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Mitochondria, as regulators of cellular energy production and metabolism, play a

crucial role in tumor growth and survival. Tumors are reprogrammed to

accommodate rapid proliferation through the Warburg effect. This

reprogramming leads to the accumulation of metabolites such as lactate and

ketone bodies, thereby lowering the pH of the tumor microenvironment,

inhibiting the activity of effector T cells and NK cells, while promoting the

infiltration of regulatory T cells and MDSCs, forming an immunosuppressive

microenvironment. ROS produced by mitochondria can affect immune cell

function by modulating their signaling pathways. Mitochondria also release

DAMPs, which activate the antigen-presenting capacity of dendritic cells and

initiate anti-tumor immune responses. Currently, various methods have been

employed, such as DLCs modifications and mitochondrial targeted delivery,

which enable drugs to penetrate the lipid bilayer and enter the mitochondria,

thereby helping to reduce immunosuppression in the tumor microenvironment.

In this review, we will discuss the impact of mitochondria on tumor immunity,

strategies to target tumor cell mitochondria, and progress on the discovery of

mitochondria-targeted drugs to enhance tumor immunity, providing potential

directions for developing new cancer therapeutic strategies.
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1 Introduction

Mitochondria are essential intracellular organelles that primarily facilitate energy

production and metabolic regulation (1). They generate adenosine triphosphate (ATP)

via oxidative phosphorylation (OXPHOS), thereby providing cells with the energy required

for various functions (2). Moreover, mitochondria modulate diverse physiological

processes including calcium homeostasis, redox balance, apoptosis and immune

responses through mitochondrial DNA (mtDNA), reactive oxygen species (ROS), and

metabolite signaling pathways (3, 4). Consequently, abnormal mitochondrial function may

contribute to the pathogenesis of various diseases, including cancer.
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Mitochondria play a particularly critical role in tumorigenesis and

progression (5). Tumor cells frequently undergo metabolic

reprogramming to support rapid proliferation, exemplified by the

“Warburg effect,” wherein cells preferentially utilize glycolysis over

OXPHOS despite adequate oxygen availability (6). This metabolic shift

not only sustains tumor cell growth and survival but also modulates

immune cell function within the tumor microenvironment (TME) (7).

For instance, hypoxia in the TME can induce T-cell exhaustion,

thereby impairing anti-tumor immune responses (8). Additionally,

mitochondrial dysfunction is closely associated with immune escape

mechanisms that promote tumor progression and metastasis (9).

Recent years have witnessed significant advancements in tumor

immunotherapy, particularly with the advent of immune

checkpoint inhibitors. Nevertheless, many patients exhibit either

primary or acquired resistance to such therapies, a phenomenon

closely linked to the immunosuppressive nature of the TME (10).

Immune cells, such as tumor-associated macrophages (TAMs), rely

on mitochondrial metabolic functions to maintain their

immunosuppressive activity (11). Therefore, targeted therapies

aimed at modulating mitochondrial function may overcome

immune resistance by reprogramming immunosuppressive

cells (12). For example, recent progress in mitochondrial-targeted

metabolic reprogramming has demonstrated that enhancing T-cell

bioenergetics can restore antitumor activity (13). Furthermore,

mitochondrial-derived ROS modulates immune cell function via

redox signaling; low ROS levels promote T-cell exhaustion, whereas

normal ROS levels enhance antigen presentation by dendritic cells

(DCs) (14). Given the critical role of mitochondria in tumor

metabolism and immunotherapy, elucidating how mitochondria-

targeting strategies influence tumor immunotherapy represents a

promising area of research. In this review, we will explore the

emerging role of mitochondria in tumor immunotherapy and

discuss the recent advances in mitochondria-targeted drugs that

enhance tumor immunity, thereby providing important directions

for future therapeutic strategies.
2 Mitochondria and tumor immunity

Tumor cells adapt to increasing energy and biosynthetic

demands by reprogramming relevant metabolic pathways (15).

Nutrient depletion and overproduction of metabolic byproducts

driven by tumor development in the TME help to establish an

immunosuppressive TME by regulating the metabolic

reprogramming of tumor-infiltrating immune cells and associated

signaling activation to control the polarization of different types of

immune cells, ultimately resulting in metabolic derangement-

mediated deficiencies and decreased anti-tumor immune

responses (16). Mitochondria, as intracellular organelles with

diverse biological functions and highly variable, have key

regulatory roles in metabolism and activating immune cells (17).

Glucose, fatty acid and amino acid metabolism are abnormal during

tumor development and progression (18) (Figure 1). ROS-induced

mtDNA damage impairs mitochondrial OXPHOS, forcing tumor
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cells to rely on glycolysis for ATP production (19). Abnormal

mitochondrial function in the TME is an important cause of

cancer formation, progression and metastasis.
2.1 Mitochondrial metabolic regulation of
immune cells

T cells rely on OXPHOS and fatty acid oxidation in the resting

state, but switch to aerobic glycolysis and fatty acid synthesis upon

activation to support proliferation (20, 21) (Figure 2). During T cell

activation, mitochondria accumulate in the immune synapse formed

by T cells and antigen-presenting cells (APCs), and activation of the T

cell receptor stimulates an increase in mitochondrial fission, which

increases the number of mitochondria and cristae loosening, and

generation of ROS and ATP, which are essential in maintaining

calcium homeostasis and regulating its downstream-related signaling

(22). During the transformation of CD8+ T cells from effector T cells

to memory T cells, activation of Sirt3, a mitochondrial deacetylase,

reduces protein acetylation, which enhances OXPHOS activity and

generation and survival of memory T cells, resulting in increased

anti-tumor immune activity (23). In contrast, competition of tumor

cells for glucose and other nutrients in the TME suppresses the

metabolism and function of immune cells (24). Hypoxia in the TME

promotes mitochondrial structural damage and reduces ATP

production by down-regulating MYC expression levels, which

induces T-cell exhaustion (TExh) and anti-tumor dysfunction of

CD8+ T cells. Tumor-infiltrating T cells are in a state of high oxidative

stress for long periods of time due to glucose and oxygen-deficient

environment-mediated metabolic insufficiency and impairment of

mitochondrial function and quality (25). In addition, peroxisome

proliferator-activated receptor g coactivator-1a (PGC-1a), a key

regulator of mitochondrial biogenesis, is upregulated in CD8+ T

cells in the TME resulting in their dysfunction. This dysfunction can

be reversed/rescued by enhancing cellular expression of PGC1a,
which increases CD8+ T cell anti-tumor activity (26).

Natural killer (NK) cells are cytotoxic lymphocytes, and their

cellular activity is significantly correlated with levels of glucose

metabolism. When glucose levels are elevated, NK cell activity is

significantly enhanced. After activation of NK cells, intracellular

sterol regulatory element binding protein (SREBP) binds to and

upregulates its mechanistic target rapamycin complex 1 (mTORC1)

expression and enhances aerobic glycolysis and OXPHOS

metabolism (27). The transcription factor cMyc can significantly

increase NK cell metabolism; if the c-Myc protein is defective, NK

cells will reduce their expression of key gluconeogenesis and

mitochondrial enzymes, leading to impaired immune function

(28). When NK cells transition to the memory stage,

mitochondrial autophagy-related proteins Bnip3-Bnip3L promote

their transition by inducing mitochondrial autophagy to remove

damaged mitochondria and reduce the generation of ROS (29).

Studies have shown that in a hypoxic TME, the mitochondrial

morphology of tumor-infiltrating NK cells shows significant
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fragmentation and division compared to normal NK cells. These

changes in mitochondrial morphology significantly reduce the

ability of NK cells to mediate tumor immune surveillance (30).

Mitochondria also play a key role in macrophage polarization.

In the early stage of tumor formation, pro-inflammatory cytokines

such as toll-like receptor (TLR) agonists can promote the

polarization of TAM to an M1 phenotype, and nitric oxide (NO)

and ROS produced by M1 type macrophages can significantly

inhibit the proliferation and induce tumor cell death (31). During

tumor progression, interleukin (IL)-4 and colony stimulating factor

1 (CSF1) induce the polarization of TAM to M2 phenotype. M2

macrophages secrete epidermal growth factor (EGF),

matrixmetalloprotein9 (MMP-9), and other proteins to inhibit
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anti-tumor immunity and promote tumor progression (32). M2

macrophages rely on the OXPHOS metabolic pathway for energy

supply (33), which is linked to fatty acid oxidation (FAO) and

characterized by high expression of CD36. CD36 promotes the

mitochondrial OXPHOS process, resulting in mitochondrial fusion

and lengthening (34). Additionally, M2 macrophages synthesize

large amounts of arginase (ARG) and indoleamine2,3-dioxygenase1

(IDO1), which deplete arginine and tryptophan respectively,

leading to immune dysfunction (35). FAO plays a key role in

human M2 macrophage function by enhancing IL-1b secretion to

promote cancer cell migration (36).

The metabolic shift from OXPHOS to glycolysis and dynamic

changes in mitochondrial morphology lead to alterations in
FIGURE 1

Glucose, fatty acid, and glutamine metabolism in mitochondria during tumor development. In the Warburg effect, unlike normal differentiated cells,
glucose enters the cell through GLUT1 and mainly relies on mitochondrial oxidative phosphorylation to provide energy for the cell, while most
tumor cells rely on aerobic glycolysis and are eventually oxidized to lactate instead of acetyl-CoA (ac-COA). The main substrate for lipid synthesis is
cytoplasmic acetyl-CoA synthesized through a series of reactions. Fatty acid oxidation (FAO) allows long-chain FA to be converted into acetyl-CoA
in the mitochondria and enter the TCA cycle to generate ATP and malic enzyme-dependent NADPH. Glutamate is then converted into a-
ketoglutarate (a-KG) through two different pathways and can participate in the TCA cycle as a replenishing substrate. Glutamine sequentially
catalyzes the formation of arginine (Arg) through citrulline (Cit), and then continues to decompose under the action of arginase (ARG) to produce
urea and ornithine (Orn), thus forming the urea cycle.
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immune cell polarity and phenotype, which in turn affects the

biology of immune cells. Therefore, studying the role of

mitochondrial metabolism is important for understanding

regulation of tumor immunity and developing new drugs that can

promote tumor immunity.
2.2 Mitochondrial ROS in tumor immunity

Mitochondria are the main intracellular ROS-generating

organelles, producing ROS through the electron transport chain

(ETC) and OXPHOS during aerobic respiration (37). ROS have

dual roles in tumorigenesis and progression. Low levels of ROS act

as important cellular signaling molecules involved in multiple life

activities such as gene expression, cell proliferation, differentiation,

and stress responses. However, when the intracellular levels of ROS

are too high, oxidative damage to nucleoplasm, mitochondrial

DNA, proteins and lipids occurs, which ultimately leads to

cellular damage. High levels of ROS facilitate tumorigenesis by

promoting tumor cell proliferation, migration, invasion and

angiogenesis, inflammatory responses and immune escape,

helping tumor cells adapt to the harsh TME. In addition, ROS-

mediated inflammatory responses can also change the composition

of immune cells in the TME and enhance immune suppression (38).

Therefore, maintaining a balance between intracellular ROS

production and consumption is essential for maintaining cellular

homeostasis and organismal health.

2.2.1 ROS and formation of a tumor
immunosuppressive microenvironment

As highlighted in the previous section, ROS plays a central

regulatory role in the TME and drives cancer development and

progression (39). Tumor cells adapt to the high reactive oxygen

environment and avoid cell death by inducing the secretion of

inflammatory cytokines, stabilizing hypoxia-inducible factor-1a
(HIF-1a), activating AMP-activated protein kinase (AMPK)

signaling, and promoting the production of nicotinamide adenine

dinucleotide phosphate (NADPH), which in turn promotes tumor

metastasis and angiogenesis (40). In addition, ROS regulates the

activation status of immune cells in the TME that affect cancer

progression. High ROS levels oxidize major histocompatibility

complex (MHC) class I molecules, which impairs antigen peptide

loading and T-cell receptor(TCR)-MHC/peptide complex stability

(41). Tumor cells and immunosuppressive cells in the

microenvironment act synergistically to induce mitochondrial

ROS (mtROS) generation, aiding in the establishment of immune

tolerance (42). Lon protease in the mitochondrial quality control

system induces ROS generation by interacting with multiple

proteins, mediating activation of the NF-kB signaling axis and

enhancing downstream signaling activity to promote tumorigenesis

(43). Highly expressed HIF-1a promotes mtROS production by

inducing Lon protease expression (44). Lon protease binds PYCR1,

a key enzyme in proline metabolism, enhancing NADPH

consumption and promoting electron leakage in the ETC, thereby

elevating mtROS (45).
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2.2.2 Effects of mtROS on immune cell activation
in the TME

To avoid the deleterious effects of high ROS levels on immune

cells, there exists a set of strict regulatory mechanisms in the

organism to maintain a delicate balance between immune cell

activity and ROS levels (46). Precise control of ROS levels in NK

cells and T lymphocytes prevents their damage to other

lymphocytes (Figure 3). In the tumor microenvironment, IL-15

has been shown to induce NK cells to enhance their resistance

to oxidative stress and protect against ROS via the thioredoxin

system (47). During anti-tumor immunity, activated T lymphocytes

and NK cells recruit neutrophils and macrophages by increasing

ROS production, ultimately killing tumor cells (48). On the

other hand, elevated ROS inhibits prolyl hydroxylases (PHDs),

stabilizing HIF-1a to drive myeloid-derived suppressor cell

(MDSC) differentiation (49). For example, tumor-associated

fibroblasts promote the transformation of peripheral monocytes

into MDSCs by increasing their oxidative stress, thereby inhibiting

the proliferation of CD8+ T cells and promoting tumor

progression (50).

ROS plays an important regulatory role in T cell activation,

promotion of T cell antigen-specific proliferation and apoptosis

(51). Moderate levels of ROS are essential for the normal activation

and differentiation of T lymphocytes, whereas high levels of ROS

promote T cell apoptosis by up-regulating the apoptosis-related

factor Fas and down-regulating expression of the anti-apoptotic

protein Bcl-2 (52). In addition, extracellular ROS affects T cell

activation by altering the immunogenicity of antigenic peptides in

APCs (53). During immunogenic cell death (ICD), intracellular

damage-associated molecular patterns (DAMPs) such as ATP,

endoplasmic reticulum calmodulin, and high mobility group

protein B1 leaks to the extracellular space, which in turn activates

DCs by interacting with its receptors and triggers anti-tumor

immune responses in T lymphocytes (54). Nanoparticle-delivered

catalase scavenges extracellular H2O2, enhancing T cell infiltration

and reversing immunosuppression (55). In addition, reduced

glutathione deficiency in regulatory T cells (Treg) leads to

abnormal serine metabolism and down-regulates transcription

factor forkhead box P3 (Foxp3), which ultimately attenuates the

immunosuppressive function of Treg (56). These studies suggest

that ROS levels and sustained generation capacity have a key role

in ICD.

ROS have long been considered to be harmful metabolites of

mitochondria, but recent studies have shown that mtROS have a

necessary signaling role in preventing excessive immune responses,

and in particular ROS play a key role in regulating macrophage

immune responses (57). Under normal conditions, ROS affects

macrophage polarization by modulating relevant signaling

pathways (58). ROS also have important regulatory roles in

macrophages subsets. For example, M1-type macrophages

generate ROS through NADPH-oxidase (NOX) 2 signaling,

which activates NF-kB signaling and enhances cellular

phagocytosis (59). In contrast, high levels of ROS have harmful

effects on macrophages (60). During tumorigenesis, macrophages

become an important immune cell population for maintaining
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immune homeostasis in the TME. Tumor cells remodel the

peripheral and distal TME by secreting tumor-derived factors,

which stimulate the activation of both monocytes and

macrophages in the microenvironment and accelerate tumor

progression (61). Although TAM can exhibit both pro-

inflammatory M1-type and anti-inflammatory M2-type polarized

forms, it is generally accepted that TAM exhibit similar functions to

M2-type macrophages, promoting tumor growth, metastasis,

angiogenesis, and immunosuppression by secreting cytokines,

chemokines, and proteases (62). Mitochondrial Lon protease is
Frontiers in Immunology 05
upregulated in M2-type macrophages, suggesting that during

tumorigenesis macrophages may regulate Lon expression through

multiple signals, inducing mtROS generation and participating in

the TAM differentiation process (63).

DCs differentiated from monocytes have potent antigen

presentation properties, promote T-cell activation, and play an

important role in initiating and regulating immune responses

(64). DC maturation is regulated by different types of stimuli.

When immature DCs are stimulated by the pro-inflammatory

cytokine IL-6 or the TLR ligand lipopolysaccharide, they are
FIGURE 2

Metabolic reprogramming in immune cells during tumor progression. Immune cells in the TME achieve immunosuppressive and pro-tumor
phenotypes through metabolic reprogramming. (A) M1 macrophages prefer glycolysis and secrete a large amount of lactate. M2 macrophages
tend to show enhanced fatty acid oxidative phosphorylation ability. M2 macrophages mainly rely on FAO, OXPHOS and glutamine metabolism.
(B) Immediately after DC activation, glycolysis increases rapidly to provide ATP. DCs express ARG1 and IDO enzymes. Hydrolyze arginine and
tryptophan. (C) High lactate concentration blocks CD4+ T cell glycolysis. CD4+ T cells increase lipid uptake leading to a metabolic shift toward FAO.
(D) MDSCs express ARG1 and IDO enzymes. Hydrolyze arginine and tryptophan. Tumor-infiltrating MDSCs exhibit enhanced glycolysis and OXPHOS.
(E) In Tregs, FOXP3 expression inhibits glycolysis while promoting OXPHOS. FASN overexpression enhances lipid metabolism. (F) NK-mediated
glycolysis via mTORC1 signaling. and OXPHOS. (G) High lactate concentrations block T cell glycolysis. Activated CD8+ T cells convert glucose and
glutamine into biomass and rely on the Pl3K and AKT pathways. CD8+ T cells tend to FAO increase lipid uptake.
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transformed into mature DCs that express CD80, CD86 and IL-6,

and initiate effector T cell responses (65). In contrast, when DCs are

stimulated by the regulatory factors IL-10, transforming growth

factor beta (TGF-b), vitamin D3 and corticosteroids, they are

transformed into tolerogenic DCs, which ultimately contribute to

impaired differentiation of effector T cells and activation of Treg

(66). The TME establishes an immunosuppressive state by inducing

the differentiation of regulatory DCs and MDSCs, thus helping the

tumor to escape immune surveillance (67). In addition, TGF-b and

IL-10 secreted by tumor cells and TAM inhibit DC-mediated

antigen presentation and adaptive immune responses (68).

Ultimately, the concentration of ROS in the TME has an

important role in regulating the cytotoxic or immunosuppressive

effects of immune cells.
Frontiers in Immunology 06
Mitochondria are the main ROS-producing organelles in cells,

producing ROS and OXPHOS through ETC, which have a dual role

in tumors: low levels are important cell signaling molecules, high

levels cause oxidative damage and promote tumor development,

and ROS balance is key to cell homeostasis.

In tumors, ROS drives cancer progression, and tumor cells can

adapt to a high ROS environment, and also regulate the activation

state of TME immune cells, such as damaging the stability of T cell-

related complexes, synergizing with immunosuppressive cells to

help build immune tolerance, and Lon protease is also involved in

promoting mtROS production. At the same time, ROS affects a

variety of immune cells: regulates the activity of NK cells and T

lymphocytes, promotes MDSC differentiation, affects macrophage

polarization and function, regulates DC maturation and antigen
FIGURE 3

Role of ROS in tumors and immune cells. ROS are mainly generated in the electron transport chain on the inner membrane of mitochondria during
oxidative phosphorylation. This leads to intracellular oxidative stress. (A) In macrophages, ROS induce powerful intracellular changes by activating
signaling pathways such as NF-kB, AP-1, and NRF2. Activation of NF-kB and AP-1 leads to the production of key pro-inflammatory cytokines.
(B) NOX family members in MDSC cells directly mediate the production of ROS, further promoting the inflammatory cascade. (C) TCR engagement
can mediate the production of ROS through NOX family members, increasing the activity of NFAT, Myc, and mTOR. (D) ROS can affect DC
maturation, antigen presentation, NF-kB activation, and induction of anti-inflammatory cytokines. (E) ROS induced in NK promotes NK cell apoptosis.
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presentation, and ROS concentration in the TME plays an

important role in regulating immune cell function.
2.3 Role of mtDNA in anti-tumor immunity

Genomic mutations in mitochondria are an important part of

the cancer mutant genome, and mtDNA dysfunction and gene

mutations are closely related to cancer development (69).

Mitochondrial gene copy number abnormalities, aberrant gene

expression and altered mtDNA epigenetic modifications

frequently affect cancer development and mal ignant

transformation by regulating cellular metabolism, ROS

production and cell-cell interactions. Furthermore, the location

and level of mtDNA gene mutations can confer different degrees

of competitive advantages to cancer cells (70). mtDNA leaked into

the cytoplasm by mitochondria during stress is an important source

of DAMPs, and cytoplasmic mtDNA binds to and activates different

DNA pattern recognition receptors, inducing strong intrinsic

immune responses (71) (Figure 4).
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When mitochondrial stress occurs, mtDNA can be activated by

BAX/BAK-dependent mitochondria l outer membrane

permeabilization (MOMP) or mitochondrial permeability

transition pore (mPTP), and mtDNA can bind to and activate

different DNA pattern recognition receptors to induce strong

intrinsic immune responses (72). After release into the cytoplasm,

mtDNA can be recognized by pattern recognition receptors such as

cGAS, TLR9 and NLRP3, which activate downstream inflammatory

signaling pathways.

When mtDNA leakage occurs, the cytoplasmic localized

receptor cGAS recognizes mtDNA and induces generation of the

second messenger 2´3´-cGAMP. Subsequently, cGAS activates

endoplasmic reticulum-localized protein STING and mediates the

downstream activation of the type I interferon (INF-I) signaling

pathway and the associated inflammatory response (73). Studies

have shown that cGAS-STING signaling activation has an

important regulatory role in tumor immunity. Tumor-specific

adaptive immune responses, including cytotoxic T-cell (CD8+ T-

cell) activation, are dependent on INF-I signaling from APCs.

Activation of INF-I is largely mediated by the cGAS-STING
FIGURE 4

Immune regulation by mtDNA in tumors cells. (A) Mitochondria can release mtDNA in response to external or endogenous stress. The released
mtDNA triggers various pro-inflammatory signaling pathways through TLR9, cGAS-STING, or through the cytoplasmic inflammasome NLRP3.
(B) mtDNA released by tumor cells is transferred to DC cells, stimulating the activation of the cGAS-STING pathway and leading to the release of
type I interferons. (C) mtDNA released by tumor cells is transferred to DC cells, stimulating the activation of the cGAS-STING pathway and leading
to the release of type I interferons, inducing immunosuppressive M2 phenotype macrophages. (D) mtDNA released by tumor cells is transferred to
T cells, stimulating the cGAS-STING pathway and leading to the release of type I interferons.
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signaling pathway (74). mtDNA can enhance the function of Treg

through the cGAS-STING signaling pathway, thereby suppressing

tumor immunity and promoting the development of T lymphoma

(75). Fatty acid binding protein 5 (FABP5) is one of the proteins

that maintains mitochondrial stability in T cells. Thus, FABP5

inhibitors impair mitochondrial integrity and promote the release

of mitochondrial DNA, thereby inducing interleukin 10 (IL-10)

production via activation of the cGAS-STING signaling pathway.

IL-10 facilitates T-lymphoma development by promoting Treg in

the TME to suppress the viability of other T-cells (76).

Mitochondrial DNA upregulates programmed cell death ligand 1

(PD-L1) and IDO-1 via the cGAS-STING signaling pathway,

thereby inhibiting T cell function (77). CD47 blockade disrupts

SIRPa-CD47 signaling, preventing lysosomal degradation of

phagocytosed mtDNA in DCs, thereby enhancing cGAS sensing

(78). Ionizing radiation can damage the mitochondria of tumor cells

such as colon cancer, lung cancer and T lymphoma, resulting in the

release of mtDNA, which is phagocytosed by DC cells and activates

the cGAS-STING signaling pathway, enhancing the ability of DC

cells to deliver antigens to CD8+ T cells, and ultimately enhancing

tumor immunity (79). The ataxia telangiectasia mutated (ATM)

protein detects DNA double-strand breaks and promotes DNA

damage repair. Pharmacological inhibition of ATM (e.g., KU-

55933) reduces mitochondrial transcription factor A (TFAM)

expression in melanoma and breast cancer cells, promotes

mtDNA leakage into the cytoplasm, activates the cGAS-STING

signaling pathway and downstream cytokine production, and

enhances lymphocyte infiltration into the TME, resulting in anti-

tumor therapeutic effects (80). Activation of cGAS-STING signaling

can also activate a variety of immune cells including DCs,

macrophages, NK cells, CD4+ and CD8+ T cells by triggering the

relevant natural immune signals, leading to reduction or even

complete disappearance of a variety of tumors in vivo (81).

TLR9 supports tumor cell growth and chemoresistance by

recognizing the CpG structural domain of mtDNA which

activates downstream MAPK and NF-kB signaling to promote

the associated inflammatory responses (82). Notably, mtDNA

leaking into the extracellular space can also be involved in the

polarization and functional regulation of a variety of immune cells,

including macrophages, DCs, and T lymphocytes, through the

activation of TLR9 and cGAS-STING signaling in neighboring

immune cells (83).

NLRP3, as a multicomponent protein complex in the

cytoplasm, recognizes mtDNA leaking into the cytoplasm and

activates downstream MAPK and NF-kB signaling (84). mtDNA

activates NLRP3 inflammasome assembly via K+ efflux, leading to

caspase-1-dependent IL-1b maturation (85).

Mitochondrial genome mutations constitute a significant

portion of the mutation genome in cancer. Their functional

impairments, mutations, copy number abnormalities, aberrant

expressions, and alterations in epigenetic modifications can

influence cancer development and malignant transformation by

regulating cellular metabolism, ROS production, and intercellular

interactions. Moreover, the specific locations and levels of these
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mutations can confer a competitive advantage to cancer cells. Under

mitochondrial stress, mitochondrial DNA can be activated via

specific mechanisms and released into the cytoplasm or

extracellular space, where it can be recognized by receptors such

as cGAS, TLR9, and NLRP3. Notably, cGAS activates STING upon

recognition, mediating associated signaling pathways and

inflammatory responses, which play a crucial role in tumor

immunity—potentially inhibiting tumor immunity and promoting

cancer, or enhancing tumor immunity and producing anti-tumor

effects; it can also activate various immune cells to reduce tumors.

TLR9 recognizes specific structural domains, supports tumor

growth, enhances chemotherapy resistance, and contributes to the

regulation of immune cell function. NLRP3, upon recognition,

activates downstream signals, and mtDNA can induce the

assembly of its inflammasome through potassium efflux.
2.4 Role of mitochondrial autophage in
anti-tumor immunity

Tumor mitochondrial autophagy is a specialized autophagic

process in tumor cells that selectively eliminates damaged or

redundant mitochondria (86). This autophagy relies on pathways

such as Parkin-PINK1, BNIP3/BNIP3L, and FUNDC1, serving

as a key mechanism regulating mitochondrial homeostasis in

tumor cells (87). Mitochondrial autophagy exhibits dual-sided

effects: on one hand, it helps tumor cells adapt to hypoxic and

nutrient-deprived microenvironments by eliminating damaged

mitochondria, reducing ROS accumulation and mtDNA release,

thereby maintaining metabolic balance for survival; on the other

hand, its excessive activation reduces tumor cell immunogenicity,

suppresses innate immune pathways like cGAS-STING, and

facilitates immune evasion (88). Conversely, mitochondrial

autophagy defects lead to mtDNA accumulation, activating

immune responses resulting in the enhancement of antitumor

immunity. Currently, targeted regulation of tumor mitochondrial

autophagy has emerged as a promising therapeutic approach. By

intervening in related pathways and synergizing with immune

checkpoint blockade, it can improve tumor treatment efficacy.

Autophagy is a key mechanism supporting the maintenance of

activated states and antitumor functions in CD8+ T cells. Following

tumor antigen recognition by the T cell receptor (TCR), basal

autophagy activity is triggered: it degrades intracellular surplus

proteins to release amino acids and other metabolic substrates,

providing energy for CD8+ T cell proliferation while maintaining

organelle homeostasis. Simultaneously, it regulates immunological

synapse formation, promotes TCR signaling activation, and drives

CD8+ T cells from a quiescent to an effector state.

However, the hypoxic microenvironment of the TME can

induce autophagy via HIF1a, downregulating MHC-I molecule

expression and thereby reducing CD8+ T cell cytotoxicity (89).

Similarly, CXCL1 mediates MHC-I degradation via autophagy in

colorectal cancer (CRC), while the oncogene PACSIN1 promotes

MHC-I lysosomal degradation through autophagy in gastric cancer,
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both inhibiting antigen presentation and CD8+ T cell infiltration to

drive immune escape (90, 91). Furthermore, defects in autophagy-

related genes (ATG) significantly impact CD8+ T cell function:

Atg5/Atg7 deficiency enhances CD8+ T cell infiltration and IFN-g
secretion, while Atg4/Atg5 knockdown upregulates MHC-I

expression and antigen presentation in lung cancer cells; while

Atg7 deficiency suppresses tumor cells through metabolic promotes

CD8+ T cell accumulation in the colonic lamina propria (92–94).

Clinical studies reveal that LC3B expression in hypopharyngeal

squamous cell carcinoma (HSCC) positively correlates with

CD8+/CD39+ T cell infiltration, while LC3B deficiency in breast

cancer reduces CD8+ T cell infiltration and increases FOXP3+ Treg/

CD68+ macrophage numbers, suggesting autophagy influences

tumor prognosis by regulating CD8+ T cell infiltration (95).

Notably, autophagy modulates CD8+ T cell function by

regulating immune checkpoints and cytokines: in CRC, CTSS

upregulates PD-L1 via autophagy and reduces CD8+ T cell

infiltration (96). In acute myeloid leukemia (AML), C/EBPa DM

alleviates CD8+ T cell immunosuppression by inhibiting

autophagy-associated IL-1b secretion (97). Combining autophagy

inducers with chemotherapeutic agents specifically activates CD8+

T cell-dependent anticancer immunity, suggesting that targeting

autophagy may serve as a potential strategy to enhance CD8+ T cell

antitumor function.

In the TME autophagy provides essential survival support for

Tregs by degrading intracellular glycogen, damaged proteins, and

releasing metabolic substrates from mitochondria. Simultaneously,

mitochondrial autophagy clears hypoxia-induced damaged

mitochondria, reduces ROS accumulation, and prevents

premature Treg apoptosis. Autophagy stabilizes Foxp3

transcription factor expression in Tregs, promotes synthesis of

inhibitory cytokines like IL-10 and TGF-b, and enhances their

immunosuppressive effects on CD8+ T cells. CAFs in the TME can

activate Treg expansion through antigen-dependent and

autophagy-dependent pathways by forming immune synapses

with Tregs (98). UNC-51-like kinase 1 (ULK1), as an autophagy-

activating molecule, is a key candidate target for regulating Treg

function (99). Clinical studies reveal abnormally elevated CD39+

Treg levels in patients with autophagy genetic defects, and these

CD39+ Tregs show low expression of autophagy-related genes

NEFL and PLAC8 (100). Furthermore, defects in the GTPase-

activating regulator RGS1 disrupt Treg metabolism and

autophagy via the FOXP3-c-MYC axis, diminishing their

immunosuppressive capacity (101). This suggests autophagy is a

core pathway for maintaining Treg function.

In the TME, autophagy regulates TAM polarization. In

undifferentiated pleomorphic sarcoma (UPS), COLVI induces

CD8+ T cell dysfunction by inhibiting T cell autophagy while

promoting TAM M2 polarization and VEGF/TGF-b secretion,

thereby facilitating tumor angiogenesis (102). Oxidative stress

induces tumor cells to release KRAS(G12D), which is packaged

into exosomes via autophagy-dependent ferroptosis and induces

M2 polarization in macrophages through the AGER-STAT3

axis (103).
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Conversely, under stimuli like chemotherapy drugs, autophagy

induces M1 polarization in TAMs. Autophagy inhibition enhances

pro-inflammatory effects associated with M1 polarization by

regulating macrophage migration inhibitory factor (MIF)

secretion via ROS; while mTOR signaling inhibition reduces M2-

type TAMs and MDSCs in the TME by downregulating autophagy,

simultaneously upregulating CD8+/CD4+ T cells (104). This

suggests autophagy serves as a critical regulatory node in

TAM polarization.

Hypoxia and immunosuppressive factors in the TME can

impair DC function, whereas autophagy maintains DC activity

through multiple mechanisms: on one hand, it degrades senescent

mitochondria and damaged proteins within DCs, preserving energy

homeostasis and reducing ROS-induced apoptosis to safeguard DC

numbers; on the other hand, it degrades tumor antigens through

autophagosome-lysosome fusion, generating antigenic peptides for

presentation via MHC class I/II molecules. Crucially, it facilitates

antigen shunting to the MHC class I pathway during cross-

presentation, efficiently activating CD8+ T cells (105).

Autophagy also regulates DC maturation and cytokine

secretion: activating autophagy promotes DC expression of co-

stimulatory molecules like CD80 and CD86 while secreting IL-12,

enhancing immune activation. Conversely, autophagy defects leave

DCs in an immature state, even secreting TGF-b to exacerbate

immune suppression (105). Furthermore, ROS-dependent

endoplasmic reticulum stress in tumor cells suppresses DC

surface calretinins exposure via autophagy, diminishing their

maturation capacity and IL-6 secretion, thereby inhibiting CD4+/

CD8+ T cell proliferation (106). High Mobility Group Box 1

(HMGB1) inhibits DC apoptosis via the JNK-autophagy axis,

contributing to colon cancer cell immune evasion. This suggests

autophagy is a core regulatory mechanism for DC-mediated

antitumor immunity (106).

Autophagy enhances NK cell antitumor activity by regulating

the synthesis and recognition of killing molecules. Disrupting the

interaction between ATG7 and phosphorylated FOXO1 in the

cytoplasmic solute of immature NK cells blocks autophagy, a

process critical for NK cell maturation. Activating autophagy may

support the maturation of NK cells and other ILCs exhibiting

anticancer activity (107). In the B16-F10 melanoma model, the

autophagy-critical gene Beclin1 induces substantial infiltration of

functional NK cells into the tumor bed by activating the MAPK8/

JNK-JUN/c-Jun signaling pathway, significantly inhibiting tumor

growth (108). This further confirms autophagy's positive regulatory

role in NK cell antitumor function. Targeting Becn1 to inhibit

autophagy significantly restores the levels of serine protease GZMB/

granzyme B within target cells under hypoxic conditions and

induces tumor regression in vivo by promoting NK cell-mediated

tumor cell killing (109, 110).

Autophagy defects impair MDSC lysosomal degradation,

upregulate MHC-II molecule expression, thereby activating

tumor-specific CD4+T cells and reducing tumor volume;

conversely, in multiple myeloma (MM), MDSCs induce tumor

cell autophagy via AMPK phosphorylation, upregulating MCL-1/
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BCL-2 expression to enhance MM cell survival (111).

Mechanistically, glycolysis inhibits CCAAT enhancer-binding

protein b (CEBPb) subtype LAP expression via the AMPK-

ULK1-autophagy axis, thereby regulating G-CSF/GM-CSF

secretion to support MDSC development (111). While the

lysosomal inhibitor LCL521 disrupts autophagy by activating

cathepsin B/D, inducing endoplasmic reticulum stress in MDSCs

and promoting their death, providing a basis for therapies targeting

MDSC autophagy (112).
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3 Mitochondrial targeting strategies

Mitochondria have great potential as therapeutic targets. Drug

entry into cells requires passage through several lipid bilayers,

especially the inner mitochondrial membrane which is highly

selective for molecular traversal, which is the reason why

mitochondria-targeted drugs are difficult to deliver (113).

Currently, several methods have been developed to enable

targeted drugs to break through the lipid bilayer into the
FIGURE 5

Mitochondrial-targeted structural modification strategies. Typical Mitochondrial-targeted structural modification strategies: 1. Delocalized lipophilic
cation strategy, including (A) Triphenylphosphonium, (B) F16, (C) Rhodamine123, (D) Dequaliniumchloride; 2. Peptide strategy including (E)
Mitochondria-penetrating peptide and (F) SS peptide.
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mitochondria, such as delocalized lipophilic cation (DLCs)

modification and mitochondria-targeted drug delivery

technologies (114) (Figure 5).
3.1 Mitochondrial targeting based on DLC
modification

DLCs are a class of compounds that can penetrate the lipid

bilayer and accumulate in mitochondria, due to the high

mitochondrial membrane potential of tumor cells. These

compounds can be used for targeted delivery of drugs to

mitochondria of tumor cells by covalently linking them with

small molecules. DLCs identified in current studies include

triphenylphosphine (TPP+) and its derivatives, F16, rhodamine

analogs, and dequaliniumchloride (DQA).

3.1.1 TPP and its derivatives
The chemical structure of TPP contains three phenyl groups,

which makes it highly lipid-soluble (115). At the same time, the

positively charged phosphorus ions can be delocalized to the three

benzene rings, allowing them to pass smoothly through the lipid

bilayer (116). TPP drives drug accumulation within mitochondria

due to the the negative mitochondrial membrane potential (DYm)

(117) (Figure 6).

Chemotherapy drugs have long been the mainstay of therapy

for many cancer types. However, severe side effects, low

bioavailability, poor stability, and acquired drug resistance limit

their clinical application. Mitochondria-targeted monofunctional

platinum complexes can accumulate in the mitochondria, induce

significant changes in mitochondrial ultrastructure and membrane,

release cytochrome c(Cytc) from mitochondria, and disrupt

mitochondrial OXPHOS and glycolysis (118). Paclitaxel (PTX)

modified with TPP cations reduced the decrease in DYm and

significantly inhibited the growth of MCF-7 cells. Doxorubicin

(DOX) resistance is a common problem in cancer treatment

(119). Addition of TPP to DOX-PLGA/CPT nanoparticles leads

to effective mitochondrial localization of DOX-PLGA/CPT, releases

DOX to target mtDNA, induces tumor cell apoptosis and

overcomes DOX resistance in MCF-7/ADR breast cancer cells

(120) (Figure 7).

Photodynamic therapy (PDT) is being used to treat some

cancers, and it has become a promising approach for the

treatment of malignant brain tumors. Mitochondria-targeted

triphenylphosphine can enhance PDT efficacy in brain cancer.

The TPP-conjugated photosensitizer chloramphenicol e6 (Ce6)

selectively accumulates in mitochondria, colocalizes with 88% of

mitochondria, and has potent cytotoxic activity, thereby

significantly enhancing PDT efficacy (121, 122). The PDT effect

of the mitochondria-targeting photodynamic therapeutic (MitDt)

agent is amplified after laser irradiation because mitochondria are

susceptible to ROS, triggering apoptotic anticancer effects (123).

TPP-modified photosensitizer zinc phthalocyanine (ZnPc)

selectively accumulates in mitochondria, showing excellent

mitochondrial targeting for ROS-activated chemotherapy and
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PDT (124). TPP-modified liposomes encapsulating black

phosphorus (BP) and calcium peroxide (CaO2) accumulate in

tumor mitochondria and are activated by near-infrared (NIR)

laser irradiation to generate abundant PO43- and Ca2+ to

accelerate in situ mitochondrial mineralization, leading to

mitochondrial dysfunction and cancer cell death (125).

Radiotherapy has been an important form of cancer treatment

for many years. TPP can significantly increase the efficacy of

radiation enhancers and improve the effect of radiotherapy.

Smaller doses of radiation (4Gy vs standard 12Gy) can be given

in combination with TPP-based PDT to control tumor growth,

reducing radiation side effects (126). 4-hydroxy-2,2,6,6-

tetramethyl-1-oxy-piperidin(Tempol) coupled with TTP enhances

X-irradiation-induced germ cell death, reduces basal DYm and

inhibits X-ray-induced increase in ATP production (127).

Photothermal therapy (PTT) is a new non-invasive tumor

treatment that uses photothermal agents (PTA) to convert light

energy into heat energy to kill tumor cells under irradiation with

external light sources such as NIR light. Micro-nanoparticles loaded

with TPP and S-nitrosothiol can release NO generated by surface

overheating and elicit PTT upon NIR laser irradiation. The released

NO can also destroy collagen fibers by activating matrix

metalloproteinases (MMPs), thereby loosening the dense

extracellular matrix (ECM) to enhance immune cell infiltration.

The highly toxic reactive nitrogen species (RNS) peroxynitrite

(ONOO-) is produced, resulting in mitochondrial damage and

induction of cell apoptosis (128). Nanoparticles with core-shell-

disulfide-shell nanoparticles burst in the high GSH environment of

tumors to achieve targeted drug release. The loaded DOX can

quickly enter mitochondria, subsequently destroying mitochondrial

DNA and leading to cell apoptosis. The synergistic effect of PTT

and chemotherapy targeting mitochondria significantly enhances

cancer treatment (129). The heat stress-damaged mitochondria

produced can cause ICD in tumor cells, release damage-related

factors, reactivate the immune response of macrophages against

tumor cells, and effectively activate tumor-associated macrophages

to fight against tumor cells (130).

TPP conjugates enhance the accumulation of chemopreventive

agents in tumor cell mitochondria, enhancing efficacy and reducing

toxicity to normal tissues (131). Metformin (Met), a commonly

used hypoglycemic drug, has certain mitochondria-targeting effects

and anti-tumor ability, but its clinical performance is not ideal. In

pancreatic ductal adenocarcinoma (PDAC) cell lines, the IC50

concentration required to inhibit proliferation by Mito-Met is

nearly 1,000 times lower than that of Met (132). Mito-Met

induces superoxide (O2•-) production through complex I,

inducing ROS-disrupting membrane potential, and activating

calcineurin- and Cn-dependent retrograde signaling pathways in

multiple cells (133). Atovaquone(ATO), an antimalarial drug, was

discovered to have anti-tumor potential in the form of TPP-

modified and PEGylated mitochondrial-targeted ATO (Mito-

(PEG)n-ATO). Mito-ATO analogs inhibit mitochondrial complex

I and complex III-induced OXPHOS in human pancreatic and

brain cancer cel ls . Combined use with inhibitors of

monocarboxylate transporters (MCT), Krebs cycle redox
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metabolism, or glutaminolysis, the Mito-ATO analogs can

synergistically eliminate tumor cell proliferation (134). TPP

mitochondrial targeting increases the drug's involvement in

metabolic processes within mitochondria, inhibits tumor cell

development, and promotes tumor cell death (135).

TPP has a high fat-soluble transportable positively charged

phosphorus ion, which can drive the accumulation of drugs in

mitochondria with the help of mitochondrial negative membrane

potential. Drugs such as metformin and atropine can be used in
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chemotherapy to increase efficacy and overcome resistance, in

radiotherapy to increase efficacy and reduce side effects, and in

PTT to aid the initiation of treatment and destruction of ectoplasm,

induction of apoptosis. TPP-derived compounds exhibit good

antitumor activity, but there are few clinical studies to verify their

anticancer efficacy, and further clinical studies are needed in the

future (117). Although the TPP cation itself has low toxicity, some

of the TPP-derived compounds administered systemically have

non-specific toxicity, and the current strategy is mainly to modify
FIGURE 6

Mitochondrial-targeted triphenylphosphine compounds. TPP modified compounds for chemotherapy include (A) TPP-Cisplatin, (B) TPP-DOX,
(C) TPP-Tamoxifen; TPP modified compounds for radiotherapy include (D) TPP-Ce6 (E) MITDT; TPP-modified compounds for chemoprevention,
including (F) Mito-Met, (G) MitoQ, (H) Mito-Ato, (I) Mito-Hon, (J) Mito-VES, and (K) Mito-LND.
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the structure of TPP cations, encapsulate the modified compounds

in liposomes, and reduce the toxicity of TPP cations, enhance its

targeting selectivity to tumor cells and mitochondria to reduce

toxicity (131).

3.1.2 F16
F16 is a delocalized DLC that can target and aggregate in the

mitochondrial matrix of tumor cells. F16 induces mPTP opening by

inhibiting the interaction between mitochondrial inner membrane

adenine nucleotide translocase (ANT) and cyclophilin D. F16 can

form conjugates with other substances to enhance anti-tumor

effects. At the same time, the reduced availability of intracellular

adenosine 5'-triphosphate induced by the uncoupling effect of F16 is

the main factor in the enhanced cytotoxicity mediated by F16 (136).

F16 conjugates show higher cytotoxicity at low doses, and F16

conjugates initiate cell cycle arrest at the G0/G1 phase leading to

mitochondrial dysfunction and excessive production of ROS,

thereby inducing apoptosis (137–139). The F16-modified

compounds accumulate in cancer cell mitochondria to depolarize
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DYm, increase ROS and attack mtDNA, effectively killing cancer

cells and overcoming multi-drug resistance (140, 141). Fluorescent

mitochondria-targeted organic arsenic accumulates in

mitochondria and inhibits the activity of pyruvate dehydrogenase

complex (PDHC), leading to ATP synthesis inhibition and heat

production disorders. The inhibition of respiratory chain complexes

accelerates mitochondrial dysfunction and causes cell

apoptosis (142).

F16 can also be used for fluorescence imaging of mitochondria.

CyM is a multifunctional organic biological probe that can facilitate

NIR imaging and PDT in vivo and in vitro (143). There are two F16

isomers that can specifically display mitochondria in the green and

red channels, respectively, due to their unique fluorescence

properties, providing new ways of studying mitochondrial

targeting by F16. The above studies suggest that F16 and its

derivatives can be of great value in cancer treatment and tumor

imaging. However, the clinical application of F16 is limited by its

toxicity to normal cells (144). Therefore, scientists have focused on

enhancing the selectivity of F16 and its derivatives for tumor cells,
FIGURE 7

Mechanism of triphenylphosphine targeting to mitochondria in tumor cells. Cancer cells have more hyperpolarized membranes than normal cells,
helping to drive uptake of TPP+-conjugated compounds by up to 100-1000-fold. .
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and future research will likely uncover new drugs that can

specifically target tumor cell mitochondria and reduce toxic

effects on normal cells.

In summary, F16 acts as a DLC that can be targeted to cluster in

the mitochondrial matrix of tumor cells, and its conjugate can

depolarize dym, increase Ros to attack mtDNA to kill cancer cells,

and overcome multiple drug resistance. F16 can also be used for

mitochondrial fluorescence imaging.

3.1.3 Rhodamine
Rhodamine is an organic fluorescent dye based on xanthene

that can be substituted with different 3- and 6-amino groups. It has

a darker color and stronger fluorescence signal. Rhodamine can

penetrate the cell membrane and selectively stain the mitochondria

of living cells. Rhodamine dyes have photophysical properties such

as high fluorescence quantum yield, high molar extinction

coefficient and good water solubility, and low biological toxicity,

making them attractive for wide use as biomarkers and

fluorescent probes.

Rhodamine conjugates can be delivered to tumor mitochondria

and functional proteins through organic cation transporters,

improving their tumor inhibitory effects. Rhodamine B

mitochondria-targeted multi-drug nanoparticles focus on

mitochondrial stress-induced ICD to improve their therapeutic

effect on treatment of ovarian cancer (145). Centella asiatica-

rhodamine B conjugates are highly cytotoxic to human tumor cell

lines, affect cell apoptosis, and can overcome resistance to

chemotherapeutic drugs (146). Rhodamine B-conjugated oleanolic

acid derivatives (RhodOA) reduce tumor cell viability, reduce cell

migration and disrupt mitochondrial function (147). Hybrid

peptide-fused rhodamine B increases anticancer activity by up to

37.5 fold, targeting the nucleus and triggering apoptosis to enhance

anticancer cell activity (148). Enrichment of rhodamine B-modified

catalase in cancer tissues can effectively inhibit mouse xenograft

human lung tumors (149). Differences in DYm and ATPase

sensitivity in tumor cells contribute to the selective cytotoxicity of

rhodamine123 against certain cell types in vitro (150).

Mitochondrial targeting by rhodamine enhances the preferential

cellular uptake of paclitaxel and SN-38 in cancer cells by 2–3 fold

(151). Multi-walled carbon nanotubes (MWCNTs) with

mitochondria-targeted fluorescent rhodamine-110 colocalize 80%

with mitochondria and exhibit superior efficacy to drugs without

PtBz (152). Ciacic acid-rhodamine 101 conjugates induce

proliferation or growth arrest of MDA-MB-231 breast cancer cells

at low doses and induce apoptosis at higher doses (153).

Rhodamine can significantly improve the effect of PDT on

tumors and is by itself a potential PDT agent. The combination of

rhodamine organic dyes and luminescent transition metal centers

exhibits low cytotoxicity, increases tumor cell uptake, and enhances

antitumor efficacy (154). Rhodamine 6G-based organic salts are

stable under physiological conditions and show excellent

fluorescence photostability. More importantly, they have tunable

chemotherapeutic properties. Rhodamine fluorescent groups

synthesized from Rh-6G and amines show pH-dependent

anticancer bioactivity and trigger cell apoptosis through
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mitochondrial pathways, showing anticancer bioactivity in

bladder cancer (155). Rhodamine 6G-based organic salts can

produce nanoparticles that are toxic to cancer cells but not

normal cells (156). The apoptotic index of Dasatinib (DST)

contained nanoparticles is 7.5 times higher than that of free DST

and is non-toxic to normal cells (157). Rhodamine-mediated novel

supramolecular assemblies can efficiently capture phosphorescence

energy transfer (PET) processes and have potential applications in

delayed fluorescence cell imaging (158). Mitochondria-targeted

silicon rhodamine-based photosensitizer (SiR-PXZ) can be rapidly

taken up by mitochondria and effectively induce cancer cell

apoptosis, showing excellent anti-tumor effects and potential

value in photodynamic cancer therapy (159). Burst-specific PDT

in mitochondria by the rhodamine derivative UCNP-GQD/TRITC

induces a sharp drop in DYm, thereby irreversibly initiating tumor

cell apoptosis (160).

Rhodamine, with its ability to penetrate cell membranes and

selectively stain mitochondria in living cells, is often used as a

biomarker and fluorescent probe, its conjugates can target tumor

mitochondria to inhibit tumor cells, overcome drug resistance and

enhance anticancer drug uptake through a variety of mechanisms.

Rhodamine can improve the effect of tumor PDT and is a potential

PDT agent, showing potential value in fields such as photodynamic

cancer therapy and delayed fluorescence cell imaging.

3.1.4 DQA
DQA is a DLC with two positive charge centers. It can

selectively accumulate in mitochondria driven by transmembrane

potential, allowing anti-tumor drugs to target mitochondria in

tumor cells. DQA-coupled FMPSi-Cis@GO targets mitochondria

in cancer cells and destroys their function (161). DQA-containing

micelles deliver DOX to the mitochondria and nucleus of tumor

cells, significantly inhibiting the growth of DOX-resistant tumors

without obvious systemic toxicity (162). Amphiphilic polymer GC-

DQA nanoparticles were synthesized as carriers to efficiently deliver

curcumin to mitochondria (163). The emulsion of DQA and a-
tocopheryl succinate (a-TOS) targeting mitochondria has good

stability and can effectively target mitochondria and inhibit the

growth of HeLa cells (164).

DQA modification destroys mitochondrial structure and

induces cell death by generating ROS and dissipating DYm. DQA

causes loss of mitochondrial transmembrane potential, O2*-

accumulation and ATP depletion in this tumor cell line, alters

mitochondrial function and induces cell death (165). Hinokiflavone

(HF) hybrid micelles increase ROS levels, reduce DYm, and induce

mitochondria-mediated apoptosis (166). DQA chloride vesicles

(HPS-DQAsomes) of DOX increase cytotoxicity to MCF-7/ADR

cell lines, can target the delivery of therapeutic agents to

mitochondria and induce mitochondria-driven apoptosis (167).

DQA- polyethylene glycol (PEG)-modified resveratrol liposomes

DLS (Res) selectively accumulate in mitochondria, inducing

cytotoxicity of cancer cells by generating ROS and dissipating

DYm (168).

DQA is an inhibitor of apoptotic proteins that can directly

inhibit the activity of caspases, regulate apoptosis through multiple
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pathways, and promote the degradation of Bcl-2 as an E3 ligase,

thereby exerting anti-tumor effects. DQA hybrid micelles enhance

the uptake of paclitaxel by drug-resistant breast cancer cells.

Induction of tumor cell apoptosis is related to the activation of

pro-apoptotic proteins Bax, Cytc, caspases-3, 9 and the inhibition of

Bcl-2 and Mcl-1 (169). Targeted lonidamine liposomes selectively

accumulate in mitochondria of drug-resistant A549 lung cancer

cells, dissipate DYm, open mitochondrial permeability transition

pores, and release Cytc through translocation. A cascade of caspases

9 and 3 reactivity is initiated, which activates the pro-apoptotic Bax

protein and inhibits the anti-apoptotic Mcl-1 protein, thereby

enhancing cytotoxicity by acting on mitochondrial signaling

pathways (170). The development of targeted resveratrol

liposomes modified with DQA-PEG (2000)-DSPE on the

liposome surface significantly enhance cellular uptake and

selectively accumulate in mitochondria. They induce apoptosis in

non-resistant and resistant cancer cells by dissipating DYm,

releasing Cytc, and increasing the activity of caspases 9 and 3 (171).

DQA can be combined with other drugs to exert a wide range of

anti-tumor activities through targeting of mitochondria and is a safe

and economical cancer treatment. However, the existing combination

of nanomaterials and drugs has not yet achieved breakthrough

results, and further research is needed on the role of DQA in

targeting mitochondria and its synergistic effect with other drugs.

Due to the high mitochondrial membrane potential of tumor

cells, DLC can penetrate the lipid bilayer to accumulate

mitochondria, and is often covalently linked to drugs for targeted

delivery, mainly including TPP and its derivatives, F16, rhodamine,

and DQA. TPP and its derivatives are highly lipid-soluble and

positively charged, which can help the accumulation of

mitochondrial cel ls of drugs, enhance the efficacy of

chemotherapy, PDT, radiotherapy, PTT, etc., and can also

improve the effect of chemopreventive agents. F16 targets the

mitochondrial stroma and induces mPTP opening, and its

conjugates enhance cytotoxicity and aid tumor imaging, but are

toxic to normal cells. Rhodamine can stain mitochondria, and the

conjugate can enhance tumor suppression and improve PDT effect.

DQA has two positive charge centers that help drugs target

mitochondria, disrupt mitochondrial function, induce cell death,

and can be combined with other drugs to fight tumors.
3.2 Peptide targeting sequences

3.2.1 Mitochondria-penetrating peptide
MPPs are synthetic mitochondrial localization peptides

composed of 4 to 16 amino acids, containing cationic and

hydrophobic residues. Similar to DLC, MPPs can finely regulate

the localization of mitochondria by changing lipophilicity and

charge, and have a significant inhibitory effect on growth of

tumor cells in vivo and in vitro (172).

MPP-modified DOX copolymers can promote cell apoptosis

and inhibit tumor metastasis by destroying mitochondria, inhibit

the growth of breast cancer 4T1 cells in vivo, and overcome tumor

resistance (173). MPP-modified DOX significantly enhances drug
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accumulation in mitochondria by 11.6 fold, resulting in a significant

increase in ROS generation and a decrease in the production of ATP

that can inhibit drug efflux and the growth of drug-resistant cancer

cells (174). Nanoparticles (NPs) consisting of membrane-permeable

peptide amphiphiles (MMPA) and small interfering RNA (siRNA)

can specifically accumulate in mitochondria and inhibit tumor

growth by inhibiting ATP production and repolarizing TAMs

(175). Nanocomplexes of mitochondrial-penetrating peptides

mtCPP1 and PepFect14 affect biological functions in cytoplasm

and mitochondria and can effectively target mitochondrial genes

(176). Poly(lactide-co-glycolide) (PLGA) conjugates with 6-mer

mitochondrial penetrating peptides (MPP) can be used for

mitochondrial targets without cytotoxicity. DOX modified with

mitochondrial penetrating peptides (MPP) delivers the drug to

cancer cell mitochondria, mediating apoptosis and enhancing

therapeutic outcomes for multidrug resistant tumors (177). DOX

modified with MPP promotes apoptosis and inhibits tumor

metastasis by disrupting mitochondria (178).

Compared with DLC, MPP may have more potential as a ligand

targeting mitochondria due to its advantages including good

biocompatibility and low toxicity. Molecules modified by MPP

include RNA, DNA and proteins which can be exploited for

human cancer treatment (179).

MPP can regulate lipophilicity and charge to achieve

mitochondrial localization, promote apoptosis, inhibit tumor

growth and metastasis, and overcome drug resistance. Compared

with DLC, MPP has the advantages of good Biocompatibility and

low toxicity, and has the potential to be a mitochondrial targeting

ligand. Its modified RNA, DNA and protein molecules can be used

for human cancer treatment.

3.2.2 Szeto-Schiller peptides
Szeto-Schiller (SS) peptides are usually composed of four

positively charged amino acids and are a new small peptide

targeting strategy. They can specifically target mitochondrial

cardiolipin, enhance mitochondrial plasticity and re-establish

optimal bioenergetics.

SS peptides can reduce mtROS production, inhibit the opening

of mitochondrial permeability transition pores, and have significant

effects in preventing oxidative stress or inhibiting mitochondrial

ETC-induced cell apoptosis and necrosis (180). The peptide SS-31

specifically localizes in the mitochondrial inner membrane by

interacting with cardiolipin and can be used in the treatment of

patients with abnormal DYm (181). The SS-31-modified DOX-

loaded liposome delivery system LS-DOX can effectively cross the

blood brain barrier (BBB) to target gliomas, and mitochondrial

targeting of SS-31 can enhance cellular uptake (182). SS-31

selectively binds to cardiolipin through electrostatic and

hydrophobic interactions. By interacting with cardiolipin, SS-31

prevents cardiolipin from converting Cytc to peroxidase while

protecting its electron-carrying function. Therefore, SS-31

protects the structure of mitochondrial cristae and promotes

OXPHOS (183). Similarly, with excellent mitochondrial targeting

ability, SS-20 peptide modification is a promising strategy for

mitochondria-targeted drug delivery systems (184). Conjugation
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1646138
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cheng et al. 10.3389/fimmu.2025.1646138
of a-TOS with SS-20 achieves delivery to mitochondria, increases

ROS generation, opens the mitochondrial permeability transition

pore, reduces DYm, and promotes cell apoptosis (185). SS peptides

are therefore expected to be studied more extensively in the future

as strategic molecules for targeting cancer.

Peptide targeting sequences mainly include mitochondrial

penetrating peptides (MPPs) and Stuart Schiller (SS) peptides.

MPP is composed of 4–16 amino acids, contains cations and

hydrophobic residues, can regulate lipophilicity and charge to

locate mitochondria, can enhance the accumulation of

mitochondria, promote apoptosis of tumor cells, inhibit

metastasis and drug resistance, and has good biocompatibility and

low toxicity, and the modified molecule can be used in cancer

treatment. SS peptides often contain four positively charged amino

acids, which can target mitochondrial cardiolipids, reduce mtROS

production, inhibit the opening of mitochondrial permeability

transition pores, and protect mitochondrial structure and function.
3.3 Mitochondria-targeted drug delivery
technology

Anti-tumor drugs can be loaded into various carriers such as

liposomes, polymer nanoparticles, micelles, and solid lipid

nanoparticles to work in conjunction with mitochondria-targeted

modifications to achieve better anti-tumor effects (186) (Figure 8).
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3.3.1 Mitochondria-targeted liposomes
Liposomes are artificial membranes with bilayers, which are

generally prepared by high-pressure homogenization, ethanol

injection, rotary evaporation and ultrasound, and microfluidics.

They can carry hydrophilic and lipophilic drugs, with the former

distributed in the core compartment and the latter distributed in the

bilayer membrane (187). Liposomes have attracted extensive

attention due to their excellent drug delivery capabilities,

biocompatibility, biodegradability, and ease of manufacture.

Mitochondria-targeted liposomes have advantages in tumor-

targeted therapies (188).

Liposomes enhance mitochondrial uptake of DOX and the

chemosensitizer lonidamine (LND) by cancer cells, inhibiting

tumor cell proliferation and inducing cell apoptosis. Lip-SPG

significantly alters mitochondrial functions including reduced

production of intracellular ATP, induction of ROS production,

and enhancing DYm depolarization (189). Milpoxetine (MPt)-

loaded liposomes target mitochondria and trigger mtDNA

replication blockage to induce mitophagy (190). DOX-loaded

liposomes localize to mitochondria, and generate higher ROS

levels (191).

Mitochondria-targeted photosensitizer liposomes exhibit high

photodynamic therapy efficiency. Nanophotosensitizers can

monitor abnormal mitochondrial morphology during

photodynamic therapy under the guidance of fluorescence

imaging. Liposome-encapsulated photosensitizers enhance cellular
FIGURE 8

Mitochondrial-targeted nanodrug delivery strategies. (A) Lipsome, (B) Mesoporous Silica Nanoparticles(MSN), (C) Dendrimers, (D) Metal Organic
Frameworks (MOFs), (E) Lipid nanoparticles (LNPs), and (F) Nano-Micelle.
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uptake, localize in mitochondria, and enhance anti-angiogenesis in

PDT treatment (192). After TPP-modified liposomes are

internalized by cells, a large amount of ROS can be generated

upon laser irradiation, and a stimulatory effect on STING activation

and enhanced infiltration of anti-tumor immune cells is observed,

which can be used for PDT treatment (193).

3.3.2 Mitochondria-targeted mesoporous silica
nanoparticles

MSNs are an ordered mesoporous material prepared by sol-gel

methodologies including microwave-assisted technology, chemical

etching technology, and template methods. The material has

characteristics of good biocompatibility, high specific surface area,

controllable size, and degradability. MSN can improve the targeting

of drugs in tumor mitochondria through direct coupling with drugs

and enhance the killing effect of tumors. MSNs can efficiently

deliver DOX and a-TOS to tumor cell mitochondria, enhancing

cancer cell killing effects (194, 195). MSNmodified Bcl-2 conversion

peptides enter mitochondria and bind to Bcl-2, exposing the BH3

domain and inducing apoptosis of DOX-resistant cells (196). MSN

increases the accumulation of folate membrane cell receptors

(folate) in tumor cells and targets mitochondria (197).

MicroRNA-31 coupled to MSNs loaded with DOX increases

active transport and promotes intracellular accumulation of

drugs. MicroRNA-31 not only directs targeted mtEF4 to promote

cell death, but also has a synergistic effect when used in combination

with DOX (198). Phenylboronic acid (PBA)-labeled MSN carriers

induce mitochondria-dependent apoptosis in MCF-7 cells through

oxidative stress (199).

MSNs can also be combined with mitochondria targeting

strategies such as DLC or MPP to further improve the targeting

effect of drugs in tumor mitochondria. Pt-loaded MSNs achieve

ROS burst in mitochondria, leading to cell apoptosis (200).

Mesoporous connections of MSNs can deliver DOX to

mitochondria and enhance copper consumption by producing

H2O2 (201). After blocking surface pores through disulfide bonds,

MSNs can target cancer cells with DOX, penetrate the cell

membrane and quickly re lease anticancer drugs and

mitochondria-targeted peptides, and induce significant synergistic

anticancer effects (202).

MSNs can target the delivery of photosensitive and

thermosensitive drugs to mitochondria, increase ROS, and

enhance the efficacy and tumor imaging of new treatments such

as tumor PDT. a-Tocopherol succinate and indocyanine green

(IDG) MSNs reduce innate oxygen consumption by blocking the

mitochondrial respiratory chain, leading to endogenous

mitochondrial ROS burst and imaging-guided PDT (203). IR780-

loaded MSNs nanoparticles can accumulate in tumors, destroy

mitochondria and inhibit cellular respiration by decomposing

H2O2, resulting in sustained reduction of hypoxia in tumor

tissues, thereby enhancing the therapeutic effect of PDT (204).

Redox-responsive drugs delivered by MSNs target mitochondria in

living cells and induce apoptosis derived from mitochondrial

membrane depolarization (205).
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3.3.3 Mitochondria-targeted dendrimers
Dendrimers have a hyperbranched structure that can fill

hydrophobic drug small molecules into polymer gaps and graft

drugs onto polymer chains. Targeted dendrimer curcumin (TDC)

colocalizes with mitochondria of cancer cells, inducing potent

apoptosis and cell cycle arrest. It reduces ATP and glutathione

and increases ROS levels in isolated mitochondria of rat hepatocytes

(206). Poly(amidoamine) (PAMAM) is a common dendrimer

targeting strategy with the ability to effectively regulate dendrimer

targeting mitochondria. Active targeting of dendrimers induces P-

glycoprotein (P-gp) overexpression and apoptosis in multidrug-

resistant cells (207). TPP conjugated to PAMAM dendrimers,

optimizes the density of surface TPP by adjusting the length of

TPP-PEG linker, enhancing mitochondrial targeting ability and

antitumor bioactivity (208).

3.3.4 Mitochondrial-targeted metal-organic
frameworks

Metal-organic frameworks (MOFs) are a class of porous

materials formed by the coordination of inorganic metal ions and

organic ligands. Compared with other nano-drug carriers, MOFs

have the advantages of high porosity, adjustable structure,

controllable size, and easy modification. In addition, MOFs

exhibit unique advantages: (1) easy preparation and good

stability, assembled from non-toxic metals (Fe, Zn, Ca, Mg, etc.)

and low-toxic carboxylic acids or phosphonic acids; (2)

biodegradable, especially when exposed to water; (3) an internal

microenvironment suitable for the delivery of drug molecules with

different activities (209). These properties make MOFs ideal

materials for biomedical applications, such as the delivery of

drugs or imaging agents. Surface modification of materials further

enriches the approach of using MOF as a drug delivery platform to

treat diseases, such as PTT combined with chemotherapy,

ultrasound therapy combined with chemotherapy, and other

combination treatment strategies (210).

MOFs encapsulated in macrophage-cancer hybrid membranes

(MCHMs) enhance the cancer homing targeting ability of

nanoparticles (NPs), damage DYm, and lead to cancer cell

apoptosis (211). The ZCProP nanoplatform triggers cell

ferroptosis through cuproposis and inhibits the anti-ferroptosis

protein glutathione peroxidase 4 (212). MOFs can deliver

oxymatrine (Om) and astragaloside IV (As) into the HCC

microenvironment, and increase the oxygen consumption rate

and proton efflux rate of tumor-infiltrating lymphocytes (TILs) by

regulating the mitochondrial function of CAFs and TILs (213). The

mitochondrial targeting drug of gallium-based organic frameworks

produces ROS and releases L-Arg, which reacts with ROS to

generate NO, downregulates HIF-1a expression to improve

tumor hypoxia, and enhances immune responses by increasing

calreticulin (CRT), high-mobility group box 1 (HMGB1), and T cell

proliferation (214). The metal-organic framework GCZMT targets

mitochondria and releases NO under MW irradiation, interfering

with the cell's energy supply and inhibiting tumor cell growth.

Upregulation of heat shock protein (HSP)70 expression can
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facilitate CD4+ and CD8+ T cell activation to promote anti-tumor

immunity (215).
3.3.5 Other mitochondria-targeted nanoparticles
Lipid-polymer nanoparticles (LPNPs) are composed of a polymer

core and a biocompatible lipid shell. LPNPs have a longer half-life

compared with conventional liposomes. After lipid-polymer hybrid

nanoparticles are taken up by cancer cells, the surface charge of LPNPs

is restored due to the separation of PEG under intracellular reducing

conditions, resulting in rapid and precise targeting of mitochondria

(216). Nanomicelles are nanocarriers with a core-shell structure formed

by self-assembly of amphiphilic copolymers in aqueous media, which

have the advantages of simple preparation and small particle size.

Micelles not only significantly improve drug solubility, but also increase

drug accumulation in tumor sites through enhanced permeability and

retention (EPR), and they improve the effect of chemotherapy and can

partially reverse tumor drug resistance (217). Mitochondria-targeted

polymeric micelles (OPDEA-PDCA) target mitochondria and induce

mitochondrial oxidative stress via inhibition of pyruvate

dehydrogenase kinase 1(PDHK1), leading to immunogenic

pyroptosis in osteosarcoma cell lines (218). Charge-reversible

nanocopolymers are copolymers that are modified with anions to

shield the positive charge of the nanosystem, avoiding nonspecific

binding with other proteins and subsequent elimination (219). In

normal physiological environments (pH 7.4), the copolymers are

neutral or negatively charged, which can reduce the uptake of

nanomedicines by macrophages in the reticuloendothelial system

while ensuring their stability in the blood circulation. However,

when they reach the tumor site, their potential undergoes a charge

reversal, and their affinity with the tumor cell surface is significantly

enhanced, leading to the accumulation of nanoparticles in tumor cells

(220). Tumor acidity triggers charge reversal and mitochondrial

targeting activation of TPP-containing nanomedicines, which is a

simple and effective strategy for delivering DOX to cancer cell

mitochondria and overcoming DOX resistance in MCF-7/ADR

breast tumor cells in vitro and in vivo (120).

In summary, mitochondrial-targeted drug delivery systems can

deliver drugs to tumor sites and enhance the effectiveness of cancer

treatment through various mechanisms, including disrupting

mitochondrial energy metabolism, regulating ROS levels,

modulating cell death-related proteins, damaging mitochondrial

DNA, and regulating mitophagy. Liposomes can carry both

hydrophilic and lipophilic drugs, enhancing drug uptake and

inducing mitophagy, while their photosensitizer liposomes can

also assist in photodynamic therapy (PDT). MSN boasts good

biocompatibility and high surface area, allowing for direct drug

conjugation or the integration of other targeted strategies, thus

enhancing drug targeting and cytotoxic effects, and can also deliver

photothermal sensitizers. Dendritic polymers are suitable for

carrying hydrophobic drugs. MOFs are porous, structurally

tunable, and biodegradable, making them apt for delivering drugs

or imaging agents, and they can also be employed in combination

therapies. Additionally, LPNP has a long half-life, nanomicelles can

reverse drug resistance, and charge-reversible nanocopolymers offer
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precise targeting. These systems can improve cancer treatment

outcomes through various approaches, making them a promising

therapeutic strategy, reducing the high risks associated with

traditional treatments such as surgery.
4 Mechanism of action of
mitochondria-targeted therapy
strategies in tumor immunity

Mitochondrial dysfunction plays an important role in tumor-

induced immunosuppression. Mitochondrial-targeted drugs that

restore mitochondrial function may overcome this dilemma and

improve the efficacy of cancer therapies (221). Mechanisms of

action for mitochondrial-targeted drugs in enhancing tumor

immunity include targeting of mitochondrial metabolism,

mitochondrial ROS, ICD, mtDNA and immune checkpoints.
4.1 Targeting mitochondrial metabolic
pathways to improve tumor
immunotherapy

4.1.1 Targeting glycolysis metabolic pathways
Glucose is one of the main players in tumor progression and a

promoter of tumor invasion and metastasis. Glycolysis rapidly

produces ATP, which provides sufficient energy for tumor cell

proliferation. Under aerobic or hypoxic conditions, tumor cells

have enhanced glycolytic activity and reduced mitochondrial

respiration. Therefore, reversing the high glycolytic state of tumor

cells to induce cell death is a possible approach to cancer treatment.

Key glycolytic genes include glucose transporter 1 (GLUT1),

hexokinase 2 (HK2), pyruvate kinase-M2 splicing isoform

(PKM2) and lactate dehydrogenase (LDH-A) (Figure 9).

Glucose uptake provides a key metabolic control point by

targeting the Glut family of glucose transporters (120).

Interference with HK1/2 and GLUT1 function in hematopoietic

cells inhibits glycolysis, reduces ATP production, enhances the

apoptotic effect, and preserves normal CD34+ bone marrow

progenitors (222). Glycosylated poly(amidoamine)/celastrol

(PAMAM/Cel) complexes are characterized by high photothermal

conversion efficiency, hypoxia-sensitive PEG outer layer

detachment, and alkali-sensitive drug release. The complexes

show specific cellular uptake and accumulation in tumor cell

mitochondria in hypoxic environments that overexpress GLUT1

(223). Met administration elevates mtROS and cell surface Glut-1,

leading to IFN-g production in CD8+ TILs in tumor cells (224).

Hexokinase-2 (HK2) is located at mitochondrial-endoplasmic

reticulum (ER) contact sites called mitochondrial associated

membranes (MAMs). HK2 expression is significantly elevated in

most HCC cell lines and tumor tissues compared to normal cell

lines and tissues (225). Since HK2 is the major rate-limiting enzyme

in the aerobic glycolysis pathway, inhibiting HK2 is an effective

strategy to block glycolysis. HK2 degraders cause mitochondrial
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damage and then induce GSDME-dependent pyroptosis and ICD,

resulting in increased anti-tumor immunity (226). HK2-targeting

peptides trigger mitochondrial Ca2+ overload, leading to Ca2+-

dependent calpain activation, mitochondrial depolarization and cell

death, and can also cause massive death of chronic lymphocytic

leukemia B cells (227). Dihydrotanshinone I (DHTS) reverses

metabolic reprogramming in colon cancer by inhibiting

hexokinase activity and free fatty acids (FFA) via the PTEN/AKT/

HIF1a-mediated signaling pathway (228).

Pyruvate kinase (PK) is a key enzyme that regulates the last step

of glycolysis, catalyzing phosphoenolpyruvate (PEP) and ADP to

generate pyruvate and ATP. Pyruvate kinase includes erythrocyte/

liver pyruvate kinase (PKLR) and muscle pyruvate kinase (PKM),

and PKM has two isoforms, PKM1 and PKM2. Mitochondra-

targeted dichloroacetate (Mito-DCA) enhances delivery of DCA

to mitochondria, leading to a shift from glycolysis to glucose

oxidation, cell death through apoptosis, and increses DCs

secretion of IL-12 (229). ATO treatment inhibits oxygen

consumption and metabolically induces aerobic glycolysis and
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oxidative stress, and also induces apoptosis in CD44+/CD24low/-

and ALDH+ cancer stem cells (230).

Another way to target glycolysis is to reduce levels of ATP. The

mechanism of Met's anti-tumor effect may be that it directly reduces

the production of ATP due to its function as an inhibitor of

mitochondrial electron transfer chain complex I and an activator

of AMPK (132). Metformin (Met) reduces tumor-infiltrating Treg

(Ti-Treg) , especia l ly in the terminal ly differentiated

CD103+KLRG1+ population, and also reduces expression of

immune suppressive effector molecules such as CTLA4 and IL-10.

Met inhibits the differentiation of naive CD4+ T cells into induced

Treg (iTreg) by reducing forkhead box P3 (Foxp3) protein

express ion , which is determined by the increase of

phosphorylated S6 (pS6), a downstream molecule of mTORC1.

Rapamycin and compound C (AMPK inhibitor) restores the

generation of iTreg, further indicating that mTORC1 and AMPK

are involved (231).

A variety of strategies targeting key glycolytic genes (such as

GLUT1, HK2, PK, etc.) can induce tumor cell death or enhance
FIGURE 9

Employing mitochondria-targeted drugs to alter immune regulation. Mitochondrial targeting strategy drugs can affect tumor immunity through
multiple pathways. Acting on glycolysis such as MET, DHTS, Mito-DCA; Acting on ROS such as CuPpIX, Mito-FFA, and SLNP/ICG; Acting on
OXPHOS: Mito-DCA, Mito-Q, Mito-ATO; Acting on ICD such as nMOF, MLipRIRNPs, BTO/BP-HA; Acting on mtDNA such as PF, Ru (II), and LIDs;
Acting on CD8+ T cell glucose metabolism such as metformin and Mito-ATO; Acting on PD-1 such as PTX@Alb and HSA-ATONPs.
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anti-tumor immunity by reducing ATP production and triggering

mitochondrial damage. By inhibiting the mitochondrial electron

transfer chain complex and activating AMPK, ATP production is

directly reduced, which affects tumor immune cells and plays an

anti-tumor role.

4.1.2 Targeting mitochondrial OXPHOS
The "Warburg effect" is necessary for tumor cells to undergo

malignant transformation and escape immune attack. Reversing the

Warburg effect by using drugs to intervene in the metabolic

behavior of tumor cells so that their main energy production

pathway changes from glycolysis to OXPHOS, may be a

promising therapeutic strategy for treating such tumors.

Upregulating the expression of genes related to mitochondrial

biogenesis, thereby increasing mitochondrial activity and

reprogramming cellular energy metabolism, produces an "anti-

Warburg effect", and is known to regulate the differentiation of

glioblastoma cells towards normal cell phenotype (118).

Mitochondria-targeted OXPHOS inhibitors reduce hypoxia in

tumor cells in a dose-dependent manner, potentially sensitizing

hypoxic tumor cells to radiotherapy (232). Mitoquinone (Mito-Q)

adsorbed to the inner mitochondrial membrane blocks ATP

synthase, dissipates DYm in HepG2 cells, and induces uncoupling

of autophagy from OXPHOS in cancer cells (233). Functionalized Ir

(III) complexes selectively localize in mitochondria and generate

singlet oxygen and superoxide anion radicals upon two-photon

irradiation, leading to the disruption of the mitochondrial

respiratory chain, thereby interfering with mitochondrial

OXPHOS and glycolytic metabolism, triggering cell death by

combining ICD and ferritin autophagy (234).

Metabolic reprogramming of T cells in the TME impairs

effector T cell responses against tumor cells. Mitochondrial-

targeted drugs modulate the immune microenvironment via

OXPHOS. Mitochondria-targeted hydroxyurea (Mito-HU)

reduces mitochondrial complex I and complex III-induced

oxygen consumption, effectively inhibits monocytic MDSCs and

suppressive neutrophils, and stimulates T cell responses (235).

Mito-CI reduces mitochondrial complex I oxygen consumption

and Akt-FOXO signaling, blocks cell cycle progression, melanoma

cell proliferation, and inhibits tumor progression. Anti-proliferative

properties of mitochondria-targeted complex I inhibitors (Mito-CI)

inhibit differentiation, viability, and suppressive function of bone

marrow-derived MDSCs and increase activation of T cells (236).

Mitochondria-targeted ATO inhibits the expression of

mitochondrial complex components, OXPHOS, and glycolysis

genes in granulocytic-MDSCs and Treg (237). The resulting

reduction in intra-tumoral granulocytic-MDSCs (G-MDSCs) and

Treg could contribute to the observed increase in tumor-infiltrating

CD4+ T cells. In contrast, Mito-ATO significantly inhibits

OXPHOS and glycolysis in G-MDSCs. These observations

support the predicted higher OXPHOS and glycolysis in effector

memory CD8+ T cells and lower OXPHOS and glycolysis in G-

MDSCs after Mito-ATO treatment (238). AMPK is considered a

major intracellular energy sensor and key regulator of

mitochondrial biogenesis that can control metabol ic
Frontiers in Immunology 20
reprogramming in immune cells and enhance anti-tumor

immunity. The AMPK activator Met is considered a candidate

drug to improve cancer treatment efficacy by interfering with tumor

metabolic reprogramming (239). Met increases the numbers of

CD8+ T cells and protects them from apoptosis and

exhaustion (240).

Mitochondria-targeted OXPHOS inhibitors can induce tumor

cell death or enhance their sensitivity to radiotherapy by affecting

mitochondrial function and interfering with energy metabolism.

Mitochondria-targeted drugs can also improve TME, stimulate T

cell responses, protect CD8+ T cells and enhance anti-tumor

immunity by regulating OXPHOS.
4.2 Targeting mtROS to improve tumor
immunotherapy

Since ROS in tumor cell mitochondria have been shown to play

an important role in immunotherapy, how mitochondrial targeted

drugs can promote tumor cells to produce excessive ROS, damage

mtDNA, release immunogenic intracellular substrates, and activate

anti-tumor immunity are important areas of focus in anti-tumor

research (Figure 9). Cu-modified protoporphyrin(CuPpIX) can be

delivered to the mitochondria, inducing ROS burst in situ under

ultrasound irradiation, which leads to severe mitochondrial

dysfunction and amplies ICD to stimulate the body's immune

response and enhance the infiltration of CD8+ T cells into tumors

(241). The nanosystem delivers Ca@GOx to mitochondria,

inducing mitochondrial Ca2+ overload and generating high levels

of ROS, leading to pyroptosis and promoting tumor infiltration of

CD8+ T cells (242). Indocyanine green (ICG) nanoparticles (SLNP/

ICG) stimulate glioma cells to produce abundant ROS under NIR

irradiation, activate mitochondria-mediated apoptosis pathways,

and increase CD4+ and CD8+ T cell proliferation (243). The PDT

photosensitizer IR700DX generates ROS upon light irradiation and

promotes downstream p38 phosphorylation and CASP3-mediated

gasderminE (GSDME) cleavage, which induces pyroptosis, triggers

ICD, and enhances the anti-cancer efficacy of PD-1 blockade (244).

The nanoplatform CS@KET/P780NPs induces apoptosis by

enhancing ROS accumulation, which triggers ICD and a long-

term antitumor response by releasing tumor-associated antigens

(TAA) and DAMPs (245). The molecular photosensitizer FEPT,

used in NIR-II, generates ROS and hyperthermia under laser

irradiation, leading to mitochondrial dysfunction and light-

induced apoptosis through the caspase-3 pathway, releasing

immunogenic intracellular substrates, and thus promotes

activation of anti-tumor immunity (246). Photosensitizer IR780

triggers ROS production through a Fenton-like reaction, induces

ferroptosis of tumor cells, and simultaneously induces DC

maturation, promotes cytotoxic T lymphocyte infiltration,

decreases immune suppression in the tumor microenvironment,

and activates a systemic immune response (247). Sonodynamic

therapy (SDT) drugs stimulate ROS production and reduce DYm,

and induce antitumor immune responses by upregulating NK cell

activity and reducing numbers of immunosuppressive macrophages
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(248). Mitochondria-targeted FFa (Mito-FFa) increases the

production of mtROS that triggers endoplasmic reticulum (ER)

stress, and also oxidizes mtDNA and promotes its leakage into the

cytoplasm. This leads to cGAS-STING-dependent IFN-I secretion,

improving tumor antigen uptake, DC maturation, and cross-

priming of CD8+ T cells (249). Mitochondria-targeted liposomes

induce massive lipid peroxidation and increase ROS in

mitochondria, ultimately triggering ferroptosis in bladder cancer

cells, promoting the release of intracellular DAMPs, inducing the

release of mtDNA into the cytoplasm, activating the cGAS-STING

pathway to secrete IFN-b, and increasing DC cross-presentation of

antigens to T cells, and increasing macrophage phagocytosis (250).

Mitochondria-targeted drugs can activate the cGAS-STING

pathway, promote DAMPs release, induce ferroptosis, and

regulate immune cell activity by producing MTROS, reducing

dym, triggering endoplasmic reticulum stress or Lipid

peroxidation, etc. The reduction of immunosuppressive cells will

ultimately improve the efficacy of tumor immunotherapy.
4.3 Targeted mitochondrial-mediated ICD

ICD is a form of cell death that releases TAA and tumor-specific

antigens (TSA), and provides "danger signals" to facilitate

generation of an effective T cell response. It is characterized by

the release and/or increased expression of DAMPs, precursor

antigens, inflammatory cytokines, and inflammatory mediators.

The main DAMPs include ATP, calreticulin (CRT), high mobility

group box protein B1 (HMGB1), heat shock protein (HSP), type I

interferon (IFN I) and Annexin 1 (ANXA1), which then activate

and recruit APCs such as macrophages and DCs to activate T cells

reactive to tumor antigens. DAMPs bind to pattern recognition

receptors (PRRs) to induce a series of immune events (251).

Mitochondria-targeted drugs trigger ICD by releasing ROS.

Mitochondrial-targeting liposomal nanoparticles cause severe

ferroptosis of tumor cells and trigger ICD through the

accumulation of lipid peroxides, activating anti-tumor

immunity (252).

The released DAMPs promote DC maturation, activate

cytotoxic T lymphocytes, and reverse immune suppression in the

tumor microenvironment. Polymeric nanoparticles induce

mitochondrial dysfunction and amplify endoplasmic reticulum

stress, leading to tumor cell apoptosis and ICD, which promotes

DC maturation and increases numbers of tumor-infiltrating

cytotoxic T lymphocytes (253). DOX-containing liposomes

induce effective ICD in targeted cancer cells to promote DC

maturation and stimulate T cell proliferation and activation,

transforming the immunosuppressive tumor microenvironment

(ITM) into an immune responsive environment (254). Toll-like

receptor agonist R837 synergistically promotes DC maturation.

Promoting DC activation by inducing ICDs resulted in more

robust antitumor efficacy, which can inhibit metastatic disease

progression and promote the development of durable antitumor

memory responses (255).
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DAMPs released by ICD effectively induce M1 polarization and

migration of the polarized macrophages. TPP-modified CuET

triggers ICD, and the released DAMPs induce macrophage M1

polarization and migration to activate an immune response

consisting of CD8+ T cells and NK cells (256). SDT promotes the

maturation of DCs and increases numbers of infiltrating immune

cells. M2 macrophages are also re-polarized to an M1 phenotype

and MDSCs are depleted to reverse immunosuppression and

enhance immune responses (257).

Mitochondria-targeting drugs can trigger ICD by releasing ROS

and other DAMPs, which can promote DC maturation, activate

cytotoxic T lymphocyte, and reverse immunosuppression in the

tumor microenvironment. They can also induce macrophage M1

polarization and migration, and SDT can also enhance the immune

response by regulating the function of ICD-associated immune cells

(such as macrophages, MDSCs).
4.4 Targeting mitochondria autophagy to
increase tumor immunity

Mitochondrial autophagy, as a core mechanism regulating

mitochondrial homeostasis, exerts bidirectional effects in tumor

immunity by influencing immune cell function, tumor

microenvironment metabolism, and innate immune pathways: It

can maintain effector function by clearing damaged mitochondria

from immune cells and enhance immune responses by activating

the STING pathway. It also promotes antitumor effects by

facilitating antigen presentation and activating effector immune

cells. Conversely, it can promote immune escape by degrading

MHC molecules, supporting immune-suppressive cells, and

regulating immune checkpoints.

The autophagy inhibitor chloroquine (CQ) induces Ca²+ release

through lysosomal Ca²+ channels, activating p38 and NF-kB to

reprogram TAMs from M2 to M1 phenotypes, eliminating cancer

cell resistance and achieving enhanced therapeutic effects (258). The

autophagy inhibitor bafamilomycin confers ADCC resistance by

altering cell death, modulating immunoregulatory factors in NK

and/or cancer cells, and regulating HER2 kinetics (259). Spongy

calcium carbonate (CaCO3) nanoparticles disrupt DC autophagy

and antigen cross-presentation, enhancing DAMP release from

tumor cells to improve DC maturation (260).

Autophagy activator like rapamycin enhances NK cell

cytotoxicity by upregulating IL-27R expression, thereby restricting

tumor growth (261). Metformin significantly activates AMPK

signaling, reducing Th1 and Th17 cells while increasing Th2 and

Treg cells (262). Combined with nelfinavir, it induces SIRT3/

mROS-dependent autophagy and sensitizes NK cells against

human cervical cancer cells (262). Temsirolimus (TEM) activates

autophagy to suppress tumor-derived sEV PD-L1 secretion and

increase the number and activation of CD4+and CD8+T cells,

inducing systemic anticancer immunity (263). PD-1 blockade

combined with endostar significantly suppressed tumor growth,

leading to reduced IL-17 and TGF-b1 levels, increased IFN-g
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secretion, decreased MDSC, and reversal of CD8+ T cell

suppression. It improved the tumor microenvironment and

activated autophagy (264). The nanomaterial MoO3-x nanowires

(MoO3-x NWs) combined with PTT activated autophagy, induced

DC maturation and antigen presentation, subsequently activating

CD8+ T cell-mediated adaptive immunity. It promoted TAM

polarization toward M1 macrophages, suppressed Treg cell

infiltration at tumor sites, and alleviated immune suppression in

the tumor microenvironment (265). Lanthanum nickel oxide

(LNO) nanoenzyme-induced macrophage autophagy promotes

macrophage M1 polarization (266).

Natural compounds exhibit bidirectional effects on autophagy,

further influencing tumor immunity. (-)-Guaiol inhibits tumor

growth by inducing autophagy, inducing ICD, enhancing DC

activation, and boosting T cell infiltration (267). Berberine

hydrochloride (Ber) increases autophagosome accumulation,

elevates LC3-II and p62 levels in melanoma cells to enhance

MHC-I-mediated antigen presentation, and improves CD8+ T

cell infiltration (268). Rocaglamide (RocA) targets ULK1 to

inhibit autophagy and restore NK cell GZMB levels, activating

cGAS-STING signaling to promote NK cell infiltration (269).

Naringenin can at least partially induce BC cell inhibition of

autophagy and cell proliferation by modulating the FKBP4/

NR3C1/NRF2 signaling pathway, while also enhancing DC

differentiation and maturation (270).
4.5 Targeting immune checkpoints to
increase tumor immunity

Immune checkpoints are a class of immune inhibitory

molecules that are expressed on immune cells to regulate the

degree of immune activation. These molecules are known to play

an important role in preventing the occurrence of autoimmunity,

but they can also be hijacked by cancers to inhibit tumor immune

responses. Mitochondria-targeted treatments can be used in

conjunction with immune checkpoint therapies to facilitate better

induction of tumor-reactive T cells. The mitochondria-targeted

drug Met attenuates upregulation of the immune checkpoints

programmed cell death protein 1 (PD-1) and lymphocyte

activation gene-3 (LAG-3), thereby increasing CD8+ T cell

infiltration and survival in the harsh tumor microenvironment

(271). Synergistic effects between ATO and anti-PD-L1, which

blocks binding of PD-L1 to its receptor PD-1, leads to the

activation of tumor-reactive CD8+ T cells and promotes the

establishment of tumor-specific immune memory (272).

Mitochondria-targeted drugs can reverse tumor hypoxia,

inhibit PD-L1 expression, thereby enhancing therapeutic effects.

Albumin-bound paclitaxel (PTX@Alb) accumulates in 4T1 breast

tumors and reduces the expression of PD-L1 and TGF-b, resulting
in enhanced T cell infiltration of the tumors (273). Mitochondria-

targeted ATO promotes CD8+ T cell recruitment by reducing tumor

hypoxia, and ATO treatment enhances the efficacy of anti-PD-1

immunotherapy (274) . MHI-TMX@ALB nanopart ic le

photosensitizers can reverse tumor hypoxia and inhibit PD-L1
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protein expression in the tumor microenvironment, resulting in

enhanced efficacy of photodynamic immunotherapy by increasing

T cell infiltration (275).

Mitochondria-targeted drugs induce ICD, reverse the

immunosuppressive TME, and promote immune checkpoint

blockade therapy. MOF induces ICD after ultrasound exposure to

promote DC activation. It can achieve in vivo synergy with anti-

CTLA-4 immune checkpoint blockade to reverse the ITM (255).

Nanodiagnostic therapeutics stimulate ICD, leading to the massive

release of TAA and DAMPs, thereby improving the ITM and

providing another treatment that can be combined with immune

checkpoint blockade therapy (276). SDT leads to local production

of ROS after ultrasound irradiation, damaging tumor cell

mitochondria, downregulating PD-L1 expression, and promoting

ICD (277). Zero-valent-iron nanoparticles (ZVI-NP) enhanced

anti-tumor immunity by re-polarizing pro-tumor M2

macrophages to anti-tumor M1 macrophages, reducing the

number of Treg, downregulating PD-1 and CTLA4 on CD8+ T

cells to enhance their cytolytic activity against cancer cells, and

reducing expression of PD-L1 on the tumor (278).

Mitochondrial targeted therapy can be combined with immune

checkpoint therapy to synergistically activate tumor-reactive CD8+

T cells and establish immune memory. Mitochondria-targeted

drugs can also synergize with immune checkpoint blockade

therapy by reversing tumor hypoxia, inhibiting PD-L1 expression,

or inducing ICD, reversing immunosuppression TME, and

reducing tumor necrosis factor-a expression, enhance the effect of

photodynamic immunotherapy, enhance T cell lytic activity, and

then enhance tumor immunity.
4.6 Improving chimeric antigen receptor T
cell therapy

Chimeric antigen receptor T (CAR-T) cell therapy is an exciting

form of immunotherapy that is being used to primarily treat

patients with hematologic cancers (leukemia, lymphoma, multiple

myeloma), but also holds promise for treating solid tumors. CARs

are constructed through genetic technology, where a gene encoding

the CAR that recognizes antigen(s) on tumor cells is introduced into

T cells. Upon CAR recognition of cognate antigen(s) on tumor cells,

intracellular co-signaling domains in the CAR trigger T cell

activation and killing of the tumor cells. Essentially, the CAR

adds a new antigen binding receptor on the surface of T cells that

is independent of MHC/antigen presentation. Despite impressive

early clinical responses after CAR-T cell therapy, many patients still

experience disease relapse, which is frequently due to loss of target

antigen(s) on the tumor cells, so improvements to this form of

cancer immunotherapy are warranted.

Increased mitochondrial biomass preserves bioenergetic

potential to meet the metabolic demands of activated T cells.

When T cells are modified to generate CAR-T cells, a unique

mitochondrial adaptation is required to establish stemness and

persistence of the CAR-T cells (279). Targeting mitochondrial

metabolism to promote T cell memory formation and metabolic
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adaptation may represent an attractive strategy to improve CAR-T

cell therapies and other immunotherapies (280).

CD8+ T cell migration depends on mitochondrial oxidation of

glucose and glutamine and both ATP and ROS production. Drug

interventions that increase mitochondrial activity can improve

CAR-T cell recruitment to tumors, thereby better controlling

tumor growth (281). Knockout of endogenous TCR in ARI-0001

CAR-T cells increases the percentage of energetic mitochondria

(282). Nuclear receptor 4A (NR4A)1/2/3 triple knockout CAR-T

cells show enhanced mitochondrial OXPHOS, increasing the

persistence and stemness of CAR-T cells (283). Addition of the

cosignaling molecule 4-1BB to the CAR construct promotes

memory T cell respiratory capacity, increases fatty acid oxidation

and enhances mitochondrial biogenesis, generating increased

numbers of T cells with an effector-memory cell phenotype (284).

Upregulating T cell mitochondrial plasticity to increase the

efficacy of adoptive cellular immunotherapies (ACI), including

CAR-T cells, will generate T cells with strong metabolic

adaptability and durable immune function, thereby preventing

tumor metastasis and recurrence (285). Targeting methylation-

controlled J protein (MCJ) in CD8+ CAR-T cells can increase

mitochondrial metabolism and improve the anti-tumor activity of

CAR-T therapy (286). CAR-T cells prevent staurosporine (STS)-

induced apoptosis of human CD3+ T cells by interfering with the

caspase pathway and improving their metabolic fitness and

resistance to environmental stress (287).

Mitochondria are essential for CAR-T cells, and strategies

targeting mitochondrial metabolism, such as increasing

mitochondrial biomass, enhancing mitochondrial activity with

OXPHOS, upregulating mitochondrial plasticity, and so on, have

been proposed to reduce mitochondrial plasticity in CAR-T cells.

They can improve the stemness, persistence, metabolic adaptability

and anti-tumor activity of CAR-T cells, and help to improve the

therapeutic effect.
4.7 Targeting mtDNA to improve tumor
immunotherapy

Since tumor cell mitochondria are typically dysfunctional due to

mutations in mtDNA, correcting mtDNA mutations is considered

an effective strategy to restore mitochondrial function.

Mitochondria-targeted drugs induce tumor mtDNA oxidation

and specific release into the cytoplasm, activating the cGAS-

STING pathway and affecting tumor immune-related responses.

Mitochondrial lipid peroxidation and ROS promote the release of

intracellular DAMPs, thereby facilitating the release of mtDNA into

the cytoplasm, which activates the cGAS-STING pathway and

increases cross-presentat ion of antigens by DCs and

macrophages. Ultimately, this process induces CD8+ T cell

infiltration into the TME to inhibit tumor growth (288).

Under NIR irradiation, mitochondria-targeted ROS are

generated and mtDNA released to provide endogenous danger-

associated molecules that activate the cGAS-STING pathway,
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promoting the maturation of DCs and the infiltration of cytotoxic

T lymphocytes (289). Treatment with mitochondria-targeting gold

(I) complexes generates large amounts of ROS and promotes DNA

excretion. The ROS induces ICD and the released DNA activates

the cGAS-STING pathway, generating a strong anti-cancer immune

response (290). Indocyanine green and doxorubicin plus ultrasound

enhances the nuclear delivery of doxorubicin, induces tumor

mitochondrial DNA oxidation, activates cGAS-STING signaling,

and triggers anti-tumor T cell immunity (291).

Mitochondrion-targeting drugs can induce tumor mtDNA

oxidation and release to the cytoplasm, activate the cGAS-STING

pathway, while mitochondrion Lipid peroxidation and ROS can

also promote mtDNA release. This in turn promotes antigen cross-

presentation, DC maturation, and CD8+ T cell infiltration to trigger

anti-tumor immune responses.

In summary, mitochondrial targeting offers various strategies to

enhance tumor immunotherapy. Targeting metabolic pathways can

regulate immune cell function by inhibiting key enzymes in

glycolysis (such as GLUT1 and HK2) or modulating OXPHOS to

reverse the Warburg effect; targeting mtROS can induce excessive

mitochondrial ROS, damage mitochondrial DNA, trigger

immunogenic cell death (ICD), and activate anti-tumor

immunity. Targeting mitochondria-mediated ICD can release

damage-associated molecular patterns (DAMPs) that promote

dendritic cell (DC) maturation and T cell activation; when

combined with immune checkpoint therapy, it can reduce the

expression of PD-1, reverse hypoxia, and enhance efficacy;

improving CAR-T therapy requires increasing its mitochondrial

activity and plasticity, enhancing stemness and durability; targeting

mitochondrial DNA can induce its oxidative release, activate the

cGAS-STING pathway, and promote immune cell infiltration.

These strategies contr ibute to enhancing anti-tumor

immunity (Table 1).
5 Conclusion

In conclusion, mitochondria play a crucial role in tumor

immunity. Abnormalities in mitochondria, such as genomic

mutations, and autophagy can regulate cancer progression by

regulating cellular metabolism and ROS production and may

further confer competitive advantage to cancer cells. Under

mitochondrial stress, mtDNA is released into the cytoplasm or

extracellular fluid where it can be recognized by PRRs cGAS, TLR9,

and NLRP3. Among them, the cGAS-STING signaling pathway

plays a dual role in tumor immunity: it can suppress anti-tumor

immunity to promote cancer progression, or enhance tumor

antigen presentation to exert an anti-tumor effect. TLR9 promotes

tumor growth and increases chemoresistance by recognizing the

specific domain of mtDNA, whereas activated NLRP3 triggers

downstream signaling cascades and assembles inflammasomes via

potassium ion efflux.

Due to the elevated mitochondrial membrane potential (dym)

in tumor cells, DLCs including TPP and its derivatives, F16,
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TABLE 1 Features of mitochondria-targeted drugs on cancer immunotherapy.

No. Parent compound
Mitochondrial
target strategy

Mechanism of mitochondria-targeted drugs in tumor
immunotherapy

Ref.

1 1G3-Cu and Toy GCT NPs
Induces ICD, promotes DC maturation, and increases tumor-infiltrating
cytotoxic T lymphocytes.

(253)

2 aCD24, CEL and shMFN1
P-aCD24/CEL + P/
shMFN1

Activation of tumor cell phagocytosis improves macrophage-based
immunotherapy.

(292)

3 ApSF MSN

Induces ICD of tumor cells, promotes maturation of DCs and increases the
number of infiltrating immune cells. Macrophages polarize from the M2
phenotype to the M1 phenotype, reducing the percentage of immunosuppressive
Tregs.

(293)

4 Apt-LPR cationic liposome Generation of ROS to activate suppressive immune cells (294)

5 Atorvastatin CS-HAP@ATO NPs
Generates ROS and releases oxidized mitochondrial DNA (OX-mitoDNA).
Activates inflammatory vesicles and enhances anti-tumor immune response.

(295)

6 Atovaquone

Inhibition of Foxp3 T cell differentiation and/or survival and promotion of Teff
cell IFNg
Reduction of granulocyte MDSCs and regulatory T cells in the TME. Increase in
tumor-infiltrating CD4+ T cells.
Increases OXPHOS activity and aerobic glycolysis in activated CD8+ T. Inhibits
OXPHOS and glycolysis in G-MDSC.
Mitigates hypoxia and synergizes with ICB antibody against PD-L1
Tumor hypoxia normalization to enhance the efficacy of anti-PD-1 therapy.

(296)
(237)
(238)
(271)
(274)

7 Barium Titanate (BTO) BTO/BP-HA
Inhibition of mitochondrial respiration promotes apoptosis in tumor cells and
induces ICD, triggering an immune response.

(297)

8 BH3 analog Enhancing NK-based immunotherapy (298)

9 BQR liposome

Promotes the release of mitochondrial DNA into the cytoplasm, activates the
cGAS-STING pathway, and increases cross-presentation of antigens by
phagocytosis of DCs and macrophages. Initiates CD8+ T cell infiltration into the
TME.

(250)

10 Calcium phosphate Ca@GOx
Induces mitochondrial Ca2+ overload and generates large amounts of ROS,
induces cellular pyroptosis and promotes tumor infiltration of CD8+ T cells.

(242)

11 CaZCH CaZCH NPs
Shifting TAM polarization toward the M1 phenotype induces ICD with M1,
promotes DC maturation and activates CD8+ T cell-dependent systemic
antitumor immunity.

(299)

12 Cinnamaldehyde MON-CA-TPP@HA
Excess ROS activate oxidative stress, induces apoptosis and ICD, promotes DC
maturation and CD8+ T cell activation, and regulates the M1/M2 macrophage
ratio.

(300)

13 Ce6 BioPEGDMA
Enhances activation of CD3+/CD4+, CD3+/CD8+ T lymphocytes and DCs in
tumor tissues and lymph glands.

(301)

14 cEMSY Lipid nanoparticles DNA leakage stimulates the cGAS-STING pathway (302)

15 Co TPP@CoTCPP
Activation of the cGAS-STING pathway induces an immune pro-inflammatory
response effectively triggering an anti-tumor T cell response.

(303)

16 Comp. 4 TPP
Oxidative stress stimulates ICD response and triggers systemic anti-tumor
immunity.

(304)

17 Cu (II) PCD@CM
Induces significant immune surveillance, triggering ICD to promote cytotoxic T-
lymphocyte infiltration and aPD-L1-mediated immune checkpoint blockade.

(305)

18 Cu (II) and TI TPP
Downregulates PD-L1 and promotes intra-tumoral infiltration and activation of
cytotoxic T lymphocytes.

(306)

19 CuET TPP
Triggers immunogenic death, induces M1 polarization of macrophages, promotes
antigen processing and presentation in cancer cells, and activates immune
responses of CD8+ T cells and NK cells.

(256)

(Continued)
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TABLE 1 Continued

No. Parent compound
Mitochondrial
target strategy

Mechanism of mitochondria-targeted drugs in tumor
immunotherapy

Ref.

20 DCA OPDEA-PDCA

Induces mitochondrial oxidative stress; produces immunogenic pyroptosis and
prolongs T cell activation.
Leads to lower lactate levels and regulates DC phenotype.
Increases the number of IFN g-producing CD8+ T cells and NK cells.

(218)
(229)
(307)

21 Decitabine
MDSC membrane
vesicles

Induces mitochondrial damage and enhances ICD-mediated antitumor
immunity. Reduces infiltration of MDSCs and M2 macrophages, increases
proportion of CD4+, CD8+ T cells and CD103+ DCs

(308)

22 DZ@A7 MOF
Induces activation of the cGAS-STING pathway, promotes DC maturation and
infiltration of cytotoxic T lymphocytes.

(289)

23 EGCG
IR780/Ce@EGCG/
APT

Induces DC maturation, promotes cytotoxic T-lymphocyte infiltration, improves
the immunosuppressive microenvironment, activates the systemic immune
system, and generates long-term immune memory.

(247)

24 FDC and IR780 nanoparticle
Causes ICD, promotes DC maturation and increases the number of infiltrating
immune cells. Polarizes M2 macrophages to the M1 phenotype and depletes
MDSCs.

(257)

25 FFa
Generates mtROS, oxidizes mtDNA and promotes its leakage into the cytoplasm,
resulting in the secretion of cGAS-STING-dependent IFN-I. Improves tumor
antigen uptake, DC maturation, and CD8+ T cell cross-initiation.

(249)

26 FEPT PEG2000-TPP
Phototherapy-induces hyperthermia or ROS, triggers the release of immunogenic
intracellular substrates from dying tumor cells, which promotes the activation of
antitumor immunity.

(246)

27 F-pY-T
Self-assembled
nanoparticles

Induces ROS production and ICD, promotes DC maturation and intra-tumoral
infiltration of tumor-specific T cells.

(309)

28 HMME and PTX Liposome Weakens hypoxic microenvironment, increases ROS levels and ICD. (310)

29 Hydroxyurea (HU) TPP Inhibits MDSC and suppressor neutrophils and stimulates T cell responses (235)

30 I3A TPP nanocells Induces ICD and activates adaptive immunity. (311)

31 Indocyanine green (ICG) SLNP/ICG@M Activates proliferation of CD4+ T cells and CD8+ T cells. (243)

32 Ir(iii) complexes Nanoparticles
Oxidative stress production leads to disruption of the mitochondrial respiratory
chain, which disrupts mitochondrial OXPHOS and glycolytic metabolism, and
triggers cell death through combined ICD and ferritin phagocytosis

(234)

33 IR700DX-6T TSPO-PDT
Induces ICD and activates dendritic and CD8+ T cells
Generates ROS and induces cellular pyroptosis. Combined with a PD-1 blocker,
triggers a potent anti-tumor immune response.

(312)
(244)

34 IR780
PEG-PCL-IR780-
TPZ NPs

This exacerbates the hypoxic microenvironment of the tumor, triggering ICD,
accelerating DC maturation, and subsequently activating toxic T lymphocytes.
Initiates ICD, DC maturation and synergistic T cell initiation

(313)
(314)

35 LID Liposomes
Induces oxidation of tumor mitochondrial DNA, translocates to APCs, activates
cGAS-STING signaling, and triggers potent anti-tumor T cell immunity.

(291)

36 Lonidamine TPP
Mitochondrial autophagic flux blockade induces and enhances pyroptosis, which
promotes the release of immune-activating factors and the maturation of DCs.

(315)

37 Metformin

mtROS production stimulates IFN g-dependent reprogramming in CD8+TILs.
Reduces tumor-infiltrating Treg (TiTreg)
Inhibits G-MDSCs
Activates the Hippo signaling pathway to regulate PD-L1
Increases CD8+ T cell infiltration and survival in hypoxic tumor regions
T cell metabolic reprogramming
Combination with PD-1 blockers improves intra-tumoral T cell function and
tumor clearance.

(316)
(231)
(317)
(271)
(239)
(318)

38 Mi-2 Triggers ICD-associated immune activation and enhances CD8+ T-cell toxicity. (319)

(Continued)
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TABLE 1 Continued

No. Parent compound
Mitochondrial
target strategy

Mechanism of mitochondria-targeted drugs in tumor
immunotherapy

Ref.

39 MiBaMc TPP
Induces ICD, promotes DC maturation, and triggers T cell-mediated immune
responses.

(320)

40 Mitochondria R Regulates glycolysis and mitochondrial metabolism (321)

41 Mito-CI TPP
Inhibits the differentiation, viability, and suppressive function of bone marrow-
derived MDSC and increases the proliferation-independent activation of T cells.

(237)

42 MNP TPP Leads to immunogenic death and activates immune responses in macrophages. (130)

43 MNP-RGD-TPP TPP
M1 polarizes and promotes DC maturation, and awakens cytotoxic T
lymphocytes.

(322)

44 mPEI/M1mt

Elevates ROS accelerates the phosphorylation of NF-kB p65, MAPK p38, and
JNK, which promotes M1 macrophage polarization, stimulates CD8+ and CD4+

T cell-dependent immune responses, and enhances the therapeutic effect of anti-
PD-L1 treatment.

(323)

45 MTO and aPD-L1 RMP@Cap
Induces tumor cell pyroptosis and therefore triggers the release of mitochondrial
DNA, enhances STING activation, and reduces inhibition of cytotoxic T cells.

(324)

46 Orlistat and anti-CD36
OB@D-pMOF/CaP-
AC, DDS

Reprograms lipid metabolism and improves immune responses. (325)

47 Om and As
Magnetic metal-
organic framework

Modulation of mitochondrial function of CAFs and TILs to increase the level
and activity of TILs.

(213)

48 P780 and KET Nanoplatforms
Disrupts mitochondrial integrity and enhances ROS accumulation, triggering
ICD.

(245)

49 PES Induces DC activation (326)

50
pheophorbide A and
PXTK

mCAuNCs@HA Induction of ICD activates CD4+, CD8+ T cells and NK cells (327)

51
primary homing receptor
p32

AKRGARSTA Regulates tumor macrophages (328)

52
PS TPAQ-Py-PF6 and
PTX

versatile bionic
nanoplatform

Induces ICD, the ability to initiate the cGAS-STING pathway promotes DC
maturation and recruitment.

(329)

53 R162 and IR780
Liposome MLip RIR
NPs

Causes severe iron death of tumor cells through accumulation of lipid peroxides.
Triggers ICD, activates anti-tumor immunity, and suppresses primary and
distant tumors with the help of immune checkpoint blockade.

(252)

54 R837 TPP, nMOF Induces ICD, promotes DC activation (255)

55 Raddeanin A (RA) Promotes DC maturation and CD8+ T cell activation for tumor control (330)

56 Resiquimod nanocarrier
Targets TAMs for M1 phenotypic polarization. Triggers tumor ICD, DC
maturation, TAM polarization and cytotoxic T lymphocyte infiltration.

(331)

57 Resveratrol
Induces CTLs and LAK cells, and produces cytokines IFN-g, IL-2, TNF-a, and
IL-12.

(332)

58 shMFN1 and DOX MIX-NPs
Repolarizes TAMs from M2 to M1 phenotype. Triggers ICD, DCs, and promotes
infiltration and activates CD8+ T cells. Suppresses MDSC and Tregs to further
remodel ITM.

(333)

59 Silver Ag@CuS-TPP@HA
Generates ROS that triggers ICD, leading to the massive release of TAA and
DAMPs, improving the tumor immunosuppressive microenvironment and
augmenting immune checkpoint blockade therapies.

(276)

60 siRNA MMPA
Enhances ROS production, induces mitochondrial damage and mtDNA leakage
into tumor tissue

(175)

61 SMAC-P, DOX liposome
Induces robust ICD, promotes DC maturation and stimulates T-cell proliferation
and activation, transforming the ITM into an immune response environment.

(254)

(Continued)
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Rhodamine and DQA can selectively accumulate in mitochondria

and deliver loaded drugs. Specifically, TPP and its derivatives

enhance the efficacy of chemotherapy, PDT, radiotherapy, and

PTT; F16-targeted mitochondrial matrix induces mitochondrial

permeability transition; Rhodamine stains mitochondria and

enhances tumor suppression, and DQA disrupts mitochondrial

function to induce cancer cell death. In terms of peptide-targeting

sequences, MPPs consisting of 4–16 cationic and hydrophobic

residues, can localize to mitochondria, promote apoptosis in

cancer cells, and inhibit apoptosis in cancer cells, and shows low

toxicity and good biocompatibility. SS peptides, which typically

contain 4 positively charged amino acids, specifically target

mitochondrial cardiolipin to reduce mitochondrial ROS

production, inhibit MPTP turn-on, and protect mitochondrial

structure and function.

These mitochondria-targeting strategies can also enhance

tumor immunity through multiple mechanisms: targeting

metabolic pathways (e.g., inhibiting key glycolytic enzymes such

as GLUT1 and HK2, or modulating OXPHOS to reverse the

Warburg effect; targeting mtROS to trigger ICD; targeting

autophagy; combining immune checkpoint therapy to

downregulate PD-1 expression; improving CAR-T cell therapy;

and targeting mtDNA to induce their oxidative release and

activate the cGAS-STING pathway, thereby promoting the
Frontiers in Immunology 27
infiltration of anti-tumor immune cells). Collectively, these

strategies contribute to enhancing anti-tumor immunity.

Although mitochondria-targeting strategies have shown

significant research potential and application prospects in the

field of tumor immunity, providing an innovative direction for

anti-tumor therapy, the development of anti-tumor drugs is still in

the early stage, however, there are still several key challenges and

limitations clinical application. On the one hand, the vast majority

of studies on mitochondrial targeting are still in the preclinical

stage, mainly focusing on in vitro cell experiments and in vivo

animal model validation. The relative paucity of human clinical

research data, especially the lack of support from multicentre, large

sample phase III trials, makes it difficult to fully validate the

effectiveness and applicability of these strategies in clinical cancer

treatment. Further studies in the future include the following

aspects: 1 How to regulate the activity and biological function of

mitochondria in the activation of different immune cell subsets? 2

How does the energy balance transfer to immune cells? How to

promote the repair of mitochondrial dysfunction and metabolic

deficiency in immune cells while inhibiting tumor cell metabolism?

Effective means for evaluating the safety of mitochondria-targeting

drugs has not been established, and the potential risk of toxic side

effects needs to be focused on. For example, some targeted

molecules may have nonspecific effects on the mitochondria of
TABLE 1 Continued

No. Parent compound
Mitochondrial
target strategy

Mechanism of mitochondria-targeted drugs in tumor
immunotherapy

Ref.

62 SMIP004-7 Enhances CD4+ and CD8+ T cell-mediated immune surveillance (334)

63 SN-38
SN-38-TTCF@O2
NPs

Conducts ICD, promotes the recruitment and activation of cytotoxic T
lymphocytes, and enhances the efficacy of anti-PD-1 antibody.

(335)

64 Tamoxifen nanoparticle

Reversal of tumor hypoxia and inhibition of PD-L1 protein expression enhances
the efficacy of photodynamic immunotherapy through enhanced T-cell
infiltration.
Effectively reduces PD-L1 and TGF-b expression in tumors by enhancing T-cell
infiltration.

(255)
(273)

65 TDV TPP-HA-TDV
Enhances the release of ICD markers and subsequently induces immune
responses

(336)

66 TLND TPP
Triggers tumor ICD, induces DC maturation, promotes cytotoxic T cell
infiltration, and modulates the TME.

(337)

67 TSPO dendritic polymer
Stimulates anti-tumor immune signaling. Specifically targets mitochondria within
TAM.

(338)

68 TT Induces ICD, activates immune cell infiltration. (339)

69 Zn-LDH

Promotes a pro-inflammatory network consisting of M1 tumor-associated
macrophages, cytotoxic T cells, and NK cells. Activates the cGas-STING
signaling pathway, induces ICD and induces antigen-specific cytotoxic T
lymphocytes.

(340)

70 ZnPc T-ZnPc-NPs
Leads to significant DC maturation and stimulates T cells to form cytotoxic
CD8+ T cells.

(341)

71 Zoledronic acid (NZ) nanoparticle
Increases diversity of anti-tumor infiltrating cells (Vg9Vd2 T lymphocytes, CD8+

T lymphocytes, NK cells)
(342)
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normal cells, interfere with energy metabolism and cellular

homeostasis in normal tissues, or induce immune-related adverse

reactions. The above issues need to be addressed through in-depth

mechanistic studies, dosage form optimization, and future clinical

translation studies to promote the safe and effective application of

mitochondria-targeted drugs in clinical anti-tumor therapy.
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227. Lis P, Dylag̨ M, Niedźwiecka K, Ko YH, Pedersen PL, Goffeau A, et al. The HK2
dependent “warburg effect” and mitochondrial oxidative phosphorylation in cancer:
Targets for effective therapy with 3-bromopyruvate. Mol Basel Switz. (2016) 21:1730.
doi: 10.3390/molecules21121730

228. Aublin-Gex A, Jacolin F, Diaz O, Jacquemin C, Marçais A, Walzer T, et al.
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ATG Autophagy-related genes
Frontiers in Immunol
ACI adoptive cellular immunotherapy
AML acute myeloid leukemia
AMP adenosine monophosphate
AMPK AMP-activated protein kinase
ANT adenine nucleotide translocase
ANXA1 annexin 1
APCs antigen-presenting cells
ARG arginase
As astragaloside IV
ATM ataxia telangiectasia mutated
ATP adenosine triphosphate
BNIP3 BCL2 Interacting Protein 3
BNIP3L BCL2 Interacting Protein 3 Like
BPD-MA benzoporphyrin derivative monoacid ring A
BTO Barium Titanate
CAR-T cell Chimeric antigen receptor T cell
CD8+ T cytotoxic T-cell
CDT Chemodynamic therapy
CEBPb CCAAT Enhancer Binding Protein Beta
CGAS Cyclic GMP-AMP Synthase
CRC Colorectal cancer
CRT calreticulin
CSF1 colony stimulating factor 1
CTSS Cathepsin S
CuPpIX Cu-modified protoporphyrin
CXCL1 C-X-C Motif Chemokine Ligand 1
Cytc cytochrome c
DAMPs damage-associated molecular patterns
DC dendritic cells
DLC delocalized lipophilic cation
DOX doxorubicin
DQA dequaliniumchloride
ECM extracellular matrix
EGF epidermalgrowthfactor
EPR enhanced permeability and retention
ER endoplasmic reticulum
FABP5 Fatty acid binding protein 5
FAO Fatty acid oxidation
FFA free fatty acids
Foxp3 Forkhead box P3
FUNDC1 FUN14 Domain Containing 1
G-CSF Granulocyte-Colony Stimulating Factor
GLUT1 glucose transporter 1
GM-CSF granulocyte macrophage-colony stimulating factor
GZMB Granzyme B
HF Hinokiflavone
ogy 37
HIF-1a hypoxia-inducible factor-1a
HK2 hexokinase 2
HMGB1 high-mobility group box 1
HSP heat shock protein
ICD immunogenic cell death
ICG Indocyanine green
IDO1 indoleamine2,3-dioxygenase1
IFN-I type I interferon
IL interleukin
ITM immunosuppressive tumor microenvironment
iTreg induced Treg
KRAS KRAS Proto-Oncogene, GTPase
LAG-3 lymphocyte activation gene 3
LC3B Microtubule-associated protein 1 light chain 3B
LDH-A lactate dehydrogenase
LND lonidamine
LPNPs Lipid-polymer nanoparticles
MCHMs macrophage-cancer hybrid membranes
MCJ methylation-controlled J protein
MCT monocarboxylate transporters
MDSC myeloid-derived suppressor cell
Met Metformin
MHC major histocompatibility complex
MHC-Ⅰ Major Histocompatibility Complex, Class I
MIF migration inhibitory factor
Mito- TPP-modified PEGylated mitochondrial-targeted ATO
Mito-CI mitochondria-targeted complex I inhibitors
Mito-HU Mitochondria-targeted hydroxyurea
Mito-LND Mitochondria-targeted mito-LND
Mito-Q Mitoquinone
MMP-9 matrixmetalloprotein 9
MMPA membrane-permeable peptide amphiphiles
MOFs Metal-organic frameworks
MOMP membrane permeabilization
MPP Mitochondria-penetrating peptide
mPTP mitochondrial permeability transition pore
mtDNA mitochondrial DNA
mTORC1 rapamycin complex 1
mtROS mitochondrial ROS
MWCNTs Multi-walled carbon nanotubes
NADPH nicotinamide adenine dinucleotide phosphate
NEFL Neurofilament Light Chain
NIR near-infrared
NK natural killer
NO nitric oxide
NOX NADPH-oxidase
NPs nanoparticles
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O2·- superoxide
OCT organic cation transporters
Om oxymatrine
OX-mitoDNA oxidized mitochondrial DNA
OXPHOS oxidative phosphorylation
PACSIN1 Protein Kinase C And Casein Kinase Substrate In Neurons 1
parkin E3 ubiquitin-protein ligase parkin
PBA Phenylboronic acid
PD-1 programmed cell death protein 1
PDHC pyruvate dehydrogenase complex
PD-L1 programmed cell death ligand 1
PDT Photodynamic therapy
PEG polyethylene glycol
PEP phosphoenolpyruvate
PET phosphorescence energy transfer
PGC1a peroxide-activated receptor 1a
PHDs prolyl hydroxylases
PINK1 PTEN-induced putative kinase 1
PK Pyruvate kinase
PKM2 pyruvate kinase-M2 splicing isoform
PLAC8 Placenta Associated 8
PRRs pattern recognition receptors
pS6 phosphorylated S6
PTA photothermal agents
PTT Photothermal therapy
PTX Paclitaxel
RA Raddeanin A
RGS1 Regulator Of G Protein Signaling 1
RhodOA Rhodamine B conjugated oleanolic acid derivatives
ogy 38
RNS reactive nitrogen
ROS reactive oxygen species
SDT sonodynamic therapy
siRNA small interfering RNA
SiR-PXZ silicon rhodamine-based photosensitizer
SREBP sterol regulatory element-binding protein
SS Szeto-Schiller
STING Stimulator Of Interferon Response CGAMP Interactor
TAA tumor-associated antigens
TAM tumor-associated macrophages
TAMs tumor-associated macrophages
TCPP tumor-targeted cell membrane penetrating peptides
TCR T cell receptor
TDC Targeted dendritic curcumin
TExh T-cell exhaustion
TGF- transforming growth factor beta
TILs tumor-infiltrating lymphocytes
Ti-Treg tumor-infiltrating Treg
TLR toll-like receptors
TME tumor microenvironment
TPP+ triphenylphosphine
TPPLs DSPE-PEG-TPP polymer liposomes
Treg regulatory T-cells
TSA tumor-specific antigens
ULK1 UNC-51-like kinase 1
UPS undifferentiated pleomorphic sarcoma
ZnPc zinc phthalocyanine
ZVI-NPs Zero-valent-iron nanoparticle
a-TOS a-tocopheryl succinate
DYm mitochondrial membrane potential
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