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Introduction: Natural killer (NK) cells have great potential to extend the promise

of cancer immunotherapy, but additional research is needed to improve their

efficacy in solid cancers. Dogs develop spontaneous cancers with striking

similarities to humans and can serve as a crucial link to bridge murine studies

and human clinical trials to improve treatment outcomes across species and

identify potential biomarkers of response.

Methods: Using single-cell RNA sequencing (scRNAseq), we integrated blood,

tissue, and tumor samples from dog and human donors to compare NK cell gene

expression and develop a canine sarcoma infiltrating NK signature. Canine tissue

and tumor NK cell signatures were then used to contextualize NK cell changes in

first-in-dog immunotherapy clinical trials.

Results: Tumor infiltrating NK cells from both canine and human sarcomas

exhibited enhanced migration with a simultaneously exhausted signature that

most closely correlated transcriptionally with NK cells isolated from the liver. We

also analyzed peripheral blood NK cells from dogs on first-in-dog clinical trials

undergoing three distinct NK-targeting immunotherapy regimens, observing that

dogs with favorable responses demonstrated increased NK proportions

posttreatment. Genes upregulated in NK cells in the peripheral blood of good

responders included genes associated with activated NK cells and revealed post-

treatment gene expression changes in the blood as a predictor of response.

Discussion: Overall, NK effector functions are well adapted to their tissue of

residence but dysregulated in sarcoma infiltrating NK cells despite enhanced
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migration. We describe NK cell trends across canine clinical trials as a platform

through which we can elucidate mechanisms of response and determine novel

immunotherapy strategies to improve cancer outcomes in both humans

and dogs.
KEYWORDS

natural killer (NK) cells, cancer immunotherapy, single-cell RNA sequencing (scRNAseq),
canine sarcoma infiltrating NK signature, tumor infiltrating NK cells, canine and human
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Introduction

NK cells are attractive candidates for cancer immunotherapy

given their ability to spontaneously target diverse cancer cells that

have evaded other immune recognition strategies and their minimal

association with toxicity. NK cell therapies, including recent

advances in CAR NK cells, have significantly improved outcomes

for patients with leukemias and lymphomas (1, 2). However, the

complex tumor microenvironment (TME) of solid tumors

introduces additional challenges in cancer immunotherapy,

including the presence of exhausted NK cells in the TME (3).

Thus, further work is needed to realize more impactful success of

NK cells in the treatment of solid cancers.

Importantly, dogs are an outbred species that develop cancers

spontaneously in the context of an intact immune system,

supporting their strength as a valuable model of human

malignancy. This is especially true given the genotypic and

phenotypic resemblance of spontaneous canine cancers to human

cancers including immunoediting and immune surveillance with

data showing homology between dog and human lymphoma,

osteosarcoma, mammary tumors, melanoma, and high-grade

gliomas (4–12). Consequently, the canine comparative oncology

population is actively being leveraged to inform human cancer

treatments, including novel immunotherapy combination trials for

osteosarcoma and melanoma (6, 13, 14).

Our group previously published a thorough single-cell atlas of

canine NK cells across blood and tissues including a comparative

analysis with human NK cell abundances and cell-to-cell

interactions (15). We identified tissue-specific NK signatures and

comprehensive NK subsets using single-cell RNA sequencing

(scRNAseq), allowing for extensive gene expression analysis to

circumvent current limitations in canine reagents and lack of a

markers unique to canine NK cells. Similar to humans, those data

highlight the heterogeneity of canine NK cells across organs and

tissue compartments and can inform analyses of tumor infiltrating

NK cells, including in samples obtained from dogs on clinical trials

with linkage to their outcomes. With our completion of multiple

first-in-dog clinical trials using adoptive NK cell therapy, we have

unique access to samples and outcomes of dogs undergoing NK
02
targeting immunotherapy. While the responses to treatments and

related bulk cell analyses of these trials have already been described

(16), an understanding of how NK cell populations uniquely change

in response to therapy has not been completed. The integration of

cell-specific changes across trials and analysis of gene expression in

the context of response outcomes has important implications for

determining good gene candidates for optimizing therapy and

identifying biomarkers of response to generate new directions for

future therapies.

To bridge the newly uncovered canine NK cell signatures across

healthy tissues to our clinical trial samples, we sought to analyze

tumor-infiltrating NK cells from canine and human soft tissue

sarcomas. Consequently, we determined an NK signature of soft

tissue sarcoma (STS) in dogs with comparison to healthy tissue with

direct comparison of human tissues and tumor for comparative

context. Taking advantage of access to patient samples from three

first-in-dog canine immunotherapy trials, we also performed single

cell analysis of circulating NK cells from dogs in these trials. We

noted both tissue and tumor-unique profiles conserved across

species, and we observed dysregulated gene signatures in

sarcoma-infiltrating NK cells with enhanced migration signatures

as well as features of both simultaneous activation and inhibition.

Finally, we demonstrate that dogs with favorable response to NK

targeted immunotherapies have significant upregulation of NK

activation genes in peripheral blood NK cells with implications

for outcomes in human sarcoma patients. Collectively, our findings

establish a landscape for evaluating tumor infiltrating NK cell

genotypes compared to those of tissue resident NK cells and

begin to unravel the mechanisms underpinning NK plasticity and

heterogeneity in healthy and cancer-bearing dogs with relevance

to humans.
Methods

Sample acquisition and processing

Tumor tissue was obtained with owner consent from residual

tissue following resection of a soft tissue sarcoma, identified as a
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spindle cell sarcoma by histopathology from a 7-year-old male

castrated boxer at the UC Davis Veterinary Medical Teaching

Hospital. Sarcoma tissue was mechanically dissociated followed

by incubation with RBC lysis buffer for five minutes at 4°C.

PBMCs were isolated from whole blood from dogs undergoing

immunotherapy trials using density gradient centrifugation

(Lymphocyte Separation Medium, Corning Life Sciences),

followed by red blood cell lysis. IACUC approval and signed

informed owner consent were obtained for all dogs enrolled in

clinical trials (IACUC Protocols #21461, #21620) (16). Processing

was performed as described previously (16–18). The single-cell

suspensions of PBMCs and tumor tissues were then ready for

future submission for scRNA sequencing.
Fluorescence-activated cell sorting

After tissue processing, canine tumor cells were washed with PBS

and staining buffer, incubated with Fc receptor blocking solution

(Canine Fc Receptor Binding Inhibitor, Invitrogen #14-9162-42), and

stained with rat anti-dog monoclonal antibody CD45-EF450 (clone

YKIX716.13, Invitrogen #48-5450-42). Live/dead discrimination was

performed using Fixable Viability Dye 780. Cell sorting for live CD45

+ cells was performed using the Becton Dickinson “Aria II” Cell

Sorter (Becton Dickinson, San Jose, California, USA).
Single-cell RNA sequencing and analysis

Library preparation and sequencing using the 10X Chromium

Next GEM Single-Cell 3’ V.3.1 Gene Expression protocol

performed by the UC Davis Genome Center as previously

described (16). A canine (CanFam3.1) index was created using

the cellranger mkgtf and cellranger mkref pipelines. Raw fastq files

were aligned to the canine reference genome and the feature-

barcode matrix was created using CellRanger v.7.1.0 (10x

Genomics) before being uploaded in Rstudio and analyzed using

Seurat. Seurat objects were created with a minimum cell threshold

of 3 and minimum features of 200. Only cells with ≤15% of

mitochondrial counts and unique feature counts ≥200 and

≤5,000-6,000 were filtered for analysis. Canine tumor cells also

had filtering for PTPRC>0. Data then underwent standard Seurat

processing workflow which included normalization, identification

of highly variable features (2,000), and scaling. Cells were then

clustered through a standard workflow that included linear

dimensional reduction, determination of the k-nearest neighbor

(KNN) using the top PCs based on the generation and

interpretation of an elbow plot, and then implementation using a

resolution of 0.5 after testing of multiple PCs and resolutions.

Doublets were then identified and removed using DoubletFinder

before the cell clustering workflow was repeated with doublets and

unwanted cells removed. Cells were annotated manually based on

markers and gene lists from relevant literature as well as by using

the AddModuleScore function. NK cells in particular were
Frontiers in Immunology 03
identified as expressing NK genes such as KLRK1 and GZMA

while simultaneously lacking expression of CD3E.

For merged analyses, samples were integrated using Harmony

(19). Layers were joined and cells clustered using 50 PCs and

resolution of 2. For subset datasets, cells identified as NK cells

were subset followed by normalization, identification of variable

features, scaling, PCA, clustering and generation of UMAP. For

comparison between human and canine NK cells, human gene

symbols were converted to canine using the convert_orthologs()

function prior to integration. Differential gene expression testing

was performed using the FindAllMarkers function in the Seurat R

package to identify differences between two identified groups using

the Wilcoxon Rank Sum test. Genes were only considered

significant if the adjusted p-value, using Bonferroni correction,

was p<0.05.

The tumor NK signature was developed by determining

significantly different genes between NK cells within the tumor

compared to NK cells in all remaining tissues and blood. The list of

DEGs was then filtered to only include genes that had an adjusted p-

value <0.05, average log fold change >1.0, and had expression in at

least 20% of NK cells. Representative genes were selected and

categorized by associations obtained from public databases

(EnrichR, Uniprot, and NCBI).

Correlations were determined by extracting the scaled gene

expression frommerged NK cell datasets, then the Cor function was

used to find pairwise correlation coefficients and create a correlation

matrix. The correlation matrix was then visualized using CorrPlot

with hierarchical clustering to order the variables.
Publicly available data

Sample scRNAseq data from canine and human blood and

tissue was obtained from publicly available database and analyzed as

previously described (15). We also downloaded data analyzing

s ing l e c e l l compos i t i on o f th e human STS tumor

microenvironment previously published by Subramanian et al.

using GEO accession code GSE212527 (20). Barcodes, features,

and matrix files for sample ID SRC141, referencing a single UPS

tumor, were available after data processing and read alignment by

the authors using CellRanger v6.0.0 (10x Genomics) and human

genome assembly GRCh38. These files were uploaded to R and used

to create a Seurat object subject to the same workflow used for

canine tumor. Additionally, we retrieved clinical and RNA

expression data from the Cancer Genome Atlas (TCGA)- SARC

or the TCGA- Melanoma dataset using the UCSC Xena platform

(21). Specifically for the sarcoma dataset, all samples with the

histological type of Undifferentiated Pleomorphic Sarcoma (UPS),

Giant cell MFH/Undifferentiated pleomorphic sarcoma with giant

cells, or Pleomorphic MFH/Undifferentiated pleomorphic sarcoma

were included. Duplicate patients were removed to include only

primary tumor samples. The median was used to determine two

groups of high and low gene expression. Kaplan-Meier curves were

based on overall survival and compared using the log-rank test.
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Results

Canine sarcoma infiltrating NK cells are
heterogeneous with unique activation and
exhaustion features

Interpreting the unique characteristics of immune cells of the

TME is critical for understanding potential targets and improving

cancer immunotherapy. To place our previously reported tissue-

specific canine NK signatures in the context of tumor-resident

immune cells, we analyzed immune cells from a canine soft tissue

sarcoma. The dissociated tumor sample was sorted for CD45+

immune cells and analyzed by scRNAseq to identify cell types and

their proportions (Figures 1A–C). A total of 6,514 high quality cells

were available for analysis. Similar to our previous blood and tissue

sample findings (15), NK cells were primarily distinguished by

NCR3 and KLRK1 with concurrent lack of CD3 expression.

Notably, NK cells comprised 15% of the total CD45+ cells, which

was greater than the proportion of NK cells in all our previously

investigated tissues except for liver (Figure 1C). This was also a

notably larger percentage of infiltrating tumor NK cells than those

seen in canine osteosarcoma (22), which may point to differences

between the TME of different cancers, especially osteosarcoma and

soft tissue sarcoma with implications for response to therapy (17,

23–27). It’s also necessary to consider that the NK infiltration

within the tumor may be a unique feature of this particular

sample. We then subset the NK cells in the tumor and integrated

them with NK cells from other canine tissues and blood

(Figure 1D). This new integrated dataset was utilized to conduct

further comparisons of tumor NK cells to those in different tissue

compartments. The top genes significantly upregulated in tumor

NK cells compared to NK cells in all other tissues included genes

with a variety of functions, including PLXNA4, known to be

upregulated in NK cells that have been reprogrammed after

exposure to malignant cells (28) (Figure 1E, Supplementary

Table 1). Tumor NK cells downregulated canonical NK activation

markers, such as FASLG, TNFSF10, KLRK1, GZMB, and KLRD1,

the latter having both inhibitory and activator capabilities but being

a marker of favorable prognosis in human cancers if present in

either the serum or tumor (29, 30) (Figure 1F). Conversely,

canonical NK inhibitory markers were significantly upregulated in

canine intra-tumoral NK cells, aligning with previous reports of the

inverse relationship between inhibitory genes CD96 and KLRB1

and cytotoxicity signatures in NK cells in human tumors (31).

The genes upregulated in canine STS NK cells versus all other

NK cells were used to determine a canine STS NK signature

(Figure 1G). The most highly expressed genes were associated

with chronic activation and cancer pathways, but we also

observed significant upregulation of genes associated with

adhesion and migration, differentiation and proliferation, and

signaling (Figure 1G). This pattern was further confirmed when

tumor NK cells were compared to canine NK subsets. The six

subsets were previously derived from a large population of

circulating and tissue-resident NK cells that were categorized

based on distinguishing gene expression patterns (15). The d1
Frontiers in Immunology 04
cluster was associated with cytotoxicity (ex. GZMB, GZMA,

NCR3), the d2 cluster with signaling (ex. SLIT3, KLRF1, SYK),

the d3 cluster with regulation (ex. SYNGR1, PDAP1, EID1), the d4

cluster with differentiation (ex. FOXO1, NOTCH2, LEF1), the d5

cluster with proliferation and trafficking (ex. IL2RA, IL7R,

ZNF683), and the d6 cluster with inflammation and migration

(ex. CTSZ, IFI30, CXCL8).Tumor NK cells were enriched for the d2

and d3 dog NK subclusters, classified by signaling and regulation,

respectively (Figure 1H). Notably, there was clear overlap in

expression characteristics between dog STS and liver NK cells,

suggesting potential mixed immunoregulatory and cytotoxic

programs in canine sarcoma NK cells consistent with our prior

mixed liver NK scRNAseq signature (15). Additionally, a

correlation matrix across NK compartments based on previously

identified tissue-resident NK signatures, revealed that the only

positive correlation present was between liver and sarcoma NK

cells (Figure 1I) (15). These results appear to corroborate the

exhausted phenotype of intra-tumor NK cells seen in human

cancers (32). Though tumor-resident NK cells had unique gene

signatures in the dog, certain overlapping characteristics with

tissue-resident NK cells imply the malleability of NK cell states

rather than strict or static functional groups.
Canine and human NK cells show
homology across blood, tissue, and tumor
compartments

Extensive comparative analysis is integral to the continued

validation and optimization of the canine model. We therefore

sought to further analyze previously published dog and human NK

cell datasets for additional comparison. To do so, we subset the

identified NK cell clusters from the integrated human blood and

tissue dataset and performed unsupervised clustering which

resulted in 11 clusters comprising NK cells across tissue

compartments, highlighting the complexity of NK cell

heterogeneity (Figures 2A, B). To more directly compare human

and canine NK cells, we integrated NK cells from the liver, lung,

PBMC, placenta, and spleen which clustered distinctly based on

species (Figure 2C). To determine the similarities in tissue-specific

genes in NK cells across species, we then analyzed the genes that

were significantly upregulated in each tissue in dog and human

separately and then identified the overlapping DEGs. There were 98

upregulated genes that overlapped across species in lung NK cells,

18 upregulated genes in placenta NK cells and 15 upregulated genes

in liver NK cells (Figures 2D–F). Notable genes included CCL4 and

CXCR4, which were part of the dog lung NK activation signature

and similarly upregulated in human lung, which may point to the

distinct role of immune cells, including NK cells, in the lung to

coordinate multi-cellular immune responses (15). Likewise,

ZNF683 and IGF2BP3 were part of the dog placenta NK

differentiation signature and upregulated in human placenta. The

activating NK receptor CD160, associated with canine liver NK

cells, was similarly upregulated in human liver NK cells. Given these

similarities, we then directly compared tissue-resident NK cells
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FIGURE 1

Canine tumor sarcoma infiltrating NK cells are heterogeneous with unique activation and exhaustion features. (A) Schema depicting workflow for
FACS sorting and sequencing of CD45+ canine spindle cell sarcoma cells with the cell types identified. A total of 6,514 CD45+ immune cells were
available for analysis. (B) Violin plot of key genes identifying NK cells and distinguishing them from T lymphocytes. (C) Bar plot showing the percent
of each cell type in the tumor. NK cells represented 15.2% of all CD45+ tumor cells isolated. (D) NK cells subset from the canine tumor sample and
NK cells subset from the integrated liver lung, PBMC, placenta, and spleen dataset were integrated and visualized by UMAP color coded by tissue.
(E) Heatmap showing the average scaled expression of eight of the top differentially expressed genes in tumor NK cells that distinguish them from
NK cells in all other tissues. (F) Heatmap of conventional NK activating and inhibitory genes and their average expression in tissues. Tumor NK
expression is outlined. (G) Dotplot showing expression of representative genes significantly upregulated in tumor NK cells compared to NK cells in
all other tissues. Genes included were present in >20% of cells, with average log2FC>1 and adjusted p-value<0.05. Gene category labels were
determined by gene-set library and gene ontology annotations associated with each gene. (H) Dotplot visualization of the scaled module score of
tissue-specific NK cells scored with the top genes that defined each canine NK subcluster. Subclusters with the highest expression in tumor NK cells
were outlined and labeled. (I) Correlations across all tissue compartments. Yellow and blue squares represent positive and negative correlations
respectively. Square size represents the absolute value of the correlation coefficient.
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FIGURE 2

Canine and human NK cells show homology across blood, tissue, and tumor compartments. (A) UMAP representation of NK cells subset from the
integrated liver, lung, placenta, and spleen dataset with 11 clusters identified by unsupervised clustering. (B) UMAP visualization of NK cells color
coded by tissue with clustering parameters: res = 1, dims = 1:17. (C) NK cells from liver, lung, PBMC, placenta, and spleen tissue in both humans and
dogs were integrated and visualized by UMAP, color coded by species. (D-F) Genes that were significantly upregulated in NK cells within each tissue
compared to NK cells in the remaining tissues within each species with adjusted p-value<0.05 and average log2FC>1 were identified. The average
expression of representative genes that were upregulated in both human and dog (D) lung, (E) placenta, and (F) liver NK cells were visualized by
heatmap. (G-I) Volcano plots with labels for the top ten significant genes sorted by adjusted p value that had expression in at least 10% of cells in
both tissues being compared and a log2FC>1 that differentiate human and canine NK cells in the (G) lung, (H) placenta, and (I) liver based on direct
DEG comparisons. (J) NK cells subset from the integrated human tissue dataset and NK cells subset from a publicly available human UPS sample
were integrated and visualized by UMAP color coded by tissue with clustering parameters: res = 1, dims = 1:20. (K) Heatmap showing the average
expression of the top differentially expressed genes in NK cells from each tissue that distinguish them from NK cells in all other tissues. (L) NK cells
from liver, lung, PBMC, placenta, spleen, and tumor tissue in both humans and dogs were integrated and visualized by UMAP, color coded by
species. (M) Genes that were significantly upregulated in tumor NK cells compared to the NK cells in the remaining tissues within each species with
adjusted p-value<0.05, average log2FC>1, and at least 10% expression in both tissues were identified. The average expression of genes that were
upregulated in both human and dog tumor NK cells were visualized by heatmap. (N) Volcano plot with labels for the top ten significant genes that
differentiate human and canine NK cells in tumor based on direct DEG comparisons.
Frontiers in Immunology frontiersin.org06
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across species to understand and highlight important differences

(Figures 2G–I). Notably, dog placenta NK cells had increased

expression of activation and signaling markers, BCL2A1 and

CRIP1, compared to human placenta NK cells. However, NK cells

in the human placenta upregulated KLRD1 in comparison to dog

placenta, a canonical NK marker which functions in NKG2

heterodimers to create either activating or inhibitory signals

(33, 34).

Ultimately, the maturation and activation states of NK cells in

the peripheral blood and tissue are most relevant to translational

analyses of how these cells adapt to or exist in the TME. We

therefore accessed a publicly available sample of a human

undifferentiated pleomorphic sarcoma (UPS) (20), which served

as a human analog of our canine STS sample characterized by

histopathology as a spindle cell sarcoma. A single sample was used

to mirror the canine STS sample and was chosen based on

similarities between canine sarcomas and human undifferentiated

sarcoma. The UPS sample of Subramanian et al. included 1,658

CD45+ cells based on a threshold of PTPRC>0. Only 4% of those

cells were identified as NK cells, which we then integrated with our

human tissue and blood NK cell dataset (Figure 2J). The top

significant genes in human UPS NK cells were relatively distinct

compared to the overlap seen in top genes across other tissues and

blood (Figure 2K). We next took our total tumor, tissue, and

peripheral NK cells from human patients and integrated them

with our equivalent canine dataset (Figure 2L). There were 172

genes shared between NK cells in canine and human

undifferentiated pleomorphic sarcoma that were significantly

upregulated compared to their respective canine and human NK

cells in other tissue samples (Figure 2M). We saw cross-species

upregulation of immunoregulatory receptor, NRP1, often expressed

in Treg cells but also in NK cells, with potential as a checkpoint

target (35, 36). Additionally, COL1A1 and FBLN1 were previously

used as markers for canine tumor or fibroblast cells (22), and

MMP2 and DCN as markers of mesenchymal-like cells in human

cancers (37, 38), with the latter also being a top differentially

expressed gene in our canine STS sample (Figure 1E). Given that

canine and human STS tumor samples had the largest overlap in

shared upregulated genes against their respective tissue and blood

samples, we used a direct contrast of the tumors to understand the

biological relevance of top DEGs (Figure 2N). Human UPS NK cells

had increased expression of EID1, one of the markers of the

regulatory canine NK subcluster d3, and ISG15, part of the

differentiation signature in canine placenta NK cells (15). Also,

human sarcoma-infiltrating NK cells expressed BST2, which has

been observed to be upregulated in blood cancer cell lines exposed

to NK cells (39). On the other hand, canine tumor NK cells had

increased expression of PTPRC/CD45, a hallmark present on all

leukocytes, which had a high probability of interaction with MRC1

on myeloid cells in the canine lung (15). STAT4, also significantly

increased, is an epigenetic regulator for NK cells involved in NK

activation and IFN-g production (40). Together, we observed subtle

differences between NK cells in the TME across species that point to

modifications in activation states with potential influence of

neighboring cells. Nevertheless, the considerable similarities in
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NK cell DEG between sarcoma samples between dog and human

support the validity of the canine model in STS research, aligning

with previous reports of conserved characteristics across canine and

human cancers (5, 8, 9, 12, 41–43).
NK proportions increase in response to
treatment in good responders to first-in-
dog immunotherapy regimens

Insights into blood, tissue, and tumor-infiltrating NK cells are

most relevant in the larger scope of clinical data, including how to

incorporate these results to inform future clinical trials. We

therefore analyzed blood samples from dogs who were enrolled

on three separate, NK-targeting trials. Dogs in UCD Trial #1

(UCD1) underwent four weekly treatments of palliative

radiotherapy (RT) in addition to an infusion of PBMC-derived

allogeneic NK cells immediately following the fourth and final RT

for buccal melanoma (16) (Figure 3A). Dogs in UCD Trial #2

(UCD2) received two infusions of autologous NK cells 7 days apart

in combination with inhaled rhIL-15 simultaneously for a total of

14 days for dogs with gross pulmonary metastases from

osteosarcoma and melanoma (16) (Figure 3B). These two trials

were the first to employ systemic administration of PBMC-derived

NK cells in dogs with naturally occurring cancer (16). We also

analyzed samples from dogs in a third trial, the University of

Wisconsin (UW) cohort, where dogs with melanoma were treated

with low-dose molecular targeted radionuclide therapy (MTRT),

external beam radiation therapy (EBRT) and intratumoral injection

of GD2/IL-2 fusion immunocytokine (Figure 3C). These dogs were

treated based on the results of a protocol cohort that demonstrated

safety and feasibility of the combination therapy (44). Together,

PBMCs were available for six dogs, two from each trial representing

a good responder and a poor responder. For each dog, a pre-

treatment and post-treatment PBMC sample was obtained for a

total of 12 PBMC samples which were submitted for scRNAseq. The

pre-treatment sample was obtained prior to any treatment,

including radiation therapy, for a true baseline. The post-

treatment sample was obtained 28–35 days following the

initiation treatment in all trials. Therefore, the post-treatment

sample in the UCD1 cohort was four weeks following first RT

and two weeks following NK transfer and in the UCD2 cohort was

four weeks following the first NK transfer and initiation of inhaled

IL-15. Those samples were integrated, with an average of 5,425 cells

per sample, and cell types identified manually by canonical cell

markers (Figure 3D). Samples were then assessed and compared

based on trial, treatment timepoint, and response, which was

assessed based on RECIST criteria and overall survival

(Figure 3E). In all clinical trial dogs analyzed, death was disease

related. The poor responder from UCD1 did not live long enough to

determine response and therefore was not evaluable by RECIST

criteria but died from tumor progression after 45 days. The good

responder from UCD1 had a complete response and the longest

survival of 445 days. In the UW trial, the good responder had a

shorter overall survival than the poor responder. This points to the
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FIGURE 3

NK proportions increase in response to treatment in good responders to first-in-dog immunotherapy regimens. (A–C) Schema depicting clinical trial
treatments and corresponding characteristics and outcomes for dogs enrolled in (A) UCD trial 1 with combination of radiotherapy and allogeneic NK
cell transfer, (B) UCD trial 2 with combination of inhaled IL-15 and autologous NK cell transfer, and (C) UW trial with combination molecular targeted
radionuclide therapy (MTRT), IL-2 cytokine, and external beam radiation therapy (EBRT). Good and poor responders were determined based on
RECIST criteria of the primary tumor and overall survival. PBMCs were collected pre and post treatment for each dog. The UCD1 Good responder
did not survive long enough to determine response and was therefore considered not evaluable (NE). *UW good responder was lost to follow up at
71 days. (D) UMAP visualizations of the twelve integrated PBMC samples split by trial and color coded by cell type. (E) Bar plot depicting the overall
survival or date or last follow up (UW Good) for each of the dogs included in the analysis. Bars are color coded by response based on RECIST
criteria. (F) Bar plot showing fold change of the NK cell proportion in each dog included in the analysis. Green and red bars represent positive and
negative fold change respectively. Fold change of NK cell proportion was calculated by (Post-treatment – Pre-treatment)/Pre-treatment. (G–I) Bar
plots showing the percent of each cell type in each PBMC sample included in the analysis. Plots are split by trial and then further split by pre and
post treatment sample for each dog. Post treatment samples were obtained (G) 35 days after the start of treatment in UCD trial 1, (H) 28 days after
the start of treatment in UCD Trial 2, and (I) 28 days after the start of treatment in UW trial.
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differences between response and overall survival, especially in

veterinary medicine when humane euthanasia may be elected by

the medical team or by dog owner for a variety of reasons.

Responses corresponded reliably with the fold change of NK cell

proportion following treatment, with all three poor responders

showing a negative fold change in NK cells post therapy and all

three good responders showing a positive fold change (Figure 3F).

The proportion of peripheral blood NK cells was highest in UCD1,

reaching a maximum of 13.7% of cells post treatment (Figure 3G).

NK cell frequencies ranged between 1-2% of total cells in UCD2 and

comprised fewer than 1% of total cells in the UW poor responder

(Figures 3H, I). Overall, we observed variability of NK proportions

in the peripheral blood of dogs diagnosed with cancer, but evidence

indicating that dogs with a positive fold change in NK cell

frequencies post treatment correlates with favorable response.
Good responders upregulate NK activation
signatures after treatment while poor
responders have minimal treatment-
related changes

Given our intriguing results implicating the role of NK cells in

treatment response, we then specifically analyzed the NK cell cluster

from these patients to focus on their distinct NK characteristics

(Figure 4A). NK cells from these patients included over 2,000 cells

across trials that met quality standards for analysis (Figure 4B). We

completed DEG analysis comparing pre- and post-treatment

samples in good responders and poor responders to hone in on

differences due to the treatment itself and compared good vs poor

responders at pre- and -treatment timepoints in all trials to explore

differences between the dogs with potential biomarkers of response.

(Figures 4C–E). We found that there were large differences in pre-

treatment samples between poor and good responders in UCD1

(palliative RT plus allogeneic PBMC-derived NK cells) and that the

poor responder had no genes upregulated in response to treatment

(Figure 4C). Subjects from UCD2 (autologous PBMC-derived NK

cells plus inhaled IL-15) showed minimal changes overall, both in

response to treatment and between responders, suggesting limited

immune effects systemically from this immunotherapy regiment

(Figure 4D). This contrasted with the UW trial (MTRT with

immunocytokine) which demonstrated 255 differentially

expressed genes post treatment in the good responder and,

similar to UCD1, had considerably fewer DEG changes (23) in

the poor responder (Figure 4E). Overall, we observed that the

majority of DEGs between pre and post treatment in good

responders were significantly upregulated in response to

treatment rather than downregulated (Figure 4F). Additionally,

the number of genes that were different between good and poor

responders at the pre-treatment time point varied by trial,

suggesting that upregulation of specific gene signatures at baseline

contributes to the immune changes among favorable and

unfavorable responders with potential downstream effects on

clinical outcomes (Figure 4G).
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Given these results, we sought to explore the specific genes

contributing to these differences in more detail. We evaluated key

genes that were upregulated post treatment in good responders and

key genes upregulated at baseline in poor responders, with specific

emphasis on genes that were previously identified in our tissue-

specific signatures (15) (Supplementary Figure 1). Most striking was

the identification of CCL4, which was significantly upregulated in

good responders from both UCD1 and UW and was also identified

in activated lung NK cells in both dog and human scRNAseq

analysis (Figure 2D). Additional genes upregulated in good

responders included CX3CR1 and ITGAL in the UCD1 trial and

GZMB and KLRK1 in the UW trial (Supplementary Figure 1).

These data coincided with data from The Cancer Genome Atlas

(TCGA), where greater CCL4 expression in Melanoma and UPS

human tumor samples was significantly associated with improved

survival (Figures 4H, I). Although poor responders had minimal

response to treatment overall, we did see that they expressed several

activation genes at greater levels than good responders before the

start of treatment, including BCL2A1, present in both UCD1 and

UW trials. The overall pattern of our results points to the possibility

that response to treatment may be associated with changes in NK

cell gene signatures during cancer immunotherapy, although this

may vary by cancer type and immunotherapy regimen.
Discussion

Here we report a canine sarcoma-infiltrating NK cell signature

in combination with a direct comparison to human and canine NK

gene expression across tissues known to harbor tissue resident NK

cells, including blood, spleen, liver, lung, placenta. Canine sarcoma-

infiltrating NK cells exhibited a dysregulation-associated signature

with the most similarity to tissue-resident NK cells from the liver.

Importantly, there was striking cross-species similarities in tissue

resident NK cells between dogs and humans. For both species, we

observed heterogeneous gene signatures in tumor-infiltrating NK

cells with features of both activation and exhaustion, suggesting a

lack of reproducible and adaptive DEG by NK cells in the sarcoma

TME. Finally, we reveal changes in peripheral NK cell gene

expression that align with response to NK-targeting approaches

in three first-in-dog immunotherapy trials. Notably, upregulation of

CCL4 was a consistent finding in activated NK cells, seen in human

and canine lung NK signatures as well as in response to treatment in

dogs that responded well to immunotherapy (15). Together, we

describe transcriptomic responses to first-in-dog NK-targeting

clinical trials in the context of tissue and tumor NK signatures

with translational relevance to immune-oncology research for both

dogs and people.

The complexity of the TME continues to be a prominent topic

in immune-oncology research, the unraveling of which is necessary

for the improvement of therapeutics available for solid cancers.

Immune cells within the TME undergo maladaptive changes,

shifting to dampened or pro-tumor responses. This is especially

apparent in our own demonstration of the mixed activated and
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exhausted phenotype of NK cells in canine soft tissue sarcoma,

representing the maladaptive signals present in the TME. Tumor

NK cells corresponded most with liver NK cells, which expressed

similar inhibitory markers, such as CD96. The population of

inhibitory NK cells in the liver could potentially be part of typical

and necessary regulation of immune responses in normal tissue that

are exploited during tumor progression. Overall, the various states
Frontiers in Immunology 10
or subsets of NK cells point to inherent malleability which may

underlie the difficulties in applying NK cell therapies clinically given

apparent susceptibility to local cues impacting their phenotype and

function but also may point the way to harness them for improved

anti-cancer efficacy.

Integrated analysis of NK cells from dogs enrolled in canine

NK-targeting clinical trials showed distinct signatures with greater
FIGURE 4

Good responders upregulate NK activation signatures after treatment while poor responders have minimal treatment-related changes. (A) UMAP
representation of NK cells subset from the integrated PBMC samples across trials with 9 clusters identified by unsupervised clustering. (B) UMAP
visualization of NK cells color coded by trial. (C–E) DEG analysis was completed between post and pretreatment for each dog and between good
and poor responders for each timepoint. The number of genes with adjusted p-value<0.05 in each comparison are depicted in Venn diagrams for
(C) UCD trial 1, (D) UCD trial 2, and (E) UW trial. (F, G) Volcano plots distinguish the number of genes that were significantly upregulated or
downregulated in (F) post vs pre-treatment and (G) good vs poor responders pre-treatment. (H, I) Kaplan–Meier survival curve showing the survival
time of TCGA UPS (H) and TCGA Melanoma (I) patient samples with high and low expression of CCL4, which was significantly upregulated both
UCD1 and UW good responders in response to treatment in addition to the activated lung signature.
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DEGs related to activation and recruitment post-treatment in

responders compared to non-responders. Good responders also

generally had fewer activation markers at baseline than poor

responders but had significantly greater responses to treatment.

Numerous studies have shown that baseline gene expression can

predict responses to immunotherapy in several human cancers

(45–47). However, others have shown that predictive biomarkers

of response are more distinct during, or post-treatment, compared

to pre-treatment samples (48, 49). A potential explanation of this

pattern is that NK cells with increased plasticity are more capable

of adjusting their activity and effector functions in response to

treatment, leading to better anti-tumor responses. The tunability

of NK cells corresponds well with our data regarding tissue and

tumor-specific NK cells. Importantly, the malleability of NK

subsets seems to be a conserved characteristic between canine

and human NK cells.

It is important to note these data presented in this paper are not

exhaustive and there are inherent limitations that should be

acknowledged when interpreting the results. While we were able

to obtain multiple canine and human tissue types, there were only

two samples for each canine organ and only a single sample for

human organs and tumor. Therefore, it is necessary to note the

potential impact of donor variability and the need for future studies

to confirm these findings with additional samples and additional

tumor types. Furthermore, all clinical trial dogs were from NK-

targeting immunotherapy trials, but the mechanism of anti-tumor

effect elicited by NK cells varied notably. The differences between

the trials may be impacted by implicit distinctions between adoptive

cell therapy versus radiotherapy and the potential for differential

immune effects when using IL-2 versus IL-15. Also, we only

analyzed two dogs from each trial potentially impacting the

representativeness of our data. Though there are clear limitations

to this study, the analyses presented here add important data

improving the characterization of canine NK cells, especially

tissue and tumor resident NK cells and their comparative and

translational context.

Overall, we shed light on the diverse heterogeneity of canine NK

cells across tissues with features of adaptability that appear to be

both adaptive to tissue residence and maladaptive to the TME. Our

unique analysis of NK cell samples from dogs enrolled on canine

immunotherapy trials elucidates a potential survival trend

correlated with post-treatment increases in NK cell abundance

and serves as a blueprint of how NK subset identification and

characterization can increase our understanding of gene expression

changes. Ultimately, our study serves as a basis for advancing

mechanistic investigations into novel NK cell therapeutic

approaches for both dogs and people.
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