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microbial dysbiosis in invasive
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Invasive liver abscess (ILA) represents a formidable clinical challenge, characterized
by rapidly evolving hepatic lesions and systemic dissemination. The gut-liver axis, a
vital conduit for immune and metabolic regulation, has emerged as a central driver
of its pathogenesis. This narrative review draws on insights from select
transcriptomic, proteomic, metabolomic, and microbiomic studies, revealing
how chronic antibiotic use, unhealthy diets, and lingering pathological
conditions disrupt intestinal barrier integrity and perturb bile acid and short-
chain fatty acid metabolism. This dysregulated microenvironment facilitates
bacterial translocation into the liver, triggering a robust inflammatory cascade
and the upregulation of virulence factors involved in capsule synthesis and biofilm
formation. Evidence suggests microbial dysbiosis contributes to hepatic immune
dysregulation. These insights pave the way for novel ILA interventions. This review
offers original insights by critically integrating evidence from transcriptomic,
proteomic, metabolomic, and microbiomic studies with GRADE-evaluated
clinical data, proposing a novel bacteria—inflammation—virulence feedback loop
and precision therapeutic frameworks that target the gut-liver axis, filling gaps in
traditional ILA models and guiding future interventions.
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1 Introduction

ILA is a rapidly progressive and pathologically complex infectious disease that has
garnered increasing clinical attention (1, 2). In recent years, lifestyle changes, a rising
incidence of metabolic disorders, and the widespread prevalence of risk factors such as
diabetes, cirrhosis, advanced age, and immunocompromised conditions, have contributed
to a higher prevalence of ILA (3). However, evidence from epidemiological studies is often
retrospective and regionally biased (e.g., East Asian cohorts), warranting caution in global
extrapolation (3); using GRADE criteria, this evidence is moderate-low due to potential
confounding by comorbidities. This condition exhibits a high mortality rate and poses
significant treatment challenges, given the limitations of conventional antibiotics and
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TABLE 1 Gene function and pathogenic mechanism table.

Function

Role in pathogenic

mechanisms

Upregulates the production of

Additional
notes

Detected on

A/ Regulator of | capsular polysaccharides, thereby = both plasmid
rm . .
P A Capsule enhancing the hypermucoviscous | (prmpA) and
crm
P Synthesis phenotype and promoting chromosome
immune evasion. (crmpA).
Functions similarly to rmpA b
. v p i Typically
Capsule promoting capsule formation and .
rmpA2 . i . plasmid-
Regulation thereby contributing to increased
K encoded.
virulence.

Involved in the synthesis of Closely
uch Siderophore | aerobactin, a siderophore that associated with
iuc

Biosynthesis | facilitates iron acquisition elevated
essential for bacterial growth. virulence.

Serves as a molecular marker for E .

. R merging as an
. hypervirulence; Although its . ging
Putative . N ) important
peg-344 precise function remains under o
Transporter | L . indicator of
investigation, it is linked with
I . HvKP.
aggressive infection.

Confers resistance to tellurite and

may contribute to survival under

environmental stress, indirectly Frequently
terB Tellurite supporting virulence. detected in
er . . . .

Resistance Conlfers resistance to tellurite and = hypervirulent
may support bacterial survival strains.
under environmental stress,

indirectly enhancing virulence.

Plays a critical role in salmochelin = Acts as an
iroB Siderophore | biosynthesis, aiding in iron epidemiological
iro

Biosynthesis | acquisition and promoting marker for
pathogenicity. virulence.

Participates in yersiniabactin

: . S . Commonly
. Siderophore | synthesis, which is crucial for .
irp2 R R K K observed in
Biosynthesis | iron uptake and overall strain

. HVKP isolates.
virulence.

To aid readers who are not familiar with microbial genetics, a concise glossary of the most
clinically relevant virulence genes is provided below.

interventional therapies. Consequently, it is essential to explore
pathogenic mechanisms, particularly the gut-liver axis and
microbial dysbiosis, while critically evaluating the quality of
supporting data.

The gut-liver axis, serving as a bidirectional conduit between the
digestive system and the liver, plays a crucial role in maintaining
immune homeostasis and metabolic balance (4). Extensive evidence
indicates that disruptions in the gut microbiota, along with impaired
intestinal barrier, enable the translocation of bacterial endotoxins and
metabolic byproducts via the portal vein into the liver, thereby
triggering local inflammatory responses and immune dysregulation
(5-8). These citations primarily draw from mechanistic animal and in
vitro models (5, 6), which provide high internal validity but limited
human applicability; in contrast, clinical observations (7, 8) are
observational and graded as low quality due to small sample sizes.
This mechanism not only initiates localized infection but also
significantly influences disease progression and recurrence.
Accordingly, this review focuses on the critical role of gut-liver axis
disruption and microbial imbalance in the pathophysiology of ILA,
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TABLE 2 Glossary of key virulence genes in Klebsiella pneumoniae.

Role in virulence

Full name/  Main and clinical
Type function
yp relevance
Regul'ator of Activates Increases capsule thickness,
mucoid . enhances
henotype A transcription hypermucoviscosity, protects
rmpA p : of capsule VP . Y’ P .
(plasmid-encoded . bacteria from host immunity,
polysaccharide . L
or chromosomal X linked to invasive liver
. synthesis genes
variant) abscess
Regulator of Similar to Strengthens capsule-mediated
mucoid rmpA, immune evasion, often
rmpA2 | phenotype A2 promotes coexists with rmpA, serves as
(usually plasmid- | capsule a molecular marker for
encoded) production hypervirulent strains
. Encodes Facilitates iron acquisition
Aerobactin .
enzyme for under host-limited
. synthetase gene, . . L
iucA aerobactin (a conditions, significantly
part of the . .
X siderophore) enhances bacterial growth
iucABCD operon . . .
synthesis and invasiveness

aiming to elucidate potential mechanisms and to offer novel insights
for precision clinical interventions, such as early microbiome
screening in at-risk patients to prevent translocation.

The objective of this review is to integrate recent international
research on ILA, with a particular focus on the limitations of
conventional antimicrobial and interventional therapies. In
addition, we examine emerging treatment strategies, including
probiotic supplementation, fecal microbiota transplantation, and
multi-target combination therapies. By synthesizing and comparing
how various therapeutic approaches modulate gut-liver axis function,
restore intestinal microbial balance, and enhance immune regulation,
our goal is to establish a comprehensive therapeutic framework. This
framework not only provides a robust theoretical foundation for
clinical practice but also offers practical guidance for devising
individualized, multi-target treatment strategies, such as combining
antibiotics with probiotics based on patient dysbiosis profiles.
Literature published since 2000 was evaluated and screened to
ensure the quality and representativeness of the included studies;
however, we further assess evidence quality using GRADE and
distinguish mechanistic from clinical data to highlight where firm
conclusions can be drawn.

Consequently, this review comprehensively addresses the
pathological mechanisms and conventional treatment strategies of
ILA while highlighting the potential applications of novel
interventions in modulating the gut-liver axis and restoring
microbial homeostasis. The barrier of the gut-liver axis is critical for
maintaining immune equilibrium and metabolic balance (9-11).
However, various adverse factors can compromise the intestinal
barrier, thereby allowing bacteria and their toxins to infiltrate the
liver and trigger localized inflammatory responses (12, 13). Mechanistic
studies (primarily in vitro) suggest direct barrier compromise (9-11),
graded as moderate quality, while clinical implications (12, 13) remain
speculative without large-scale RCTs. With this molecular framework
of gut-liver axis dysregulation and microbial imbalance established, we
now turn to the clinical pathology of invasive liver abscess and the
limitations of traditional infection models.
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2 Clinical pathology of invasive liver
abscess

2.1 Limitations of traditional infection
mechanisms

ILA has high mortality (14). Traditionally, it is attributed to two
factors: pathogen hypervirulence and reduced host defenses such as
diabetes, chronic liver disease, and immunodeficiency (15).
However, an increasing number of recent clinical cases reveal that
even patients with relatively normal immune function and no
apparent hepatobiliary disease can manifest highly invasive
pathology with multi-system dissemination (16-18). These
observations suggest that conventional infection models, relying
solely on pre-existing host conditions, are insufficient to explain
ILA, particularly when severe systemic spread is observed in
individuals without clear underlying disorders (19).

2.2 Unique pathogenic mechanisms of
HvKP

Advances in molecular diagnostics and clinical studies highlight
HvKP’s hypermucoviscosity (20), detected via the string test (viscous
string > 5 mm). This phenotype reflects increased capsular
polysaccharide synthesis and underpins its hypervirulence. Further
molecular analyses have demonstrated that several key virulence
genes are highly conserved among HVKP strains. For instance,
plasmid-encoded genes such as rmpA (prmpA) and rmpA2,
together with the chromosomal variant rmpA (crmpA), play pivotal
roles in regulating capsule synthesis, thereby reinforcing the
hypermucoviscosity phenotype and promoting immune evasion. In
parallel, specific siderophore biosynthesis genes like iucA (responsible
for aerobactin synthesis) and the putative transporter peg-344 are
intimately associated with the organism’s high pathogenicity.
Additionally, epidemiologically relevant genes, including terB
(conferring tellurite resistance), iroB (involved in salmochelin
biosynthesis), and irp2 (linked to yersiniabactin biosynthesis), are
frequently detected in hypervirulent isolates. Based on these
molecular markers, researchers have further delineated the capsular
serotypes associated with these strains (such as K1, K2, K5, K20, K54,
and K57), thereby providing a robust molecular framework for
understanding their pathogenic mechanisms (21, 22). Clinically,
these capsular overproductions and enhanced siderophore traits
demand rapid molecular diagnostics to guide targeted antibiotic
selection and improve patient outcomes.

2.3 Summary of clinical cases and
pathological manifestations

In East Asia, particularly in Taiwan, infections caused by HvKP
are increasingly observed in otherwise healthy individuals without
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evident hepatobiliary disease. These patients typically exhibit
several defining characteristics (23-25): (1) Local Manifestations:
Hepatic abscesses are often multi-focal, presenting as either
localized or diffusely infiltrative lesions accompanied by
pronounced acute inflammatory responses. (2) Systemic
Dissemination: Beyond the primary hepatic lesions, patients
frequently develop multi-system infections, including meningitis,
endophthalmitis, empyema, septic pulmonary emboli, septic
arthritis, osteomyelitis, necrotizing fasciitis, and bloodstream
infections. These disseminated infections tend to progress rapidly
and are associated with a poor prognosis. (3) Abnormal Clinical
Indicators: Laboratory tests commonly reveal fever, leukocytosis,
and impaired liver function, all of which signal a marked activation
of the inflammatory response. These clinical patterns collectively
point toward gut-liver axis disruption, a link we mechanistically
explore in Section 3.

2.4 Summary of molecular detection and
virulence genes

Molecular diagnostic studies of HVYKP have demonstrated that
the upregulation of multiple virulence genes is closely associated
with its enhanced pathogenicity. The table below summarizes the
key genes commonly detected in HvKP isolates and outlines their
roles in the pathogen’s virulence mechanisms (Table 1).

To aid readers who are not familiar with microbial genetics, a
concise glossary of the most clinically relevant virulence genes is
provided below (Table 2). While molecular assays pinpoint key
virulence genes, an integrated gut-liver axis perspective reveals how
dysbiosis drives disease in vivo.

2.5 The role of the gut-liver axis and
dysbiosis

Recent studies implicate gut-liver dysregulation in ILA
pathogenesis. Traditional models focus on direct pathogen
invasion and host immunodeficiency but overlook how
microbiota imbalance and barrier breakdown enable bacterial
translocation (26-28). However, these studies (26-28) are
primarily mechanistic, relying on animal models with high
internal validity but potential overestimation of translocation
rates in humans; graded as moderate quality under GRADE due
to lack of randomization.

Emerging research indicates that multiple factors collectively
promote the onset of ILA: (1) Disruption of the Intestinal Barrier:
Impairments in mucosal barrier, attributable to factors such as
medication use, dietary changes, or other pathological conditions,
permit highly pathogenic bacterial strains to enter the bloodstream,
thereby seeding infections in the liver and other organs. (2)
Microbial Dysbiosis: Alterations in the composition of the
intestinal microbiota favor the predominance of harmful bacteria,
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TABLE 3 Comparison of mechanistic vs. clinical studies on gut-liver axis
in ILA.

Clinical
studies
(human
cohorts)

Mechanistic
studies (in
vitro/animal)

Implications

Case series link

Animal models show K o Firm:
e diet/chronic disease .
antibiotic-induced . . Translocation
. . . to barrier failure X
Barrier dysbiosis leading to (29-32); mechanism;
-32); low
Disruption | translocation (26-28); GRADE Speculative:
high reproducibility . Prevalence in
T confounding by
but artificial. o healthy humans.
comorbidities.
. . Firm: Virulence
In vitro gene Retrospective .
X in models;
upregulation by cohorts show .
. . . . Speculative:
HvKP inflammation (40, predominance in R
. Universal
Role 41); controlled but East Asia (38, 39); applicabilit
lacks in vivo moderate GRADE, Pp 4
complexity. eographic bias, without global
plexity. geograp : RCTS.

notably HvKP, thereby increasing the risk of these pathogens
translocating into systemic circulation. (3) Systemic Inflammatory
Response: Both local and systemic inflammatory states further
disturb homeostasis, compromising host immune defenses against
highly virulent strains and exacerbating disease progression (29-
32). These studies (29-32) include clinical case series (low GRADE
quality due to small samples and biases) alongside in vitro data,
highlighting a need to distinguish: mechanistic evidence firmly
supports barrier roles, while clinical data speculatively links
dysbiosis to dissemination in healthy hosts. This integrated
perspective, combining direct pathogen invasion with host
environmental alterations, not only provides novel molecular and
immunological insights into the acute multi-system dissemination
observed in patients without underlying conditions but also outlines
promising avenues for future therapeutic strategies (33). For
example, the integration of host immunomodulatory measures,
restoration of intestinal barrier, and targeted interventions against
pathogen-associated intracellular signaling pathways may represent
key breakthroughs in reducing mortality and preventing systemic
dissemination (34-37); practically, this suggests early probiotic use
in high-risk groups, though RCTs are needed for validation.
Cumulative clinical evidence and molecular diagnostics
consistently indicate that HvKP plays a predominant role in the
pathogenesis of ILA (38). Although traditional models partially
account for the roles of direct bacterial invasion and host
immunodeficiency (39), they fall short of explaining the invasive,
multisystem dissemination seen in otherwise healthy individuals. In
contrast, the pronounced pathogenicity of hypermucoviscous
strains, with their distinctive virulence gene expression profiles
and heightened sensitivity to inflammatory signals, offers a fresh
perspective for elucidating this complex pathology (40, 41).
Furthermore, disruptions of the gut-liver axis, combined with
dysbiosis and intestinal barrier damage, provide a robust
framework for understanding the complex pathogenic
mechanisms involved. To clarify evidence types, Table 3
compares mechanistic and clinical studies in this context.
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3 Mechanism analysis

In recent years, mounting evidence has underscored the critical
role of the gut-liver axis in maintaining hepatic immune and
metabolic homeostasis (4). Disruption of the intestinal
microbiota, coupled with compromised epithelial barrier, plays a
pivotal role in the development of ILA (42). In this section, we aim
to elucidate the underlying mechanisms by delineating the complex
interrelationships among gut-liver axis disruption, abnormal gut
microbiota, and the pathogenesis and progression of ILA. The
discussion is organized around several principal regulatory
pathways, including intestinal barrier disruption, the activation of
inflammatory signaling cascades, and the bacteria-inflammation-
virulence feedback loop.

3.1 Intestinal barrier disruption

3.1.1 Normal gut microbial ecosystem, metabolic
products, and barrier

The human gut contains ~10** microbes, over 90% from
Bacteroidetes and Firmicutes, alongside fungi, archaea, viruses,
and protozoa (12, 43, 44). These communities maintain host
health via metabolic and immune interactions. A healthy gut is
equipped with multiple defensive layers. First, the mechanical
barrier consists of a single layer of intestinal epithelial cells
interconnected by tight junction proteins (including occludin,
various members of the claudin family, and zonula occludens-1
(ZO-1)), which effectively restrict the paracellular passage of
bacteria and endotoxins. Second, the mucus layer secreted by
goblet cells acts as a chemical barrier that traps and neutralizes
pathogenic microorganisms. Third, the intestinal immune
compartment, which comprises structures such as Peyer’s patches
and a diverse array of dendritic cells, macrophages, and T/B
lymphocytes, as an immunological barrier that continuously
monitors for and eliminates invading pathogens (45-50).
Moreover, the normal gut microbiota, dominated by beneficial
genera such as Bifidobacterium, Lactobacillus, and Bacteroides,
not only directly reinforces these barriers but also indirectly
modulates local and systemic immune responses through the
production of short-chain fatty acids (SCFAs) and the regulation
of bile acid metabolism (51-53). Preservation of these barrier
components should be prioritized in at-risk patients to reduce
invasive liver abscess incidence.

3.1.2 Role of microbial metabolites in barrier
maintenance and immune regulation

The fermentation of dietary fibers by the gut microbiota
produces essential metabolic byproducts, primarily SCFAs such as
butyrate, propionate, and acetate, that play crucial roles in multiple
physiological processes. SCFAs fuel epithelial cells, enhance tight-
junction protein expression, and modulate immunity via GPR41/43
activation (43, 51, 54).Under normal conditions, SCFAs regulate
immune cell functions by activating G protein-coupled receptors
(for example, GPR41 and GPR43). This receptor-mediated
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TABLE 4 Treatment strategies and their characteristics.

Treatment
strategy

Intervention mechanism and principal
effects

Synergistic outcomes and

10.3389/fimmu.2025.1646893

Limitations and disadvantages

advantages

Traditional . . . -
o Uses antimicrobial agents to directly eliminate
Antibiotic i
pathogens from the affected tissues.
Therapy
i Employs minimally invasive techniques (e.g., drainage
Interventional ploy U 4 & 8

or mechanical removal) to eliminate infectious foci and
Procedures (106)
reduce pathogen burden.

Enhances pathogen clearance when
complemented by the host’s immune
response.

Provides rapid relief from localized
infections, especially where antibiotics
alone may be insufficient.

Associated with antibiotic resistance and
potential adverse effects (105).

Involves procedural risks and may lead to
complications due to invasive nature.

Probiotic Introduces beneficial microorganisms to rebalance the

Interventions (8) gut microbiota and reinforce the mucosal barrier.

Restores a balanced intestinal microbiome by

FMT (93) transferring a donor’s microbial community, thereby

normalizing metabolic and immunologic functions.
Comprehensive Integrates antimicrobial, interventional, and microbial
Multi-Strategy modulation strategies into a unified, patient-tailored
Approach treatment regimen.

signaling cascade suppresses inflammatory responses and promotes
the differentiation of T regulatory cells, ultimately maintaining a
balanced local immune environment. Concurrently, the gut
microbiota is pivotal in bile acid metabolism. In addition to
facilitating lipid digestion and absorption, bile acids act as key
signaling molecules that activate receptors such as the Farnesoid X
receptor (FXR) and the G protein-coupled receptor TGR5,both of
which are integral to the regulation of energy metabolism and
immune modulation (55, 56).In a healthy state, a dynamic
equilibrium in bile acid metabolism helps safeguard the barrier of
the intestinal epithelium and regulate inflammation. Conversely,
disturbances in the gut microbial ecology result in a marked
reduction of SCFA production and perturbations in the
composition and concentration of bile acids. These alterations
directly compromise gut barrier and indirectly precipitate
heightened local and systemic inflammatory responses, thereby
adversely affecting the host’s immune milieu and hepatic
metabolic processes. However, emerging studies report dose- and
context-dependent pro-inflammatory effects of SCFAs. For
example, butyrate concentrations above 5 mM activate
macrophage NLRP3 inflammasomes and elevate IL-1f release
(57), while acetate and propionate, though anti-inflammatory via
GPR43 under homeostasis, can exacerbate Th1/Th17 responses in
dysbiotic colitis models (58). Emerging data reveal context-
dependent actions of SCFAs. While millimolar butyrate often
promotes Treg differentiation via HDAC inhibition and enhances
IL-10, concentrations above 5 mM can activate macrophage NLRP3
inflammasome and elevate IL-1 release, aggravating inflammation.
Similarly, acetate and propionate via GPR43 suppress allergic Th2
responses but under dysbiotic conditions can amplify Th1/Th17
axes in colitis models. These discordant findings likely reflect
differences in local SCFA concentrations, receptor expression, and
the inflammatory milieu, underscoring the need for more nuanced
appraisal of SCFA dosage, cell targets, and site-specific effects;
critically, references 57-58 are in vitro/animal-based (moderate
GRADE quality), with conflicting results possibly due to non-
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Can work synergistically with the host’s
natural immune mechanisms and
enhance gut-liver interactions.

Complements conventional therapies
and helps reduce infection recurrence
through a more holistic approach.

Leverages the combined merits of
diverse modalities to optimize
therapeutic outcomes.

Effectiveness varies, being highly, dependent
on the specific strains used and individual
patient factors.

Faces regulatory challenges and its long-term
safety profile remains to be fully established
(107).

Increases implementation complexity and
costs, with a higher potential for interactions

between drugs or treatment techniques.

physiological doses, whereas clinical translation remains
speculative without human trials. Practically, this supports dose-
optimized trials of butyrate-enhancing diets or FXR agonists to
restore mucosal immunity in ILA patients, potentially reducing
recurrence by 20-30% based on analogous NAFLD studies.
Clinically, this rationale supports trials of butyrate-enhancing
diets or FXR agonists to restore mucosal immunity in ILA patients.

3.1.3 Microbial dysbiosis and regulation of
pathogen virulence

Under physiological conditions, the commensal microbiota
functions as an effective “protective shield” by preserving the
intestinal barrier and modulating local immune responses. This
barrier prevents pathogens and their metabolic products from
translocating across the epithelium. However, prolonged
antibiotic exposure, unhealthy diets, or chronic diseases drive
dysbiosis and barrier dysfunction (see Section 3.1.2), facilitating
pathogen and lipopolysaccharide (LPS) translocation via the portal
vein and triggering hepatic inflammation.

In summary, a balanced gut microbiota maintains effective
segregation between the intestinal lumen and the internal
environment through multiple barrier mechanisms and
metabolic regulation, playing a pivotal role in immune
homeostasis and metabolic control. Clinically, this underscores
the value of therapies aimed at restoring epithelial integrity, such
as FXR agonists or butyrate supplementation, to prevent bacterial
translocation and mitigate ILA progression. This dysbiosis-driven
barrier breakdown permits microbial products, including LPS, to
reach the liver (see Section 3.2 for the ensuing inflammatory
signaling cascade). Collectively, these mechanisms not only
underscore the critical role of the gut-liver axis in maintaining
host health but also provide a theoretical foundation for the
development of precision therapeutic strategies aimed at
modulating the gut microbiota, restoring barrier, and
rebalancing immune responses. These insights bolster early
microbiome-modulating approaches, such as probiotics or fecal
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microbiota transplantation (FMT), to curb hypervirulent
strain overgrowth.

3.1.4 Disruption of the intestinal barrier

The balance of the gut microbiota is essential for maintaining
host health, yet various external and intrinsic factors can disturb
this ecosystem, leading to dysbiosis, and disrupt intestinal
homeostasis. First, the prolonged use of broad-spectrum
antibiotics is a major extrinsic trigger of microbial dysbiosis.
Antibiotics not only deplete beneficial microbes such as
Bifidobacterium and Lactobacillus but also promote the
emergence of resistant strains and facilitate the spread of
pathogens like Clostridium difficile (C. difficile), often
accompanied by drug-related toxicity (59). Second, unhealthy
dietary habits significantly impair the gut ecosystem. Diets high
in fat and sugar yet low in fiber, along with excessive gluten intake
and vitamin D deficiency, can alter both the expression and
structure of tight junction proteins and the mucus layer in
epithelial cells. This disruption induces or exacerbates barrier
dysfunction, ultimately leading to a decline in beneficial bacteria
while allowing pathogenic organisms to proliferate (60). Moreover,
chronic conditions (e.g., diabetes, obesity, and immunodeficiency)
and prolonged psychological and environmental stress further
compromise the stability of the intestinal microbiome (61).

Dysbiosis, characterized by loss of beneficial taxa and
overgrowth of opportunistic pathogens, further impairs barrier
integrity and elevates TNF-o,, IL-1B, and IL-6 (see Section 3.1.2).
Laboratory studies have demonstrated that under conditions of
inflammation or oxidative stress, key intracellular signaling
pathways (such as MAPK and NF-xB) become activated, which
in turn suppresses the expression of tight junction proteins (e.g.,
occludin and claudin), increases intercellular gaps, and
compromises the continuity of the epithelial layer (62).
Simultaneously, impaired goblet cell secretion leads to a thinning
of the protective mucus layer, thereby diminishing its capacity to
capture and neutralize invading pathogens; persistent pro-
inflammatory cytokine stimulation further induces premature
epithelial cell apoptosis, exacerbating barrier breakdown (63, 64).

Collectively, these pathological changes severely compromise
intestinal barrier, permitting bacterial and metabolite translocation
(such as LPS). Research indicates that under dysbiotic conditions, a
weakened intestinal mucosal barrier permits large quantities of
bacteria and toxins to cross the epithelium into the portal
circulation, thereby establishing a robust foundation for
subsequent inflammatory responses and hepatic infections (26,
33). This imbalance, driven by both external insults and intrinsic
pathological states, not only reduces the production of anti-
inflammatory metabolites but also directly undermines barrier
through the downregulation of tight junction protein expression
and the thinning of the mucus layer. The resulting cascade of
inflammatory reactions and immune dysregulation serves as a
critical pathological link in the development of various systemic
diseases, particularly invasive liver abscess and other hepatic
disorders (65). Collectively, these mechanisms provide both the
physical and biochemical basis for bacterial translocation, which
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then activates inflammatory signaling pathways within the liver.
The following section will elaborate on the specific roles of these
inflammatory pathways in the pathogenesis of ILA. Having
established how intestinal barrier breakdown permits
translocation of microbial products, we now examine the hepatic
inflammatory cascades they trigger.

3.2 Activation of inflammatory signaling
pathways

When the intestinal barrier is compromised, bacteria and their
products access the portal circulation via three principal routes (16,
66): (1) Paracellular Permeation: Reduced expression of tight
junction proteins and widened intercellular gaps allow bacteria
and macromolecules to directly traverse the damaged epithelial
layer. (2) Transcellular Transport: Certain bacteria trigger endocytic
uptake and are subsequently transported across epithelial cells into
the underlying lamina propria before reaching the vasculature. (3)
Immune Cell-Mediated Translocation: Dendritic cells, while
sampling luminal contents, internalize bacteria and then migrate
to lymph nodes, effectively conveying these pathogens into the
systemic circulation. Collectively, these mechanisms result in a
continuous influx of bacteria and toxins, for example, LPS, into
the liver, where they provoke localized inflammatory responses
and infections.

During bacterial translocation, host-pathogen signaling
pathways engage several key processes: (1) Cytokine and Receptor
Pathways: After bacterial migration, Kupffer cells and other resident
immune cells detect pathogen-associated molecular patterns
(PAMPs) through toll-like receptors (TLRs), thereby rapidly
triggering the NF-xB pathway. This activation leads to the robust
release of proinflammatory cytokines, which not only inflict direct
tissue damage but also further compromise the intestinal barrier
(67, 68). (2) In vitro studies demonstrate that Kupffer cell-derived
cytokines (TNF-o, IL-1B) triggered by LPS can increase HvKP
rmpA and iucA transcription 2-4-fold, enhancing capsule thickness
and biofilm biomass (69, 70). Note that these results derive
exclusively from in vitro assays using cultured HvKP strains;
definitive evidence for cytokine sensing by bacteria and
subsequent virulence-gene induction in animal models of ILA is
still lacking. Whether these host cytokines directly bind bacterial
two-component sensors to switch on quorum-sensing circuits in
vivo remains to be validated. The downstream effects on adaptive
immunity (Th17/Treg balance) are discussed in Section 3.3.2. This
immune imbalance amplifies inflammation and pathogen virulence
(see Section 3.3 for the bacteria-inflammation-virulence cycle).
Based on the in vitro link between NF-kB-driven cytokines and
HvKP virulence gene upregulation, we propose that TLR4 or NF-kB
inhibitors could reduce HvKP invasiveness in vivo. This must be
validated in animal models of ILA, measuring abscess size, bacterial
load, and capsule gene expression with/without NF-kB blockade.
The proinflammatory cytokine milieu thus generated (TNF-a, IL-
1B, IL-6) also reshapes hepatic T-cell subsets, favoring Th17 over
Treg differentiation, which we analyze in Section 3.3.2.
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Collectively, these mechanisms form a self-reinforcing network
that ensures the rapid and widespread activation of both local and
systemic inflammatory responses following bacterial translocation.
Under sustained inflammatory stress, pathogen virulence genes
remain continuously upregulated, ultimately facilitating bacterial
dissemination within the host and worsening clinical outcomes.
From a therapeutic standpoint, targeting NF-kB or TLR4 activation
could interrupt this cycle, providing a rationale for adjunctive anti-
inflammatory strategies in ILA management.

After disruption of the intestinal barrier, microbial components
and toxins from the gut gain access to the liver, where they interact
with resident immune cells such as Kupffer cells. LPS, a prototypical
endotoxin, activates host TLRs, primarily triggering a downstream
NF-kB signaling cascade and resulting in the robust secretion of
proinflammatory cytokines including TNF-o., IL-1P, and IL-6. This
proinflammatory milieu is typically accompanied by an expansion
of Thl7 cells, while the population of Treg cells is relatively
diminished, thereby disturbing immune homeostasis. The
proliferation of Thl7 cells is closely associated with increased
levels of IL-17; IL-17 not only exacerbates local inflammation but

)

10.3389/fimmu.2025.1646893

also induces the secretion of additional inflammatory mediators,
further promoting the upregulation of pathogen virulence genes. In
contrast, Treg cells help suppress excessive inflammation through
the secretion of anti-inflammatory cytokines such as IL-10; a
decline in their numbers impairs the effective control of the
inflammatory response (35, 71) (Figure 1).

3.3 The bacteria—inflammation—virulence
cycle

Based on robust in vitro evidence but limited in vivo data, we
propose the following feedback loop: Barrier failure and inflammation
establish the bacteria—inflammation-virulence cycle. Dysbiosis not only
impairs barrier, facilitating the translocation of harmful microbes and
their metabolites into the portal circulation, but also triggers the host to
produce large amounts of proinflammatory mediators (72). We
hypothesize that this cytokine-driven cycle upregulates HvKP
virulence genes in vivo and amplifies bacterial invasiveness; direct
validation in ILA animal models remains an urgent priority.

* 5 ‘
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FIGURE 1

Treg IL-10

Intestinal barrier disruption and bacterial-inflammatory—immune dysregulation mediated by Kupffer cell TLR/NF-«B signaling. This schematic
summarizes how intestinal barrier loss—due to disruption of tight-junction proteins (occludin, claudins, ZO-1)—allows luminal LPS to enter the
portal circulation and reach the liver, where it binds Kupffer cell TLRs to trigger NF-xB activation and secretion of TNF-a, IL-1B, and IL-6; this
proinflammatory milieu expands Th17 cells while depleting regulatory T cells and IL-10, tipping hepatic immunity toward inflammation, upregulating
pathogen virulence genes, and driving invasive liver abscess formation (35, 71, 113).
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3.3.1 Regulation of bacterial virulence gene
expression in invasive liver abscess

In a dysbiotic milieu, the loss of anti-inflammatory mediators
exacerbates both intestinal barrier damage and local inflammation
(see Section 3.1.2). As a result, the inflammatory state is
accompanied by elevated secretion of TNF-o, IL-1f, and IL-6.
These cytokines, in turn, trigger upregulation of bacterial
virulence genes. Preclinical models show that HVKP cultured with
exogenous TNF-o. or IL-6 upregulates capsule regulator rmpA by 3-
fold and siderophore gene iucA by 2.5-fold, as measured by qRT-
PCR and capsule staining (73). It is not yet known which bacterial
receptor(s) sense these cytokines or how this occurs in the infected
liver microenvironment. These ‘preclinical models’ refer exclusively
to in vitro cultures; analogous experiments in murine or other ILA
models have not yet been reported, leaving a critical gap in
translational relevance. Moreover, HvKP exhibits pronounced
pathogenicity; in the presence of inflammatory mediators, its
virulence genes (such as rmpA, rmpA2, and iucA) are significantly
upregulated. This upregulation not only augments capsular
synthesis but also reinforces the protective properties of biofilms,
thereby improving bacterial survival and facilitating their spread
within host tissues (74) (Figure 2).

-
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3.3.2 Interactive regulation of inflammatory and
immune signaling in invasive liver abscess

Building on the cytokine milieu described in Section 3.2,
elevated TNF-o, IL-1f, and IL-6 bias CD4, T-cell differentiation
toward Th17 at the expense of Treg, further amplifying local
inflammation. In vitro assays on HvKP K1/ST23 strains
demonstrate that IL-17 supplementation at 10-50 ng/mL
increases rmpA promoter activity by ~50% via AI-2 quorum
signals (75). Whether IL-17 similarly regulates iucA expression or
functions across diverse HvKP lineages in vivo has not yet been
established. This Th17/Treg imbalance constitutes the immune arm
of the bacteria-inflammation-virulence feedback loop.

Current evidence indicates that in invasive liver abscess, gut
dysbiosis combined with local inflammatory conditions, mediated
by host factors, significantly upregulates the expression of pathogen
virulence genes. This process not only augments pathogen
invasiveness but also reinforces the bacteria-inflammation-
virulence cycle described in Section 3.3, thereby driving further
disease progression. Preclinical models have demonstrated that
disrupting the ‘dysbiosis-virulence upregulation-inflammation’
loop using anti-inflammatory agents or quorum-quenching
compounds, can attenuate HVKP pathogenicity. Armed with these

B J

Capsule Iron Biofilm
synthesis acquisition formation

: ' l
Pathogenicity Enhanced
enhancement immune

evasion

Schematic diagram of gut microbial dysbiosis and the bacteria—inflammation—virulence cycle of HVKP. In this three-step schematic, a healthy gut,
rich in Bifidobacterium and Lactobacillus, produces abundant SCFAs that maintain tight-junction integrity and block bacterial translocation;
prolonged antibiotic use, poor diet, and chronic disease then induce microbial dysbiosis, sharply reducing SCFAs and triggering TNF-a, IL-1f, and
IL-6 release to create a proinflammatory microenvironment; finally, these inflammatory cues activate hypervirulent Klebsiella pneumoniae to
upregulate rmpA, rmpA2, and iucA, driving capsule overproduction and biofilm formation that enhance immune evasion and facilitate systemic

dissemination (69, 114, 115).
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molecular and immunological insights into the bacteria-
inflammation-virulence cycle, we can now explore how they
inform novel and multi-targeted treatment strategies.

4 Treatment strategies

Currently, clinical management of invasive liver abscess largely
relies on conventional antimicrobial therapy and interventional
drainage procedures. However, as our understanding of the gut-
liver axis and microbial dysbiosis in the disease’s pathogenesis
deepens, the limitations of traditional approaches have become
increasingly evident. Although standard antibiotic regimens can
effectively suppress pathogen proliferation in the short term, their
efficacy is compromised by the persistent emergence of resistant
strains, inadequate penetration of drugs into localized lesions, and
suboptimal modulation of host immune responses (76).
Simultaneously, while interventional treatments, including
surgical drainage and percutaneous techniques, can relieve abscess
pressure and clear local infections, they are associated with high
procedural risks, significant trauma, and elevated recurrence rates.
Moreover, these methods seldom address the foundational issues of
dysbiosis and disruption of the gut-liver axis functionality (77).
Recent multi-level network analyses have demonstrated that in
patients with invasive liver abscess, both an imbalance in the gut
microbiota and compromised intestinal barrier not only facilitate
the translocation of pathogens via the portal vein to the liver, thus
triggering local infection, but also activate immune and
inflammatory responses through the gut-liver regulatory system,
further exacerbating pathological damage (37, 78, 79).
Consequently, there is a pressing need for innovative treatment
strategies that control the infection while simultaneously restoring
the dynamic equilibrium of the intestinal microbiota.

4.1 Limitations of conventional
antimicrobial and interventional therapies

Conventional antibiotic therapy suffers from several significant
limitations. Firstly, the emergence of drug resistance remains a
major challenge (80, 81). Prolonged or excessive use of broad-
spectrum antibiotics can promote the selective growth of resistant
strains, thereby diminishing the drugs’ effectiveness; however, these
studies (80, 81) are retrospective meta-analyses (moderate GRADE
quality), potentially biased by reporting inconsistencies, limiting
firm conclusions on resistance rates. Secondly, inadequate drug
penetration poses a further obstacle (82); antimicrobials often fail to
adequately infiltrate abscess cavities due to poor local blood supply,
the unique microenvironment within the abscess, and complex
microbial interactions, making it difficult to reach optimal
bactericidal concentrations. Thirdly, antibiotic monotherapy does
not sufficiently modulate the immune response, leaving underlying
dysbiosis and intestinal barrier damage, critical factors in gut-liver
axis dysfunction, largely unaddressed (83, 84); clinically, this
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suggests transitioning to combination therapies post-initial
control, though evidence is low-quality observational.

Similarly, interventional treatments such as surgical or
percutaneous drainage (85-87), although effective in rapidly
reducing abscess pressure and alleviating local inflammation, are
burdened by drawbacks. These procedures are associated with
considerable trauma, a high risk of recurrence, and the potential
for secondary activation of the immune system due to the release of
inflammatory mediators. Consequently, relying solely on these
methods does not fundamentally restore the balance of the gut-
liver axis nor address the inherent link between bacterial
translocation and abscess formation (84). Notably, emerging gut-
modulatory interventions like FMT still lack long-term safety and
efficacy data outside of rCDI, underscoring the need for rigorously
designed, registry-based clinical trials before wider adoption. This
gap highlights the need for combined approaches antibiotics plus
gut-modulatory therapies, to both clear infection and recalibrate the
host immune-microbiome interface, with practical applications like
stepwise protocols: antibiotics first, then FMT for dysbiosis. Given
these therapeutic gaps, recent efforts have shifted toward
microbiome-modulating and multi-target approaches, as
detailed below.

4.2 Exploration of novel therapeutic
strategies

In view of the limitations of conventional treatments, recent
research has increasingly focused on innovative strategies that
modulate the gut microbiome, enhance intestinal barrier, and
employ multi-target combination interventions. The central
concept of these approaches is to achieve synergistic therapeutic
effects through the integration of internal and external mechanisms.

4.2.1 Probiotics treatment

Probiotics, as live microorganisms, can favorably alter the
composition of the gut microbiota, boost the production of
SCFAs, modulate bile acid metabolism, and attenuate local
inflammatory responses. Collectively, these actions contribute to
restoring barrier and indirectly impeding the translocation of
pathogens. The specific mechanisms include (88-91): (1)
Optimizing Microbial Structure: Probiotics increase the
proportion of beneficial bacteria while suppressing the growth of
opportunistic pathogens, thereby re-establishing microbial
equilibrium. (2) Strengthening the Intestinal Barrier: By
promoting mucosal repair and upregulating the expression of
tight junction proteins, probiotics reduce intestinal permeability,
limiting the passage of pathogens and endotoxins into the portal
venous system. (3) Immune Regulation: Probiotics activate both
local and systemic immune responses by balancing the secretion of
pro- and anti-inflammatory cytokines, which not only diminishes
local inflammation but also enhances overall antimicrobial defense.
Early probiotic administration, when combined with antibiotics,
may reduce ILA recurrence (34, 35).
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4.2.2 FMT

FMT involves transferring a complete, healthy microbial
community from a donor into the recipient’s gut to rapidly re-
establish the native ecosystem. Its primary advantages include (92—
96): (1) Rapid Restoration of Microbial Diversity: FMT swiftly
corrects dysbiotic conditions by reconstituting the recipient’s gut
microbiota, thereby enhancing intestinal barrier. (2) Regulation of
the Gut-Liver Axis: By improving gut ecology and restoring barrier,
FMT reduces the risk of endotoxin and harmful metabolite
translocation through the portal vein, ultimately mitigating
hepatic inflammation and fibrosis. (3) Personalized Treatment
Potential: With careful donor screening and individualized
analysis, FMT provides a promising platform for precision
medicine. Nevertheless, results across indications are
heterogeneous. Meta-analyses in irritable bowel syndrome report
symptom remission rates from 0 to 50% with overall low-moderate
GRADE confidence, largely driven by small RCTs, variable donor
screening, and inconsistent administration routes (97).

Meta-analyses of FMT in recurrent C. difficile infection report
cure rates above 80% (98), but often note only moderate to low
GRADE confidence due to small sample sizes, open-label designs,
and heterogeneous endpoints. In non-rCDI indications, ulcerative
colitis, irritable bowel syndrome, and metabolic syndrome,
randomized, placebo-controlled trials yield mixed outcomes (25-
30% remission vs. null effects) (99). Most adverse events are mild
gastrointestinal symptoms, yet case reports document serious
infections (bacteremia, viral transmission) and several FMT-
associated deaths (100). Off-target engraftment (“terraforming”)
in non-colonic sites may provoke persistent metabolic or
immunologic shifts. Accordingly, FMT for conditions beyond
rCDI should remain investigational, with standardized donor
screening, rigorous blinded RCTs including long-term follow-up,
and centralized adverse-event registries. Moreover, off-label FMT
use has been linked to serious adverse events, including bacteremia
and fatal infections due to insufficient donor screening, and
persistent off-target engraftment causing metabolic or
immunologic shifts. The absence of centralized safety registries
magnifies these concerns.

4.2.3 Multi-target combination therapy

Modern therapies emphasize comprehensive (101, 102), multi-
level interventions for disease control. Multi-target therapy pairs
conventional antibiotics and drainage with probiotics or FMT.

This dual approach delivers both rapid pathogen control and
long-term microbiome restoration. Synergistic effects are achieved
through: (1) Dual Action on Infection and Microbial Regulation:
Early administration of antibiotics alongside interventional
techniques effectively reduces pathogen loads, while subsequent
use of probiotics or FMT reconstructs the microbial community for
long-term stability. (2) Reduction in Resistance Risk: By allowing
each treatment modality to operate at lower doses in a synergistic
manner, multi-target strategies help decrease the emergence of drug
resistance typically associated with long-term monotherapy (93,
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103). (3) Comprehensive Restoration of the Gut-Liver Axis:
Systematic treatment enhances intestinal barrier, modulates local
immune responses, and re-establishes overall microbial
equilibrium, thereby offering sustained, holistic protection for the
patient (84, 104).

Integrating mechanistic and clinical insights via multi-omics
and systems modeling paves the way for precision, multi-target
interventions. To facilitate comparison and highlight the intrinsic
connections and synergistic regulatory mechanisms among these
strategies, the table below summarizes the key characteristics,
mechanisms of action, and limitations of each treatment
modality (Table 4).

4.3 Integration of mechanisms and future
perspectives

As illustrated in the table above, each therapeutic strategy for
managing invasive liver abscesses utilizes a distinct mechanism of
action with its own advantages and inherent limitations. For
example, conventional methods offer rapid infection control;
however, they do not fundamentally modulate the gut-liver axis
or restore microbial balance. In contrast, probiotic therapy and
FMT aim to reestablish the endogenous microecology by reversing
pathological conditions through biological regulation. Meanwhile,
multi-target combination therapies seek to integrate the strengths of
both approaches, delivering timely and precisely dosed
interventions that achieve comprehensive control with minimal
therapeutic input.

Furthermore, the clinical application of these novel strategies
requires overcoming the challenges inherent in integrating diverse
interventional modalities. For example, determining how best to
combine antimicrobial and interventional techniques during the
acute phase with the timely initiation of probiotic or FMT
treatments, and establishing optimal transition timings and
dosing standards, will necessitate support from multi-center,
large-sample clinical trials (108). In parallel, advancements in
artificial intelligence and multi-omics technologies are paving the
way for the development of multi-layered intervention models via
computer simulation and network pharmacology. Such progress is
expected to provide both the theoretical foundation and technical
support needed to design individualized, multi-target combination
therapies (109-112). A comparative analysis of traditional
antimicrobial and interventional approaches versus probiotic,
FMT, and multi-target strategies reveals that while each method
offers specific benefits, single modalities often fail to concurrently
address both infection and microbial dysbiosis. To advance
precision microbiome therapies with FMT and SCFA
interventions, future studies should prioritize: 1) establishing
multicenter FMT registries that track long-term outcomes,
including infectious complications and metabolic sequelae, to
comprehensively assess safety and efficacy; 2) performing SCFA
dose-response mapping in humanized gut-immune co-culture
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models to delineate pro- versus anti-inflammatory thresholds; 3)
developing and standardizing in vivo SCFA quantitation protocols
alongside robust profiling of GPR41/43 receptor expression and
signaling in target tissues; and 4) integrating AI-driven multi-omics
analyses to predict individual host responses to FMT and SCFA
treatments, thereby laying the groundwork for truly personalized
microbiome-based medicine.

5 Discussion and future perspectives

In conclusion, this synthesis of the literature indicates our
multi-layer analysis shows that gut-liver axis disruption drives
invasive liver abscess. The impairment of barrier and the ensuing
microbial dysbiosis facilitate the translocation of harmful bacteria
and their toxins into the liver. This event initiates a cascade of
inflammatory responses through the activation of hepatic immune
cells, which in turn upregulates key bacterial virulence factors. Such
a pathological cascade not only intensifies liver tissue injury but also
promotes rapid and systemic dissemination of the infection;
critically, while mechanistic evidence (in vitro/animal) firmly
supports this cascade, clinical data is graded low-moderate under
GRADE due to observational biases, highlighting speculation in
human applicability.

Future studies should explore deeper signaling networks in
host-pathogen interactions to identify key factors in virulence
regulation, barrier repair, and immune modulation. These
insights could guide early diagnosis and personalized
interventions for ILA, such as biomarker-based screening for
dysbiosis in diabetic patients. Bridging these divergent findings
will require coordinated clinical trial frameworks. For FMT, future
studies must standardize donor selection criteria, delivery methods,
and efficacy endpoints. In SCFA research, dose-response mapping
across physiological (0.5-5 mM) and pharmacological (>5 mM)
concentrations in humanized gut models is essential. Moreover,
large-scale registries with uniform adverse-event reporting and
integrated biomarker panels are needed to delineate context-
dependent roles of SCFAs and optimize microbiome-based
interventions. In summary, this review elucidates the pathological
significance of gut-liver axis dysregulation in ILA and reveals
complex disturbances in signaling and inflammation driven by
microbial imbalance. It further discusses emerging therapeutic
strategies, such as probiotics, FMT, and multi-target combination
therapies, that hold promise for improving patient outcomes and
reducing the risk of recurrence, with practical applications like
integrated protocols reducing mortality by targeting both infection
and dysbiosis. Looking forward, addressing challenges in sample
and data standardization as well as cross-scale integration will be
critical for building more precise and comprehensive models of ILA
pathogenesis, thereby laying a solid theoretical foundation for
individualized precision therapies. Bridging these mechanistic
insights with coordinated clinical trials and biomarker-driven
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endpoints will be crucial to translate our findings into
patient benefit.
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