Two signal
indices, the reporting odds ratio (ROR) and the information component (IC),
which are based on statistical shrinkage transformation, were used to evaluate
the correlations between ICls and immune-related iAEs. Evaluated regimens
included IClI monotherapy and combination therapies. Infectious AEs were
classified by high-level group terms (HLGTs), high-level terms (HLTs), and
preferred terms (PTs) based on the Medical Dictionary for Regulatory Activities
(MedDRA), then ranked by frequency and signal strength.

Results: Among 147,854 reports of irAEs, we identified 18068 iAEs demonstrating
an overall elevated infection risk (ROR = 1.08, 95% ClI [1.07-1.10]) with profound
agent-specific heterogeneity. Atezolizumab (ROR = 1.45) and cemiplimab
(ROR = 1.42) exhibited the highest risks, while pembrolizumab was associated
with a lower risk of iAEs (ROR = 0.82). Disproportionality analyses revealed
significant signals for bacterial pneumonia (ROR = 7.49), clostridioides difficile
colitis (ROR = 2.11), and pneumocystis jirovecii pneumonia (ROR = 3.78), with
pathogen-confirmed cases distributed as bacterial (11.67%), viral (12.20%), and
fungal (4.57%) etiologies. Temporal analysis established a critical vulnerability
window wherein >70% of iAEs manifested within three months of ICl initiation
(median onset 40 days), with pembrolizumab demonstrating the shortest latency
(27 days). Age-related disparities revealed that advanced age is associated with
increased risk of iAEs following ICI therapy. Combination regimens amplified
specific risks, notably encephalitis for nivolumab-ipilimumab (ROR = 17.72), while
hospitalization rates reached 71.23% for ipilimumab monotherapy.
Conclusions: This study highlights the significant risk of iAEs in patients treated
with ICls, emphasizing the need for vigilant monitoring, particularly in older
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patients and those receiving combination therapies. Tailored strategies to
prevent and manage infections are essential, and further research is necessary
to better understand the mechanisms underlying these adverse events and to
refine therapeutic approaches.

immune checkpoint inhibitors, adverse events, infection, FAERS, immunotherapy

1 Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized cancer
treatment by significantly enhancing antitumor immunity (1).
However, their extensive immunomodulatory effects extend beyond
antitumor activity, giving rise to a diverse spectrum of immune-related
adverse events (irAEs) that increasingly encompass infectious
complications. The FDA Adverse Event Reporting System (FAERS)
has been effectively utilized to profile infection risks associated with
various biologic therapies, including TNF-o inhibitors and interleukin
antagonists used for autoimmune conditions (2, 3). However, a
comprehensive analysis specifically addressing ICI-associated
infections using this large-scale pharmacovigilance database remains
lacking. Initially, early clinical trials predominantly characterized irAEs
as autoimmune-like toxicities, such as colitis and pneumonitis.
Nevertheless, contemporary real-world evidence suggests a notable
rise in iAEs associated with ICI utilization (1, 4). This shift underscores
the complex interplay between cancer immunotherapy and the
immune system, necessitating further research to fully comprehend
and manage these associated risks.

The intricate pathophysiologic interplay that exists between ICIs
and infections is characterized by two distinct yet interconnected
mechanisms. Firstly, the checkpoint blockade, which is a
fundamental aspect of ICI therapy, may inadvertently disrupt the
delicate balance of immune homeostasis. This disruption can create a
permissive environment for opportunistic pathogens to thrive. The
paradoxical effect of this immune dysregulation, however, is the
hyperactivation of inflammatory pathways, which can lead to a
cascade of pathological responses (5). In a cohort study of patients
receiving ICIs, bacterial infections were reported in 36.2% (82/226) of
cases, while fungal and viral infections occurred in 34.5% (78/226) and
21.2% (48/226), respectively, with polymicrobial infections observed in
8.0% (18/226) of patients (6). In another large retrospective study of
non-small cell lung cancer (NSCLC) patients treated with ICIs, 54.4%
(162/298) developed infectious complications. Of these patients, 59.3%
(96/162) required hospitalization and 15.4% (25/162) required
intensive care unit (ICU) admission (37419702). In a study of ICI-
treated patients requiring acute hospitalization, 1.2% (18/1561) were
admitted to ICU, with immune-mediated toxicities accounting for
more than half of these cases, frequently involving infectious
complications such as pneumonia (7). iAEs were also correlated with
elevated mortality, as evidenced by a fatality rate of 18.33% among
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reported cases where infection was a contributing factor (8). Moreover,
in severe irAEs such as ICI-associated myositis, concurrent infections
were identified in 75% of patients and were associated with poor
outcomes, including respiratory failure and death (9). Secondly, the
immunosuppressive therapies that are often necessary for the
management of severe irAEs, such as high-dose corticosteroids,
independently predispose patients to a heightened risk of
disseminated infections (10). This risk becomes particularly clinically
critical when considering that a significant proportion, ranging from 10
to 54.1% of ICI recipients, require prolonged courses of steroid for the
treatment of irAE (11, 12).

The current body of evidence concerning the interplay between
ICIs, infections, and immune dysregulation remains largely
observational in nature. Most of published data has been derived
from retrospective case series, which often lack systematically
characterization and robust methodologies to establish causality (13-
15).It is of critical importance to recognize that the clinical significance
of iAEs is exacerbated by the diagnostic and management challenges
they present. In contrast to the more commonly understood irAEs,
iAEs frequently exhibit symptoms that are similar to or overlap with
those of autoimmune toxicity. This overlap can lead to a significant
delay in the recognition of these infections and the initiation of
appropriate interventions, as evidenced by studies (4, 5). While
existing clinical guidelines offer comprehensive protocols for the
monitoring of irAEs, they provide only limited guidance on the
prevention or mitigation of iAEs. To gain a deeper understanding of
the infectious complications associated with ICIs, this particular study
undertook a detailed analysis of data sourced from FAERS database.
The primary objective of this research is to thoroughly characterize the
infection risks, temporal patterns, and outcomes of iAEs that are
related to ICIs. This extensive analysis aims to offer additional
insights and evidence that will assist healthcare professionals in the
clinical application of ICIs, thereby complementing the findings from
controlled clinical trials and enhancing patient care.

2 Materials and methods
2.1 Data source and processing

This pharmacovigilance study analyzed iAEs associated with
ICIs using data from FAERS database (https://open.fda.gov/data/
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faers/), spanning from the first quarter of 2011 to the fourth quarter
of 2023 (Figure 1). ICIs of interest included anti-PD-1 (nivolumab,
pembrolizumab, cemiplimab), anti-PD-L1 (atezolizumab,
avelumab, durvalumab), and anti-CTLA-4 (ipilimumab,
tremelimumab) monotherapies and specific combination
regimens (nivolumab-+ipilimumab, pembrolizumab+ipilimumab,
and tremelimumab+durvalumab). Case reports were identified
using all relevant drug names, including active ingredients, brand
names, and salt forms. Only reports where an ICI was designated as
the “Primary Suspect (PS)” drug were included. Combination
therapy was defined as the concomitant reporting of two or more
different ICI agents (specifically nivolumab+ipilimumab,
pembrolizumab+ipilimumab, and tremelimumab+durvalumab),
which were analyzed as distinct regimens. Key variables extracted
were age, sex, outcomes, drug names, reporting year, country, and
event dates. Data cleaning followed FDA recommendations:
duplicate reports were removed by retaining the most recent
entry based on CASEID and PRIMARYID, prioritizing later
FDA_DT and higher PRIMARYID for identical cases. For
recurring reports from the same patient, only the latest record (by
“FDA data received to date”) was included. This approach
prioritizes the minimization of overcounting bias at the potential
cost of underestimating the incidence of recurrent adverse events,
such as infectious complications. The onset time of iAEs was
calculated as the interval between therapy initiation (START_DT)
and event onset (EVENT_DT). Reports with invalid dates
(START_DT later than EVENT_DT) or missing START_DT/
EVENT_DT were excluded. Adverse events were categorized

10.3389/fimmu.2025.1647944

using Medical Dictionary for Regulatory Activities (MedDRA,
v26.1) at the System Organ Class (SOC), High-Level Group
Terms (HLGTs), High-Level Terms (HLTs), and Preferred Term
(PT) levels.

2.2 Statistical methods

In pharmacovigilance research, we applied the
disproportionality analysis approach to compare the proportion
of specific adverse events associated with one or more drugs to the
proportion of ADRs for the same drug reported across the entire
database. The main specific indicators used to assess drug-related
AE signals are reporting odds ratios (ROR) (16)and information
components (IC) (17). Statistical analysis methods use a 2 x 2
contingency table to analyze the relationship between a drug and an
AE. By calculating the relative frequency of target adverse events in
the database over time, these methods evaluate the likelihood of an
association. The formula for calculating ROR and IC is as follows:

_(afe) ad

ROR_(b/d)_E

a(a+b+c+d)

IC=log =~ avo

In the formula, @’ represents the number of reports that include
both the target drug and its adverse events; b’ represents the
number of reports that include adverse events from other drugs

Total
cases in FAERS from January 2011
to December 2023

(N=17854647)

Dupli cases
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The flow diagram of screening reports from the FAERS database.
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along with the target drug; ‘c’ represents the number of reports that
include adverse events from the target drug in combination with
other drugs; and ‘d’ represents the number of reports that include
adverse events from other drugs only. Signal thresholds were
defined as: a lower limit of the 95% CI for ROR (ROR,5) > 1 or
a lower limit of the 95% CI for IC (ICy,5) > 0 with at least 3 reports.
The primary data management and all statistical analyses, including
descriptive statistics and disproportionality analysis, were
conducted in SAS version 9.4 (SAS Institute Inc., Cary, NC,
United States). Data visualization was performed using specialized
software: time-to-onset analyses were plotted with GraphPad Prism
10.0; forest plots were generated using R software (version 4.4.2);
and heatmaps were created in Microsoft Excel 2021.

3 Results
3.1 Basic characteristics of iAEs

This analysis of the FAERS database identified 17,854,647
adverse event reports from the first quarter of 2011 to the fourth
quarter of 2023 (Figure 1). After deduplication, 15,245,964 cases
were analyzed, including 147,854 cases linked to irAEs. Among
these, 12.22% (18068/147,854) represented iAEs, which included
1,929 cases derived from combination regimens, while 129,786
cases involved non-infectious irAEs. Demographic analysis
(Table 1, more details in Supplementary Tables 1, 2) revealed a
male predominance (59.84%, N = 10,812) over females (34.13%,
N = 6,167), with 1,089 cases (6.03%) lacking gender data. Nearly
half of iAEs (48.72%, N = 8,803) occurred in patients aged >65
years. Physicians submitted the majority of reports (45.68%),
followed by consumers (21.70%), pharmacists (17.20%), and other
healthcare professionals (14.42%). Geographically, the United
States (33.20%) and Japan (31.09%) accounted for nearly two-
thirds of reports, with France (8.97%), Germany (8.40%), and the
UK (4.05%) comprising subsequent contributors. Lung cancer was
the predominant indication (44.19%, N = 5,926), followed by
melanoma (21.61%, N = 2,898) and renal/ureteral malignancies
(11.67%, N = 1,565). Hospitalizations represented the most frequent
serious outcome (36.50%, N = 12,135), while 21.05% (N = 6,997)
involved death or life-threatening events. Anti-PD-1 agents were
implicated in 60.78% (N = 12,153) of iAEs, significantly exceeding
anti-PD-L1 (19.73%, N = 3,945), anti-CTLA-4 (9.85%, N = 1,970),
and combination regimens (9.64%, N = 1,929).

3.2 Signal detection related to PT levels

This analysis of pharmacovigilance data identified 18068 cases
of iAEs linked to the target drug, part of which were showed in
Table 2 (More details in Supplementary Table 3). A notable
predominance of cases was categorized as infections-pathogen
unspecified (n=15593, 71.55%). Among cases with identified
pathogens, viral infections (n=2659, 12.20%), bacterial infections
(n=2543, 11.67%), and fungal infections (n=997, 4.57%) were the
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TABLE 1 Clinical characteristics of patients with iAEs.

Infectious AEs of = Total AEs of

Characteristics

ICls ICls
Gender
Female 6167 (34.13%) 50135(33.91%)
Male 10812 (59.84%) 80348(54.34%)
Age
<18 31(0.17%) 340(0.23%)
18-45 911(5.04%) 6959(4.71%)
45-65 5216(28.87%) 37397(25.29%)
>65 8803(48.72%) 58542(39.59%)
Reporting year
2011~2018 5455(30.19%) 46977(31.77%)
2019 2349(13.00%) 18248(12.34%)
2020 2278(12.61%) 17787(12.03%)
2021 2433(13.47%) 18992(12.85%)
2022 2667(14.76%) 21689(14.67%)
2023 2886(15.97%) 24161(16.34%)
Reporter type
Physician 8254(45.68%) 61541(41.62%)
Consumer 3920(21.70%) 38728(26.19%)
Pharmacist 3108(17.20%) 27244(18.42%)
Other health-professional 2605(14.42%) 18886(12.78%)
Reporting countries (Top 5)
USA 4850(33.20%) 58124(46.56%)
Japan 4542(31.09%) 30953(24.80%)
France 1311(8.97%) 10732(8.60%)
Germany 1228(8.40%) 5810(4.65%)
UK 592(4.05%) 2969(2.38%)
Indication (Top 5)
Lung Cancer 5926(44.19%) 35620(39.53%)
Malignant Melanoma 2898(21.61%) 18583(20.62%)
Renal and Ureteric Cancer 1565(11.67%) 12131(13.46%)
Hepatobiliary Malignancies = 672(5.01%) 6637(7.37%)
Breast Cancer 522(3.89%) 4038(4.48%)
Report type
Serious 17498(96.85%) 129504(87.59%)
Non-Serious 570(3.15%) 18350(12.41%)
Outcome
Hospitalization 12135(36.50%) 59077(28.56%)
Death 4906(14.76%) 37726(18.24%)
(Continued)
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TABLE 1 Continued

Infectious AEs of  Total AEs of

Characteristics

ICls ICls
Outcome
Life-Threatening ‘ 2091(6.29%) 8930(4.32%)
Other Serious ‘ 13599(40.91%) 97872(47.32%)

most frequently reported. Disproportionality signals were assessed
using both the ROR and IC. The corresponding IC values and 95%
confidence intervals for all reported associations are provided in
Table 2 and Supplementary Table 3, and showed high concordance
with the ROR-based signals. Disproportionality analysis revealed
several strong and significant signals. Pneumonia bacterial
demonstrated the highest association among bacterial infections
(ROR =7.49), followed by clostridium difficile colitis (ROR = 2.11).
Notable signals were also observed for relapsing fever
(ROR = 37.79) and erysipelas (ROR = 2.29). For fungal
infections, pneumocystis jirovecii pneumonia was the most
significant signal (ROR = 3.78). Among viral infections,
coronavirus pneumonia showed a highly elevated signal
(ROR = 13.26), whereas COVID-19 and herpes zoster were
frequently reported but with RORs below 1. We also identified
exceptionally high signals for rare events such as adrenalitis
(ROR = 187.80) and enterocolitis infectious (ROR = 10.91).
Conversely, bronchitis and influenza showed significant inverse
associations (ROR = 0.51 and 0.34, respectively).

We conducted systematic visualization of ICI-related iAEs
using hierarchical classification from the MedDRA (Figure 2,
Supplementary Table 4). The Sankey diagram illustrated the
hierarchical relationship of these infectious adverse events,
categorized from broad System Organ Classes (SOCs) like
infections and infestations, through more specific High-Level
Group Terms (HLGTSs) and High-Level Terms (HLTs), down to
detailed Preferred Terms (PTs) (Sankey diagrams were generated
using the OmicShare tools, https://www.omicshare.com/tools).
Categories such as lower respiratory tract infections, lung
infections, sepsis, and bacteremia were emphasized, with detailed
descriptions of conditions including pneumonia, sepsis, and
bacterial infections at the PT level. A heatmap on the left side of
Figure 2 displayed the RORs for different PTs across various ICI
regimens (Figure 2, Supplementary Table 5).

Based on the results, the reporting top six ICI-related iAEs at PT
level for various treatment strategies were further analyzed
(Figure 3A, Supplementary Table 6). The data showed that
encephalitis was the most prominent iAE, with the strongest
signals for atezolizumab (ROR = 30.96) and cemiplimab
(ROR = 23.76). Sepsis risk was highest for cemiplimab
(ROR = 4.00), while septic shock was most significant with
nivolumab and atezolizumab. Combination therapies, particularly
nivolumab plus ipilimumab, were associated with markedly
elevated encephalitis risk (ROR = 17.72). Pneumonia risks were
consistently elevated across PD-1/PD-L1 inhibitors (ROR
range=1.27-2.74), whereas urinary tract infections (UTI) showed
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reduced signals for most monotherapies (ROR<1), except
atezolizumab (ROR = 1.69). Overall, all ICIs were significantly
associated with the increased risk of sepsis, septic shock and
encephalitis. A meta-style forest plot of disproportionality across
all regimens (Figure 3B) confirmed an overall elevated iAE risk
(ROR = 1.08, 95% CI [1.07-1.10]). Agent-specific risks varied
considerably, with pembrolizumab showing a lower risk
(ROR = 0.82) and atezolizumab (ROR = 1.45) and cemiplimab
(ROR = 1.42) showing higher risks. Combination treatments such
as nivolumab plus ipilimumab demonstrated a modest increase risk
of infection (ROR = 1.07).

A comprehensive age-stratified analysis revealed a significantly
elevated risk of iAEs in patients aged =65 years compared to
younger patients, with a pooled ROR of 1.10 (95% CI [1.04-
1.16]) across all ICIs (Supplementary Figure 1). Moderate
heterogeneity (I = 48.8%) indicated variability in age-related risk
among specific agents. Significant increases in iAE reporting were
observed with pembrolizumab, nivolumab, and ipilimumab in older
patients. In contrast, atezolizumab, durvalumab, and avelumab
showed no significant age-dependent risk differences. Cemiplimab
suggested a non-significant trend toward lower risk in older
patients, while tremelimumab exhibited a large but imprecise
effect estimate due to limited data.

3.3 Time-to-onset and outcome analysis of
iAEs

The time-to-onset analysis included 9,853 iAE cases (54.5% of
the total 18,068) with sufficient temporal data after excluding 490
reports with impossible dates. Among these cases, more than 70% of
ICI-related iAEs occurred during the first three months after
treatment initiation. The median onset time for iAEs was 43 days
(Interquartile Range (IQR): 13-108) (Figures 4A, B). Importantly,
statistical difference in the onset time of iAEs among monotherapy
treatments were observed (Figure 4C). Notably, pembrolizumab
showed the shortest median onset time of 27 days (IQR: 6-83) when
compared to other ICI treatment regimens, and this difference was
statistically significant (P<0.01). Furthermore, nivolumab achieved
the longest median onset time of 52 days (IQR: 14-122), which was
significantly longer than that of pembrolizumab, ipilimumab
(median 41 days, IQR: 15-78) and cemlimab (median 48 days,
IQR: 14-108) (P<0.01). For the combination regimen of nivolumab
plus ipilimumab, it achieved median onset time of 42 days (IQR:
14-106).

In order to improve the prognosis evaluation of iAEs, we
examined the proportions of death, life-threatening, and
hospitalization outcomes of different ICI regimen (Figure 5).
Among anti-PD-1 agents, nivolumab was associated with the
highest hospitalization rate (68.74%), followed by pembrolizumab
(61.76%) and cemlimab (66.4%), while life-threatening events
ranged from 8.1% (cemlimab) to 12.96% (nivolumab). Anti-PD-
L1 agents exhibited variability in outcomes. Atezolizumab had the
highest hospitalization rate (69.3%), while avelumab had the highest
mortality rate (32.00%). This mortality rate for avelumab was
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TABLE 2 Signal strength of ICl-related iAE at preferred terms (PT).

10.3389/fimmu.2025.1647944

HLGT PT Coding Cases ROR(95%Cl) IC (95%Cl)

Pneumonia 10035664 3926 1.81(1.75-1.87)* 0.84(0.79-0.89)*

Sepsis 10040047 1737 2.54(2.42-2.66)* 1.32(1.25-1.39)*

Urinary tract infection 10046571 1011 0.91(0.86-0.97) -0.13(-0.22-0.04)

Encephalitis 10014581 607 17.25(15.83-18.79)* 3.91(3.76-4.01)*

Septic shock 10040070 585 2.29(2.11-2.48)* 1.18(1.05-1.29)*
Infections - pathogen Pneumonia aspiration 10035669 568 3.86(3.55-4.2)* 1.91(1.78-2.03)*
unspecified

Nasopharyngitis 10028810 348 0.28(0.25-0.31) -1.81(-1.96-1.65)

Bronchitis 10006451 256 0.51(0.45-0.57) -0.98(-1.15-0.79)

Meningitis 10027199 241 6.37(5.6-7.26)* 2.6(2.38-2.77)*

Meningitis aseptic 10027201 210 8.42(7.32-9.69)* 2.98(2.73-3.14)*

L irat tract

Lower respiratory trac 10024968 207 0.76(0.66-0.87) -0.4(-0.6-0.2)

infection

COVID-19 10084268 752 0.62(0.58-0.66) -0.69(-0.79-0.58)

Herpes zoster 10019974 344 0.89(0.8-0.99) -0.17(-0.33-0.01)

Influenza 10022000 240 0.34(0.3-0.38) -1.56(-1.74-1.37)

COVID-19 pneumonia 10084380 132 1.58(1.33-1.87)* 0.65(0.39-0.9)*
Viral infectious disorders

Cytomegalovirus infection 10011831 107 1.05(0.87-1.27) 0.07(-0.21-0.34)

Viral infection 10047461 85 0.42(0.34-0.52) -1.24(-1.55-0.92)

Coronavirus infection 10051905 70 1.34(1.06-1.69)* 0.42(0.06-0.75)*

Cytomegalovirus enterocolitis 10049015 51 12.6(9.44-16.83)* 3.52(2.83-3.67)*

Pneumonia bacterial 10060946 381 7.49(6.75-8.31)* 2.82(2.65-2.95)*

Cellulitis 10007882 356 1.08(0.97-1.2) 0.11(-0.05-0.26)

Clostridium difficile colitis 10009657 139 2.11(1.79-2.5)* 1.07(0.81-1.3)*

Clostridium difficile infection 10054236 137 0.9(0.76-1.07) -0.15(-0.39-0.1)
Bacterial infectious disorders

Staphylococcal infection 10058080 134 0.68(0.57-0.8) -0.56(-0.81-0.31)

Bacterial infection 10060945 83 0.76(0.61-0.94) -0.39(-0.71-0.07)

Erysipelas 10015145 74 2.29(1.82-2.88)* 1.18(0.82-1.49)*

Relapsing fever 10038300 56 37.79(27.92-51.14)* 4.84(3.83-4.69)*

p s i "

nenmocystis Frovect 10073755 266 3.78(3.34-4.27)* 1.88(1.69-2.05)*

pneumonia

Oral candidiasis 10030963 121 1.61(1.34-1.92)* 0.68(0.41-0.93)*

Candida infection 10074170 98 0.78(0.64-0.96) -0.35(-0.64-0.06)
Fungal infectious disorders

Bronchopul

ronchopuimonary 10006473 85 1.83(1.48-2.27)" 0.86(0.53-1.16)*

aspergillosis

Fungal infection 10017533 76 0.34(0.28-0.43) -1.53(-1.85-1.19)

Aspergillus infection 10074171 50 1.08(0.82-1.43) 0.11(-0.29-0.52)

Tuberculosis 10044755 77 0.96(0.77-1.2) -0.06(-0.38-0.27)
Mycobacterial infectious Pulmonary tuberculosis 10037440 75 3.1(2.47-3.9)* 1.61(1.23-1.9)*
disorders

Atypical bacterial

Alypleal mycobacteria 10061663 28 3.81(2.62-5.56)* 19(1.22-2.31)*

infection

(Continued)
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TABLE 2 Continued
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HLGT PT Coding Cases ROR(95%ClI) IC (95%Cl)
Latent tuberculosis 10065048 10 0.71(0.38-1.32) -0.49(-1.32-0.42)
Acarodermatitis 10063409 6 0.79(0.35-1.75) -0.35(-1.4-0.79)
Ectoparasitic disorders
Myiasis 10028586 4 9.8(3.53-27.22)* 3.18(0.44-3.14)*
Amoebic colitis 10001985 3 5.04(1.59-16.04)* 2.28(-0.18-2.78)
Protozoal infectious disorders
Infection protozoal 10021859 1 4.9(0.66-36.28) 2.24(-1.41-2.83)

Asterisks (*) indicate statistically significant signals in algorithm (ROR,5 > 1 or ICy,5 > 0, with at least 3 reports); ROR, reporting odds ratio; IC, information components; CI, confidence interval;

PT, preferred term; HLGT, high-level group terms.

notably higher than that of other PD-L1 inhibitors, including
durvalumab (29.26%). Anti-CTLA-4 agents displayed marked
differences. Ipilimumab accounted for 71.23% of hospitalizations,
whereas tremelimumab, despite limited cases (n=6), was associated
with disproportionately high rates of life-threatening events
(33.33%), mortality (33.33%), and hospitalization (100%). For
combination therapies, nivolumab + ipilimumab was associated
with a substantially higher hospitalization rate (79.00%) compared
to most monotherapies. Its mortality rate (23.01%) was generally
comparable to or slightly lower than several PD-1/PD-L1
monotherapies. The limited data for pembrolizumab +
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Scanning for ICl-related iAEs based on the FAERS database. The heatmap on the left shows the ROR for iAEs in the FAERS database under different
ICI treatment strategies at PTs level. Sankey diagram on the right depicting the hierarchical relationship of PTs for ICl-related iAEs in MedDRA. PT
indicates the preferred term, HLT indicates the high-level term, HLGT indicates the high-level group term, and SOC indicates the system organ class.
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ipilimumab (N = 29) and durvalumab + tremelimumab (N = 5)
preclude meaningful comparison, though both combinations
showed elevated hospitalization and life-threatening event rates.

4 Discussion

Our large-scale pharmacovigilance study, analyzing 18,068 iAEs
identified from 147,854 irAE reports, confirms that iAEs represent a
significant clinical challenge in ICI therapy. While the overall increase
in reporting odds (ROR = 1.08) indicates a class-level effect, we
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FIGURE 3

Association of different ICl treatment strategies with ICl-related iAEs. (A) The reporting top six ICl-related iAEs at PT level for various treatment
strategies were visualized. (B) Forest plot shows the reporting odds ratio (ROR) of ICl-related iAEs under different ICI treatment strategies.

observed substantial heterogeneity among individual agents.
Atezolizumab (ROR = 1.45) and cemiplimab (ROR = 1.42) showed
markedly elevated risks compared to pembrolizumab, suggesting
clinically meaningful differences in their safety profiles. This agent-
specific risk profile may be explained by distinct pharmacological

properties, including variations in Fc-gamma receptor binding
affinity that differentially modulate immune cell functions and
pathogen surveillance (18). The increased infection risk associated
with ICIs generally operates through two interconnected pathways.
First, checkpoint blockade directly disrupts immune homeostasis,
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Time-to-onset analysis of ICI-related iAEs. (A) The cumulative distribution curves of the onset time of ICl-related iAEs. (B) The cumulative
distribution curves of the onset time of ICl-related iAEs in different ICl treatment strategies. (C) Comparison of onset time of iAEs in various ICl
regimens. Statistical tests were conducted using the Kruskal-Wallis's test. ***P < 0.001.
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Proportions

Proportion of death outcomes Proportion of hospitalizaiton outcomes

Outcome analysis of ICl-related iAEs. The number of cases, hospitalization, and fatality proportions for ICl-associated iAEs were visualized.

which can weaken control of opportunistic pathogens (5, 19). Second,
the immunosuppressive treatments needed to manage irAEs create
additional vulnerability to infections (20).

The clinical impact of this heterogeneity is well illustrated by
encephalitis risk patterns. This severe infection showed strong
regimen-specific associations, with the highest signal for atezolizumab
among monotherapies. This association may reflect viral reactivation or
autoimmune-driven neuroinflammation, which has been increasingly
reported in real-world cohorts (21, 22). The underrepresentation of such
events in RCTs reflects broader limitations in capturing the complete
safety profile of ICIs. RCTs typically employ strict inclusion criteria,
relatively short follow-up periods, and protocol-directed monitoring that
may miss delayed or rare adverse events (23, 24). In contrast, real-world
pharmacovigilance studies like ours capture more heterogeneous patient
populations and longer-term safety data, often revealing different toxicity
patterns than those observed in clinical trials (25, 26). This discrepancy is
particularly relevant for infectious complications, which may develop
months after treatment initiation and affect patients with comorbidities
typically excluded from RCTs (27). Furthermore, combination therapy
with nivolumab + ipilimumab substantially amplified this risk beyond
single agents, consistent with known toxicity synergism (28, 29). Overall,
our analysis demonstrates that infection risk is not uniform across the

Frontiers in Immunology

ICI class but varies substantially by specific agent and treatment strategy.
This heterogeneity underscores the importance of regimen-specific
vigilance in clinical practice, particularly for high-risk combinations
and susceptible patient populations.

The analysis identified elderly patients (=65 years) and those with
lung cancer as subgroups with a higher frequency of reported iAEs. This
pattern likely stems from a combination of clinical prescribing trends
and biological susceptibility. As lung cancer is a leading indication for
ICI therapy and older age is common in treated cancer populations (30,
31), the observed frequencies partly reflect broader treatment patterns.
However, the consistent signal in pharmacovigilance data suggests a
contribution from biological factors. Age-related immunosenescence
can impair pathogen control (32), while lung cancer itself is often
associated with compromised respiratory immunity and frequent
corticosteroid use, potentially amplifying infection risk. These
findings support enhanced vigilance in these patient subgroups.
Geographically, the majority of reports originated from the U.S. and
Japan, a distribution that likely reflects differences in drug approval,
clinical adoption rates, and the maturity of pharmacovigilance systems,
rather than implying a true variation in biological risk.

The time-to-onset analysis indicates that over 70% of iAEs
occurred within the first three months of treatment, with a median
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time-to-onset of 40 days. This early risk peak supports current clinical
guidelines emphasizing vigilance during initial treatment cycles.
However, we observed significant regimen-specific variations in
onset kinetics. The markedly shorter latency with pembrolizumab
(median 27 days) may reflect its rapid immune activation profile (19,
20), whereas the prolonged interval with nivolumab (52 days)
suggests a different immunological dynamic. These distinct
timelines indicate that while a general three-month monitoring
period is applicable, the peak risk for individual agents may vary.
Consequently, monitoring strategies could be optimized by aligning
surveillance intensity with these regimen-specific risk periods.

The pathogen-specific analysis provides important insights into the
mechanisms underlying ICI-associated infections. The patterns
observed suggest that immune checkpoint dysregulation affects host
defense through several distinct pathways (19, 33, 34). Bacterial
infections, particularly pneumonia and clostridioides difficile colitis,
were significantly associated with ICI therapy. This pattern suggests
compromised mucosal immunity, a mechanism supported by
preclinical studies showing that PD-1 inhibition can alter gut
microbiota and impair neutrophil recruitment to infection sites (35).
Notably, infections with tuberculosis and herpesviruses were frequently
reported in FAERS (Supplementary Tables 7, 8) and corroborated by
several reports (36-38). While ICIs can potentially improve control of
chronic infections by reversing T-cell exhaustion, they may also
precipitate pathological inflammation in cases like cytomegalovirus,
where immune hyperactivation exacerbates disease (39, 40). Fungal
infections, such as pneumocystis jirovecii pneumonia, represent
another important category, indicating that immune dysregulation
creates opportunities for opportunistic pathogens. Interestingly, ICIs
may also possess potential as antifungal immunotherapies by
enhancing protective immune responses, though this application
remains investigational (34). A critical finding was the high
proportion (71.55%) of infections with unspecified pathogens,
underscoring the significant diagnostic challenges in clinical practice.
This observation emphasizes the urgent need for improved diagnostic
strategies, including advanced molecular techniques, to enable timely
and targeted antimicrobial therapy. These pathogen-specific patterns
collectively demonstrate that ICI-associated infections arise through
diverse mechanisms, necessitating comprehensive diagnostic
approaches and tailored management strategies.

Our findings support a risk-stratified approach to the prevention
and management of iAEs in patients receiving ICIs. The significant
heterogeneity in iAE risk among different agents and regimens
necessitates a personalized monitoring strategy. For higher-risk
agents, such as atezolizumab and cemiplimab, and for combination
therapies like nivolumab + ipilimumab, intensified vigilance is
warranted. The observation that over 70% of iAEs occur within the
first 90 days of treatment establishes this period as a critical window for
patient education and clinical assessment. Monitoring intensity within
this window may be further refined based on the distinct onset kinetics
of specific agents. For example, earlier and more frequent assessment
may be beneficial for patients receiving pembrolizumab given its
shorter median time to onset. Older patients (=65 years), those with
lung cancer, and individuals receiving corticosteroids for irAEs
represent vulnerable subgroups who may benefit from preemptive
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evaluation and a low threshold for intervention. The strong signals for
specific opportunistic infections, such as bacterial pneumonia,
clostridioides difficile colitis, and pneumocystis jirovecii pneumonia
(PJP), support the consideration of targeted prophylactic measures in
high-risk scenarios. In summary, a proactive management strategy is
essential to mitigate the substantial morbidity associated with iAEs
while preserving the therapeutic benefits of ICI therapy.

While these analyses provide valuable insights, several limitations
warrant careful consideration. As a spontaneous reporting system,
the FAERS database is subject to underreporting, selection bias, and
variable data quality. Our analytical choices, such as retaining only
the most recent report per patient, may further underestimate
incidence by excluding recurrent events. The identification of
combination therapies from concomitant drug listings could also
introduce classification overlap. Importantly, the observational
nature of the data precludes causal inference, and confounding by
comorbidities or concomitant medications remains possible.
Additionally, missing clinical details and lack of standardized
follow-up limit comprehensive risk assessment and long-term
outcome evaluation. Lastly, inconsistencies in reporting standards
and protocols across different countries and healthcare systems result
in variations in data completeness and quality, particularly when
comparing across regions or regulatory environments. Despite these
limitations, the FAERS database provides a unique platform for
detecting potential safety signals across large populations. It enables
healthcare professionals and researchers to identify potential safety
signals and trends. To address the challenges posed by data quality
and reporting variability, future studies should focus on using
complementary data sources, such as electronic health records or
clinical trial data. These will be essential to validate these signals,
clarify causal relationships, and establish more precise risk estimates.

5 Conclusion

Infections during ICI therapy represent a multifaceted interplay of
immune activation, pathogen susceptibility, and iatrogenic
immunosuppression. While PD-1/PD-L1 monotherapies offer safer
profiles, combination regimens necessitate vigilant risk-benefit
evaluations. By exploring real-world data, we advocate for
personalized strategies that harmonize oncologic efficacy with infection
prevention, ensuring survival gains are not offset by preventable
morbidity. As ICIs expand into earlier disease settings, addressing
these challenges will be pivotal to optimizing patient outcomes.
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