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Conventional influenza vaccine can prevent infection and reduce the risk of
post-infection complications. However, they lack the capacity to effectively
respond to influenza virus mutations. This results in the vaccine becoming
ineffective due to a reduced antigenic match. It is necessary to develop a new
strategy for vaccine that will provide broad cross-reactive protection. A DNA
vaccine based on the hemagglutinin (HA) gene and conserved antigenic epitopes
of both the HA, M2e and NA genes to provide protection against influenza B was
developed. BALB/c mice were immunized with electroporation to evaluate both
humoral immune responses and T cell responses. Protection against influenza B
virus challenge was evaluated in DNA vaccinated mice, followed by analysis of
lung tissue to assess changes in cytokine levels and virus load. Additionally,
various assays with DNA were conducted to assess their cellular uptake by DCs
and their potential for immune activation. Vaccine via electroporation
demonstrated the ability to enhance both humoral and cellular immune
responses and resulted in the shaping of the immune response to the vaccine
in a Thl direction. Animals inoculated with vaccines via electroporation were
completely protected against both homologous and heterologous viruses, as
evidenced by the reduction of lung viral loads and lung inflammation, induction
of broadly cross-protective humoral immunity, and IL-2 CD4* T-cell responses.
The most significant finding was that the DNA vaccine provided complete
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protection for mice against two distinct lineages of the lethal influenza B virus.
These findings suggested that DNA vaccine delivered using in vivo
electroporation effectively elicits a protective immune response and provides
additional cross-protection.

influenza B virus, DNA vaccine, electroporation, cross-protection, conserved epitopes

1 Introduction

Seasonal influenza, caused by influenza viruses, is a contagious
viral disease that causes annual epidemics and occasionally leads to
global pandemics. The scope of the illness places a heavy burden on
public health systems and resulting in the hospitalization of more
than five million adults each year (1).Seasonal influenza is caused by
two distinct types of viruses: influenza A virus (IAV) and influenza
B virus (IBV). These viruses alternately or co-infect humans and are
similar in terms of their clinical severity (2). Since it was first
described in the 1940s, IBV has gradually differentiated into two
distinct lineages - B/Victoria/2/87 (Victoria lineage) and B/
Yamagata/16/88 (Yamagata lineage) (3). Until March 2020, the
two lineages alternated epidemics caused by IBV or IAV epidemics,
significantly increasing the global burden of influenza disease.
Following the onset of the COVID-19 pandemic, the B/Victoria
lineage became the predominant endemic strain, while the B/
Yamagata lineage was rarely detected. The underlying reasons are
unclear (4, 5).

There are two types of licensed influenza drugs: neuraminidase
inhibitors (NAIs) and amantadine. However, both drug types have
poor inhibitory activity against IBV, in part due to drug-resistant
mutations that develop and persist in IBV (6, 7). Monoclonal
antibody CR9114 is currently the only protective antibody that
can cross-react with TAV. This cross-reactivity broadly prevents
IAV and IBV disease (8). While existing pharmaceuticals can
effectively inhibit viral replication, patients with severe influenza
cannot be adequately treated with existing drugs. Prevention and
control of influenza must begin with the blocking of the source of
viral infection. Currently, immunization vaccines remain the
primary strategy for interrupting viral infection. Vaccines are
significantly less expensive than drug treatment of ongoing
infections. The most widely used influenza vaccines are the
trivalent (HIN1, H3N2, B/Victoria) and quadrivalent (HIN1,
H3N2, B/Victoria, B/Yamagata) seasonal influenza vaccines
produced using World Health Organization recommended
vaccine strains. These vaccines effectively protect healthy adults
against well-matched strains. However, due to the high antigenic
variability of influenza surface antigens, mismatches are common
and vaccine effectiveness is compromised (9-12). The development
of new strategies for universal influenza vaccines is imperative to
combat the emergence of multiple variants.
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A variety of strategies have been explored. Several have
considerable promise. These include the use of epitopes that are
conserved across different influenza virus strains as vaccine
immunogens (13-15). This approach is supported by a
substantial body of research, with numerous studies highlighting
the potential of conserved structures derived from HA, matrix-2
(M2), and nucleoprotein (NP) in the development of a universal
influenza vaccine (16). Conserved antigens, such as the ectodomain
of the influenza M2 protein, M2e, or the HA stalk domains,
typically evoke weak immune responses. To enhance their
potency, these antigens require the addition of adjuvants (16, 17).
IBV vaccine studies have been mainly limited to evaluating the
combination of conserved epitopes of HA and neuraminidase (NA)
(18-20). Fewer studies have addressed M2 and NP, which are two
highly conserved IBV proteins (21). Compared to virus-like
particles and protein-based or mRNA vaccines, DNA vaccines
have a relatively simple production process and can be scaled-up
for mass production (22, 23). In addition, DNA vaccines are very
stable (24), which is a favorable quality compared to other vaccine
platforms in terms of storage and transportation conditions (25,
26). Accordingly, it is plausible that a DNA vaccine for influenza
may prove an efficacious method of preventing the disease.

In this study, we used a DNA vaccine model to investigate the in
vivo immunogenicity of IBV full-length HA in tandem with HA,
M2e, and NA antigenic epitopes as antigens. Intramuscular
injection of plasmid DNA was followed by in vivo electroporation
delivery. The cross-protection of the vaccine against a different
lineage of IBV was evaluated. The findings provided a theoretical
basis for the design of an influenza vaccine strategy based on full-
length HA groups and antigenic epitopes. The current findings
could facilitate the development of multivalent vaccines with
enhanced immunogenicity and effective cross-immunity.

2 Materials and methods
2.1 Mice, cells and viruses

Female BALB/c mice (6-8-week-old) were purchased from
Beijing HFK Bioscience Co., Ltd. The Human embryonic kidney

(HEK 293) cells were maintained in our laboratory. HEK 293 cells
were cultivated in Dulbecco's Modified Eagle's medium (Gibco, USA)
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augmented with 10% fetal bovine serum (FBS; Gibco, USA) and a
solution containing penicillin (100 U/mL) and -streptomycin (100
pg/mL). To harvest bone marrow, BALB/c mice were euthanized by
cervical dislocation after being anesthetized with an intraperitoneal
injection of tribromoethanol (2.01%, 20 uL/g body weight). Bone
marrow was obtained from the femur and tibia of mice and washed
with RPMI-1640 medium (Hyclone, USA). After filtration through a
70 um filter, the cells were cultured in RPMI-1640 medium
containing 100 U/mL penicillin and 100 pg/mL streptomycin. The
culture medium was supplemented with 20 ng/mL recombinant
murine granulocyte-macrophage colony-stimulating factor,
10 ng/mL recombinant IL-4, and 10% inactivated FBS at 37°C in
an atmosphere of 5% CO,. The medium was replenished half-way
through the incubation period. This process yielded mouse bone
marrow-derived DCs dendritic cells. B/Chicken embryos/2022
(Victoria) (GenBank: OR775570) and B/Massachusetts/2/2012
(Yamagata) (GenBank: MT056027) were obtained from our
laboratory collection. All experiments involving infectious IBV were
performed in a level-2 facility.

2.2 Construction of plasmid DNA

The HA gene of IBV Victoria lineage B/Austria/1359417/2021
(GISAID no. EPI1926631) was codon-optimized for human
expression. The optimization process involved changes to the GC
content, codon usage, distribution, and incorporation of restriction
enzyme recognition sites. Approximately 1000 nucleotides
underwent modification, yet the amino acid sequence remained
unaltered. A Kozak sequence was incorporated after the upstream
restriction site and Nde I and BamH I sites were introduced. Highly
conserved epitopes consisting of the A o-helix of HA, the
ectodomain of M2 and the HCA-2 of NA were connected into a
continuous gene, and Not I and Xho I restriction sites were inserted
5" and 3' of the optimized gene (G3) sequence. The G3 epitopes
(Supplementary Table S2) were chosen based on IEDB conservation
scores and HLA-binding predictions (HLA-DR4/DR7, common in
humans). The IBV HA gene and epitope gene G3, which had
incorporated homology arms, were ligated into the pVAXI1-IRES
vector, using seamless cloning method. The cytomegalovirus
(CMV) promoter and internal ribosome entry site (IRES)
sequence separately initiated two segments of the inserted gene.

2.3 In vitro transfection

Plasmid DNA was transfected into HEK293 or BMDC cells
using the Advanced DNA/RNA Transfection Reagent (ZETA Life,
USA). Briefly, 3x10° cells were inoculated into 6-well plates.
Following an overnight incubation, aliquots of a solution
containing 2.5 ug of plasmid DNA and Advanced DNA/RNA
Transfection Reagent were added to each well. The pVAX-1
vector was used as negative control. Following a 36-h incubation
at 37°C, the cells were collected and transfected using Cell Lysis
Buffer (Beyotime Biotechnology, China). The supernatant of the
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lysates was collected for western blot analysis as described next.
Materials examined by an immunofluorescence assay as described
below were washed and fixed with 4% paraformaldehyde in a 6-
well plate.

2.4 Western blot

The cell lysates were collected and the proteins resolved by 10%
SDS-PAGE. The proteins were subsequently transferred to
nitrocellulose membranes for immunoblotting. The membranes were
blocked using 3% bovine serum albumin (BSA) for 1 h. Rabbit anti-
IBV HA protein antibody (GeneTex, USA), rabbit anti-IAV M2
protein antibody (GeneTex, USA), and rabbit anti B-actin antibody
(Cell Signaling Technology, USA) were each used at a 1:1000 dilution.
Horseradish peroxidase (HRP)-labelled goat anti-rabbit IgG antibody
(Beyotime Biotechnology, China) was used at a 1:25000 dilution. PBS
as the MOCK control. The bands were visualized using SuperSignal
West Femto (Thermo Fisher Scientific, USA).

2.5 Immunofluorescence assay

The cells were permeabilized with 0.5% Triton X-100 after
fixation, then blocked in 3% BSA for 2 h. The primary antibody
used in this experiment was the same antibody used in western
blotting, while fluorescein isothiocyanate (FITC)-labelled goat anti-
rabbit IgG antibody (Beyotime Biotechnology, China) was used at a
1:1,000 dilution as the secondary antibody. Nuclei were stained with
4',6-diamidino-2-phenylindole (DAPL Sigma-Aldrich, Germany),
and images were obtained using an EVOS M5000 microscope
(Invitrogen, USA).

2.6 Immunization

Female, 6-8-week-old Balb/c mice were immunized by
intramuscular injection of BHAG3 (100 pg) and introduced by
intramuscular injection followed by electroporation (BHAG3 L.M. +
EP) or an equivalent amount of pVAX1 (Mock) via intramuscular
injection. The EP was applied to the injection site immediately
following injection by six 10-ms pulses using a two-electrode array
at a depth of 5 mm. Electric pulses were delivered by the Advaccine
Biopharmaceutics (Suzhou) Co. LTD. (China). Intramuscular
injection of BHAG3 in the absence of EP (BHAG3 L.M.) was used
as a matched control (Figure 1A).

The mice were vaccinated via a sterile insulin syringe (0.3x8 mm,
U-40/30G) into both hind legs. The first and second booster was
given 21 and 42 days, respectively, after the initial vaccination.

2.7 Enzyme-linked immunosorbent assay

To detect IBV HA-specific IgG and its subtypes, the ELISA was
performed. The assay used 96-well polystyrene plates (Corning, USA)
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FIGURE 1

Schematic illustration of the immunization strategy in mice and humoral immunity induced by BHAG3. The mice (n=19) in the BHAG3 |.M. group were
injected intramuscularly with 100 pg of vaccine, while the mice in the BHAG3 |.M. + EP group additionally received electroporation (EP) via electric pulses
immediately after intramuscular injection 100 ug of vaccine (A). The animals in the Mock group were injected with 100 pg of pVAX1 followed by EP. On day
14 following the final immunization, mice were infected intranasally with IBV (mLDsg = 5). Sera were collected 0, 14, 28, 49, and 56 days after the initial
immunization. The sera from the immunized mice (n=3) were analyzed for specific IgG potency (B) by ELISA, and the IgGl endpoint potency (C) and IgG2a
endpoint potency (D) were assayed, with the IgG2¢/IgGl ratios subsequently calculated (E). The presence of HI antibodies in the immune mice (n=5) was
detected using the B/Victoria strain as the antigen (F). Statistical analyses were performed using one-way ANOVA. Two-way ANOVA was used for
comparison antibody titers among different groups within the different phases. (**P < 0.01, ***P < 0.001, ****P < 0.0001). n.s., not significant.

coated with IBV HA protein (Sino Biological, China) overnight at
4°C. After coating, the plates were washed three times with
phosphate-buffered saline containing Tween (PBST). Five percent
skim milk (BD, USA) was added to each well and incubated for 2 h at
37°C. After washing, plates were incubated with 2-fold serial dilutions
of mouse sera starting from 1:100 and incubated at 37°C for 1 h.
Following five washes in PBST, the plate was incubated for 45 min at
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37°C with HRP-conjugated goat anti-mouse IgG (ZSGB, China),
IgGl, or IgG2a antibody (Abcam, city, UK). Following five washes
with PBST, 3,3,5,5'-tetramethylbenzidine (TMB; Sigma-Aldrich,
Germany) was added to facilitate color development. The reaction
was stopped by adding 2 mol/L H,SO, at the appropriate time, and
the optical density was measured at 450 nm using a 10M multimode
microplate reader (Tecan, Switzerland).
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2.8 Flow cytometry assay

Seven days after the final vaccination, the spleens of the mice
were harvested. To harvest spleen, BALB/c mice were euthanized by
cervical dislocation after being anesthetized with an intraperitoneal
injection of tribromoethanol (2.01%, 20 pL/g body weight). A
single-cell suspension was prepared and stimulated with
inactivated influenza virus and treated with a solution of
Brefeldin A for 6 h. Following stimulation, the cells were washed
with PBS buffer and stained with CY5-coupled anti-mouse CD3,
FITC-coupled anti-mouse CD4 and APC-coupled anti-mouse
CD8a antibodies (BioLegend, USA). Following staining, cells were
fixed using Cy‘[oﬁX/CytopermTM solution (BD, USA), divided into
three portions and labelled using PE-coupled anti-mouse IFN-y
antibody (BioLegend, USA), PE-coupled anti-mouse IL-2 antibody
(BioLegend, USA), or PE-coupled anti-mouse IL-4 antibody
(BioLegend, USA), respectively. Subsequently, the stained cells
were washed twice and analyzed using flow cytometry (Beckman
Coulter, USA) to detect antigen-specific CD4" and CD8" T-
lymphocyte-mediated immune responses.

2.9 Hemagglutination inhibition assay

The assay was performed as previously described (27, 28).
Samples of sera were treated with receptor-destroying enzyme II
(Denka Seiken, Japan) and diluted fivefold prior to the detection of
HI in 96-well V-bottom microplates. The serum samples were
adsorbed with 5% erythrocytes before testing. Each test sample
was incubated for 30 min at room temperature with 4 HA units of
virus (B/Chicken embryos/2022 or B/Massachusetts/2/2012), then
mixed with 1% chicken red blood cells and further incubated for a
further 30 min. The HI titer was defined as the reciprocal of the
maximum serum dilution that inhibited viral hemagglutination.

2.10 Immunogenicity and protective
efficacy in mice

Each group of BALB/c mice was divided into subgroups for
challenge with either B/Chicken embryos/2022 (Victoria)
(GenBank: OR775570) or B/Massachusetts/2/2012 (Yamagata)
(GenBank: MT056027). The amino acid similarity between the
Victoria lineage virus challenge variant used and the HA variant
contained in the vaccine was 99.7%. Additionally, the amino acid
similarity was 93% between the Yamagata lineage virus challenge
variant used and the HA variant contained in the vaccine. The
immunized mice were anesthetized with tribromoethanol and then
challenged by via nasal installation of 50 uL of viral suspension, with
an approximate dose of 5 mouse lethal dose 50 (5 x mLDs, = 1 X
10*® TCIDsy). Body weight and mortality rates were monitored for 2
weeks. In another experiment, three mice were euthanized 5 days
after challenge. Prior to euthanasia, mice were anesthetized via
intraperitoneal injection with tribromoethanol (2.01%, 20 uL/g body
weight) and then euthanized by cervical dislocation. The lung tissues
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were harvested for virus titration and histopathological analysis. In
accordance with the ethical guidelines for animal experimentation, a
humane endpoint of 25% weight loss was used in this study (21).

2.11 Detection of viral RNA load and
inflammatory factors in lung tissue

Five days following the viral challenge, the lungs of the mice
were collected to measure the viral load. Viral RNA was extracted
from the supernatant of the homogenate using the RaPure Viral
RNA/DNA Kit (Magen, China) as described by the manufacturer.
Viral RNA in lung tissue was quantified using the HiScript I U™
One Step qRT-PCR Probe Kit (Vazyme, China). The sequences of
the primers and probe-specific used are provided as supplementary
data (Supplementary Table S1).

To determine whether the vaccine could attenuate the
inflammatory response, Total protein was extracted from the
homogenous lung tissue using the ProteinExt® Mammalian Total
Protein Extraction Kit (TransGen, China) exactly as described by
the manufacturer. The expressions of pro-inflammatory cytokines,
including IL-1, IL-6, IFN-y, and TNF-c, were assessed by ELISA
kits (R&D, USA) in lung tissue from mice infected with B/Victoria
and B/Yamagata viruses.

2.12 Histological analysis and
immunohistochemistry

Lungs were fixed in 10% formalin for approximately 12 h
and subsequently embedded in paraffin blocks. The lung
sections were stained with hematoxylin and eosin (H&E) prior
to being scored for the presence of pulmonary hemorrhage,
inflammatory cell infiltration, hyaline membrane formation,
alveolar atrophy and collapse, alveolar wall thickening,
pulmonary edema, and hemorrhage on a scale from 0-3.
Immunohistochemistry was performed on the sections using
rabbit anti-IBV NP antibody (GeneTex, USA). The percentage
of positive cells was quantified.

2.13 In vitro assay for activation and uptake
capacity of dendritic cells

The relationship between BHAG3-induced antibody
production and early activation of the innate immune system was
assessed. Bone marrow of 6-week-old mice was extracted
and BMDCs isolated. DCs were stimulated with PBS,
lipopolysaccharide (LPS), or BHAG3 at 37°C. The control was
4°C conditioned treatment. FITC-dextran treatment was added at
the end of the stimulation. The percentage of DCs that
phagocytosed FITC-dextran was determined by flow cytometry to
indirectly assess the phagocytosis ability of DCs. The delivery
capacity of DCs was evaluated using the mixed lymphocyte
reaction. The lymphocyte stimulation index was calculated by
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adding CCK-8 after 36 h of co-culture and measuring the
absorbance at 450 nm. The percentage of cells expressing CD40,
CD80, CD86, and MHC-II surface markers (all from BioLegend,
USA) was determined by flow cytometry following staining of
antigen-stimulated DCs with antibodies against specific DC
markers. The expression levels of inflammatory factors in culture
supernatants of antigen-stimulated DCs were analyzed using ELISA
kits (R&D, USA).

2.14 Statistical analysis

Statistical analyses were performed using the Prism 8.0.2
software (GraphPad, USA). One-way analysis of variance
(ANOVA) was used for the comparison among multiple (>2)
groups. Two-way ANOVA was used for comparison of antibody
titers among different groups within the different phases. The
antibody titers were compared by performing log-transformed
values. P values <0.05, <0.01, <0.001, and <0.0001 were
considered statistically significant depending on the experiment.

3 Results

3.1 Construction of DNA plasmids and
verification of protein expression

To develop a safe and efficient IBV vaccine, seamless cloning
was used to construct a recombinant DNA vector that carried the
full-length IBV HA gene and the G3 genes encoding the HA, M2e,
and NA antigenic epitopes (Figure 2A). The description of the
various epitopes selected was in Supplementary Table S2. The
successful insertion of the genes was verified by PCR (Figure 2B)
and double-enzymatic digestion analysis and sequencing
(Figure 2C). The expression of the HA and M2 proteins in the
constructs was detected using western blotting (Figure 2D).
The expression of the HA protein was also detected using
the immunofluorescence assay (IFA) (Figure 2E). The findings
demonstrated the successful construction of a recombinant
plasmid co-expressing the IBV HA gene and epitope gene G3
were successfully constructed in this study. The plasmid was
designated BHAG3.

3.2 Immunization with BHAG3 induces
antigen-specific humoral responses

The immune responses elicited by BHAG3 in mice were
assessed. Serum samples obtained at different and specific times
were analyzed to evaluate the potency of specific antibodies. The
findings indicated a pronounced IBV HA IgG specific response
(Figure 1B). Analysis of IgG subtypes revealed that BHAG3
triggered a predominantly IgG2a immune response, whereas the
IgG2a potency induced by BHAG3 LM. + EP was 1.262 times
higher than that induced by BHAG3 I.M. (Figures 1C-E).
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Moreover, the IgG2a/IgGl ratio in both vaccine modalities
exceeded 1.0, indicating that BHAG3 significantly increased
IgG2a levels.

To further evaluate the antibody response to the vaccine, we
examined HI antibodies in the collected sera. After the second
immunization, the levels of vaccine-induced HI antibodies were
significantly elevated, and EP further enhanced this antibody
response. The peak geometric mean titer (GMT) induced by
BHAG3 IM. reached 1:105.6, while the GMT for BHAG3 IL.M. +
EP reached 1:320 at 56 days following the initial immunization
(Figure 1F). Additionally, HI antibodies in the sera from the
BHAG3-immunized group exhibited strain-specificity, with
inhibition observed only against strains with matching HA gene
profiles, but not against strains with mismatched HA gene profiles
(Supplementary Table S3).

3.3 Immunization with BHAG3 induces
cellular immune responses

To investigate the vaccine-induced cellular immune response,
spleen lymphocytes were isolated from mice 7 days following the
final vaccination. The proportion of activated T cells and cytokine
expression were determined by flow cytometry. They demonstrated
BHAG3-induced antigen-specific CD4" T-cell responses
(Figure 3A). No significant enhancement was observed in CD8"
T-cell responses. Furthermore, the cytokine results demonstrated
that BHAG3 induced a notable elevation in the expressions of IL-2,
IL-4, and IFN-y expression (Figures 3B-D). In particular, BHAG3
LM. + EP produced a 0.23-fold increase in IL-2 levels relative to
BHAG3 LM. These observations impllid that BHAG3 1.M. + EP
may potentially elicit more robust cellular immune responses.
Notably, the strategy also triggered cross-reactive T-cell immunity
in response to stimuli from the B/Yamagata lineage of IBV,
implying potential cross-protection against heterologous influenza
attacks (Figures 3E-H). The data demonstrated that immunization
with BHAG3 I.M. + EP elicited robust CD4™ T cell responses in
BALB/c mice.

3.4 Evaluation of the protective effect
against different lineages of IBV

Although the B/Yamagata lineage has not been widely detected in
recent years, it serves as a relevant model for assessing cross-lineage
immunity. To evaluate the protective efficacy of BHAGS3, the incidence
of morbidity and mortality from weight loss was monitored over a 14-
day period. All mice in the Mock group that were infected by the B/
Victoria and B/Yamagata IBV lineages died of the viral infection within
5 days. The mice in the BHAG3 LM. + EP group exhibited slight
weight loss (up to 8% loss) on days 3—4 following infection by B/
Victoria, which was followed by growth and weight gain. Mice infected
by B/Yamagata also experienced transient weight loss (up to 9% loss)
on days 1-3 days after infection, followed by growth and weight gain.
All mice in the BHAG3 M. + EP group survived the infection by both
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(D) Following transfection of HEK293 cells with BHAG3, protein expression was confirmed by protein blotting using rabbit anti-HA protein antibody
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scale bars are depicted in each image.

against a heterologous lineage, even in the absence of high-titer HI
antibodies against the challenge strain, underscoring the potential of
the conserved epitope-based approach to broaden protection.

The expression of inflammatory cytokines exacerbates
symptoms and inflammatory responses that develop upon

B/Victoria and B/Yamagata IBV. Mice in the BHAG3 LM. group
exhibited significant and sustained weight loss (up to 20% loss)
following infection by B/Victoria and B/Yamagata IBV (Figure 4A).
However, these mice were protected with 100% survival (Figure 4B).

This demonstrated that the vaccine could provide cross-protection
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FIGURE 3

Immunization with BHAG3 induces cellular immune responses. Splenocytes

collected from mice (n=3) 7 days following the final vaccination were

stimulated with B/Victoria (A-D) or B/Yamagata (E-H) inactivated virus. The cells were assessed by flow cytometry for CD4" T-cell proliferation (A, E)
and the production of cytokines IL-2 (B, F), IL-4 (C, G) and IFN-vy (D, H). Statistical analyses were performed using one-way ANOVA. (*P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001). n.s., not significant.

infection with influenza virus. In the present study, mouse lung
tissues of comparable dimensions were pulverized, and proteins
were extracted to detect inflammatory cytokines. The four
inflammation-associated factors IL-1f, IL-6, IFN-y, and tumor
necrosis factor-alpha (TNF-a), exhibited a similar trend
(Figure 4C) and their levels were significantly lower in both
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BHAG3-immunized groups compared to the Mock group (P <
0.0001). Notably, the BHAG3 L.M. + EP group exhibited a lower
expression of inflammatory factors compared to the BHAG3 L.M.
group. Additionally, histological analysis revealed that mice in the
Mock group exhibited significant lung tissue damage following
infection with both B/Victoria and B/Yamagata IBV. This damage
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experiment, lung tissues were collected from mice on 5th day post-challenge (n=3). A portion of lung tissue was used to extract total proteins, and
changes in inflammatory factors IL-1, IL-6, IFN-y and TNF-o were analyzed by ELISA (C). A portion of lung tissue was embedded in paraffin (n=3),
then the lung tissue was fixed, and pathological sections were made for observation by H&E staining (D), and the H&E results were scored clinically
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Statistical analyses were performed using one-way ANOVA. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). n.s., not significant.

manifested as edema, hemorrhage, thickening of the alveolar wall,
infiltration of inflammatory cells, and atrophy and collapse of the
alveoli. In contrast, mice in the BHAG3 .M. + EP group exhibited
minimal abnormalities and a more defined alveolar wall structure.
Lung structural integrity was maintained in mice in the BHAG3
LM. group, although they displayed slight inflammatory cell
infiltration and dilated and congested capillaries in the alveolar
walls (Figures 4D, E). The lung tissues of the mice were weighed at
the time of collection. The calculated lung index results were
homologous with the histological scoring values (Figure 4F).
Immunohistochemical analysis of mouse lung tissues revealed
that immunization by both BHAG3 .M. + EP and BHAG3 IL.M.
resulted in a notable reduction in the deposition of IBV NP.
Moreover, the percentage of NP-positive cells in the BHAG3 .M.
+ EP group following immunization was < 1%, indicating a greater
ability to inhibit IBV replication (Figures 5A, B). To further confirm
the ability of vaccination to clear IBV, the viral load in lung tissues
was assessed by RT-qPCR. Viral loads of B/Victoria and B/
Yamagata in lung tissues were significantly reduced in the
BHAG3 LM. group. The BHAG3 I.M. + EP group exhibited a
nearly 1000-fold reduction in viral RNA load in lung tissue
compared to the Mock group (Figure 5C; P < 0.0001). The results
indicated that BHAG3 I.M. + EP provided comprehensive

Frontiers in Immunology

protection against both lethal doses of B/Victoria and B/
Yamagata, while also effectively reducing the viral load in lung
tissues. BHAG3 I.M. only provided partial protection against lethal
doses of B/Victoria and B/Yamagata.

3.5 In vitro assay for activation and uptake
capacity of DCs

The objective of the in vitro experiments was to investigate the
uptake and delivery capacity of BHAG3 by DCs and to analyze the
co-stimulatory factors that are upregulated on the surface of DCs
and the pro-inflammatory cytokines that are secreted by DCs
following the uptake of BHAG3. The results demonstrated the
uptake of BHAG3 and delivered by DCs in substantial quantities
(Figures 6A, B). In comparison to the PBS group, BHAG3
significantly stimulated the expression of DC surface co-
stimulatory molecules CD80 and CD86, and T-cell co-stimulatory
molecules CD40 and major histocompatibility complex II (MHC-
II) (Figure 6C). BHAGS3 significantly increased the secretion of the
TNF-0, IFN-y, IL-1pB, IL-6, IL-10, and IL-12p70 cytokines
(Figure 6D). These findings indicated that BHAG3 activated the
maturation of DCs and induced the release of a substantial number
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FIGURE 6

In vitro activation and uptake capacity of DCs. DCs were stimulated with PBS, LPS and BHAG3 at 37°C. The control was conditioned medium at 4°C.
FITC-dextran treatment was added at the end of the stimulation. The percentage of DCs that phagocytosed FITC-dextran was analyzed by flow
cytometry to indirectly assess the phagocytosis ability of DCs (A). The delivery capacity of DCs was evaluated using antigen-stimulated DCs co-
cultured with spleen lymphocytes (B). The percentage of cell surface markers CD40, CD80, CD86 and MHC-II expression was detected by flow
cytometry following staining antigen-stimulated DCs with antibodies against specific DC markers (C). The expression levels of inflammatory factors
in culture supernatants of antigen-stimulated DCs were analyzed using ELISA (D). Statistical analyses were performed using one-way ANOVA. (*P <
0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). n.s., not significant.
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of pro-inflammatory cytokines, which in turn promoted the
proliferation and differentiation of other immune cells and had
the capacity to rapidly activate the innate immune response.

4 Discussion

In contrast to the diversity of IAV, IBV have had limited
evolution and are divided into the Victoria and Yamagata
lineages. Despite the development of numerous influenza vaccine
strategies (29), a universal influenza B vaccine remains unavailable
for clinical use, with the exception of inactivated and subunit
vaccines. The selection of appropriate immunogens is of
paramount importance in the process of vaccine design. The
authorized vaccines against influenza elicit the production of
antibodies directed against the HA surface protein of the
influenza virus. However, HA mutations can result in immune
evasion, which diminishes vaccine efficacy (30-32). In this study, we
selected a DNA vaccine platform that enabled the expeditious
replacement of HA genes to align with prevalent strains. No
alteration to the production technology was necessary following
replacement (33). In recent years, vaccines based on novel vaccine
platforms have begun to target conserved antigens, including T-cell
responses induced by conserved epitopes of the HA, NP, M1, and
M2 proteins. Studies on TAV NP and M2 proteins have
demonstrated that NP vaccination elicits protection through
cellular immunity and that conserved epitopes in M2 can induce
alloimmunity (34-40). Vaccines based on the NA protein have
demonstrated considerable potential for providing comprehensive
protection against IBV in animal models (18, 20, 41). Furthermore,
some studies have sought to provide broad cross-protection against
multiple IBV strains in mice by chimerizing HA or utilizing the
HAO peptide on HA as an immunogen (22, 42-47).

In this study, conserved epitopes were incorporated as
immunogens. Given the inherent challenges associated with the
expression of multiple genes in tandem, we sought to identify a
solution that would facilitate the separate expression of the HA gene
and the epitope. To this end, we employed the pVAXI1-IRES
construct to enable the serial expression of the epitopes
(Figure 2A). This approach was deemed the most suitable way of
addressing the limitations of multiple gene expression in tandem
(48-52). A broadly protective IBV vaccine against multiple antigens
that was developed (21), included HA, NA, and NP of B/Victoria,
M2, and a pentavalent mRNA-LNP vaccine against HA of B/
Yamagata. The vaccine induced a broad protective immune
response and proved to be more effective than the monovalent
constructs, providing a foundation for further research into
vaccination protocols against this combination of antigens.

The inclusion of conserved epitopes from NA and M2e in the
G3 construct is a key feature of our vaccine design, likely
contributing to the observed cross-protection. While HA-specific
antibodies are crucial for neutralization, they are often strain-
specific. In contrast, immunity against the more conserved NA
protein has been shown to reduce viral replication and shedding,
and can provide broad cross-protection (18, 20). Similarly, the
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extracellular domain of the M2 protein (M2e) can elicit non-
neutralizing antibodies that mediate effector functions such as
antibody-dependent cellular cytotoxicity (ADCC) and
macrophage-mediated phagocytosis (16, 39). The robust Thl-
skewed immune response induced by our vaccine, characterized
by high IgG2a titers, is particularly effective at engaging these Fc
receptor-dependent mechanisms. Therefore, the coordinated
responses against HA, NA, and M2e likely acted synergistically to
achieve the comprehensive protection and reduction in viral load
observed against the heterologous B/Yamagata challenge.

The findings of our study indicated that BHAG3 elicited cross-
reactive immune responses against both B/Victoria and B/Yamagata.
Following stimulation of spleen lymphocytes with each of the two
inactivated viruses, the percentage of CD4" T cells in the BHAG3-
immunized group was significantly increased in comparison with the
Mock group (Figures 3A, E). However, no significant difference was
observed in the percentage of CD8" T cells between all groups. The
recombinant DNA and vesicular stomatitis virus vectored vaccines
constructed in a prior study (53) elicited a robust NA1-specific CD4"
T and CD8" T-cell response. This was due to the inclusion of CD4
and CD8 T cell epitopes in the chimeric antigens, which induced a
pronounced immune response. In a separate study, Kim et al.
demonstrated that CD4" T cells play a more significant role than
CD8" T cells in conferring cross-protection (54). This finding is
consistent with the present results of the subsequent protection
against challenge experiments (Figure 4B).

In mice, IgGl and IgG2a are the most prevalent competitive
antibody subtypes, representing Th2- and Thl-type immune
responses, respectively. The ideal situation would likely be
manufacturing a properly balanced Th2 and Thl reaction,
adjusted to the immune challenges (55). The findings of
our study demonstrate that the BHAG3 I.M. + EP mice
displayed elevated levels of B/Victoria HA IgG antibodies and
hemagglutination inhibition (HI) titers against B/Victoria,
indicating that electroporation enhances the immunogenicity of
the vaccinated vaccine (Figures 1B, F). However, the high
immunization dose increased IgG antibody levels in all
immunized groups, resulting in a nonsignificant difference
between the ILM.+EP and .M. Furthermore, BHAG3 .M. + EP
markedly elevated antibody titers against IgG1 and I1gG2a, with the
IgG2a/IgGl ratio approaching 4.0 (Figure 1E). Immune responses
with a Thl bias mainly produce IgG2a antibodies. The efficacy of
IgG2a antibodies in clearing virus infections is superior to that
observed with IgG1 (56). Some studies have indicated that Thi-
biased immune responses may offer a means of avoiding the risk of
vaccine-associated enhanced respiratory disease, in comparison to
Th2-biased immune responses (57, 58). We also noted a recent
study by Zhang et al., where it was demonstrated that with a slight
Thl-skew provided partial cross-protection, are not sufficient to
completely protect against challenge (59). And in a study by Han
et al, mNAIl-based constructions induced a robust NA-specific
Thl-dominated immune response, capable of eliciting a robust T-
cell response and providing superior protection against homologous
and heterologous influenza infection (53). It is consistent with the
rationale for our strategy, G3 included HA, NA, M2 epitope which
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from HI, H3, H5, B/Victoria and B/Yamagata. It is designed to
maximize coverage of T cell epitopes and thus induction of cross-
reactive T cell responses.

Vaccination of mice with BHAG3 significantly increased
survival (Figure 4B) after B/Victoria or B/Yamagata infection and
reduced viral load (Figure 5C) and lesions in the lungs (Figure 4D).
However, an increased incidence of morbidity was observed in mice
within the BHAG3 .M. group that had been inoculated with a non-
matching lineage of HA (B/Yamagata). Furthermore, a recent study
described that antibodies of the non-matching profile were non-
neutralizing and did not aid in the control of viral titers, although
virus titers were somewhat reduced (21), as observed in the present
study. This was attributed to the protection provided by antibodies
of the non-matching profile through effector functions (60). IgG2a
binds to Fc receptors with considerable affinity (61), which results in
the stimulation of antibody-dependent cell-mediated cytotoxicity
and macrophage-mediated opsonophagocytosis (62, 63). It is
conceivable that these effects may have played a role in the
effective clearance of lung viral loads, inducing augmented levels
of antibodies capable of recognizing cell surface-expressed viral
antigens from diverse strains.

In this study, the immunogenicity of EP and injection of naked
DNA was compared in mice. EP enhanced the immune response to the
DNA vaccine, as expected (Figure 1E). The effectiveness of EP delivery
in activating the T-cell response has been demonstrated (64-68). In
vivo EP has proven suitable for use in large animals, including humans
(69). EP was used to deliver DNA, eliminating the requirement for
additional adjuvants and reducing costs. This strategy also mitigates the
risk of adjuvant-induced allergic reactions.

The findings of this study may substantiate the efficacy of DNA
vaccine as an immunization strategy, offering cross-protection
against the IBV. Accordingly, we investigated the mechanism of
action of its antigen delivery. DCs represent the primary cells of the
antigen-presenting cell population, and are pivotal in the
interaction between innate and adaptive immunity following
infection or immunization (70). Consequently, bone marrow-
derived DCs were isolated in vitro. The recognition and uptake of
DNA vaccine by DCs was confirmed by phagocytosis and mixed
lymphocyte reaction assays (Figures 6A, B). To further elucidate the
mechanism, we tested the capacity of the DNA vaccine to activate
DCs, as only activated DCs are able to perform antigen delivery
(71). The surface-associated factors of DCs were detected by flow
cytometry, which revealed a significant elevation in the levels of the
T-cell co-stimulatory molecule MHC-II, and DC surface co-
stimulatory molecules CD80 and CD86, compared to the control
group (Figure 6C). Furthermore, the cytokine profile of the culture
supernatants was analyzed. The results demonstrated that BHAG3
effectively stimulated DCs to secrete cytokines (Figure 6D). These
cytokines included IL-1f, IL-6, and TNF-o, which are
inflammatory; IL-10, which is anti-inflammatory; and IL-12p70
and IFN-y, which can promote the polarization of Thl cells (72).
Additionally, it has been demonstrated that DC-derived TNF-o.
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plays a role in the development of CD4" T cells that secrete IL-10
and Thl cytokines (73, 74). IL-6 is a cytokine that facilitates the
differentiation of T follicular helper cells (75). Based on these
results, it is conceivable that DNA vaccines can activate DCs,
which are recognized and taken up by them for antigen delivery.
Nevertheless, this study initially examined the mechanism of
vaccine action in vitro but lacked pertinent in vivo evidence. This
was an acknowledged limitation of this study. Further studies will
seek to refine this mechanism, improve translational applications.

In our former experiment, an immunized group with only the
HA ectodomain was established, and a live attenuated vaccine
group was included as a control. However, neither group
demonstrated the capacity to produce cross-protection. Notably,
the live attenuated vaccine group also failed to provide adequate
protection, owing to the substantial discrepancy between the
antigen and the viral challenge strain. The finding shows indirect
support for G3 in correlation with cross-protection. However, the
antigenic peptide protein is too small to synthesize, we will
overcome for future experiments and elucidate the immunological
effects of antigenic epitopes.

However, our study is associated with several limitations. While
in vivo electroporation has been demonstrated to be a highly
effective method for enhancing the immunogenicity of the DNA
vaccine in mice, its practical application for large-scale human
vaccination presents challenges. These include the necessity for
specialized delivery devices, potential user acceptability concerns,
and increased procedural complexity compared to conventional
intramuscular injection. Future research endeavors should
prioritize the optimization of the delivery platform to enhance its
translational potential. This could entail the exploration of
innovative formulations, such as lipid nanoparticles, or alternative
physical delivery methods that are more conducive to mass
vaccination campaigns. Furthermore, the immunological
mechanisms of the antigenic epitopes were primarily investigated
in vitro; more in vivo evidence would strengthen our understanding
of their contribution.

In conclusion, the development of a DNA vaccine targeting IBV
yielded promising results. Immunization via EP induced potent and
broadly protective immunity in mice, providing 100% protection
against lethal challenges of two IBV lineages. These findings suggest
that BHAG3 had good immunogenicity and induced broad cross-
reactive T-cell immunity. Furthermore, the strategy employed in
the vaccine’s construction will help the development of a promising
universal vaccine skeleton that could provide broad protection
against existing and emerging influenza viruses.
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