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As nucleic acid vaccine technology continues to advance, modern adjuvants are

being engineered to quantitatively and qualitatively shape immune responses.

Since their development in the early 1990’s, nucleic acid approaches have

garnered significant attention, and numerous platform technologies have been

developed both to improve delivery as well as immunogenicity. These advances

were highlighted during the COVID-19 pandemic, with the approval of both

mRNA-LNP and DNA vaccines for SARS-CoV-2. Early clinical trials with DNA

antigens alone displayed suboptimal immunogenicity, supporting interest in

adjuvant molecules. Molecular adjuvants, nucleic acid-encoded cytokines,

chemokines, and enzymes, among others, are used to enhance and direct

nucleic acid antigen-induced immunity in vivo. Additionally, mRNA-LNP

vaccines, and more recently DNA-LNP vaccines, have demonstrated robust

immunogenicity with intrinsic adjuvant activity based on the delivery mode.

This review summarizes the molecular adjuvant landscape and highlights

recent findings in the context of nucleic acid vaccines.
KEYWORDS
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Introduction

Adjuvants are vaccine components that enhance and direct the immune response. The

term comes from the Latin adjuvare, meaning to help or aide, and was first used by Gaston

Ramon in 1925 after observing that horses with inflammation or abscesses at the site of

injection developed higher antibody titers. A year later, the first adjuvant, alum, was

discovered serendipitously by Alexander Glenny (1). While attempting to purify diphtheria

toxin, he observed that aluminum salts precipitated the toxoid, leading to stronger antibody

responses in guinea pigs. The resulting stable, insoluble complexes prolonged antigen

exposure to immune cells. Alum was promptly incorporated into human vaccines and

remained the only licensed adjuvant for most of the 20th century (1930s-1990s) (2).

Later decades saw growing interest in adjuvants, but alternatives such as Freund’s

water-in-oil emulsions developed in the 1940s proved too toxic for human use (1). The next

regulatory approvals would not come until the turn of the century, first with MF59, a

squalene-based oil-in-water emulsion with surfactants approved in Italy in 1997 for
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seasonal influenza. AS04 followed in 2005, a combination of

monophosphoryl lipid A (MPL) and aluminum salt (aluminum

hydroxide) approved in the EU for use in Cervarix, a human

papillomavirus (HPV) vaccine. AS03 was approved in 2009 for

the H1N1 pandemic, an oil-in-water emulsion containing squalene,

DL-a-tocopherol (vitamin E), and polysorbate 80. AS01, a

liposome-based adjuvant, was approved in 2017 for the shingles

vaccine Shingrix. Finally, CpG 1018, a synthetic 22-mer

phosphorothioate-linked oligodeoxynucleotide which acts as a

Toll-like receptor 9 (TLR9) agonist, was approved in the US in

2017 for Heplisav B, a hepatitis B vaccine. This string of approvals

marked a broader shift from empirical vaccinology to

mechanistically-informed adjuvant selection (3) (reviewed by

Goetz et al., 2024). These molecules have been used as chemical

adjuvants in the context of inactivated virus and protein-based

vaccine platforms for decades.

In the nucleic acid platform space, the ability to simultaneously

deliver gene-encoded molecular adjuvants to modify vaccine-

induced immunity has transformative potential. In 1990, Wolff

et al. demonstrated the induced expression of reporter proteins in

mouse muscle tissue from RNA and DNA vectors, opening the door

for nucleic acid delivery (4). DNA vaccines emerged in the early

1990s, with pivotal work by Weiner and colleagues demonstrating

“gene inoculation”, the successful delivery of plasmid DNA to elicit

both humoral and cellular responses against HIV-1 env in mice (5).

This breakthrough introduced endogenous antigen expression, in

which transfected host cells produce the encoded immunogen. The

new vaccine platform promised direct immune stimulation of

cellular immunity along with traditional antibody responses and

the ability to engineer tailored vaccines. Unlike other platforms, this

approach reliably enabled antigen processing through the MHC

Class I pathway, mimicking viral infection and robustly inducing

cytotoxic T lymphocyte (CTL) responses. However, early clinical

trials in the late 1990s revealed low expression of the transgene in

humans and poor antigen-presenting cell (APC) uptake from naked

DNA (6), prompting advancements in delivery technologies and a

new era of adjuvant research to enhance immunogenicity.

Electroporation, developed by Inovio and Ichor Medical in the

2000s, uses electrical pulses that transiently permeabilize cell

membranes to enhance DNA plasmid uptake, improving

immunogenicity in pre-clinical models and humans. Utilizing

plasmid DNA as a vector enables co-delivery of gene-encoded

adjuvant molecules alongside antigen. Molecular adjuvants can

enhance (7–12) and direct (9, 13–17) vaccine-induced immunity

in vivo, including in clinical trials (18, 19). Through the 2000s, early

advancements in DNA vaccine technology included codon

optimization (20–22) and exploration into molecular adjuvants,

such as IL-12, GM-CSF, and CD40L. Promoter and intron

optimizations were also leveraged to boost expression. The

COVID-19 pandemic brought rapid development focus to the

DNA platform. In 2020, Smith et al. developed a synthetic DNA

vaccine, INO-4800, which elicited strong humoral and cellular

immune responses in mice and guinea pigs, including

neutralizing antibodies and T cells (23). Subsequent Phase 1 and

2 trials demonstrated a favorable safety profile and durable immune
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responses in humans (24, 25). In 2021, India’s drug regulator

approved ZyCoV-D, the world’s first licensed DNA vaccine.

Approved for emergency use during the SARS-CoV-2 pandemic,

the vaccine delivered plasmid-encoded spike protein via jet injector

and demonstrated 66% efficacy in Phase 3 (26). Since the pandemic,

clinical development has continued to advance (27–29), with

clinical trials for DNA vaccines against HIV-1, HPV, Zika, Ebola,

TB (30), and immunotherapies (31, 32). Outside of physical delivery

modalities, lipid-based formulations for plasmid DNA vaccines

have historically shown limited immunogenicity in vivo.

However, recent advances in lipid nanoparticle technology,

microfluidics, and formulation have improved particle stability

and immunogenicity, generating significant interest in LNP-

mediated delivery as a viable strategy for the DNA vaccine

platform (33–38).

The use of RNA to deliver antigens was initially hindered by

instability, rapid degradation, and strong innate immune activation.

A major breakthrough was achieved in 2005 when Karikó and

Weissman demonstrated that nucleoside modifications including

pseudouridine substitution reduced Toll-like receptor activation

and enhanced translation efficiency (39). Subsequent innovations

included optimized 5′ cap analogs, untranslated regions, and

expanded nucleoside chemistries (38, 39). Delivery technologies

also progressed, as ionizable lipid nanoparticles (LNPs) evolved

from earlier liposome and cationic lipid systems (40). These LNPs

were engineered to efficiently encapsulate mRNA, facilitate

endosomal escape, and enable cytoplasmic delivery while

minimizing toxicity (40) (Reviewed by Hou et al., 2021). By the

late 2010s, these advances collectively enabled the first clinical

successes in mRNA-based vaccines and therapeutics. In 2018,

Alnylam’s Onpattro, became the first approved RNA therapeutic

(siRNA-LNP) (41) and both Moderna and BioNTech, among other

companies advanced clinical-stage mRNA vaccines for Zika, CMV,

and certain cancers.

The COVID-19 pandemic potentiated unprecedented levels of

development opportunity, accelerating the first widespread use and

validation of mRNA vaccine technology. In 2020, mRNA vaccine

candidates BNT162b2 (Pfizer-BioNTech) (42) and mRNA-1273

(Moderna) (43) became the first nucleic acid vaccines approved for

human use. Key studies have explored the potential of incorporating

adjuvant molecules in the mRNA platform, as well as additional

formulation, delivery, and sequence-level methods to reduce side

effects and address waning immunity (44). Since 2022, the platform

has expanded beyond COVID-19 with clinical trials for quadrivalent

mRNA influenza vaccines (45), RSV (46, 47), EBV, and renewed efforts

against Zika, CMV, and immunotherapies (48, 49). Emerging directions

include self-amplifying RNA constructs, thermostable formulations, and

tolerogenic vaccines for autoimmune diseases, while personalized cancer

vaccines advance into phase 2 and 3 trials (49, 50).

The ability to co-deliver immune-modifying agents alongside

the antigenic payload is a key feature of the nucleic acid platform,

enabling precise stimulation and tailoring of vaccine-induced

immunity in vivo (Figure 1). In this review, we summarize the

history and current landscape of genetic, or molecular adjuvants,

with a specific focus on vaccines targeting infectious diseases.
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Cytokine adjuvants

Cytokines are a broad class of molecules involved in intercellular

communication and immune regulation, often promoting immune cell

proliferation, differentiation, and effector function. Cytokine adjuvants

are a subset of these molecules that have demonstrated potential to

enhance vaccine-induced immune responses (Table 1).
IL-12

Interleukin-12 (IL-12) is a proinflammatory cytokine that

promotes cellular immunity by enhancing CD8+ T cell responses,
Frontiers in Immunology 03
driving Th1 polarization, and stimulating interferon-g (IFN-g)
production. The first use of IL-12 as an adjuvant dates back to

the mid-1990s, with several landmark studies shortly after it was

first characterized in 1989 (79) Afonso and colleagues demonstrated

recombinant IL-12 to be effective for the induction of cell-mediated

immunity against leishmaniasis in 1994 (80). Three years later, the

first study demonstrating plasmid-encoded IL-12 as a genetic

adjuvant was published, with co-delivery generating enhanced

cell-mediated immunity for a DNA vaccine encoding several

HIV-1 antigens (81). Plasmid-encoded IL-12 has been well-

tolerated and shown a significant dose-sparing effect in clinical

trials for DNA-based HIV-1 and HCV vaccines (82–85) along with

several immunotherapies (32, 86, 87).
FIGURE 1

Mechanisms of molecular adjuvant action. Plasmid DNA (pDNA) or messenger RNA (mRNA) molecules encoding the antigen and adjuvant are formulated
(1) and delivered (2) by direct injection or other physical delivery methods such as jet, electroporation (EP), or lipid nanoparticle (LNP) encapsulation.
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TABLE 1 Molecular adjuvants by class.

Cytokines Antigens Significant Findings Reference

IL-12 Mycobacterium
tuberculosis (Mtb),
SARS-CoV-2, Listeria monocytogenes-OVA

Sustained immunity to SARS-CoV-2
mRNA-LNP, enhances CTL responses

Morelli
et al. (51)
Brook
et al. (44)
Aunins
et al. (52)

IL-2 rabbit hemorrhagic disease virus VP60, infectious bursal disease virus,
Edwardsiella tarda, infectious laryngotracheitis virus,
autoimmune diabetes

Enhances T cell proliferation and
protection across many animal and
disease models

Deng
et al. (53)
Huo
et al. (54)
Tang
et al. (55)
Hao et al. (56)
Pagni
et al. (57)

IL-4 Influenza hemagglutinin, coccidiosis Combination approaches preserve
Th1-related responses

Wei et al. (58)
Tan et al. (59)

IL-15 SIV-Gag/SIV-Nef,
HPV16 E6/E7

Enhances CTL responses despite delivery
constraints regarding trans-presentation

Leroy et al.
(60)
Zhou
et al. (61)

IL-18 genotype VII Newcastle Disease Virus Enhances Th1-related responses in
chickens and murine cancer models

Wang et al.
(62)
Yadav
et al. (63)

IL-28B
(IFN-l3)

H1N1 (inactivated virus vaccine), Newcastle Disease Virus,
HPV16 E6/E7

Promotes robust CD8+ activation by
Treg suppression

Sabbaghi et al.
(64)
Amoia et al.
(65)
Zhou
et al. (61)

GM-CSF SARS-CoV-2 WT, Omi,
Influenza HA

Enhances germinal center formation Liu et al. (66)
Wei et al. (58)
F
rontiers in Immunology
 04
Chemokines Antigens Significant Findings Reference

CCR10 Ligands
(CCL27, CCL28)

SARS-CoV-2 WT, BA.2, XBB.1.5, influenza,
HIV-1 env

Drive robust mucosal immunity in
murine models of challenge

Gary et al.
(13)
Gary
et al. (67)
Liaw
et al. (68)

CCR7 Ligands
(CCL19, CCL21)

Vibrio anguillarum antigen (VAA), VHSV,
H7N9 HA

Enhance systemic & mucosal immunity
across animal models

Xu
et al. (69)
Kim
et al. (70)
Xiang
et al. (71)
Co-stimulators Antigens Significant Findings Reference

CD40L autoimmune glomerulonephritis (EAG), SARS-CoV-2, Tembusu virus,
bovine herpesvirus 1 (BoHV-1)

Potent multi-faceted immune
enhancement via dendritic cell activation
across animal models

Li et al. (72)
Tamming
et al. (73)
Huang et al.
(74)
Kornuta
et al. (75)

CD80/86 Vibrio anguillarum OmpK increased IgM+ and CD4+ populations Liu
et al. (76)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1646800
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hojecki et al. 10.3389/fimmu.2025.1646800
Systemic administration of recombinant IL-12 was identified to

cause toxicity in both humans and animal models (88), with early

clinical trials reporting severe, sometimes fatal effects, including IFNy

overproduction and cytokine storm–like responses (89). Subsequent

studies confirmed comparable toxicity for IL-12 delivered systemically

via naked DNA, however, IL-12 pre-dosing significantly attenuated

toxicity, showing a schedule-dependent desensitization effect (88).

Since then, strategies have centered on controlling expression

through localized delivery, pre-dosing protocols, tunable plasmid-

encoded expression vectors, and dosage control.

While IL-12 is a well-characterized cytokine adjuvant, recent

studies have applied it in new vaccine contexts, including DNA-

encoded delivery for tuberculosis and as a co-adjuvant to improve

durability in SARS-CoV-2 mRNAmodels. A 2020 study demonstrated

IL-12 robustly enhanced immune responses in Mycobacterium

tuberculosis (Mtb) vaccination (51). Prior to this work, IL-12 received

limited investigation as an adjuvant for Mtb vaccines, hindered by

delivery challenges and inconsistent protective outcomes. This study is

among the first to demonstrate that IL-12 DNA co-delivery can

robustly enhance Ag85A-specific lymphocytes and protection in

challenge. In a DNA-A85A/MVA85A prime-boost regimen, IL-12

co-delivery significantly enhanced IFN-g responses, expanded

Ag85A-specific CD4+ and CD8+ T cells, and increased the cytotoxic

CD107a-expressing CD8+ T cell population. Morelli et al. also observed

increased anti-Ag85A antibody levels and reduced lung bacterial

burden post-challenge, indicating improved protection. Importantly

no severe adverse events (SAEs) were reported in these trials, further

demonstrating the safety of local plasmid delivery of IL-12.

Although SARS-CoV-2 mRNA vaccines induce robust acute

immune responses in humans, numerous studies have shown that

these responses have limited durability (90). A 2024 study found

that IL-12p70-expressing mRNA-LNP could improve response

durability (44). Co-delivery improved antibody and cell-mediated

immune responses when combined with the Pfizer BNT162b2

SARS-CoV-2 vaccine. In an aged mouse model, the IL-12

mRNA-LNP adjuvant increased humoral immune response

durability and spike-specific IgG titers to levels comparable to

young adult mice. The IL-12 mRNA-encoded adjuvant was

designed with a multiorgan protection (MOP) sequence to restrict

expression to the injection site, mitigating toxicity risks. By

enhancing immunogenicity in both young and aged mice, this

approach demonstrated promise for clinical use in at-risk groups.
Frontiers in Immunology 05
Aunins and colleagues further demonstrated the potential of IL-

12 as an adjuvant in the mRNA-LNP platform, in a study using

models of both bacterial infection and cancer (52). IL-12 mRNA-

LNP co-delivery enhanced antigen-specific CD8+ T cell expansion,

effector function, and memory formation. This methodology led to

improved protection in models of Listeria monocytogenes infection

and B16 melanoma. The IL-12 construct consisted of codon-

optimized mRNA encoding the p35 and p40 subunits joined by a

flexible glycine-serine linker, enabling co-translation and efficient

heterodimerization into functional IL-12p70.

IL-12 is one of the most extensively studied gene-encoded

adjuvants, with consistent immunostimulatory effects in

preclinical models and an acceptable safety profile in clinical

settings. Plasmid-encoded delivery has been central to its

development, enabling localized expression that significantly

mitigates the systemic toxicity associated with recombinant

protein approaches. In DNA-based platforms, p35 and p40 are

often expressed from bicistronic plasmids using dual promoters,

with staggered strength to favor proper heterodimer assembly,

whereas in mRNA vaccines, a single transcript typically encodes

both subunits joined by a flexible linker. Recent studies reinforce IL-

12’s robust profile as a molecular adjuvant for nucleic acid vaccines,

particularly in enhancing Th1-biased cellular immunity. Current

efforts focus on refining delivery systems and dosing regimens to

enhance efficacy and expand translational development.
IL-2

Interleukin-2 is a cytokine primarily produced by activated CD4+

T cells that plays a central role in the proliferation, survival, and

functional differentiation of T cells and NK cells. IL-2 has long been

explored for its ability to enhance vaccine-induced cellular immunity. It

was first investigated as an adjuvant in a 1989 study that demonstrated

systemic administration of recombinant IL-2 protein alongside an

inactivated rabies virus vaccine improved cell-mediated protection in

challenge (91). Later studies confirmed co-administration of IL-2 could

enhance antigen-specific immune responses, particularly by promoting

T cell proliferation and activity. IL-2 was first investigated as a plasmid-

encoded adjuvant in 2005, when it was shown murine IL-2 fused to Ig

(IL-2/Ig) co-administered with a DNA vaccine encoding HIV-1 env

gp120 in mice, significantly enhanced both antibody and cell-mediated
Immunomodulators Antigens Significant Findings Reference

Adenosine deaminase HIV-1, SARS-CoV-2 Mitigates age-associated
immunosenescence in mouse models

Gary et al.
(13)
Cusimano
et al. (8)
Gary
et al. (7)

C3d Porcine Circovirus Type 2 (PCV2) ORF2 , SARS-CoV-2 Significantly increases antibody responses Hou
et al. (77)
Li et al. (78)
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immune responses compared to the DNA vaccine alone (92).

Recombinant IL-2 has been found to cause significant toxicity from

systemic delivery, while plasmid-encoded IL-2 has been well-tolerated

in trials for DNA-based cancer therapeutics (93, 94).

Recent findings in IL-2 as an adjuvant have primarily occurred in

chicken models, with additional findings in rabbits, mice, and fish. In a

2019 study, researchers developed an oral DNA vaccine using

attenuated Salmonella typhimurium to deliver a plasmid encoding

both IL-2 and the VP60 capsid protein of rabbit hemorrhagic disease

virus (RHDV) (53). Co-expression of IL-2 significantly enhanced

humoral and cellular immune responses, leading to 93.3% protection

against viral challenge, surpassing the efficacy of vaccines lacking IL-2.

A DNA vaccine co-expressing chicken IL-2 (chIL-2) and IL-7

(chIL-7) with the VP2 antigen demonstrated enhanced

immunogenicity and protective efficacy against infectious bursal

disease (IBDV) in a 2019 study (54). The chIL-2/chIL-7/VP2

combination vaccine significantly increased IBDV VP2-specific

antibody titers, T cell proliferation, and IFN-g production. In 2020

Tang et al. demonstrated that plasmid encoded flounder IL-2 (poIL-2)

enhanced protection against Edwardsiella tarda (55). Both recombinant

(rIL-2) and plasmid-encoded (pcIL-2) forms of poIL-2 significantly

improved survival rates, antigen-specific antibody production, and

expression of immune-related genes when co-administered with a

recombinant OmpV vaccine. However, recombinant IL-2 elicited

stronger responses than the plasmid-encoded form.

Similarly, co-delivery of chicken IL-2 (chIL-2) with an

infectious laryngotracheitis virus (ILTV) chicken embryo origin

(CEO) vaccine significantly alleviated vaccine-induced clinical signs

without compromising protective efficacy (56). Oral delivery of

chIL-2 reduced viral loads in key respiratory tissues and shortened

the duration of adverse reactions. IL-2 enhanced early activation

and expansion of natural killer cells and cytotoxic T lymphocytes,

particularly in mucosal tissues.

Finally, a 2025 study reported a multi-component DNA-

launched plasmid prevented autoimmune diabetes in nonobese

diabetic (NOD) mice (57). The construct encoded the cytokines

TGF-b1, IL-10, and IL-2 alongside preproinsulin2. IL-2 contributed
to antigen-specific immune tolerance without systemic

immunosuppression. These findings support the ability of IL-2 to

boost cellular immunity across a variety of animal models.
IL-4

Another well-characterized adjuvant is Interleukin-4, a cytokine

that induces differentiation of naive helper T cells (TH0 cells) to TH2

cells. IL-4 has been noted for its TH2 bias and its ability to promote

humoral immunity and IgG1/IgE production. Early studies showed

that plasmid-encoded IL-4 could enhance antibody responses when

co-delivered with DNA vaccines (e.g., for HIV, influenza, or

allergens). However, use of IL-4 has been limited due to concerns

of skewing away from protective Th1 responses and dampening

cell-mediated activity (58, 95).
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The earliest study investigating IL-4 as an adjuvant was

published in 1998, showing a DNA vaccine developed from an

ovalbumin (OVA) and murine IL-4 fusion gene (95). Mice

immunized with OVA/IL-4 DNA exhibited enhanced OVA-

specific IL-4 production by CD4+ T cells and a higher ratio of

anti-OVA IgG1 to IgG2a antibodies, indicating a TH2-biased

response. The OVA/IL4 fusion gene induced TH2-biased cell-

mediated responses while antigen alone or a mixture of antigen

and IL-4 did not, supporting that direct linkage drives the immune

response phenotype.

A recent study revisited IL-4 as an adjuvant in a dual-cytokine

approach. Wei et al. (58) reported the use of mRNA-encoded

GIFT4, a fusion cytokine (fusokine) combining GM-CSF and IL-4.

It was originally characterized in 2014 for its ability to drive potent

B cell proliferation and high levels of IL-1a, IL-6, IL-12, and IL-5

relative to the combined delivery of recombinant GM-CSF and IL-

4 (96). When encoded by mRNA and co-delivered with antigen,

GIFT4 enhanced both humoral and cellular responses to influenza

in mice, including early germinal center formation and lung-

resident T cell populations. The Th2-skewing effect of IL-4 was

intentionally leveraged in this strategy, with the GM-CSF and IL-4

fusion selected for its cooperative enhancement of B cell activation

and proliferation beyond that of either cytokine alone. This

approach focused on improving antibody quality and breadth,

rather than quantity alone. The preservation of robust cellular

responses suggests that the inclusion of GM-CSF counterbalanced

the typical suppressive effects of IL-4 on Th1-related immunity.

Plasmid-encoded IL-4 was implemented in another fusion-

based strategy to enhance protection against coccidiosis in

chickens (59). The construct pCI-IL-4-IL-2-EGFP, encoding

chicken IL-4 and IL-2, significantly boosted both cellular and

humoral responses when co-administered with a live coccidia

vaccine. This combination increased the expression of IL-2, IL-4,

TNF-a, and IFN-g, and promoted the expansion of B cells, T cells,

and APCs in the spleen and intestinal tissues - the primary site of

infection. These findings highlight the value of combination

approaches for refining the immunomodulatory role of IL-4 to

further tailor vaccine-induced immune responses.
IL-15

Interleukin-15 (IL-15) drives the expansion and survival of

memory CD8+ T cells and NK cells, which supports its role in

promoting cell-mediated immunity. It was first studied as an

adjuvant in the late 1990s when recombinant IL-15 was shown to

enhance CD8+ T cell responses in a Toxoplasma gondii mouse

model (97). The first use of IL-15 as a plasmid-encoded vaccine

adjuvant came a decade later. Two key studies from 2005 reported

plasmid-encoded IL-15 could enhance cellular immunity when

delivered alongside DNA vaccines targeting HIV or herpes

simplex virus in mice (98, 99). Plasmid-encoded IL-15 was shown

to be well-tolerated in humans but offered no apparent
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augmentation in a 2012 clinical trial for a HIV gag DNA

vaccine (18).

Research on IL-15 has been limited in recent years due to its

biological dependence on trans-presentation via IL-15Ra for

optimal T cell activation (100–103). Maintaining this complex in

vivo has proven difficult, shifting focus to alternatives (100). In

support of a more feasible nucleic acid based approach, a 2022 study

showed that co-delivery of IL-15 as a DNA-encoded adjuvant with a

non-integrating lentiDNA SHIV vaccine enhanced vaccine-specific

CD4+ and CD8+ T cell responses in both mice and rhesus macaques

(60). IL-15 co-expression also increased the durability of antibody-

dependent cellular cytotoxicity (ADCC) responses in plasma and

mucosal compartments for up to 40 weeks. In 2025 researchers

evaluated IL-15 and IL-28B as a gene-encoded adjuvants for an

HPV16 DNA vaccine targeting E6/E7 antigens (61). Co-delivery of

IL-15 plasmid enhanced CD8+ T cell responses, demonstrated by

increased E7-specific IFN-g secretion relative to antigen alone.

The broader use of IL-15 will likely depend on further

improvements to stability and delivery mechanisms to overcome

the challenges posed by trans-presentation and half-life constraints

(100–104). The successful integration of IL-15 into recent DNA

vaccine platforms suggests untapped potential. However, as seen in

the HPV16 model, the choice of cytokine must align with the

antigen and desired immune profile.
IL-18

Interleukin-18, initially referred to interferon-g-inducing factor
following its discovery (105) in 1995, is secreted primarily by

activated monocytes. IL-18 is best known for promoting TH1-

related differentiation in the presence of IL-12, though it can also

support TH2 responses under certain conditions (106). Plasmid-

encoded IL-18 has shown the most promise for enhancing cellular

immunity in murine cancer models, with many studies in the 2000s

(63, 107–110). Species-specific receptor interactions and pro-

inflammatory toxicity have limited translation to humans. In

contrast, livestock more readily tolerate elevated IFN-g and

permit less stringent formulation constraints. Recent progress in

the context of infectious disease has been in veterinary models.

A 2022 study demonstrated that co-delivery of chicken IL-18

significantly enhanced mucosal and systemic immunity against

genotype VII Newcastle Disease Virus (62). The cytokine gene

was delivered with a minicircle DNA vaccine (pYL58) via

attenuated Salmonella in chickens. IL-18 co-expression boosted

IFN-g and IFN-a production, improved lymphocyte proliferation,

and increased protection post-challenge (70% vs. 50%).

While these findings support the use of IL-18 in veterinary

contexts, its efficacy in mammalian models of infectious disease

remains underexplored. Future studies should focus on optimizing

delivery and resolving its safety profile. Clinical translation of

plasmid-encoded IL-18 delivery will require building on the

progress in murine cancer models.
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IL-28B

IL-28B, also known as interferon lambda 3 (IFN-l3), is a

member of the type III interferon family that signals through the

heterodimeric receptor complex IFNLR1/IL10R2. It plays a critical

role in mucosal antiviral defense by inducing interferon-stimulated

genes (ISGs) primarily in epithelial and barrier tissues (111). IL-28B

is secreted primarily by dendritic cells (DCs) and macrophages and

enhances viral clearance by promoting robust CD8+ T cell

responses while reducing regulatory T cell (Treg)-mediated

suppression (112). Following the discovery of type III IFNs (IFN-

l or IL-28/29) in 2002, IL-28B’s antiviral and antitumor properties

were characterized in multiple disease models (111). Recombinant

IL-28 protein completely blocked mucosal replication and disease in

an in vivo HSV-2 infection model and enhanced systemic IFN-g
responses (111). Plasmid-encoded IL-28B was first evaluated as a

vaccine adjuvant in 2009, where co-delivery with an HIV Gag DNA

vaccine reduced Treg populations, increased cytotoxic CD8+ T cells,

and provided full protection in a lethal influenza challenge (112).

These findings were extended to non-human primates, with

plasmid-encoded IL-28B enhancing antigen-specific CTL

responses and cytolytic activity in rhesus macaques vaccinated

with plasmid DNA encoding HIV-1 gag and pol (113).

In recent years, IL-28b has been explored as an adjuvant across

mice and poultry animal models. A 2021 study reported plasmid-

encoded IL-28B co-administered intranasally with a gamma-

irradiated H1N1 influenza vaccine, significantly enhanced both

mucosal (IgA) and systemic (IgG) antibody responses, as well as

T cell proliferation and Th1-related cytokine production (IFN-g, IL-
12) (64). Mice receiving the plasmid-encoded IL-28B adjuvant

showed reduced lung viral titers and decreased inflammatory

cytokines (IL-6, IL-10) post-challenge, suggesting improved

immune regulation.

The inclusion of IL-28b in a genotype-matched Newcastle

disease virus DNA vaccine significantly improved immune

responses and protective efficacy in chicks (65). The IL-28b-

adjuvanted vaccine (pTwist-F-HN-VII-IL28b) induced stronger

immunity and achieved 80% protection against a virulent NDV

strain, outperforming both the non-adjuvanted plasmid and the

conventional LaSota vaccine.

Zhou et al. reported that plasmid-encoded IL-28B significantly

enhanced antigen-specific CD8+ T cell responses in a therapeutic

HPV16 DNA vaccine targeting E6 and E7 oncoproteins in mice

(61). IL-28B was delivered intramuscularly via a codon-optimized

plasmid administered in trans alongside CpG-optimized antigen-

encoding plasmids. When co-administered with CpG-enriched

mE6/HSP70 and mE7/HSP70 plasmids, IL-28B significantly

enhanced antigen-specific CD8+ T cell responses and improved

both prophylactic and therapeutic control of E6/E7-expressing

tumors in mice. In side-by-side comparison, both IL-28B and IL-

15 significantly enhanced CTL responses. However, IL-28B induced

superior CTL responses and significantly higher granzyme B

mRNA levels, suggesting more robust activation of cytotoxic
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effector pathways (61). These studies demonstrate the potential of

IL-28B as a robust cytokine adjuvant capable of enhancing cellular

immunogenicity in various animal models, suggesting broad utility

for improving vaccine potency.
GM-CSF

Granulocyte-macrophage colony-stimulating factor (GM-CSF),

also known as colony-stimulating factor 2 (CSF2), is a monomeric

glycoprotein secreted by macrophages, T cells, mast cells, natural

killer cells, endothelial cells, and fibroblasts that functions as a

pleiotropic cytokine that drives differentiation of myeloid

precursors into APCs, enhances DC maturation, and supports the

generation of TH1-biased immune responses. GM-CSF recruits and

activates DCs and other myeloid cells at the site of antigen delivery.

When co-delivered with vaccines, GM-CSF enhances antigen

presentation and promotes robust humoral and cellular immune

responses (114).

GM-CSF has been explored as an adjuvant since the early 1990s,

with a 1994 review highlighting its potential to enhance immune

responses by promoting DC maturation and increasing antibody

titers in both animal and human studies (115). The cytokine was

first used as a plasmid-encoded adjuvant in 1997, with co-delivery

resulting in the enhancement of HIV-1 gag, pol, and env-specific

antibody responses (81). GM-CSF has shown notable adjuvant

capability in DNA vaccines targeting various infectious diseases

(114). Plasmid-encoded GM-CSF has previously reported as well-

tolerated in clinical trials evaluating DNA vaccines for advanced

melanoma and prostate cancer (116–118).

Plasmid-encoded GM-CSF (pGM-CSF) enhanced the

immunogenicity of an RBD-based DNA vaccine against SARS-

CoV-2 by boosting both humoral and cellular responses, including

robust neutralizing antibody production against ancestral and

Omicron variants (66). pGM-CSF also promoted antigen

expression, immune cell recruitment, germinal center B cell

responses, and the formation of central and tissue-resident

memory T cells, suggesting a multifaceted adjuvant role.

Likewise, mRNA-LNP delivery of a fusion gene of GM-CSF and

IL-4 (GIFT4) broadly and robustly enhanced adaptive immune

responses to influenza antigens in mice, including robust germinal

center formation and lung-resident T cell induction (58). GM-CSF,

as part of GIFT4, also promoted early germinal center formation

and B cell activation in draining lymph nodes. Intradermal

administration of this construct produced notable lung-resident T

cell populations, indicating mucosal immune enhancement by GM-

CSF-based adjuvanticity.

GM-CSF as a gene adjuvant enhances humoral responses and

promotes DC activation, but its efficacy in boosting cellular

immunity and protection varies widely by context, antigen, and

delivery method. Encoded or locally secreted forms, especially via

plasmid or mRNA, outperform recombinant cytokine delivery, with

spatial-temporal control proving critical. Fusion constructs like

GIFT4 further support the use of GM-CSF as a gene adjuvant,

particularly for inducing germinal center and tissue-resident T cell
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responses. Overall, plasmid-encoded GM-CSF continues to be a

promising adjuvant in nucleic acid vaccine development, with

ongoing research focusing on optimizing its delivery and

combination with other immunostimulatory agents to maximize

vaccine efficacy.
Chemokine adjuvants

Chemokines are a specialized class of cytokines that control

chemotaxis through chemical signaling, often directing the

migration of immune cells to sites of infection or vaccination.

They are typically thought of in terms of ligands for specific

receptors. Chemokine adjuvants are often noted for their ability

to tailor vaccine-induced immunity in mucosal and peripheral

contexts (Table 1).
CCR10 ligands

Chemokine receptor 10 (CCR10) is expressed on IgA+ B cells and

T cells at barrier surfaces, including the respiratory, gastrointestinal,

and skin surfaces. CCR10 has two known ligands: chemokine ligands

27 (CCL27) and 28 (CCL28). We have previously reported that co-

delivery of CCR10 ligands in the context of gag/pol/Env DNA

immunogens supports increased protection from SHIV vaginal

challenge in non-human primates (17).

CCL27, also known as cutaneous T cell-attracting chemokine

(CTACK), is canonically known as a director of T lymphocyte

chemotaxis in the epidermis. The chemokine was first used as a

vaccine adjuvant by Kutzler and colleagues in 2010 (16), where

plasmid-encoded CTACK (pCTACK) was shown to enhance

systemic and mucosal immune responses to DNA vaccines,

including increased antigen-specific IgG and IgA levels, as well as

elevated IFN-g production from CD8 T cells This approach also

provided protection in a lethal influenza challenge.

Additional studies have characterized on the ability of plasmid-

encoded CTACK to bolster mucosal immunity against respiratory

pathogens like SARS-CoV-2 and influenza. We investigated the use

of pCTACK co-delivered with a SARS-CoV-2 DNA vaccine in mice

(67). Co-delivery of CTACK in the periphery led to increased spike-

specific IgA at mucosal surfaces, but not in serum, suggesting a

targeted mucosal response. pCTACK also led to higher frequencies

of IFN-g+ CD8+ T cells in the respiratory mucosa expressing a

mucosal homing marker. pCTACK provided 100% protection

against heterologous Delta variants in lethal challenge with

complete survival, absence of weight loss, and reduced lung

pathology compared to animals immunized with the spike DNA

vaccine alone. When co-delivered with a DNA vaccine encoding a

self-assembling influenza hemagglutinin (HA) head domain

nanoparticle immunogen, pCTACK increased HA-specific

antibody levels in the bronchoalveolar lavage and reduced lung

pathology in a lethal challenge model relative to antigen alone (68).

Similarly, the second CCR10L, CCL28, also called mucosa-

associated epithelial chemokine (MEC) has also been explored as a
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molecular adjuvant. We have previously reported that co-delivery of

plasmid-encoded CCL28 (pMEC) with HIV-1 envelope DNA

immunogens supported increased anti-HIV responses at mucosal

sites including increased IgA in fecal extracts and frequencies of

HIV-specific B cells in intestinal Peyer’s patches (13). These studies

demonstrate that peripheral delivery of mucosal-homing chemokines

can provide enhanced protection at key barrier sites of pathogen entry.
CCR6 ligands

Chemokine Ligand 20 (CCL20), also known as liver activation

regulated chemokine (LARC) and macrophage inflammatory

protein-3 (MIP-3a) is strongly chemotactic cytokine for

lymphocytes and weakly attracts neutrophils. MIP-3a is the only

known natural ligand for CCR6 and plays a specialized role in

targeting immature dendritic cells (iDCs). It has been explored as a

gene-encoded adjuvant since at least 2014, where it was shown to

direct antigen presentation toward CCR6+ iDCs, enhancing antigen

uptake and priming adaptive responses (119–121). For instance, a

2014 study reported fusion of the malaria antigen to MIP-3a in a

DNA vaccine, combined with the lipid-based adjuvant Vaxfectin,

significantly improved protective efficacy in a murine challenge

model, with MIP-3a enhancing targeting of antigen to immature

dendritic cells, leading to sterilizing immunity comparable to that

induced by irradiated sporozoites (119).

Subsequent studies have extended these observations. A 2020

report found that plasmid-encoded MIP-3a boosted immune

responses when co-delivered with an HIV-1 gp140 DNA vaccine,

followed by mucosal protein boosting (122). The chemokine increased

antigen-specific antibodies in both serum and mucosal sites, including

the vaginal vault and intestinal lumen, and promoted immune cell

recruitment to mucosal tissues. More recently, in a 2024 SARS-CoV-2

DNA vaccine study, inclusion of MIP-3a enhanced both the

magnitude and durability of antibody responses, with neutralizing

titers sustained for at least 12 months after intramuscular (IM)

electroporation (123). In parallel, intranasal delivery of the same

plasmid (without encapsulation or electroporation) elicited

significantly stronger lung-localized T-cell responses compared to

controls. MIP-3a has also improved immunogenicity in murine

melanoma DNA vaccine models (124–126).

Together, these results support MIP-3a (CCL20) as a broadly

functional gene-encoded adjuvant. Co-delivery with plasmid vaccines

enhances systemic and mucosal immunity, promoting both sustained

antibody production and lymphocyte recruitment to barrier tissues.

Across multiple platforms, including HIV-1 and SARS-CoV-2, MIP-

3a has improved humoral and T-cell responses even in the absence of

advanced delivery technologies, reinforcing its translational potential

for vaccines requiring mucosal or long-term protection.
CCR7 ligands

CCL19 and CCL21 are functional homologs and ligands for

CCR7. They drive DC and T cell homing to lymph nodes,
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enhancing antigen presentation and T cell priming. CCL19 and

CCL21 have been explored as vaccine adjuvants since the early

2000s, with many early studies in the cancer immunotherapy space.

A 2004 study by Flanagan et al. used a recombinant vaccinia virus

expressing CCL19 to induce a CD4+ T-cell dependent antitumor

response in mice, marking one of its first vaccine applications (127).

Recent progress in plasmid-encoded CCL19 and CCL21 has been

made in fish and mouse models. A 2020 study in flounder

(Paralichthys olivaceus) reported bicistronic DNA plasmids

encoding both the Vibrio anguillarum bacterial antigen (VAA) and

either CCL3, CCL4, CCL19, or CCL21 (69). Co-immunization with

CCL19 or CCL21 plasmids significantly enhanced protection in

challenge, leading to a relative percent survival (RPS) of 78.38%

and 72.97% respectively, compared to 40.54% with antigen alone. Co-

expression of CCL19 also led to increased sIgM+, CD4-1+, and CD4-

2+ lymphocyte populations and VAA-specific antibody levels.

CCL19a.2 is a teleost-specific functional homolog of

mammalian CCL19 that retains core chemotactic and

immunostimulatory functions. A DNA vaccine encoding both

viral hemorrhagic septicemia virus (VHSV) glycoprotein and

CCL19a.2 significantly elevated early expression of interferon-

and cytokine-related genes in lymphoid tissues of zebrafish (70).

While co-expression with CCL19a.2 did not significantly improve

survival following viral challenge, it induced pronounced innate

immune activation within the first two weeks post-immunization. It

is important to note that potential differences in expression kinetics

or cellular targets may influence CCL19 adjuvant effect across

species (128). In a 2024 study, CCL19 used in an intranasal

H7N9 HA DNA vaccine significantly enhanced both cellular and

humoral immune responses in mice (71). When combined with

polyethylene imine and chitosan for mucosal delivery, the vaccine

induced strong local mucosal and systemic immunity, providing

100% protection against lethal virus challenge. Mice immunized

with the CCL19 composite vaccine also exhibited increased levels of

IL-2 and IFN-g and robust IgA production.

These findings demonstrate the diverse potential of CCL19 and

CCL21 as plasmid-encoded adjuvants, with demonstrated benefits to

both systemic and mucosal immunity across different species. The

ability of these chemokines to enhance antigen-specific responses and

provide protection against pathogenic challenges positions them as

promising adjuvants for use in nucleic acid vaccine design.
Costimulatory and
immunomodulatory adjuvants

Costimulation is one of the essential signals required for full T

cell activation during adaptive immune responses. Costimulatory

molecules are typically cell surface proteins, though some soluble or

enzymatic immunomodulators can also enhance T cell activation

through costimulatory-like effects. By providing secondary signals

to T cells, they enhance their proliferation, survival, and

differentiation fol lowing antigen recognition. Certain

costimulatory ligands have been shown to act as adjuvants when

co-delivered alongside gene-encoded immunogens (Table 1). Other
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immunomodulatory adjuvants for nucleic acid vaccines include

enzymes such as adenosine deaminase (ADA), the complement

fragment C3d, and lipid nanoparticle (LNP) delivery systems

(Table 2).
CD40L/CD154

CD40 ligand (CD40L or CD154) is a costimulatory molecule

that enhances vaccine-induced immunity by promoting DC

activation, B cell help, and germinal center formation via

engagement of CD40 on APCs. CD40L has been explored as a

vaccine adjuvant since the late 1990s, with early studies

demonstrating its potential to enhance both humoral and cellular

immune responses (136, 137). The first study using CD40L as a

DNA plasmid-encoded adjuvant was in 2006, with duck CD154

enhancing specific antibody responses to hepatitis B virus (138).
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In recent years, studies have shown the ability of CD40L to

enhance both humoral and cellular immune responses across

various disease models. A 2019 study (72) reported a DC-

targeted CD40 DNA vaccine (DEC-CD40) suppressed Th17 cell

responses and reduced kidney damage in a rat model of

autoimmune glomerulonephritis.

A 2022 study reported fusing CD40L to the SARS-CoV-2 spike

in a DNA vaccine enhanced immunogenicity and reduced lung

pathology in Syrian hamsters post-challenge (73). CD40L acted as

both a targeting ligand and intrinsic adjuvant, amplifying

neutralizing antibody responses and improving protection.

Returning to poultry vaccines, Huang et al. used Duck CD40L

(dusCD40L) in the context of a DNA vaccine against Tembusu

virus. CD40L co-delivery significantly boosted both humoral and

cellular immune responses against Tembusu virus (74) resulting in

significantly improved neutralizing antibody titers, IFNg
production, and viral clearance in challenge.
TABLE 2 Adjuvanticity of lipid delivery.

Antigen Ionizable Lipid, N/
P or weight ratio
(if specified)

Significant Findings Reference

SARS-CoV-2 spike
(wild-type and
Omicron BA.1)

SM-102 (N/P Ratio = 6) Induced comparable or superior humoral immunity to a matched mRNA-LNP in
multiple rodent models, improved protection from challenge

Liao et al. Molecular
Therapy Methods &
Clinical
Development (36)

SARS-CoV-2 spike
(Delta variant) fused to
CD40L ectodomain

KC2 and SM-102 (N/P
Ratio = 6)

Relative to naked DNA, LNP formulation led to superior neutralization titers and
reduced viral loads in challenge, was dose-sparing in hamsters

Tamming et al.
Molecular Therapy
Methods & Clinical
Development. (129)

Influenza H3N2 HA MC3 (N/P ratio = 4.5) Induced antibody titers and T cell responses in swine, with significantly reduced
viral shedding and lung pathology in challenge

Nguyen et al.
mSphere. (130)

Influenza H1N1 HA MC3 (N/P ratio = 4.5
and 5.5)

Induced humoral and cellular responses as well as mediated protection in an
influenza challenge model in mice and swine

Nguyen et al.
mSphere. (130)

HPV16 and HPV18
E6/E7

MC3, SM-102, and
ALC-0315

Enhanced T Cell responses relative to DNA delivered using electroporation. SM-
102-based formulations drove superior immunogenicity relative to MC3 and
ALC-0315.

Li et al.
Vaccines. (131)

SARS-CoV-2 spike
(Gamma variant)

Ionizable lipid not
specified (Lipid to DNA
weight ratio = 10:1)

Induced robust humoral and cellular immune responses, reduction in viral load,
lung pathology in SARS-CoV-2 challenge models in mice and hamsters

Guimaraes et al.
Nature
Communications (37)

Influenza H1N1 HA
and SARS-CoV-2 spike
(wild-type)

SM-102 (N/P ratios 10.5,
5.3, and 2.6)

Robust innate immune responses, notably migratory DCs. Comparable humoral
immune responses and superior T cell responses to mRNA-LNP and adjuvanted
protein. Protection from challenge in SARS-CoV-2 model

Tursi et al.
Cell Rep Med. (38)

SARS-CoV-2 spike
(Omicron variant)

SM-102 (Total lipid to
DNA weight ratio = 20:1)

Induced humoral immune responses and is protective in a wild-type SARS-CoV-2
challenge model in hamsters

Yang et al.
Molecular Therapy
Nucleic Acids. (132)

B. burgdorferi OspC KC2 Elicited binding and functional antibody responses, mediates protection in B.
burgdorferi challenge

Pfeifle et al.
Frontiers in
Immunology. (133)

OX-40L KC2, MC3, C12-200
(Ionizable lipid to DNA
weight ratio 5:1)

Intratumoral delivery of plasmid DNA in LNPs led to a reduction in tumor
burden. OX-40L-expressing plasmid in combination with an siRNA led to
improved challenge outcomes.

Qin et al.
Journal of Controlled
Release. (134)

SARS-CoV-2 spike,
PD-L1, p53R172H

SM-102, ALC-0315, MC3 Induced superior humoral and cellular immune responses relative to
electroporation. Expression of PD-L1/p53 variant led to humoral immune
responses and a reduction in tumor burden

Chai et al.
Molecular Cancer. (135)
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Kornuta et al. evaluated the use of a plasmid encoding soluble

CD40L combined with the adjuvant Montanide™ GEL01 to

enhance a DNA vaccine (pCIgD) targeting bovine herpesvirus 1

(BoHV-1) (75). The combination improved DC activation in vitro

and significantly boosted humoral and cellular immune responses

in vaccinated cattle, including increased virus-specific IgG

subclasses, neutralizing antibodies, and IFNg/IL-4 secretion. Upon

viral challenge, animals receiving the CD40L-enhanced vaccine

showed reduced clinical symptoms, lower viral shedding, and

stronger proliferation of lymphocytes, indicating improved

protective efficacy.

These studies highlight the multi-faceted impact of CD40L as an

adjuvant, capable of enhancing both humoral and cellular immune

responses across animal models. CD40L was observed to mitigate

immunopathology and facilitate antigen targeting to DCs,

suggesting its potential as a molecular adjuvant for infectious

disease and autoimmune vaccine strategies.
CD80/CD86

CD80 and CD86 (B7-1/B7-2) are functional homologs that

serve as ligands for the co-stimulatory receptor CD28, which is

constitutively expressed on naïve T cells. These molecules are

expressed on APCs, with DCs typically expressing both, while

monocytes and macrophages predominantly express CD86.

Engagement of CD28 by CD80/86 delivers the secondary

activation signal required for T cell activation, promoting

proliferation, IL-2 production, resistance to anergy, and

expression of the anti-apoptotic protein Bcl-xL (76, 139–141).

Following identification in the early 1990s (139, 140), CD80/86

were first used as DNA-encoded adjuvants in 1997, recognized for

their ability to induce cellular responses. Co-immunization with

CD86, and not CD80, was found to significantly enhance specific T-

cell mediated responses, highlighting CD86’s more potent effect as a

molecular adjuvant (141, 142).

In 2022, Liu et al. identified a homolog of CD80/86 expressed

primarily on APCs in flounder and constructed a bicistronic DNA

vaccine co-expressing CD80/86 with the Vibrio anguillarum

antigen OmpK (76). Co-expression of CD80/86 enhanced

humoral immune responses, evidenced by increased IgM+ and

CD4+ cell proportions and elevated expression of activation

markers and cytokines at the injection site. The vaccine

combining CD80/86 with OmpK significantly improved survival

after bacterial challenge compared to antigen alone, supporting the

adjuvant potential of CD80/86 in teleost fish. Phylogenetic analysis

revealed that bony fish CD80/86 is more closely related to

mammalian CD86 than to CD80. CD80/86 has also been

implemented as a DNA-encoded adjuvant in several cancer

vaccines (143).

Despite early promise in the 2000s, interest in CD80/CD86 as

molecular adjuvants has declined. Over time, research has shifted

toward stronger or more multifunctional co-stimulatory ligands,

like CD40L, which not only activate T cells but also directly license

DCs and promote cytokine production.
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Adenosine deaminase

Adenosine deaminase-1 (ADA) is a highly-conserved enzyme,

known as a key regulator of the immune system and purine

metabolism. ADA regulates intra- and extracellular levels of

adenosine and has both enzymatic and extraenzymatic immune

functions. Pegylated bovine ADA-1 (PEGademase) has been FDA-

approved for use in humans since 1990 as an enzyme replacement

therapy (ERT) fo r ADA-defic i en t s eve re combined

immunodeficiency (ADA-SCID). The established regulatory and

safety record of PEGademase offers potential benefit for clinical

development of plasmid-encoded ADA. In 2017, Tardif et al.

identified ADA1 expression as a key driver of T follicular helper

(TFH) cell differentiation, both within germinal centers (GC TFH)

and in circulating TFH (cTFH) and demonstrated that recombinant

ADA enhanced antibody production in in vitro TFH and B cell

coculture assays (144). This prompted the design of plasmid-

encoded ADA-1 (pADA) for evaluation in the context of DNA

immunization. In 2020, pADA was found to enhance the

maturation of myeloid DCs and promote IL-6 secretion, fostering

a microenvironment conducive to TFH polarization (9). Co-

administration of pADA with an HIV-1 envelope DNA vaccine

significantly increased TFH cell frequencies in draining lymph nodes

and boosted serum HIV-specific IgG responses (9). In these studies,

when delivered alongside both DNA and protein immunogens,

pADA uniquely enabled the induction of homologous HIV-1

neutralizing antibodies, highlighting its capacity to qualitatively

enhance germinal center and antibody responses in vivo.

Recent findings have further characterized these effects. In 2023,

scRNAseq analysis revealed that aged mouse T cells had decreased

ADA1 transcripts and we hypothesized that pADA could enhance

vaccine-induced immunity in aged models of SARS-CoV-2

immunization and challenge. Indeed, we demonstrated that co-

delivery of pADA significantly enhances both cellular and humoral

responses in aged mouse models (7). Co-delivery of ADA enhanced

both cellular and humoral responses to a SARS-CoV-2 DNA

vaccine in aged mice, ameliorating age-associated declines in

IFNg secretion and antibody quality (7). pADA broadened the

affinity and breadth of spike-specific antibodies and promoted a

TH1-skewed transcriptional profile in lymph node lymphocytes

while reducing FoxP3 expression. These effects correlated with

reduced viral load and improved survival following SARS-CoV-2

challenge, demonstrating that pADA restores vaccine efficacy in

immunosenescent hosts. Together, these studies highlight pADA as

a broadly-active molecular adjuvant that enhances cellular and

humoral immunity by shaping T and B cell interactions,

promoting dendritic cell activation, and mitigating age-associated

declines in immune responsiveness.
C3d

C3d, a fragment of the complement component C3, binds to

complement receptor 2 (CR2) which is located on the surface of

follicular dendritic cells (FDC), B cells, and T cells. C3d was first
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used as an adjuvant in 1996, with 2 or 3 copies of recombinant C3d

delivered alongside the model antigen HEL, drastically increasing

antibody responses by up to 10,000-fold (145). This finding

highlighted the ability of C3d to amplify immune responses by

targeting CR2/CD21 and lowering the activation threshold for B

cell responses.

Recent studies have investigated the impact of C3d fusion across

the pDNA and mRNA platforms. A 2019 study in pigs, reported a

DNA vaccine encoding a fusion of porcine C3d and the Porcine

Circovirus Type 2 (PCV2) ORF2 protein induced cross-protective

immunity against different PCV2 genotypes (77). The C3d-fused

construct (pVOC3) contained three copies of C3d and elicited

stronger PCV2-specific antibody responses, increased IFNg-
secreting T cells, and reduced viremia compared to the non-

adjuvanted construct (pVO).

A 2023 study investigated various improvements to mRNA

vaccines including C3d fusion to the spike or RBD antigens (78).

C3d fusion significantly enhanced immunogenicity, inducing up to

tenfold higher antibody titers in mice compared to unmodified

antigen mRNA. The C3d fusion promoted both humoral and

cellular immune responses, with evidence of balanced Th1/Th2

polarization influenced by LNP composition and delivery route.

This strategy also avoided systemic inflammation and showed

efficacy against SARS-CoV-2 variants. These studies demonstrate

the potential of C3d as a molecular adjuvant for nucleic acid

vaccines, particularly for enhancing humoral immunity.
Adjuvanticity of lipid delivery

The first ionizable lipids were developed for DNA transfection

starting in 1989, followed by iterations developed for siRNA

delivery through the 2000s, and more recent formulations

optimized for mRNA constructs (40). The development of lipid

nanoparticles (LNPs) to deliver mRNA vaccine antigens was

necessitated by the inherent instability of mRNA; LNPs protect

the mRNA cargo and promote cellular uptake. Recently, multiple

studies have noted and described an inherent adjuvanticity of LNPs

(146–149) and systems vaccinology approaches have characterized

innate and adaptive immune responses to mRNA-LNP (150–152).

In 2021, Alameh et al. demonstrated that lipid nanoparticles possess

intrinsic adjuvant activity independent of their mRNA cargo,

eliciting strong T follicular helper cell responses and durable

antibody production (147). This immunostimulatory effect was

dependent on IL-6 induction but occurred independently of

MyD88 or MAVS signaling. When co-administered with

recombinant protein antigens, empty LNPs elicited superior

humoral responses compared to a benchmark squalene adjuvant,

underscoring their potential as stand-alone adjuvants in

vaccine formulations.

Ndeupen et al. confirmed the highly inflammatory properties of

LNP’s, noting empty LNP’s activate multiple inflammatory

pathways, induce production of IL-1b and IL-6, and trigger l1b

and Nlrp3 -associated inflammasome activation (146). Tahtinen

et al., noted that RNA-LNP vaccines, regardless of administration
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route, activate the IL-1–IL-1ra axis and drive systemic

inflammation in humans through IL-1b-dependent cytokine

cascades, including IL-6 (152). In 2025, LNPs were identified to

activate NF-kB and IRF signaling pathways in monocytes via Toll-

like receptor 4 (TLR4) in the absence of mRNA and further

confirmed as the primary driver of innate immune activation

using knockout cell lines (153). These findings characterize the

immunostimulatory effects of LNP-mediated delivery, representing

a tunable adjuvant component and potent construct design

capability. While reducing reactogenicity has been an area of

focus in the RNA space, the intrinsic adjuvant properties of LNP

formulations offer a substantive and promising route to boost

immunogenicity for DNA constructs.

Recently, ionizable LNP-encapsulated plasmid DNA (DNA-LNPs)

have emerged as an immunogenic vaccine modality against infectious

diseases (36–38, 129, 130, 132, 133, 154) and cancer (131, 134, 135).

Numerous studies (Table 2) have characterized different ionizable

lipids, namely SM-102, ALC-0315, MC3, and KC2. The relationship

between the ionizable lipid amine groups and DNA backbone

phosphates, or N/P ratio, has also been examined. Various studies

report an N/P ratio of approximately 6 (or lower lipid to DNA weight

ratios) (36, 37, 129, 134, 154). This variable was studied in depth with

an H1N1 HA-expressing DNA-LNP, where Tursi et al. report that

higher N/P ratios led to improved biophysical characteristics such as

particle size and zeta potential, supporting improved immunogenicity

(38). The LNP component, specifically the ionizable lipid, has intrinsic

adjuvanticity as previously described. Unlike mRNA-LNPs, DNA-LNP

formulations additionally drive cGAS-STING signaling due to the

presence of plasmid DNA in the cytoplasm; this pathway contributes

to the activation of innate immune subsets associated with

immunization (38). Beyond the intrinsic adjuvanticity of ionizable

lipids, molecular adjuvants have also been evaluated in combination

with DNA-LNP vaccines, including studies utilizing CD40L and OX-

40L (134).
Remaining challenges

Despite promising advances, gene-encoded adjuvants face

several remaining limitations that constrain their translation and

optimization. Beyond IL-12, few molecular adjuvants have been

clinically evaluated in infectious disease contexts (82–85).

Regulatory frameworks specific to gene-encoded adjuvants,

particularly for mRNA platforms encoding cytokines or co-

stimulatory ligands, are underdeveloped. Notably, most clinical

evaluation of gene-encoded adjuvants has occurred in oncology,

across both the DNA and mRNA platforms (31, 32, 48, 49).

A core technical challenge is achieving precise control over

expression kinetics. Unlike conventional adjuvants with defined

pharmacokinetics, gene-based adjuvants rely on in vivo

transcription and translation, which introduces variability in

expression timing, intensity, and tissue distribution. Because

plasmids can persist in host cells for extended periods, sustained

antigen or cytokine expression raises concerns about immune

tolerance (155). Several studies report that prolonged or
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dysregulated expression can impair adaptive immunity, promote T-

cell exhaustion, or diminish vaccine efficacy (28). Despite advances

in vector design and delivery strategies, achieving real-time, tunable

expression control in vivo remains difficult, particularly in

balancing immunogenic potency with safety in dynamic

immune environments.

While sustained expression may support effector T-cell

persistence, it also carries risks. In prophylactic settings,

prolonged antigen exposure can impair central memory

formation or trigger tolerance and anergy. In chronic infection

models such as hepatitis B virus (HBV), persistent antigen

expression from DNA vaccination has led to circulating immune

complexes and tissue pathology, raising context-dependent safety

concerns (Hanke, 2006). These findings emphasize that unregulated

or extended expression may compromise vaccine performance

depending on disease setting and immunological mechanism (156).

Temporal control is also critical for optimizing immune

outcomes. Irvine et al. (157) showed that the timing of cytokine

expression from gene-encoded adjuvants affects cytokine expansion

and shifts T helper polarization. For example, GM-CSF

administered before versus after immunization produced

divergent Th1/Th2 responses. While concerns persist regarding

chronic inflammation from sustained proinflammatory cytokine

expression (157), preclinical animal studies suggest that local

adjuvant production is self-limiting, inducing effects in local

draining lymph nodes and at the site of injection while being

undetectable in circulation.

Another limitation is incomplete mechanistic understanding

for many molecular adjuvants. While cytokines and co-stimulatory

ligands have well-defined immunological functions, their specific

roles when encoded as nucleic acid adjuvants remain incompletely

characterized. Molecules such as ADA and C3d have demonstrated

consistent immune enhancement across studies, yet their

mechanisms of action are still not fully resolved.

Finally, safety remains a concern, particularly the risk of

overactivation. Cytokines like IL-2 and IL-12 showed significant

toxicity when delivered as recombinant proteins, although plasmid-

encoded delivery and localized expression has significantly

mitigated reactogenicity. For DNA-based platforms, a monitored

safety risk is genomic integration. FDA guidance requires that

integration frequencies remain below the spontaneous mutation

rate. Existing studies overwhelmingly support the safety of DNA

vaccines, with the approval of ZyCoV-D in 2021 representing a

milestone in regulatory acceptance (26, 158).
Discussion and concluding remarks

Adjuvant development has historically been primarily

empirical, with mechanistic insight often applied retrospectively.

However, evolving methodologies, including growing insight into

platform-specific immune signatures, supports a continued shift

toward rational construct design. DNA and RNA vaccines differ in

antigen expression kinetics and innate sensor engagement, shaping

their downstream immune profiles (159, 160). mRNA–LNP
Frontiers in Immunology 13
vaccines activate endosomal and cytosolic RNA sensors such as

TLR7/8 and RIG-I, often driving strong CD4 and antibody

responses (161–163). Their rapid and transient cytosolic

expression is frequently associated with high reactogenicity. In

contrast, DNA vaccines often engage sensors including cGAS–

STING and TLR9 and tend to induce more delayed, sustained

antigen expression, eliciting characteristically strong CD8 T cell

responses (27, 28, 38). These general trends point to opportunities

for tuning adjuvant strategies to better complement each platform.

Mechanistically informed adjuvants offer potential to tailor innate

activation and moderate reactogenicity. Aligning adjuvants with the

immune kinetics and qualitative response patterns of each platform

may improve both efficacy and tolerability in next-generation

vaccine development.

Route of administration and target tissue influence antigen

presentation, innate activation, and immune priming, making

them important variables in adjuvant design. Intramuscular (IM)

injection remains the standard for nucleic acid vaccines due to

practical advantages and regulatory precedent, but skeletal muscle

contains few resident antigen-presenting cells (APCs), often

requiring adjuvants that promote APC recruitment or strong

immunostimulatory formulations like lipid nanoparticles. In

contrast, intradermal and mucosal routes target tissues rich in

specialized APCs and may support efficient priming at lower

doses. However, these routes also introduce challenges, including

local inflammation or tolerance induction, that necessitate route-

specific tuning of adjuvant potency and formulation.

DNA vaccines have demonstrated greater versatility in non-

intramuscular delivery routes (28, 29), including intradermal

administration (164, 165), chitosan-based formulations,

electroporation, and mucosal-targeting adjuvants. In contrast,

mRNA–LNP vaccines are predominantly administered

intramuscularly, where they have shown robust immunogenicity,

with most innovation focused on particle stabilization, such as

PEGylation, or optimizing lipid composition to enhance delivery

and reduce reactogenicity (166). For both platforms, adaptation

strategies include chemokines like CCL20 to recruit mucosal

dendritic cells (167–170), mucoadhesive or pH-sensitive carriers

for stability (168–170), and tissue-matched PRR agonists (171, 172).

Some adjuvants show route-dependent efficacy. For example, CpG

performs best parenterally (173, 174), while cholera toxin

derivatives show greater efficacy at mucosal surfaces (175, 176).

Ongoing work explores candidates like chitosan and cGAMP to

improve mucosal delivery without excessive inflammation (28, 29).

As rational adjuvant design advances, aligning formulations with

the immunological features of each delivery route will be key to

improving vaccine performance.

Nucleic acid vaccines have made remarkable progress since their

inception over three decades ago. Molecular adjuvant technology has

developed in parallel with nucleic acid vaccine platforms, with recent

studies refining their characterization across diverse classes of antigens

and building on the strong foundation of adjuvant delivery. Molecules

such as IL-12, IL-2, and GM-CSF have shown continued promise in

plasmid-encoded formats, where localized delivery has been essential

for mitigating safety concerns. In contrast, candidates like IL-15, IL-18,
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and CD80/CD86 have faced developmental setbacks despite

encouraging early data. Emerging adjuvants such as adenosine

deaminase reflect the expanding platform-specific toolkit. Although

challenges remain, including the need for precise expression control

and a limited clinical footprint, momentum continues to build for

DNA and mRNA vaccine technologies.

Molecular adjuvants are becoming increasingly mechanistically

tailored and platform-adapted, solidifying their central role in nucleic

acid vaccine technology. The distinct immunological profiles elicited by

DNA and RNA vaccines demand adjuvants that are matched to their

kinetics, antigen presentation pathways, and reactogenicity.

Additionally, state-of-the-art computational tools (177) combined

with structure-guided methods enable the development of a new

generation of adjuvant molecules designed de novo (178–181).

Advances in vector engineering, delivery technologies, combination

approaches, optimization of immunogen–adjuvant pairings, and

increased assessment in human patients will enable continued

development for nucleic acid vaccines, supporting broader platform

adoption to address major global health challenges.
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