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of disulfidptosis in
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mechanistic heterogeneity
and therapeutic targets

Xiaoming Zhao*, Chen Zhang*, Lian Qu*, Jun Gao’,
Shaobo Wu?, Yilei Zhang® and Yingang Zhang™

‘Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi‘an,
Shaanxi, China, ?The Institute of Molecular and Translational Medicine, Department of Biochemistry
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Disulfidptosis is a novel form of programmed cell death triggered by cystine
metabolic disorders and disulfide stress, initially studied primarily in the context
of tumors. In recent years, its role in the occurrence and development of
orthopedic diseases has gained increasing attention. This review systematically
explores the dual regulatory mechanisms of disulfidptosis in degenerative
orthopedic diseases, such as intervertebral disc degeneration, osteoporosis,
and osteoarthritis, as well as in malignant bone tumors like osteosarcoma,
along with their immunometabolic basis. The research findings indicate that in
degenerative lesions, microenvironmental stresses such as ischemia and hypoxia
exacerbate tissue degeneration by promoting abnormal accumulation of
disulfide bonds and damaging the cytoskeleton. In osteosarcoma, tumor-
associated oxidative stress can induce metabolism-dependent cell death,
providing new opportunities for targeted therapy. The article further
summarizes key signaling pathways and molecular regulatory networks,
discussing the potential value of targeted intervention strategies in slowing
disease progression and achieving precision treatment.

KEYWORDS
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1 Introduction

In recent years, the field of programmed cell death has witnessed a breakthrough with
the formal definition of disulfidptosis as a novel form of cell death. In 2023, Liu et al. (1)
first revealed this new phenomenon: when cells with high expression of the cystine
transporter SLC7A11 encounter glucose deprivation, the regeneration of NADPH is
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hindered, leading to an imbalance in cystine reduction. The
abnormal accumulation of disulfides induces cross-linking and
contraction of cytoskeletal proteins, ultimately resulting in unique
cellular disintegration. This discovery not only enriches the
theoretical framework of cell death but also opens new
perspectives for studying the pathological mechanisms of
orthopedic degenerative diseases and bone tumors, due to the
close association of disulfidptosis with metabolic stress and
oxidative damage in various diseases (2-10), and its potential to
modulate immune responses in the bone microenvironment
(10-14).

Within the spectrum of orthopedic diseases, degenerative
conditions (such as intervertebral disc degeneration, osteoporosis,
and osteoarthritis) and malignant bone tumors exhibit distinct
pathologies, yet they share the core feature of metabolic
microenvironment imbalance. The former is caused by nutritional
supply disruptions or age-related oxidative stress, leading to
homeostatic disturbances in chondrocytes, osteoblasts, and
nucleus pulposus cells (15-17). In contrast, the latter maintains
malignant proliferation and chemotherapy resistance through
tumor cell metabolic reprogramming pathways (18-21). Notably,
the triggering conditions for disulfidptosis (glucose deprivation and
high expression of SLC7A11) significantly overlap with the
microenvironment of orthopedic diseases: regions of degenerative
changes are often accompanied by local ischemia and hypoxia (22),
while osteosarcoma cells commonly exhibit abnormal activation of
SLC7A11 to cope with oxidative stress (23). This intersection of
pathological features suggests that disulfidptosis may play a
“double-edged sword” role in the progression of orthopedic
diseases—potentially accelerating the death of normal cells,
leading to tissue degeneration, while also being strategically
induced to eliminate malignant cells.

Abbreviations: 2-DG, 2-Deoxy-D-glucose; ACTB, Actin Beta; ADAMTS5, A
Disintegrin And Metalloproteinase with Thrombospondin Motifs 5; Akt, Protein
Kinase B; BM-MSCs, Bone Marrow Mesenchymal Stem Cells; ceRNA,
Competing Endogenous RNA; CTLA-4, Cytotoxic T-Lymphocyte-Associated
Protein 4; ECM, Extracellular Matrix; ER, Endoplasmic Reticulum; FLNA,
Filamin A; GLUT, Glucose Transporter; GSH, Glutathione; HMGB1, High
Mobility Group Box 1; IL-1B, Interleukin-1 Beta; IL-6, Interleukin-6; IL-17,
Interleukin-17; IVDD, Intervertebral Disc Degeneration; MMP3, Matrix
Metalloproteinase 3; mTOR, Mammalian Target of Rapamycin; MYHY,
Myosin Heavy Chain 9; NADPH, Nicotinamide Adenine Dinucleotide
Phosphate; NF-xB, Nuclear Factor Kappa B; NFATcl, Nuclear Factor of
Activated T Cells 1; NK cells, Natural Killer Cells; OA, Osteoarthritis; OP,
Osteoporosis; OVX, Ovariectomized; PD-1, Programmed Cell Death Protein 1;
PD-L1, Programmed Death-Ligand 1; PI3K, Phosphatidylinositol 3-Kinase;
PMOP, Postmenopausal Osteoporosis; PPP, Pentose Phosphate Pathway;
RACI, Rac Family Small GTPase 1; RPN1, Ribophorin 1; SLC7A1l, Solute
Carrier Family 7 Member 11; TGF-f, Transforming Growth Factor Beta; Th17, T
Helper 17 Cells; TNF-o,, Tumor Necrosis Factor Alpha; TXNRDI, Thioredoxin
Reductase 1; ULK1, Unc-51 Like Autophagy Activating Kinase 1; UPR, Unfolded

Protein Response.
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This review systematically analyzes the bidirectional regulatory
role of disulfidptosis in orthopedic diseases for the first time: on one
hand, in degenerative conditions such as intervertebral disc
degeneration and osteoporosis, the nutrient-deprived
microenvironment may exacerbate cell loss by activating the
disulfidptosis pathway; on the other hand, the dependency of
malignant tumors like osteosarcoma on SLC7A11 can be
transformed into a therapeutic target, enabling selective killing
through the induction of disulfidptosis. By integrating recent
basic research with preclinical data, this article aims to reveal the
key molecular switches involved in disulfidptosis during disease
progression and assess the translational potential of targeted
intervention strategies with immunomodulatory properties,
providing a theoretical framework for precision medicine in
orthopedic diseases.

2 Core molecular mechanisms of
disulfidptosis

Disulfidptosis is a form of programmed cell death induced by
intracellular disulfide stress, with its core mechanism involving
cystine metabolism imbalance, abnormal cross-linking of
cytoskeletal proteins, and disruption of redox homeostasis (24).
Current research has identified its key driving factors and unique
characteristics that distinguish it from other forms of programmed
cell death, demonstrating mechanistic heterogeneity in both tumor
and non-tumor diseases (8, 25). A schematic representation of the
mechanisms of disulfidptosis is shown in Figure 1.

2.1 Pathological associations of
disulfidptosis in orthopedic diseases

The pathological relevance of disulfidptosis in orthopedic
diseases is rooted in its unique metabolic microenvironment and
cellular characteristics. The pathological processes of degenerative
orthopedic diseases are often accompanied by local ischemia,
hypoxia, nutritional supply disruptions, and age-related oxidative
stress. This metabolic stress environment aligns closely with the
triggering conditions for disulfidptosis (glucose deprivation and
high expression of SLC7A11) (15, 22). Importantly, bone tissue cells
(such as chondrocytes and osteoblasts) have a high dependence on
cytoskeletal stability, making them particularly sensitive to
abnormal disulfide cross-linking. For instance, the integrity of the
cytoskeleton in osteoblasts and chondrocytes is crucial for
mediating mechanosensitive signaling that regulates their basic
functions. Nucleus pulposus cells maintain their morphology
against intervertebral pressure through an F-actin network, while
osteosarcoma cells rely on cytoskeletal remodeling to achieve
invasion and metastasis. This dual vulnerability—metabolic and
mechanical—gives the core mechanism of disulfidptosis (cystine
metabolism imbalance leading to cytoskeletal collapse) special
pathological significance in orthopedic diseases. The following
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Schematic diagram of disulfidptosis mechanism.

sections will systematically analyze the specific and universal
patterns of its molecular mechanisms.

2.2 Key driving factors

The initiation of disulfidptosis depends on the functional
impairment of the cystine transporter SLC7A11/xCT. SLC7Al1
mediates the influx of cystine, contributing to the synthesis of
glutathione (GSH) and maintaining cellular antioxidant capacity.
However, when cells are in a state of glucose deprivation, the
pentose phosphate pathway (PPP) is suppressed, leading to
insufficient NADPH production. As a result, cystine cannot be
reduced to cysteine and accumulates abnormally within the cell,
creating disulfide stress. This process is particularly pronounced in
cells with high expression of SLC7A11, such as osteosarcoma cells
and nucleus pulposus cells from degenerated intervertebral discs.

The unreduced cystine and its derivatives (such as cysteamine)
form abnormal disulfide cross-links with the thiol groups of
cytoskeletal proteins, including actin (ACTB) and non-muscle
myosin heavy chain (MYH9). This leads to increased rigidity of
the cytoskeletal network and loss of contractile function,
ultimately resulting in plasma membrane rupture and cellular
disintegration. Studies have shown that knocking down SLC7A11
or using disulfide reducing agents can effectively block this cell
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death process (7). Conversely, the inhibition of thioredoxin
reductase activity further exacerbates the reduction deficiency of
cystine (26), creating a vicious cycle of “cystine influx-
NADPH depletion”.

2.3 Differences from other forms of
programmed cell death

Disulfidptosis exhibits significant differences in molecular
mechanisms and morphological characteristics compared to other
forms of programmed cell death (27, 28). While both disulfidptosis
and ferroptosis share SLC7A11-mediated cystine metabolism and
glutathione (GSH) depletion mechanisms, disulfidptosis does not
rely on lipid peroxidation and cannot be blocked by ferroptosis
inhibitors, indicating its independence from ferroptosis signaling
pathways. In apoptosis and necroptosis, typical events such as
caspase activation or MLKL phosphorylation are not involved in
the regulation of disulfidptosis. Moreover, disulfidptosis lacks
characteristic morphological changes such as apoptotic body
formation or plasma membrane pore formation. The uniqueness
of disulfidptosis lies in its death signal being directly derived from
mechanical damage to the cytoskeleton induced by disulfide stress,
a mechanism that has been validated in chondrocytes of
osteoarthritis and osteoclast precursor cells in osteoporosis.
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2.4 Mechanistic heterogeneity in tumor
and non-tumor diseases

The regulation of disulfidptosis exhibits essential differences
between tumor and non-tumor diseases. In tumors, its triggering
often arises from acute metabolic stress induced by therapeutic
interventions. Tumor cells, due to high expression of SLC7All,
develop “cystine addiction,” where NADPH depletion leads to
reduced cystine metabolism and disulfide-mediated cytoskeletal
collapse (29-31). This mechanism is utilized for the targeted
killing of malignant cells and may synergize with
immunotherapy. In contrast, in non-tumor diseases, chronic
microenvironments induce compensatory cystine metabolism
imbalance through epigenetic modifications (e.g., NFATcl
activation of SLC7A11), creating conditions that promote pro-
inflammatory immune cell infiltration (32-34). Terminally
differentiated cells, with limited metabolic plasticity, struggle to
cope with sustained NADPH deficiency, ultimately leading to
progressive functional loss. Therefore, intervention strategies must
accurately differentiate between disease types—tumor treatments
should focus on activating disulfidptosis signaling while modulating
the immunosuppressive microenvironment, while non-tumor
diseases require the inhibition of this pathway to maintain
cellular homeostasis to restore immune homeostasis.

3 Role of disulfidptosis in orthopedic
diseases

Disulfidptosis, as a metabolism-dependent form of cell death,
exhibits a significant “pro-death - anti-death” bidirectional
regulatory characteristic in orthopedic diseases. In bone tumors,
excessive activation of disulfidptosis can effectively eliminate
malignant cells, while in degenerative diseases, the activation of
disulfidptosis exacerbates the functional decline of cells. This
bidirectional regulation is closely related to the disruption of the
immune metabolic microenvironment. In orthopedic degenerative
diseases (such as intervertebral disc degeneration, osteoporosis,
osteoarthritis, etc.), chronic metabolic stress (ischemia, hypoxia,
oxidative stress) is highly coupled with the key triggering conditions
of disulfidptosis through the inflammation factor-metabolic
enzyme network, accelerating the functional loss of terminally
differentiated cells. Anti-death mechanisms can protect these cells
from functional decline. In contrast, in bone tumors (such as
osteosarcoma), malignant proliferation relies on cystine metabolic
reprogramming and immune evasion, providing a new strategy for
targeting and inducing disulfidptosis to eliminate tumor cells. This
heterogeneity in immune metabolic regulation results in
disulfidptosis displaying entirely opposite pathological effects in
orthopedic diseases. The following sections will systematically
analyze the specific mechanisms of disulfidptosis in orthopedic
diseases through key molecular networks and disease-specific
regulatory features (Table 1).

Frontiers in Immunology

10.3389/fimmu.2025.1647931

3.1 Intervertebral disc degeneration

3.1.1 Pathological characteristics and potential
association with disulfidptosis

The core pathological features of intervertebral disc degeneration
(IVDD) include the degradation of the nucleus pulposus (NP)
extracellular matrix, homeostatic imbalance, and disturbances in
the nutritional microenvironment (35-40). Due to the avascular
nature of intervertebral discs, nutrient supply relies on endplate
diffusion, and calcification or aging of the endplates can impede the
transport of glucose and oxygen, exacerbating metabolic stress in NP
cells (41-43). As the only cellular component within the
intervertebral disc, NP cell survival is highly dependent on glucose
metabolism to maintain redox homeostasis. Research indicates that
glucose deprivation can directly induce NP cell death; however,
conventional apoptosis or necrosis inhibitors fail to fully rescue cell
survival, suggesting the involvement of a novel cell death mechanism
(44). Disulfidptosis, as a newly identified form of programmed cell
death, is triggered by disulfide stress resulting from intracellular
NADPH depletion and abnormal cross-linking of cytoskeletal
proteins. This mechanism aligns closely with the restricted glucose
metabolism and redox imbalance observed in IVDD. The high
expression of the cystine transporter SLC7A11 in NP cells during
degeneration may accelerate cystine uptake, further depleting
NADPH reserves and triggering the key pathways of disulfidptosis.

3.1.2 Mechanisms of disulfidptosis in
intervertebral disc degeneration

Recent studies have confirmed the role of disulfidptosis in IVDD
for the first time (44). (1) SLC7A11-NADPH Imbalance Drives
Disulfide Stress: SLC7A11 is significantly upregulated in
degenerated nucleus pulposus tissue, promoting excessive uptake of
cystine and depleting NADPH as it is reduced to cysteine. Glucose
deprivation inhibits the pentose phosphate pathway (PPP), blocking
NADPH production and leading to an increased NADP+/NADPH
ratio, along with the abnormal accumulation of disulfides in
cytoskeletal proteins such as actin (e.g., FLNA, MYH9). This results
in cytoskeletal collapse and cell death. (2) Downregulation of Glucose
Transporters (GLUTs) Exacerbates Metabolic Crisis: Single-cell
sequencing analysis revealed a significant negative correlation
between SLC7A11 and SLC2A1-4 (GLUTI1-4) in the degenerative
chondrocyte subpopulation (C4). The reduced expression of GLUTSs
further limits glucose influx, amplifying the effects of NADPH
depletion. (3) Synergistic Effects of Endoplasmic Reticulum Stress
and Oxidative Stress: The degenerative C4 subpopulation is enriched
in genes related to endoplasmic reticulum stress, the p53 pathway,
and oxidative stress, suggesting that disulfidptosis may accelerate NP
cell loss by activating the unfolded protein response (UPR) and pro-
apoptotic signals. Experimental evidence shows that the glucose
analog 2-DG can reverse NADP+/NADPH imbalance by
supplementing NADPH, significantly inhibiting disulfidptosis in
NP cells. This provides a new strategy for targeting metabolic
reprogramming to intervene in IVDD. Research on intervertebral
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TABLE 1 Molecular mechanisms and microenvironmental triggers of disulfidptosis in orthopedic diseases.

Key regulatory

Disease Core triggers and
: : molecules and
type microenvironment
pathways
>SLC7A11> (upregulated), >
GLUT1-4> (downregulated),
Glucose deprivation, >FLNA>, >SMYH9>, >SACTB>
Intervertebral K
Disc hypoxia (endplate >Pathways>: SLC7A11/
i calcification), inflammatory NADPH imbalance axis, FN1-
Degeneration )
factors (IL-1B, IL-6, TNF-ar) CD44 inflammatory
interaction axis, Endoplasmic
reticulum stress
RANKL stimulation, >SLC7A11>, >RPN1>, >
inadequate nutrient supply, NFATcl>, >RAC1>
Osteoporosis oxidative stress, >Pathways>: NFATcI-
P inflammatory SLC7A11-TXNRD1 signaling
microenvironment (TNF-o, axis, Immune cell infiltration
IL-6) (monocytes/macrophages)
>SLC3A2> (downregulated),
>NCKAP1>, >PDLIM1>, >
Inflammatory factors (IL-1B, | OXSM>, >NDUFS1/NDUFC1
TNF-0, IL-17, TGF-B), >
Osteoarthriti
STEORTTANIS o xidative stress, metabolic >Pathways>: Mitochondrial
disturbances complex I dysfunction,
Cytoskeleton-inflammation
positive feedback loop
>SLC7A11> (high
expression), >ACTB>, >
Glucose deprivation MYH9>, >SHMGB1>, >
(chemotherapy-induced), LRPPRC>
Osteosarcoma . -
hypoxia, tumor oxidative >Pathways>: SLC7A11-PI3K/
stress microenvironment Akt/mTOR axis, HMGBI1-
TLR4-NF-kB axis, m6A-PD-
L1 immune escape axis

Downstream effects and
pathological outcomes

NADPH depletion — F-actin cytoskeleton
abnormal disulfide cross-linking — Nucleus
pulposus cell disintegration and death —
Extracellular matrix degradation, disc
structure destruction

Osteoclast precursor disulfide stress —
Excessive osteoclast differentiation/
hyperactivity — Bone resorption and
formation imbalance — Bone
microstructure destruction

Chondrocyte cysteine uptake impairment
/metabolic imbalance — Loss of cytoskeletal
stability — Chondrocyte death — Cartilage
matrix degradation, joint degeneration

“Cystine addiction” — NADPH depletion
under chemotherapy — Cytoskeleton
collapse — >Induction of tumor cell death

>Concurrently>: Promotes PD-L1
expression — Immunosuppressive
microenvironment

10.3389/fimmu.2025.1647931

Current research
limitations

Conclusions largely based on
bioinformatics analysis and in vitro cell
experiments; lack of validation in in
vivo models.

Studies rely heavily on machine
learning and single-cell sequencing
inferences; lack of direct functional
experimental evidence for disulfidptosis
in osteoclasts.

Mechanistic studies are fragmented;
lack of comprehensive interpretation of
the “metabolism-cytoskeleton-immune”
cross-regulatory network.

Most mechanistic evidence comes from
bioinformatic models and correlative
analyses; insufficient validation of the
anti-cancer efficacy of targeting
disulfidptosis in vivo.

disc degeneration is currently relatively limited, with verification
methods primarily based on bioinformatics analysis and basic
cellular experiments. The reliability of the conclusions and the
underlying mechanisms require further exploration in the future.

3.2 Osteoporosis

3.2.1 Pathological characteristics and potential
association with disulfidptosis

Osteoporosis (OP) is characterized by reduced bone density,
compromised bone microstructure, and an increased risk of
fractures, with the core pathological mechanism involving a
dynamic imbalance between bone resorption and formation (45-
51). Research indicates that metabolic disorders, immune
dysregulation, and subsequent cell death within the bone
microenvironment collectively contribute to the pathogenesis of
OP (52-58). In recent years, a novel form of cell death—
disulfidptosis—has been increasingly recognized for its role in
osteoporosis. Disulfidptosis is a form of programmed cell death
triggered by the abnormal accumulation of intracellular disulfides,
characterized by SLC7A11-mediated excessive cystine uptake in a
glucose-deprived environment, leading to NADPH depletion and
disulfide stress, ultimately resulting in abnormal cross-linking of

Frontiers in Immunology

cytoskeletal proteins and cell death. The pathological environment
of osteoporosis, with its unique microenvironmental characteristics
of low glucose and low oxygen partial pressure, provides conditions
conducive to the occurrence of disulfidptosis (59, 60). Bone-related
cells, such as bone marrow mesenchymal stem cells (BM-MSCs)
and osteoclast precursors, exhibit upregulated expression of
SLC7A11 and redox imbalance under the stimulation of
inflammatory factors, further increasing their susceptibility to
disulfidptosis. Notably, the infiltration of immune cells and the
release of inflammatory factors (e.g., TNF-0., IL-6) present in the
bone microenvironment of osteoporosis patients not only directly
participate in the regulation of bone metabolism but may also form
a complex interactive network with the occurrence and progression
of disulfidptosis by affecting cystine metabolism and redox balance
(61, 62). Disulfidptosis may intertwine with traditional pathological
mechanisms of osteoporosis, participating in the disease process
through a unique “metabolic-immune-cytoskeletal” regulatory axis.

3.2.2 Mechanisms of disulfidptosis in
osteoporosis

Recent studies have revealed the significant role of disulfidptosis in
the progression of osteoporosis. In terms of metabolic regulation and
osteoclast activation, research by Zhong et al. (61) found that
disulfidptosis plays a critical role in osteoclast differentiation through
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the NFATc1-SLC7A11-TXNRD1 signaling axis. The study showed
that during RANKL-induced osteoclast differentiation, NFATcl
significantly upregulates the expression of SLC7A11, enhancing the
capacity of osteoclast precursors to uptake cystine. When TXNRDI
activity is inhibited, dysregulation of intracellular cystine metabolism
leads to abnormal accumulation of disulfides, ultimately triggering
characteristic F-actin contraction and cell death. This form of cell death
is specific and cannot be reversed by conventional cell death inhibitors
but can be effectively intervened by thiol compounds. Animal
experiments confirmed that targeting this pathway can significantly
improve bone resorption markers and bone microstructure.

In terms of remodeling the immune microenvironment,
disulfidptosis participates in the immune metabolic imbalance of
osteoporosis by regulating immune cell function. Wang et al. (59)
conducted single-cell analysis of clinical data, revealing that
osteoporosis patients can be categorized into different disulfidptosis
subtypes, with high-scoring subtypes significantly associated with the
infiltration of specific immune cell subsets (such as monocytes and T
follicular helper cells). These immune cells activate the osteoclast
differentiation pathway by secreting pro-inflammatory factors.
Additionally, abnormal expression of PGRMC2 has been found to be
associated with osteoporosis risk, potentially participating in the
regulation of the bone immune microenvironment by influencing the
differentiation process of monocytes into macrophages. Genetic analysis
further supports the protective role of PGRMC2 in osteoporosis.

In terms of cytoskeletal stability and bone homeostasis, Zhang
et al. (60) found that disulfidptosis regulators participate in the
imbalance of bone remodeling by influencing cytoskeletal
dynamics. Abnormal expression of key cytoskeletal proteins, such
as FLNA and ACTB, leads to decreased stability of the actin network,
promoting osteoclast differentiation. Conversely, excessive activation
of regulators like RAC1 accelerates the formation of osteoclast bone
resorption structures. Additionally, research by Pan et al. (62)
revealed that abnormal expression of RPNI recruits specific
immune cells through pro-inflammatory signaling pathways, while
targeted inhibition of RPN can effectively improve the abnormal
bone microstructure in animal models.

These three mechanisms are interwoven, collectively forming a
complete framework for the involvement of disulfidptosis in the
pathological processes of osteoporosis: metabolic reprogramming
alters cell fate determination, remodeling of the immune
microenvironment affects local inflammatory states, and regulation
of cytoskeletal stability directly participates in the modulation of bone
resorption function. Nevertheless, the conclusions of this section
primarily rely on single-cell sequencing, machine learning, and in
vitro studies, lacking further validation through in vivo experiments
and clinical trials, which will be a focus of future research.

3.3 Osteoarthritis
3.3.1 Pathological features and potential
association with disulfidptosis

Osteoarthritis (OA) is characterized by degeneration of
articular cartilage, synovial inflammation, and imbalance in
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chondrocyte homeostasis (63-68). Chondrocytes are critical for
maintaining the function of articular cartilage, and their abnormal
death (such as apoptosis and necroptosis) is closely related to the
progression of OA (69-75).

Recently discovered disulfidptosis, a novel form of programmed
cell death, is triggered by the abnormal accumulation of disulfides
within cells, leading to cross-linking of cytoskeletal proteins and
collapse of the actin network. This mechanism aligns well with the
loss of cytoskeletal stability observed in chondrocytes during OA
(76, 77). In the OA microenvironment, oxidative stress,
inflammatory factors (such as IL-1B and TNF-o), and
abnormalities in glucose metabolism may activate SLC7A11,
leading to excessive cystine uptake and exacerbating intracellular
disulfide stress, thereby triggering disulfidptosis. Moreover,
dysfunction of mitochondrial respiratory chain complexes (such
as dysregulation of NDUFS1 and NDUFC1 expression) may further
amplify energy metabolism disturbances and redox imbalances,
creating a vicious cycle that promotes the occurrence
of disulfidptosis.

3.3.2 Mechanisms of disulfidptosis in
osteoarthritis

Recent studies utilizing multi-omics analysis have revealed the
critical role of disulfidptosis-related genes (DRGs) in osteoarthritis
(OA). Wei et al. (76)integrated six OA datasets and single-cell
sequencing, discovering that DRGs such as SLC3A2 and NDUFCI1
are specifically highly expressed in OA chondrocytes and
significantly correlated with the activation of pro-inflammatory
pathways like IL-17 and TGF-B. Experimental validation showed
that SLC3A2 expression is downregulated in OA models, and its
deficiency exacerbates oxidative stress by inhibiting cystine
transport, leading to the upregulation of extracellular matrix
degradation markers (MMP3, ADAMTS5). This suggests that
SLC3A2 may influence OA progression by regulating the balance
between disulfidptosis and autophagy.

Cao et al. (77)employed machine learning to identify SLC3A2
and PDLIM1 as core DRGs. They found that PDLIMI is
abnormally highly expressed during late-stage chondrocyte
differentiation, disrupting cytoskeletal integrity by competitively
binding to a-actinin 4 (ACTN4) while inhibiting autophagy-
related pathways (such as the mTOR-ULKI axis), exacerbating
the inflammatory response in chondrocytes. Hu et al. (78) further
investigated that OA samples with different disulfidptosis scores
exhibit distinct characteristics of immune cell infiltration. The C1
subtype (high score) shows activation of CD8+ T cells and a
decrease in MO macrophages, while the C2 subtype (low score) is
characterized by an increase in Th17 cell infiltration and high
expression of pro-inflammatory factors (IL-6, TNF-o). The
imbalance in the proportion of these immune cell subpopulations
is significantly correlated with the expression levels of key
regulatory factors of disulfidptosis (such as NCKAP1, OXSM),
indicating that disulfidptosis may participate in the inflammatory
process of OA by regulating the activation and function of immune
cells. These studies collectively suggest that disulfidptosis is involved
in the pathological mechanisms of OA through a multidimensional
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network of “metabolism - oxidative stress - immune regulation,”
providing new directions for targeted intervention.

3.4 Osteosarcoma

3.4.1 Pathological features and immunometabolic
crosstalk in disulfidptosis

Osteosarcoma, as a highly heterogeneous malignant bone
tumor, is characterized by rapid proliferation, a tendency for early
metastasis, and chemotherapy resistance (79, 80). Disulfidptosis, as
a novel form of programmed cell death, involves a core mechanism
of cystine metabolic imbalance mediated by SLC7A11, leading to
abnormal accumulation of intracellular disulfides, which in turn
triggers cross-linking of cytoskeletal proteins and membrane
rupture. This process is highly compatible with the oxidative
stress microenvironment of osteosarcoma (81): osteosarcoma
cells, due to rapid proliferation, often exist in states of hypoxia
and nutrient deficiency, potentially exacerbating cystine-dependent
metabolic abnormalities through overexpression of SLC7All,
thereby creating conditions that promote disulfidptosis.
Additionally, the high expression of actin-related genes (such as
ACTB and MYHD9) in osteosarcoma tissues may further increase the
sensitivity of the cytoskeleton to abnormal disulfides, providing a
molecular basis for the occurrence of disulfidptosis.

3.4.2 Mechanisms of disulfidptosis in
osteosarcoma

Recent studies have gradually revealed the regulatory networks
and clinical significance of disulfidptosis-related genes (DRGs) in
osteosarcoma. At the molecular mechanism level, abnormal
activation of the SLC7A11-PI3K/Akt/mTOR signaling axis plays a
critical role in the progression of osteosarcoma. Research by Xu
et al. (82) indicates that SLC7A11 upregulates HK2 expression and
glycolytic activity through mTORCI, while activated PI3K
promotes the phosphorylation of GSK3, inhibiting B-catenin
degradation, thus forming a positive feedback loop of “cystine
metabolism-glycolysis-Wnt signaling.” Clinical data show that
patients with high expression of SLC7A11 exhibit increased
sensitivity to mTOR inhibitors, providing important evidence for
targeted therapy.

The interaction between microenvironmental factors and
cytoskeletal stability is also crucial in the regulation of
disulfidptosis. Wang et al. (83) found that exogenous HMGB1
upregulates ACTB expression via the TLR4/MyD88/NF-«B
pathway, leading to the depolymerization of the F-actin network
and disruption of cell membrane stability, accompanied by changes
in histone modifications. This finding reveals the bridging role of
the HMGB1-ACTB-TLR4 axis in connecting microenvironmental
stimuli with cytoskeletal damage, also providing a new target for
therapeutic intervention.

In terms of immune regulation, the prognostic model
constructed by Chen et al. (84) shows that LRPPRC, as an m6A
reader, recognizes a specific sequence in PD-L1 mRNA and
enhances its translation efficiency by recruiting YTHDFI, leading
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to the functional suppression of CD8+ T cells. Additionally,
LRPPRC may enhance the stability of PD-L1 mRNA through
m6A modification, creating a malignant cycle of immune
suppression and metabolic disorder. Meanwhile, MYH9 regulates
the secretion of immune factors via the Hippo-YAP pathway,
potentially leading to Treg infiltration and NK cell functional
suppression, thus forming an immunosuppressive
microenvironment. These findings reveal the important role of
disulfidptosis-related genes in tumor immune evasion.

4 Dual role of disulfidptosis in
targeted therapeutic strategies for
orthopedic diseases

Previous studies have shown that Targeted therapies for
orthopedic diseases exhibit bidirectional regulatory characteristics,
necessitating precise differentiation in intervention strategies for
tumor versus non-tumor conditions (85-90). Regarding
disulfidptosis-targeted therapeutic strategies, in malignant tumors
such as osteosarcoma, therapeutic strategies focus on activating
disulfidptosis signaling pathways to induce tumor-specific cell death
while concurrently overcoming immunosuppressive barriers, and
enhance treatment efficacy especially when combined with immune
checkpoint inhibitors (91-96). Conversely, in degenerative diseases
like intervertebral disc degeneration, osteoporosis, and
osteoarthritis, it is crucial to inhibit the excessive activation of
disulfidptosis pathways to protect cellular functions, and mitigate
pro-inflammatory immune responses and delay tissue degeneration
(97-102).

This “pro-death vs. anti-death” dual logic underscores the core
value of targeting disulfidptosis pathways in orthopedic precision
medicine with integrated immunomodulation. By tailoring
interventions based on the fundamental differences in disease
nature, therapeutic goals can be optimized through specific
immune-aware molecular mechanisms that simultaneously
address metabolic dysfunction and immune microenvironment
remodeling. A schematic representation of the “pro-death vs.
anti-death” therapeutic strategy is shown in Figure 2, and Table 2
systematically summarizes the main therapeutic principles and
disulfidptosis-related precision treatment strategies for the four
types of diseases.

4.1 Intervertebral disc degeneration

In the targeted therapeutic strategies for disulfidptosis in
intervertebral disc degeneration (IVDD), research focuses on
regulating SLC7Al1-mediated redox imbalance to maintain
cellular homeostasis. Literature indicates (44)that glucose
deficiency in IVDD drives NADPH depletion by upregulating
SLC7AL11, leading to disulfidptosis. The key to inhibiting this
pathway lies in restoring NADPH balance. Experimental evidence
shows that 2-deoxy-D-glucose (2-DG) can activate the pentose
phosphate pathway to replenish NADPH, significantly reducing
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Bidirectional targeting of disulfidptosis in degenerative and malignant orthopedic disorders.

the NADP+/NADPH ratio and rescuing cells from glucose
deprivation-induced death. Additionally, inhibiting SLC7A11 or
enhancing the function of glucose transporters (such as GLUT1/
SLC2A1) can block excessive cystine uptake and subsequent
oxidative stress. Modulating endoplasmic reticulum stress
pathways (such as the unfolded protein response) may also
synergistically alleviate disulfidptosis. These strategies provide
potential therapeutic targets for delaying intervertebral disc
degeneration by precisely inhibiting disulfidptosis signals, such as
developing SLC7A11 inhibitors or GLUT agonists to maintain
redox homeostasis in nucleus pulposus cells.

4.2 Osteoporosis

In targeted therapeutic strategies for disulfidptosis in
osteoporosis, research focuses on the precise intervention of key
regulatory factors. Zhong et al. (61)found that NFATcI activates
SLC7AI11 transcriptionally, driving osteoclast precursor cells’
sensitivity to thioredoxin reductase 1 (TXNRD1) inhibitors (such
as Auranofin). Inhibiting TXNRDI1 activity leads to cystine
accumulation and disulfidptosis mediated by F-actin contraction,
significantly reducing bone resorption.

Pan et al. (62)revealed that kaempferol could target and inhibit
the aberrantly high expression of disulfidptosis-related gene RPN1,
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reversing bone microstructure damage in ovariectomized rats,
suggesting the potential therapeutic value of flavonoids in
regulating RPN1. Wang et al. (33) further discovered that
PGRMC2 influences bone metabolism by promoting the
differentiation of monocytes into macrophages; its
downregulation exacerbates osteoporosis progression, while
restoring PGRMC2 levels can improve bone homeostasis. Zhang
et al. (60) constructed a diagnostic model based on genes like
SLC7A11 and RACI, proposing a combination therapy that
involves regulating the immune microenvironment of monocyte
infiltration to inhibit disulfidptosis and maintain the osteoblast/
osteoclast balance. These studies provide molecular mechanisms
and translational evidence for developing precision treatments
targeting disulfidptosis in osteoporosis.

4.3 Osteoarthritis

Recent research advancements have led to breakthrough
findings in targeted therapeutic strategies for disulfidptosis in
osteoarthritis (OA). Wei et al. (76) integrated single-cell
sequencing with machine learning algorithms, discovering that
SLC3A2 is significantly downregulated in the EC subpopulation
of OA chondrocytes. Its deficiency exacerbates cartilage
degeneration by activating IL-17 and TGF-f inflammatory
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TABLE 2 Disulfidptosis-targeted therapeutic strategies for orthopedic diseases.
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pathways. In vivo experiments confirmed that upregulating SLC3A2
effectively inhibits disulfidptosis-related F-actin network collapse.

Cao et al. (77) further revealed a bidirectional regulatory
mechanism between SLC3A2 and PDLIMI1: SLC3A2 maintains
redox balance by promoting the cystine/glutathione axis, while
aberrant high expression of PDLIMI1 in late-stage OA disrupts
the autophagy-cytoskeleton balance. Silencing PDLIM1 with siRNA
resulted in a 47.3% reduction in inflammatory factors IL-6 and
MMP13. Notably, Hu et al. (78) constructed a multi-omics
diagnostic model showing that the NCKAP1-OXSM-SLC3A2
regulatory network is closely related to the OA immune
microenvironment. Targeted inhibition of PPM1F (a magnesium-
dependent phosphatase) increased chondrocyte survival by 32%,
with mechanisms involving the restoration of mitochondrial
complex I function and reduction of abnormal disulfide
accumulation (p< 0.01). These findings provide a theoretical basis
for developing specific small molecule inhibitors of disulfidptosis,
such as SLC3A2 agonists or PDLIM1 antagonists.
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4.4 Osteosarcoma

In the research on targeted therapeutic strategies for
disulfidptosis in osteosarcoma, multiple studies have revealed key
regulatory targets and potential therapeutic directions. Xu et al. (82)
found that osteosarcoma cells with high expression of SLC7A11 are
prone to disulfidptosis under glucose deprivation, suggesting that
inhibiting glucose transport or pharmacologically targeting the
SLC7A11 pathway could selectively induce tumor cell death.

Wang et al. (83) utilized single-cell sequencing to discover that
HMGBI regulates ACTB expression and participates in the
disulfidptosis process. They confirmed that silencing ACTB
significantly reduces osteosarcoma cell viability, while exogenous
HMGBI treatment enhances cell death sensitivity through the
TP53/NF-xB signaling axis. Chen et al. (84) constructed a
prognostic model indicating that MYH9 and LRPPRC are key
risk genes, with their inhibitors potentially activating the
disulfidptosis pathway by disrupting cytoskeletal stability.
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Notably, Zhang et al. (81) pointed out that the activation of
disulfidptosis is associated with the remodeling of the immune
microenvironment, where patients in the low-risk group
demonstrated significantly increased sensitivity to PD-1/CTLA-4
inhibitors. This suggests that combined immune checkpoint
blockade may produce a synergistic anti-tumor effect, with drug
sensitivity analysis identifying targeted agents such as lapatinib,
bortezomib, fruquintinib, and MG-132. Currently, targeted
strategies primarily focus on metabolic interventions, key gene
regulation, and the development of cytoskeletal-targeting drugs.
These avenues provide a multidimensional therapeutic framework
for precisely activating disulfidptosis in osteosarcoma.

5 Conclusion and outlook

This study systematically reveals the key mechanisms of
disulfidptosis in orthopedic diseases and its potential for clinical
translation. By integrating multi-omics data and experimental
validation, we found that disulfidptosis exhibits distinctly different
regulatory patterns in degenerative diseases such as intervertebral
disc degeneration and osteoporosis compared to malignant tumors
like osteosarcoma. In degenerative diseases, SLC7A11-mediated
cystine metabolic imbalance leads to NADPH depletion,
triggering abnormal cross-linking of cytoskeletal proteins and cell
death; whereas in malignant tumors, targeted activation of the
disulfidptosis pathway can selectively kill tumor cells. This finding
provides new molecular targets and therapeutic strategies for
precision diagnosis and treatment of orthopedic diseases.

Despite the significant progress made in this study, there are
still several areas that require improvement: First, the limitations in
sample sources may affect the generalizability of the research
conclusions. The current study is primarily based on public
databases and a limited number of clinical samples (44, 59, 76),
and future efforts should expand the sample size and include a
broader range of ethnic groups to validate the reliability of the
results. Second, regarding mechanism studies, the interactions
between disulfidptosis and other forms of programmed cell death,
such as apoptosis, ferroptosis, autophagy, and necroptosis, have not
been fully elucidated (103-107). In particular, the “molecular
switch” function of SLC7A11 in different death pathways requires
further exploration. Additionally, the lack of animal models limits
the depth of in vivo validation, necessitating the development of
genetically engineered animal models that more closely resemble
human disease characteristics.

Future research should focus on several key directions: In
translational medicine, there is an urgent need to develop a
ctDNA-based LRPPRC mutation monitoring panel and an
imaging radiomics early warning system, while optimizing the
drug delivery technology of pH-responsive nanoparticles to
improve targeted delivery efficiency. Clinical translational studies
should establish SLC7A11 conditional knockout animal models and
humanized PDX models to provide a reliable platform for treatment
assessment. Mechanistic studies should concentrate on elucidating
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the spatiotemporal specificity of NFATc1-SLC7A11 transcriptional
regulation and clarifying the molecular switch involved in TXNRD1
inhibitor-induced cytoskeletal remodeling. Additionally, exploring
the metabolic dialogue mechanisms in the bone marrow
microenvironment and developing disulfidptosis-inducing
strategies targeting the tumor metabolic microenvironment will
provide new insights for achieving precision therapy.
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