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Disulfidptosis is a novel form of programmed cell death triggered by cystine

metabolic disorders and disulfide stress, initially studied primarily in the context

of tumors. In recent years, its role in the occurrence and development of

orthopedic diseases has gained increasing attention. This review systematically

explores the dual regulatory mechanisms of disulfidptosis in degenerative

orthopedic diseases, such as intervertebral disc degeneration, osteoporosis,

and osteoarthritis, as well as in malignant bone tumors like osteosarcoma,

along with their immunometabolic basis. The research findings indicate that in

degenerative lesions, microenvironmental stresses such as ischemia and hypoxia

exacerbate tissue degeneration by promoting abnormal accumulation of

disulfide bonds and damaging the cytoskeleton. In osteosarcoma, tumor-

associated oxidative stress can induce metabolism-dependent cell death,

providing new opportunities for targeted therapy. The article further

summarizes key signaling pathways and molecular regulatory networks,

discussing the potential value of targeted intervention strategies in slowing

disease progression and achieving precision treatment.
KEYWORDS

disulfidptosis, bone diseases, oxidative stress, immunometabolism, targeted therapy
1 Introduction

In recent years, the field of programmed cell death has witnessed a breakthrough with

the formal definition of disulfidptosis as a novel form of cell death. In 2023, Liu et al. (1)

first revealed this new phenomenon: when cells with high expression of the cystine

transporter SLC7A11 encounter glucose deprivation, the regeneration of NADPH is
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hindered, leading to an imbalance in cystine reduction. The

abnormal accumulation of disulfides induces cross-linking and

contraction of cytoskeletal proteins, ultimately resulting in unique

cellular disintegration. This discovery not only enriches the

theoretical framework of cell death but also opens new

perspectives for studying the pathological mechanisms of

orthopedic degenerative diseases and bone tumors, due to the

close association of disulfidptosis with metabolic stress and

oxidative damage in various diseases (2–10), and its potential to

modulate immune responses in the bone microenvironment

(10–14).

Within the spectrum of orthopedic diseases, degenerative

conditions (such as intervertebral disc degeneration, osteoporosis,

and osteoarthritis) and malignant bone tumors exhibit distinct

pathologies, yet they share the core feature of metabolic

microenvironment imbalance. The former is caused by nutritional

supply disruptions or age-related oxidative stress, leading to

homeostatic disturbances in chondrocytes, osteoblasts, and

nucleus pulposus cells (15–17). In contrast, the latter maintains

malignant proliferation and chemotherapy resistance through

tumor cell metabolic reprogramming pathways (18–21). Notably,

the triggering conditions for disulfidptosis (glucose deprivation and

high expression of SLC7A11) significantly overlap with the

microenvironment of orthopedic diseases: regions of degenerative

changes are often accompanied by local ischemia and hypoxia (22),

while osteosarcoma cells commonly exhibit abnormal activation of

SLC7A11 to cope with oxidative stress (23). This intersection of

pathological features suggests that disulfidptosis may play a

“double-edged sword” role in the progression of orthopedic

diseases—potentially accelerating the death of normal cells,

leading to tissue degeneration, while also being strategically

induced to eliminate malignant cells.
Abbreviations: 2-DG, 2-Deoxy-D-glucose; ACTB, Actin Beta; ADAMTS5, A

Disintegrin And Metalloproteinase with Thrombospondin Motifs 5; Akt, Protein

Kinase B; BM-MSCs, Bone Marrow Mesenchymal Stem Cells; ceRNA,

Competing Endogenous RNA; CTLA-4, Cytotoxic T-Lymphocyte-Associated

Protein 4; ECM, Extracellular Matrix; ER, Endoplasmic Reticulum; FLNA,

Filamin A; GLUT, Glucose Transporter; GSH, Glutathione; HMGB1, High

Mobility Group Box 1; IL-1b, Interleukin-1 Beta; IL-6, Interleukin-6; IL-17,

Interleukin-17; IVDD, Intervertebral Disc Degeneration; MMP3, Matrix

Metalloproteinase 3; mTOR, Mammalian Target of Rapamycin; MYH9,

Myosin Heavy Chain 9; NADPH, Nicotinamide Adenine Dinucleotide

Phosphate; NF-kB, Nuclear Factor Kappa B; NFATc1, Nuclear Factor of

Activated T Cells 1; NK cells, Natural Killer Cells; OA, Osteoarthritis; OP,

Osteoporosis; OVX, Ovariectomized; PD-1, Programmed Cell Death Protein 1;

PD-L1, Programmed Death-Ligand 1; PI3K, Phosphatidylinositol 3-Kinase;

PMOP, Postmenopausal Osteoporosis; PPP, Pentose Phosphate Pathway;

RAC1, Rac Family Small GTPase 1; RPN1, Ribophorin 1; SLC7A11, Solute

Carrier Family 7 Member 11; TGF-b, Transforming Growth Factor Beta; Th17, T

Helper 17 Cells; TNF-a, Tumor Necrosis Factor Alpha; TXNRD1, Thioredoxin

Reductase 1; ULK1, Unc-51 Like Autophagy Activating Kinase 1; UPR, Unfolded

Protein Response.
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This review systematically analyzes the bidirectional regulatory

role of disulfidptosis in orthopedic diseases for the first time: on one

hand, in degenerative conditions such as intervertebral disc

degeneration and osteoporosis , the nutrient-deprived

microenvironment may exacerbate cell loss by activating the

disulfidptosis pathway; on the other hand, the dependency of

malignant tumors like osteosarcoma on SLC7A11 can be

transformed into a therapeutic target, enabling selective killing

through the induction of disulfidptosis. By integrating recent

basic research with preclinical data, this article aims to reveal the

key molecular switches involved in disulfidptosis during disease

progression and assess the translational potential of targeted

intervention strategies with immunomodulatory properties,

providing a theoretical framework for precision medicine in

orthopedic diseases.
2 Core molecular mechanisms of
disulfidptosis

Disulfidptosis is a form of programmed cell death induced by

intracellular disulfide stress, with its core mechanism involving

cystine metabolism imbalance, abnormal cross-linking of

cytoskeletal proteins, and disruption of redox homeostasis (24).

Current research has identified its key driving factors and unique

characteristics that distinguish it from other forms of programmed

cell death, demonstrating mechanistic heterogeneity in both tumor

and non-tumor diseases (8, 25). A schematic representation of the

mechanisms of disulfidptosis is shown in Figure 1.
2.1 Pathological associations of
disulfidptosis in orthopedic diseases

The pathological relevance of disulfidptosis in orthopedic

diseases is rooted in its unique metabolic microenvironment and

cellular characteristics. The pathological processes of degenerative

orthopedic diseases are often accompanied by local ischemia,

hypoxia, nutritional supply disruptions, and age-related oxidative

stress. This metabolic stress environment aligns closely with the

triggering conditions for disulfidptosis (glucose deprivation and

high expression of SLC7A11) (15, 22). Importantly, bone tissue cells

(such as chondrocytes and osteoblasts) have a high dependence on

cytoskeletal stability, making them particularly sensitive to

abnormal disulfide cross-linking. For instance, the integrity of the

cytoskeleton in osteoblasts and chondrocytes is crucial for

mediating mechanosensitive signaling that regulates their basic

functions. Nucleus pulposus cells maintain their morphology

against intervertebral pressure through an F-actin network, while

osteosarcoma cells rely on cytoskeletal remodeling to achieve

invasion and metastasis. This dual vulnerability—metabolic and

mechanical—gives the core mechanism of disulfidptosis (cystine

metabolism imbalance leading to cytoskeletal collapse) special

pathological significance in orthopedic diseases. The following
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sections will systematically analyze the specific and universal

patterns of its molecular mechanisms.
2.2 Key driving factors

The initiation of disulfidptosis depends on the functional

impairment of the cystine transporter SLC7A11/xCT. SLC7A11

mediates the influx of cystine, contributing to the synthesis of

glutathione (GSH) and maintaining cellular antioxidant capacity.

However, when cells are in a state of glucose deprivation, the

pentose phosphate pathway (PPP) is suppressed, leading to

insufficient NADPH production. As a result, cystine cannot be

reduced to cysteine and accumulates abnormally within the cell,

creating disulfide stress. This process is particularly pronounced in

cells with high expression of SLC7A11, such as osteosarcoma cells

and nucleus pulposus cells from degenerated intervertebral discs.

The unreduced cystine and its derivatives (such as cysteamine)

form abnormal disulfide cross-links with the thiol groups of

cytoskeletal proteins, including actin (ACTB) and non-muscle

myosin heavy chain (MYH9). This leads to increased rigidity of

the cytoskeletal network and loss of contractile function,

ultimately resulting in plasma membrane rupture and cellular

disintegration. Studies have shown that knocking down SLC7A11

or using disulfide reducing agents can effectively block this cell
Frontiers in Immunology 03
death process (7). Conversely, the inhibition of thioredoxin

reductase activity further exacerbates the reduction deficiency of

cystine (26), creating a vicious cycle of “cystine influx-

NADPH depletion”.
2.3 Differences from other forms of
programmed cell death

Disulfidptosis exhibits significant differences in molecular

mechanisms and morphological characteristics compared to other

forms of programmed cell death (27, 28). While both disulfidptosis

and ferroptosis share SLC7A11-mediated cystine metabolism and

glutathione (GSH) depletion mechanisms, disulfidptosis does not

rely on lipid peroxidation and cannot be blocked by ferroptosis

inhibitors, indicating its independence from ferroptosis signaling

pathways. In apoptosis and necroptosis, typical events such as

caspase activation or MLKL phosphorylation are not involved in

the regulation of disulfidptosis. Moreover, disulfidptosis lacks

characteristic morphological changes such as apoptotic body

formation or plasma membrane pore formation. The uniqueness

of disulfidptosis lies in its death signal being directly derived from

mechanical damage to the cytoskeleton induced by disulfide stress,

a mechanism that has been validated in chondrocytes of

osteoarthritis and osteoclast precursor cells in osteoporosis.
FIGURE 1

Schematic diagram of disulfidptosis mechanism.
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2.4 Mechanistic heterogeneity in tumor
and non-tumor diseases

The regulation of disulfidptosis exhibits essential differences

between tumor and non-tumor diseases. In tumors, its triggering

often arises from acute metabolic stress induced by therapeutic

interventions. Tumor cells, due to high expression of SLC7A11,

develop “cystine addiction,” where NADPH depletion leads to

reduced cystine metabolism and disulfide-mediated cytoskeletal

collapse (29–31). This mechanism is utilized for the targeted

k i l l ing o f ma l ignant ce l l s and may synerg i ze wi th

immunotherapy. In contrast, in non-tumor diseases, chronic

microenvironments induce compensatory cystine metabolism

imbalance through epigenetic modifications (e.g., NFATc1

activation of SLC7A11), creating conditions that promote pro-

inflammatory immune cell infiltration (32–34). Terminally

differentiated cells, with limited metabolic plasticity, struggle to

cope with sustained NADPH deficiency, ultimately leading to

progressive functional loss. Therefore, intervention strategies must

accurately differentiate between disease types—tumor treatments

should focus on activating disulfidptosis signaling while modulating

the immunosuppressive microenvironment, while non-tumor

diseases require the inhibition of this pathway to maintain

cellular homeostasis to restore immune homeostasis.
3 Role of disulfidptosis in orthopedic
diseases

Disulfidptosis, as a metabolism-dependent form of cell death,

exhibits a significant “pro-death - anti-death” bidirectional

regulatory characteristic in orthopedic diseases. In bone tumors,

excessive activation of disulfidptosis can effectively eliminate

malignant cells, while in degenerative diseases, the activation of

disulfidptosis exacerbates the functional decline of cells. This

bidirectional regulation is closely related to the disruption of the

immune metabolic microenvironment. In orthopedic degenerative

diseases (such as intervertebral disc degeneration, osteoporosis,

osteoarthritis, etc.), chronic metabolic stress (ischemia, hypoxia,

oxidative stress) is highly coupled with the key triggering conditions

of disulfidptosis through the inflammation factor-metabolic

enzyme network, accelerating the functional loss of terminally

differentiated cells. Anti-death mechanisms can protect these cells

from functional decline. In contrast, in bone tumors (such as

osteosarcoma), malignant proliferation relies on cystine metabolic

reprogramming and immune evasion, providing a new strategy for

targeting and inducing disulfidptosis to eliminate tumor cells. This

heterogeneity in immune metabolic regulation results in

disulfidptosis displaying entirely opposite pathological effects in

orthopedic diseases. The following sections will systematically

analyze the specific mechanisms of disulfidptosis in orthopedic

diseases through key molecular networks and disease-specific

regulatory features (Table 1).
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3.1 Intervertebral disc degeneration

3.1.1 Pathological characteristics and potential
association with disulfidptosis

The core pathological features of intervertebral disc degeneration

(IVDD) include the degradation of the nucleus pulposus (NP)

extracellular matrix, homeostatic imbalance, and disturbances in

the nutritional microenvironment (35–40). Due to the avascular

nature of intervertebral discs, nutrient supply relies on endplate

diffusion, and calcification or aging of the endplates can impede the

transport of glucose and oxygen, exacerbating metabolic stress in NP

cells (41–43). As the only cellular component within the

intervertebral disc, NP cell survival is highly dependent on glucose

metabolism to maintain redox homeostasis. Research indicates that

glucose deprivation can directly induce NP cell death; however,

conventional apoptosis or necrosis inhibitors fail to fully rescue cell

survival, suggesting the involvement of a novel cell death mechanism

(44). Disulfidptosis, as a newly identified form of programmed cell

death, is triggered by disulfide stress resulting from intracellular

NADPH depletion and abnormal cross-linking of cytoskeletal

proteins. This mechanism aligns closely with the restricted glucose

metabolism and redox imbalance observed in IVDD. The high

expression of the cystine transporter SLC7A11 in NP cells during

degeneration may accelerate cystine uptake, further depleting

NADPH reserves and triggering the key pathways of disulfidptosis.

3.1.2 Mechanisms of disulfidptosis in
intervertebral disc degeneration

Recent studies have confirmed the role of disulfidptosis in IVDD

for the first time (44). (1) SLC7A11-NADPH Imbalance Drives

Disulfide Stress: SLC7A11 is significantly upregulated in

degenerated nucleus pulposus tissue, promoting excessive uptake of

cystine and depleting NADPH as it is reduced to cysteine. Glucose

deprivation inhibits the pentose phosphate pathway (PPP), blocking

NADPH production and leading to an increased NADP+/NADPH

ratio, along with the abnormal accumulation of disulfides in

cytoskeletal proteins such as actin (e.g., FLNA, MYH9). This results

in cytoskeletal collapse and cell death. (2) Downregulation of Glucose

Transporters (GLUTs) Exacerbates Metabolic Crisis: Single-cell

sequencing analysis revealed a significant negative correlation

between SLC7A11 and SLC2A1-4 (GLUT1-4) in the degenerative

chondrocyte subpopulation (C4). The reduced expression of GLUTs

further limits glucose influx, amplifying the effects of NADPH

depletion. (3) Synergistic Effects of Endoplasmic Reticulum Stress

and Oxidative Stress: The degenerative C4 subpopulation is enriched

in genes related to endoplasmic reticulum stress, the p53 pathway,

and oxidative stress, suggesting that disulfidptosis may accelerate NP

cell loss by activating the unfolded protein response (UPR) and pro-

apoptotic signals. Experimental evidence shows that the glucose

analog 2-DG can reverse NADP+/NADPH imbalance by

supplementing NADPH, significantly inhibiting disulfidptosis in

NP cells. This provides a new strategy for targeting metabolic

reprogramming to intervene in IVDD. Research on intervertebral
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disc degeneration is currently relatively limited, with verification

methods primarily based on bioinformatics analysis and basic

cellular experiments. The reliability of the conclusions and the

underlying mechanisms require further exploration in the future.
3.2 Osteoporosis

3.2.1 Pathological characteristics and potential
association with disulfidptosis

Osteoporosis (OP) is characterized by reduced bone density,

compromised bone microstructure, and an increased risk of

fractures, with the core pathological mechanism involving a

dynamic imbalance between bone resorption and formation (45–

51). Research indicates that metabolic disorders, immune

dysregulation, and subsequent cell death within the bone

microenvironment collectively contribute to the pathogenesis of

OP (52–58). In recent years, a novel form of cell death—

disulfidptosis—has been increasingly recognized for its role in

osteoporosis. Disulfidptosis is a form of programmed cell death

triggered by the abnormal accumulation of intracellular disulfides,

characterized by SLC7A11-mediated excessive cystine uptake in a

glucose-deprived environment, leading to NADPH depletion and

disulfide stress, ultimately resulting in abnormal cross-linking of
Frontiers in Immunology 05
cytoskeletal proteins and cell death. The pathological environment

of osteoporosis, with its unique microenvironmental characteristics

of low glucose and low oxygen partial pressure, provides conditions

conducive to the occurrence of disulfidptosis (59, 60). Bone-related

cells, such as bone marrow mesenchymal stem cells (BM-MSCs)

and osteoclast precursors, exhibit upregulated expression of

SLC7A11 and redox imbalance under the stimulation of

inflammatory factors, further increasing their susceptibility to

disulfidptosis. Notably, the infiltration of immune cells and the

release of inflammatory factors (e.g., TNF-a, IL-6) present in the

bone microenvironment of osteoporosis patients not only directly

participate in the regulation of bone metabolism but may also form

a complex interactive network with the occurrence and progression

of disulfidptosis by affecting cystine metabolism and redox balance

(61, 62). Disulfidptosis may intertwine with traditional pathological

mechanisms of osteoporosis, participating in the disease process

through a unique “metabolic-immune-cytoskeletal” regulatory axis.

3.2.2 Mechanisms of disulfidptosis in
osteoporosis

Recent studies have revealed the significant role of disulfidptosis in

the progression of osteoporosis. In terms of metabolic regulation and

osteoclast activation, research by Zhong et al. (61) found that

disulfidptosis plays a critical role in osteoclast differentiation through
TABLE 1 Molecular mechanisms and microenvironmental triggers of disulfidptosis in orthopedic diseases.

Disease
type

Core triggers and
microenvironment

Key regulatory
molecules and

pathways

Downstream effects and
pathological outcomes

Current research
limitations

Intervertebral
Disc
Degeneration

Glucose deprivation,
hypoxia (endplate
calcification), inflammatory
factors (IL-1b, IL-6, TNF-a)

>SLC7A11> (upregulated), >
GLUT1-4> (downregulated),
>FLNA>, >MYH9>, >ACTB>
>Pathways>: SLC7A11/
NADPH imbalance axis, FN1-
CD44 inflammatory
interaction axis, Endoplasmic
reticulum stress

NADPH depletion → F-actin cytoskeleton
abnormal disulfide cross-linking → Nucleus
pulposus cell disintegration and death →

Extracellular matrix degradation, disc
structure destruction

Conclusions largely based on
bioinformatics analysis and in vitro cell
experiments; lack of validation in in
vivo models.

Osteoporosis

RANKL stimulation,
inadequate nutrient supply,
oxidative stress,
inflammatory
microenvironment (TNF-a,
IL-6)

>SLC7A11>, >RPN1>, >
NFATc1>, >RAC1>
>Pathways>: NFATc1-
SLC7A11-TXNRD1 signaling
axis, Immune cell infiltration
(monocytes/macrophages)

Osteoclast precursor disulfide stress →
Excessive osteoclast differentiation/
hyperactivity → Bone resorption and
formation imbalance → Bone
microstructure destruction

Studies rely heavily on machine
learning and single-cell sequencing
inferences; lack of direct functional
experimental evidence for disulfidptosis
in osteoclasts.

Osteoarthritis

Inflammatory factors (IL-1b,
TNF-a, IL-17, TGF-b),
oxidative stress, metabolic
disturbances

>SLC3A2> (downregulated),
>NCKAP1>, >PDLIM1>, >
OXSM>, >NDUFS1/NDUFC1
>
>Pathways>: Mitochondrial
complex I dysfunction,
Cytoskeleton-inflammation
positive feedback loop

Chondrocyte cysteine uptake impairment
/metabolic imbalance → Loss of cytoskeletal
stability → Chondrocyte death → Cartilage
matrix degradation, joint degeneration

Mechanistic studies are fragmented;
lack of comprehensive interpretation of
the “metabolism-cytoskeleton-immune”
cross-regulatory network.

Osteosarcoma

Glucose deprivation
(chemotherapy-induced),
hypoxia, tumor oxidative
stress microenvironment

>SLC7A11> (high
expression), >ACTB>, >
MYH9>, >HMGB1>, >
LRPPRC>
>Pathways>: SLC7A11-PI3K/
Akt/mTOR axis, HMGB1-
TLR4-NF-kB axis, m6A-PD-
L1 immune escape axis

“Cystine addiction” → NADPH depletion
under chemotherapy → Cytoskeleton
collapse → >Induction of tumor cell death
>
>Concurrently>: Promotes PD-L1
expression → Immunosuppressive
microenvironment

Most mechanistic evidence comes from
bioinformatic models and correlative
analyses; insufficient validation of the
anti-cancer efficacy of targeting
disulfidptosis in vivo.
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the NFATc1-SLC7A11-TXNRD1 signaling axis. The study showed

that during RANKL-induced osteoclast differentiation, NFATc1

significantly upregulates the expression of SLC7A11, enhancing the

capacity of osteoclast precursors to uptake cystine. When TXNRD1

activity is inhibited, dysregulation of intracellular cystine metabolism

leads to abnormal accumulation of disulfides, ultimately triggering

characteristic F-actin contraction and cell death. This form of cell death

is specific and cannot be reversed by conventional cell death inhibitors

but can be effectively intervened by thiol compounds. Animal

experiments confirmed that targeting this pathway can significantly

improve bone resorption markers and bone microstructure.

In terms of remodeling the immune microenvironment,

disulfidptosis participates in the immune metabolic imbalance of

osteoporosis by regulating immune cell function. Wang et al. (59)

conducted single-cell analysis of clinical data, revealing that

osteoporosis patients can be categorized into different disulfidptosis

subtypes, with high-scoring subtypes significantly associated with the

infiltration of specific immune cell subsets (such as monocytes and T

follicular helper cells). These immune cells activate the osteoclast

differentiation pathway by secreting pro-inflammatory factors.

Additionally, abnormal expression of PGRMC2 has been found to be

associated with osteoporosis risk, potentially participating in the

regulation of the bone immune microenvironment by influencing the

differentiation process ofmonocytes intomacrophages. Genetic analysis

further supports the protective role of PGRMC2 in osteoporosis.

In terms of cytoskeletal stability and bone homeostasis, Zhang

et al. (60) found that disulfidptosis regulators participate in the

imbalance of bone remodeling by influencing cytoskeletal

dynamics. Abnormal expression of key cytoskeletal proteins, such

as FLNA and ACTB, leads to decreased stability of the actin network,

promoting osteoclast differentiation. Conversely, excessive activation

of regulators like RAC1 accelerates the formation of osteoclast bone

resorption structures. Additionally, research by Pan et al. (62)

revealed that abnormal expression of RPN1 recruits specific

immune cells through pro-inflammatory signaling pathways, while

targeted inhibition of RPN1 can effectively improve the abnormal

bone microstructure in animal models.

These three mechanisms are interwoven, collectively forming a

complete framework for the involvement of disulfidptosis in the

pathological processes of osteoporosis: metabolic reprogramming

alters cell fate determination, remodeling of the immune

microenvironment affects local inflammatory states, and regulation

of cytoskeletal stability directly participates in the modulation of bone

resorption function. Nevertheless, the conclusions of this section

primarily rely on single-cell sequencing, machine learning, and in

vitro studies, lacking further validation through in vivo experiments

and clinical trials, which will be a focus of future research.
3.3 Osteoarthritis

3.3.1 Pathological features and potential
association with disulfidptosis

Osteoarthritis (OA) is characterized by degeneration of

articular cartilage, synovial inflammation, and imbalance in
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chondrocyte homeostasis (63–68). Chondrocytes are critical for

maintaining the function of articular cartilage, and their abnormal

death (such as apoptosis and necroptosis) is closely related to the

progression of OA (69–75).

Recently discovered disulfidptosis, a novel form of programmed

cell death, is triggered by the abnormal accumulation of disulfides

within cells, leading to cross-linking of cytoskeletal proteins and

collapse of the actin network. This mechanism aligns well with the

loss of cytoskeletal stability observed in chondrocytes during OA

(76, 77). In the OA microenvironment, oxidative stress,

inflammatory factors (such as IL-1b and TNF-a), and

abnormalities in glucose metabolism may activate SLC7A11,

leading to excessive cystine uptake and exacerbating intracellular

disulfide stress, thereby triggering disulfidptosis. Moreover,

dysfunction of mitochondrial respiratory chain complexes (such

as dysregulation of NDUFS1 and NDUFC1 expression) may further

amplify energy metabolism disturbances and redox imbalances,

creating a vicious cycle that promotes the occurrence

of disulfidptosis.

3.3.2 Mechanisms of disulfidptosis in
osteoarthritis

Recent studies utilizing multi-omics analysis have revealed the

critical role of disulfidptosis-related genes (DRGs) in osteoarthritis

(OA). Wei et al. (76)integrated six OA datasets and single-cell

sequencing, discovering that DRGs such as SLC3A2 and NDUFC1

are specifically highly expressed in OA chondrocytes and

significantly correlated with the activation of pro-inflammatory

pathways like IL-17 and TGF-b. Experimental validation showed

that SLC3A2 expression is downregulated in OA models, and its

deficiency exacerbates oxidative stress by inhibiting cystine

transport, leading to the upregulation of extracellular matrix

degradation markers (MMP3, ADAMTS5). This suggests that

SLC3A2 may influence OA progression by regulating the balance

between disulfidptosis and autophagy.

Cao et al. (77)employed machine learning to identify SLC3A2

and PDLIM1 as core DRGs. They found that PDLIM1 is

abnormally highly expressed during late-stage chondrocyte

differentiation, disrupting cytoskeletal integrity by competitively

binding to a-actinin 4 (ACTN4) while inhibiting autophagy-

related pathways (such as the mTOR-ULK1 axis), exacerbating

the inflammatory response in chondrocytes. Hu et al. (78) further

investigated that OA samples with different disulfidptosis scores

exhibit distinct characteristics of immune cell infiltration. The C1

subtype (high score) shows activation of CD8+ T cells and a

decrease in M0 macrophages, while the C2 subtype (low score) is

characterized by an increase in Th17 cell infiltration and high

expression of pro-inflammatory factors (IL-6, TNF-a). The

imbalance in the proportion of these immune cell subpopulations

is significantly correlated with the expression levels of key

regulatory factors of disulfidptosis (such as NCKAP1, OXSM),

indicating that disulfidptosis may participate in the inflammatory

process of OA by regulating the activation and function of immune

cells. These studies collectively suggest that disulfidptosis is involved

in the pathological mechanisms of OA through a multidimensional
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network of “metabolism - oxidative stress - immune regulation,”

providing new directions for targeted intervention.
3.4 Osteosarcoma

3.4.1 Pathological features and immunometabolic
crosstalk in disulfidptosis

Osteosarcoma, as a highly heterogeneous malignant bone

tumor, is characterized by rapid proliferation, a tendency for early

metastasis, and chemotherapy resistance (79, 80). Disulfidptosis, as

a novel form of programmed cell death, involves a core mechanism

of cystine metabolic imbalance mediated by SLC7A11, leading to

abnormal accumulation of intracellular disulfides, which in turn

triggers cross-linking of cytoskeletal proteins and membrane

rupture. This process is highly compatible with the oxidative

stress microenvironment of osteosarcoma (81): osteosarcoma

cells, due to rapid proliferation, often exist in states of hypoxia

and nutrient deficiency, potentially exacerbating cystine-dependent

metabolic abnormalities through overexpression of SLC7A11,

thereby creating conditions that promote disulfidptosis.

Additionally, the high expression of actin-related genes (such as

ACTB and MYH9) in osteosarcoma tissues may further increase the

sensitivity of the cytoskeleton to abnormal disulfides, providing a

molecular basis for the occurrence of disulfidptosis.
3.4.2 Mechanisms of disulfidptosis in
osteosarcoma

Recent studies have gradually revealed the regulatory networks

and clinical significance of disulfidptosis-related genes (DRGs) in

osteosarcoma. At the molecular mechanism level, abnormal

activation of the SLC7A11-PI3K/Akt/mTOR signaling axis plays a

critical role in the progression of osteosarcoma. Research by Xu

et al. (82) indicates that SLC7A11 upregulates HK2 expression and

glycolytic activity through mTORC1, while activated PI3K

promotes the phosphorylation of GSK3b, inhibiting b-catenin
degradation, thus forming a positive feedback loop of “cystine

metabolism-glycolysis-Wnt signaling.” Clinical data show that

patients with high expression of SLC7A11 exhibit increased

sensitivity to mTOR inhibitors, providing important evidence for

targeted therapy.

The interaction between microenvironmental factors and

cytoskeletal stability is also crucial in the regulation of

disulfidptosis. Wang et al. (83) found that exogenous HMGB1

upregulates ACTB expression via the TLR4/MyD88/NF-kB
pathway, leading to the depolymerization of the F-actin network

and disruption of cell membrane stability, accompanied by changes

in histone modifications. This finding reveals the bridging role of

the HMGB1-ACTB-TLR4 axis in connecting microenvironmental

stimuli with cytoskeletal damage, also providing a new target for

therapeutic intervention.

In terms of immune regulation, the prognostic model

constructed by Chen et al. (84) shows that LRPPRC, as an m6A

reader, recognizes a specific sequence in PD-L1 mRNA and

enhances its translation efficiency by recruiting YTHDF1, leading
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to the functional suppression of CD8+ T cells. Additionally,

LRPPRC may enhance the stability of PD-L1 mRNA through

m6A modification, creating a malignant cycle of immune

suppression and metabolic disorder. Meanwhile, MYH9 regulates

the secretion of immune factors via the Hippo-YAP pathway,

potentially leading to Treg infiltration and NK cell functional

supp r e s s i on , thu s f o rm ing an immunosuppr e s s i v e

microenvironment. These findings reveal the important role of

disulfidptosis-related genes in tumor immune evasion.
4 Dual role of disulfidptosis in
targeted therapeutic strategies for
orthopedic diseases

Previous studies have shown that Targeted therapies for

orthopedic diseases exhibit bidirectional regulatory characteristics,

necessitating precise differentiation in intervention strategies for

tumor versus non-tumor conditions (85–90). Regarding

disulfidptosis-targeted therapeutic strategies, in malignant tumors

such as osteosarcoma, therapeutic strategies focus on activating

disulfidptosis signaling pathways to induce tumor-specific cell death

while concurrently overcoming immunosuppressive barriers, and

enhance treatment efficacy especially when combined with immune

checkpoint inhibitors (91–96). Conversely, in degenerative diseases

like intervertebral disc degeneration, osteoporosis, and

osteoarthritis, it is crucial to inhibit the excessive activation of

disulfidptosis pathways to protect cellular functions, and mitigate

pro-inflammatory immune responses and delay tissue degeneration

(97–102).

This “pro-death vs. anti-death” dual logic underscores the core

value of targeting disulfidptosis pathways in orthopedic precision

medicine with integrated immunomodulation. By tailoring

interventions based on the fundamental differences in disease

nature, therapeutic goals can be optimized through specific

immune-aware molecular mechanisms that simultaneously

address metabolic dysfunction and immune microenvironment

remodeling. A schematic representation of the “pro-death vs.

anti-death” therapeutic strategy is shown in Figure 2, and Table 2

systematically summarizes the main therapeutic principles and

disulfidptosis-related precision treatment strategies for the four

types of diseases.
4.1 Intervertebral disc degeneration

In the targeted therapeutic strategies for disulfidptosis in

intervertebral disc degeneration (IVDD), research focuses on

regulating SLC7A11-mediated redox imbalance to maintain

cellular homeostasis. Literature indicates (44)that glucose

deficiency in IVDD drives NADPH depletion by upregulating

SLC7A11, leading to disulfidptosis. The key to inhibiting this

pathway lies in restoring NADPH balance. Experimental evidence

shows that 2-deoxy-D-glucose (2-DG) can activate the pentose

phosphate pathway to replenish NADPH, significantly reducing
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the NADP+/NADPH ratio and rescuing cells from glucose

deprivation-induced death. Additionally, inhibiting SLC7A11 or

enhancing the function of glucose transporters (such as GLUT1/

SLC2A1) can block excessive cystine uptake and subsequent

oxidative stress. Modulating endoplasmic reticulum stress

pathways (such as the unfolded protein response) may also

synergistically alleviate disulfidptosis. These strategies provide

potential therapeutic targets for delaying intervertebral disc

degeneration by precisely inhibiting disulfidptosis signals, such as

developing SLC7A11 inhibitors or GLUT agonists to maintain

redox homeostasis in nucleus pulposus cells.
4.2 Osteoporosis

In targeted therapeutic strategies for disulfidptosis in

osteoporosis, research focuses on the precise intervention of key

regulatory factors. Zhong et al. (61)found that NFATc1 activates

SLC7A11 transcriptionally, driving osteoclast precursor cells’

sensitivity to thioredoxin reductase 1 (TXNRD1) inhibitors (such

as Auranofin). Inhibiting TXNRD1 activity leads to cystine

accumulation and disulfidptosis mediated by F-actin contraction,

significantly reducing bone resorption.

Pan et al. (62)revealed that kaempferol could target and inhibit

the aberrantly high expression of disulfidptosis-related gene RPN1,
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reversing bone microstructure damage in ovariectomized rats,

suggesting the potential therapeutic value of flavonoids in

regulating RPN1. Wang et al. (33) further discovered that

PGRMC2 influences bone metabolism by promoting the

d i ff e rent i a t ion of monocytes in to macrophages ; i t s

downregulation exacerbates osteoporosis progression, while

restoring PGRMC2 levels can improve bone homeostasis. Zhang

et al. (60) constructed a diagnostic model based on genes like

SLC7A11 and RAC1, proposing a combination therapy that

involves regulating the immune microenvironment of monocyte

infiltration to inhibit disulfidptosis and maintain the osteoblast/

osteoclast balance. These studies provide molecular mechanisms

and translational evidence for developing precision treatments

targeting disulfidptosis in osteoporosis.
4.3 Osteoarthritis

Recent research advancements have led to breakthrough

findings in targeted therapeutic strategies for disulfidptosis in

osteoarthritis (OA). Wei et al. (76) integrated single-cell

sequencing with machine learning algorithms, discovering that

SLC3A2 is significantly downregulated in the EC subpopulation

of OA chondrocytes. Its deficiency exacerbates cartilage

degeneration by activating IL-17 and TGF-b inflammatory
FIGURE 2

Bidirectional targeting of disulfidptosis in degenerative and malignant orthopedic disorders.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1647931
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2025.1647931
pathways. In vivo experiments confirmed that upregulating SLC3A2

effectively inhibits disulfidptosis-related F-actin network collapse.

Cao et al. (77) further revealed a bidirectional regulatory

mechanism between SLC3A2 and PDLIM1: SLC3A2 maintains

redox balance by promoting the cystine/glutathione axis, while

aberrant high expression of PDLIM1 in late-stage OA disrupts

the autophagy-cytoskeleton balance. Silencing PDLIM1 with siRNA

resulted in a 47.3% reduction in inflammatory factors IL-6 and

MMP13. Notably, Hu et al. (78) constructed a multi-omics

diagnostic model showing that the NCKAP1-OXSM-SLC3A2

regulatory network is closely related to the OA immune

microenvironment. Targeted inhibition of PPM1F (a magnesium-

dependent phosphatase) increased chondrocyte survival by 32%,

with mechanisms involving the restoration of mitochondrial

complex I function and reduction of abnormal disulfide

accumulation (p< 0.01). These findings provide a theoretical basis

for developing specific small molecule inhibitors of disulfidptosis,

such as SLC3A2 agonists or PDLIM1 antagonists.
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4.4 Osteosarcoma

In the research on targeted therapeutic strategies for

disulfidptosis in osteosarcoma, multiple studies have revealed key

regulatory targets and potential therapeutic directions. Xu et al. (82)

found that osteosarcoma cells with high expression of SLC7A11 are

prone to disulfidptosis under glucose deprivation, suggesting that

inhibiting glucose transport or pharmacologically targeting the

SLC7A11 pathway could selectively induce tumor cell death.

Wang et al. (83) utilized single-cell sequencing to discover that

HMGB1 regulates ACTB expression and participates in the

disulfidptosis process. They confirmed that silencing ACTB

significantly reduces osteosarcoma cell viability, while exogenous

HMGB1 treatment enhances cell death sensitivity through the

TP53/NF-kB signaling axis. Chen et al. (84) constructed a

prognostic model indicating that MYH9 and LRPPRC are key

risk genes, with their inhibitors potentially activating the

disulfidptosis pathway by disrupting cytoskeletal stability.
TABLE 2 Disulfidptosis-targeted therapeutic strategies for orthopedic diseases.

Disease
Strategy &

target
Agents/

approaches
Mechanism

Challenges & future
directions

IVDD

Inhibit SLC7A11 &
enhance GLUTs

SLC7A11 inhibitors;
GLUT agonists

Reduce cystine overload; improve glucose
influx

Lack of specific inhibitors; need localized
delivery → Develop disc-penetrating
nanocarriers

Supplement
NADPH

2-DG analogs Activate PPP to boost NADPH
Off-target toxicity → Synthesize novel
NADPH precursors

Modulate ER stress IRE1a inhibitors Alleviate UPR-mediated apoptosis
Preliminary crosstalk evidence → Explore
combination therapies

Osteoporosis

Target NFATc1-
SLC7A11-TXNRD1
axis

Auranofin, TRi-1 Induce disulfidptosis in osteoclast precursors
Systemic toxicity → Develop bone-
targeted nano-formulations

Inhibit RPN1 Kaempferol Disrupt pro-disulfidptosis function
Low bioavailability; mechanistic clarity →

Optimize derivatives; validate RPN1-
ceRNA network

Regulate immune
microenvironment
(PGRMC2)

PGRMC2 agonists (to be
developed)

Modulate monocyte-macrophage
differentiation

No specific agonists available → High-
throughput screening for agonists

Osteoarthritis

Upregulate SLC3A2
& modulate
metabolism

SLC3A2 agonists; mTOR
inhibitors

Restore cystine/GSH homeostasis
Disease heterogeneity → Apply based on
immune subtypes (e.g., C1/C2)

Target cytoskeleton-
inflammation loop
(PDLIM1)

PDLIM1 siRNA;
inhibitors

Stabilize cytoskeleton; reduce IL-6/MMP13
Delivery challenges → Develop intelligent
responsive intra-articular delivery systems

Immunomodulation
based on subtypes

PPM1F inhibitors; IL-17
antagonists

Tailor therapy to immune features
Complex personalized therapy →

Establish clear biomarkers for stratification

Osteosarcoma

Induce disulfidptosis
via metabolic stress

Glucose deprivation;
SLC7A11 inhibitors

Trigger NADPH depletion and cytoskeleton
collapse

TME complexity → Develop strategies to
specifically starve tumor cells

Target cytoskeleton
directly (ACTB/
MYH9)

HMGB1-TLR4 axis
inhibitors

Disrupt actin polymerization
Off-tumor effects → Investigate tumor-
specific cytoskeleton vulnerabilities

Combine with
immunotherapy

PD-1/CTLA-4 inhibitors
+ inducers

Enhance immunogenicity; reverse
immunosuppression

Dosing/sequencing unknown →

Preclinical studies in immunocompetent
PDX models
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Notably, Zhang et al. (81) pointed out that the activation of

disulfidptosis is associated with the remodeling of the immune

microenvironment, where patients in the low-risk group

demonstrated significantly increased sensitivity to PD-1/CTLA-4

inhibitors. This suggests that combined immune checkpoint

blockade may produce a synergistic anti-tumor effect, with drug

sensitivity analysis identifying targeted agents such as lapatinib,

bortezomib, fruquintinib, and MG-132. Currently, targeted

strategies primarily focus on metabolic interventions, key gene

regulation, and the development of cytoskeletal-targeting drugs.

These avenues provide a multidimensional therapeutic framework

for precisely activating disulfidptosis in osteosarcoma.
5 Conclusion and outlook

This study systematically reveals the key mechanisms of

disulfidptosis in orthopedic diseases and its potential for clinical

translation. By integrating multi-omics data and experimental

validation, we found that disulfidptosis exhibits distinctly different

regulatory patterns in degenerative diseases such as intervertebral

disc degeneration and osteoporosis compared to malignant tumors

like osteosarcoma. In degenerative diseases, SLC7A11-mediated

cystine metabolic imbalance leads to NADPH depletion,

triggering abnormal cross-linking of cytoskeletal proteins and cell

death; whereas in malignant tumors, targeted activation of the

disulfidptosis pathway can selectively kill tumor cells. This finding

provides new molecular targets and therapeutic strategies for

precision diagnosis and treatment of orthopedic diseases.

Despite the significant progress made in this study, there are

still several areas that require improvement: First, the limitations in

sample sources may affect the generalizability of the research

conclusions. The current study is primarily based on public

databases and a limited number of clinical samples (44, 59, 76),

and future efforts should expand the sample size and include a

broader range of ethnic groups to validate the reliability of the

results. Second, regarding mechanism studies, the interactions

between disulfidptosis and other forms of programmed cell death,

such as apoptosis, ferroptosis, autophagy, and necroptosis, have not

been fully elucidated (103–107). In particular, the “molecular

switch” function of SLC7A11 in different death pathways requires

further exploration. Additionally, the lack of animal models limits

the depth of in vivo validation, necessitating the development of

genetically engineered animal models that more closely resemble

human disease characteristics.

Future research should focus on several key directions: In

translational medicine, there is an urgent need to develop a

ctDNA-based LRPPRC mutation monitoring panel and an

imaging radiomics early warning system, while optimizing the

drug delivery technology of pH-responsive nanoparticles to

improve targeted delivery efficiency. Clinical translational studies

should establish SLC7A11 conditional knockout animal models and

humanized PDXmodels to provide a reliable platform for treatment

assessment. Mechanistic studies should concentrate on elucidating
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the spatiotemporal specificity of NFATc1-SLC7A11 transcriptional

regulation and clarifying the molecular switch involved in TXNRD1

inhibitor-induced cytoskeletal remodeling. Additionally, exploring

the metabolic dialogue mechanisms in the bone marrow

microenvironment and developing disulfidptosis-inducing

strategies targeting the tumor metabolic microenvironment will

provide new insights for achieving precision therapy.
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