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Introduction: This research aimed to explore key immune-related inflammatory

genes and associated molecular mechanisms on hypertrophic scar (HTS), to

provide new perspectives for disease prognosis and diagnosis.

Methods: The gene expression profiles were obtained from the public GEO

database. The immune-related inflammatory genes were identified based on

DEGs fromHTS vs. normal samples, immune-related genes explored byWGCNA,

as well as inflammation-related genes from the database. Signature genes were

screened using machine learning methods, followed by nomogram validation.

Then, the immune infiltration, GSEA pathway analysis, target drug prediction and

interaction analysis associated with signature genes were further investigated.

Finally, validation analysis was performed using tissue samples from HTS patients

to verify the expression of signature genes.

Results: A total of 73 differentially expressed immune-related inflammatory genes

were identified. Through three machine learning analysis approaches, four signature

genes (COL1A1, A2M, TIMP1, and COL1A2) were identified, and they exhibited strong

prognostic value in nomogram analysis. Immune infiltration and GSEA analysis

revealed significant associations between these signature genes and Nature killer

T cells, as well as the ECM receptor interaction pathway. Validation analysis via qRT-

PCR and Western blot confirmed significant differential expression of all signature

genes in HTS compared with normal skin tissues. Furthermore, transfection of HTS

fibroblasts with si-COL1A1 not only reduced COL1A1 expression but also suppressed

fibroblasts proliferation while promoting apoptosis, indicating that COL1A1

promotes proliferation and inhibits apoptosis in HTS fibroblasts.

Discussion: The immune-inflammation related genes COL1A1, A2M, TIMP1, and

COL1A2 were identified as novel signature genes in HTS. The nomogram

established based on these genes demonstrated high clinical diagnosis value.

These findings provide evidence for early diagnosis and personalized therapeutic

strategies in HTS management.
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1 Introduction

Hypertrophic scar (HTS) is a prevalent fibrotic skin disorder

that typically arises following trauma, surgery, or burns,

characterized by excessive proliferation of cutaneous tissue and

abnormal collagen deposition (1). Although HTS does not pose a

direct life-threatening risk, it can cause functional impairments and

significant psychological distress (2). Currently, it is more efficient

to prevent HTS than treat them, and reliable biomarkers for early

identification and prediction of HTS can considerably impact the

overall outcome.

The pathogenesis of HTS is complex, involving multiple cell

types and molecular pathways, particularly dysregulation of

immune-inflammatory responses (3). For example, the

accumulation of pro-fibrotic immune cells, including M2

macrophages, dendritic cells, mast cells, and Th2 cells, induces

the transition of fibroblasts to myofibroblasts through the

transforming growth factor-beta1 (TGF-b1) signaling pathway

(4). Furthermore, inflammation is also one of the determining

factors for wound healing, and the intensity of inflammation is

positively correlated to final scar sizes (5–7). Therefore, immune-

related inflammatory responses play a pivotal role in the formation

and progression of HTS (8). Studies have demonstrated significant

immune cell infiltration and up-regulation of inflammatory factors

in HS tissues, suggesting that dysregulation of the immune

microenvironment may be a core driver of HTS pathogenesis (9).

For instance, abnormal accumulation of immune cells (e.g., T cells

and B cells) in HTS tissues has been widely reported (10). These

cells promote fibroblast activation and excessive collagen deposition

through releasing pro-inflammatory factors and growth factors.

Additionally, aberrant activation of inflammation-related signaling

pathways such as NF-kB is recognized as a crucial mechanism in

HTS formation (11). At present, the role of immune-related

inflammatory biomarkers has attracted attention, but most exhibit

limitations including small sample sizes and methodological

constraints (12, 13). In recent years, the application of machine

learning algorithms in biomedicine has expanded significantly,

showing strong potential for biomarker screening and validation

(14). By integrating multi-omics data via machine learning models,

researchers can identify disease-associated key genes from extensive

gene expression datasets and develop predictive models. However,

machine learning applications in HTS research remain nascent,

with few studies targeting immune-related inflammatory

biomarkers screening and validation.

In this study, we aim to systematically identify and validate

immune-related inflammatory biomarkers in HTS using multiple

machine learning algorithms, integrated with bioinformatics

analysis and experimental validation. Furthermore, the biological

functions of these biomarkers will be verified through in vitro

studies, with the ultimate goal of providing novel insights and

potential therapeutic targets for HTS management.
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2 Materials and methods

2.1 Microarray data and data preprocessing

Profiles associated with HTS in Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/gds/?term=) database were

selected following the selection criteria: 1) Independent

expression profiles of HTS; 2) Both HTS and normal controls

were involved; 3) Total sample size in each profile was more than

6; 4) Test specimens from datasets of human (Homo sapiens) skin

tissues. Finally, three datasets including GSE178411 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178411),

GSE181540 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE181540) and GSE188952 (https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE188952) were downloaded. GSE178411

and GSE181540 served as training datasets, while GSE188952 was

used as the validation dataset in this study. Bridely, GSE178411

included data from 28 HTS samples and 24 normal controls, based

on GPL24676 platform. GSE181540 included data from 3 HTS

samples and 3 normal controls, based on GPL20301 platform.

GSE188952 included data from 5 HTS samples and 3 normal

controls, based on GPL16791 platform.

To ensure data comparability and analytical reliability, the

following preprocessing steps were performed after downloading

the raw CEL files in this study: First, background correction and

standardization were conducted using the Robust Multi-array

Average (RMA) method from the R package affy, which included

background correction, quantile normalization, and log2

transformation to reduce technical noise. Second, probe

annotation and gene merging were carried out by mapping

probes to gene symbols based on the latest annotation files. For

multiple probes corresponding to the same gene, the average

expression value was taken as the representative. Probes without

matching gene symbols were eliminated using the probe expression

matrix and annotation file. Third, missing value handling involved

removing probes with a missing value ratio exceeding 20% and

imputing sporadic missing values using the k-nearest neighbors

(KNN) imputation method. Fourth, if the data originated from

multiple experimental batches, batch effect correction was

performed using the ComBat method in the sva package (version

4.3.3). Finally, low-expression gene filtering was implemented to

remove genes whose expression values fell within the lowest 25th

percentile in more than 80% of the samples, thereby reducing

interference from low-information features in the analysis.
2.2 DEGs, GSEA and immune landscape
analysis

We employed the limma package in R (version 3.58.1) (15) to

identify differentially expressed genes (DEGs) between HTS and
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normal samples across two training datasets. First, we performed

significance analysis of gene expression using log2 fold change (FC)

and P-values, selecting DEGs with Benjamini-Hochberg (BH)-

adjusted (adj) P < 0.05 and |log2FC| > 1. Next, Gene Set

Enrichment Analysis (GSEA) (16) was conducted with thresholds

of adjusted P < 0.05 and NES > 1 to identify significant pathways.

The ssGSEA algorithm (17) was then applied to assess infiltration

levels of 28 immune cell subtypes based on training set expression

profiles. Finally, we employed the ggplot2 (version 3.5.0) package in

R to calculate the Pearson correlation coefficient, analyzing

correlations among immune cells.
2.3 WGCNA analysis

The analysis commenced with performing variance analysis on

the HTS sample expression matrix of to identify the top 5000 most

variable genes. We further employed WGCNA (version 1.72-5) to

construct a gene co-expression network. Specifically, it can

transform high-dimensional transcriptome data into gene

modules, revealing gene clusters with similar expression patterns

and their underlying biological functions. Meanwhile, it enables

direct correlation analysis between co-expression modules and

phenotypes, facilitating the identification of gene groups

significantly associated with immune cells. Additionally, through

modular analysis, WGCNA reduces the number of statistical tests,

thereby enhancing the robustness of results. Furthermore, it is well-

suited for large-scale data, as it maintains high computational

efficiency and interpretability even when clustering 5,000 genes.

At first, the soft threshold was employed to transform the

adjacency matrix into a continuous range from 1 to 30. This was

done to guarantee that the resultant network conformed to a power-

law distribution, which better represents the characteristics of

biological networks. In WGCNA analysis, module selection

adheres to the following criteria: first, the soft threshold (b) was
identified via the pickSoftThreshold function, selecting the smallest

b value that enables the network to approximate scale-free topology

(typically with R² ≥ 0.85); second, the minimummodule size was set

to 100 genes to avoid statistical instability caused by excessively

small modules; finally, Pearson correlation coefficients and p-values

between each module eigengene and immune cells were computed,

with modules meeting |correlation| ≥ 0.75 and p < 0.05 prioritized

for subsequent analysis. After that, the blockwiseModules function

was used to generate the scale-free network, and module partition

analysis was carried out. For each module, the module membership

and gene significance were computed.
2.4 Investigation of immune-inflammation
gene associated HTS

Inflammation-related genes were retrieved from the MSigDB

database, with subsequent removal of duplicates entries. Then, the

cross genes among DEGs, modules genes in WGCNA and
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inflammation-related genes were revealed by using Venn

diagram analysis.
2.5 The enrichment and interaction
analysis based on cross genes

GO function and KEGG pathway analyses were implemented

using the clusterProfiler package in R for intersecting genes. The

GO function encompasses biological process (BP), cellular

component (CC), and molecular function (MF). For the current

enrichment analysis, an adjusted P value less than 0.05 was set as the

threshold. Subsequently, based on the STING database (version:

11.0) (18), the protein interaction information was retrieved.

Protein-protein interaction (PPI) pairs among the differentially

expressed high-mobility group proteins (DE-HMGs) were

predicted, with a combined_score greater than 0.4. The PPI

network was built using Cytoscape (version: 3.8.2) software. The

maximum clique centrality (MCC), maximum neighborhood

component (MNC), degree centrality (Degree), and edge

percolated component (EPC) topology algorithms within the

cytoHubba package of the Cytoscape software were applied.

These algorithms were used to identify hub genes, taking into

account the TOP 30 nodes in the PPI network.
2.6 Signature genes exploration and
evaluation

In the feature screening stage, LASSO regression was used for

dimensionality reduction of high-dimensional expression data—it

achieves automatic feature selection by compressing some

regression coefficients to zero through L1 regularization during

fitting, which can effectively reduce redundant variables and

mitigate the impact of multicollinearity. Specifically, the R

package glmnet was used to perform 10-fold cross-validation

under a series of regularization parameters l, and the feature set

corresponding to lambda.min (the l with the minimum cross-

validation error) was selected as input for subsequent modeling. In

the classification stage, support Vector Machines (SVM) was

employed to build a prediction model, which has strong

generalization ability in the analysis of high-dimensional, small-

sample, and noisy biological data, and is particularly suitable for

problems with nonlinear decision boundaries. Therefore, the radial

basis function (RBF) kernel was prioritized to capture complex

nonlinear patterns, and the penalty coefficient C and kernel

parameter g were optimized through grid search combined with

cross-validation. To further evaluate feature stability and model

general izat ion performance, random forest (RF) was

simultaneously used for modeling and feature importance

ranking. RF stably handles high-dimensional data and calculates

variable importance scores by constructing multiple decision trees

and using out-of-bag (OOB) data for error estimation, the

parameter optimization of which involves adjusting the number
frontiersin.org
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of decision trees (ntree) and the number of random features (mtry)

through grid search, selecting the parameter combination with the

lowest OOB error. To ensure model robustness and generalizability,

all algorithms adopt 10-fold cross-validation: the data is randomly

divided into 10 subsets, with one subset used as the validation set

and the remaining nine as the training set in turn. Within each fold,

feature selection, model training, and parameter optimization were

performed in sequence to prevent data leakage, and grid search was

conducted to optimize key hyperparameters for LASSO (l), SVM
(C/g), and RF (ntree/mtry) respectively, with the cross-validation

process repeated more than 100 times. Additionally, measures such

as separating feature selection from model training to avoid leakage

of training set information, comparing multiple algorithms (SVM

and RF) to verify feature reproducibility, randomly dividing

training/validation sets multiple times to ensure results do not

depend on a single data split, and combining OOB error with

cross-validation for dual evaluation of model performance further

guarantee the robustness and reliability of the models.

The genes that were commonly identified by all three

algorithms were regarded as the signature genes for HTS.

Wilcoxon signed rank tests were performed to evaluate the

differential expression of the signature genes between the HTS

and controls, based on all training datasets and the validation

dataset. Receiver operating characteristic (ROC) curves analysis

was performed using the pROC package (version 1.12.1). This was

done to calculate the Area Under the Curve (AUC) value for each

signature gene when comparing HTS samples with normal samples.

Furthermore, the signature genes were employed for constructing a

nomogram through the rms package in R. A nomogram was

established based on the nomoScore values of all genes by using

the rms package (version 6.3-0). In addition, a calibration curve, a

decision curve, and a clinical curve were generated to assess the

performance of the nomogram.
2.7 Integration analysis on signature genes

In this study, using GeneMANIA, a PPI network was

constructed. This network incorporated feature genes and 20

interacting partners to analyze colocalization and functional

correlations. The DSigDB was then utilized to build a drug-target

interaction network, elucidating relationships between the feature

genes and drugs. GSEA was performed for signature genes, with

significant pathways defined by adjusted P-value (adj P) less than

0.05 and a Normalized Enrichment Score (NES) greater than 1.
2.8 Patients and sample collection

Tissue samples were obtained from 12 HTS patients, and these

patients were recruited from the Department of Burn and Wound

Repair in our Hospital. They were aged between 23 and 65. All 12

patients were found to develop HTS based on wounds. Paired

samples of HTS and adjacent non-lesional skin were collected from
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each patient. Primary fibroblasts were isolated from both tissue

types. Samples were immediately stored in sterile pre-cooled

physiological saline and transported to the laboratory within 1

hour for immediate processing. This research protocol was

approved by the Ethics Committee of Weifang People’s Hospital.

The informed consent of all participants was obtained.
2.9 Cell culture

Harvested tissues from 12 HTS patients were washed thrice

with PBS containing dual antibiotics (100 U/mL penicillin and 100

mg/mL streptomycin) to eliminate blood and contaminants. The

tissues were then minced into tiny fragments of about 1mm³ and

uniformly seeded into culture flasks. Flasks containing DMEM with

10% FBS and 1% GlutaMAX were incubated at 37°C with 5% CO2

for cell cultivation. Once the cells migrated from the tissue pieces

and reached 90% confluence, cells were passaged using 0.25%

trypsin-EDTA. Cells from the 3rd to the 5th passage were

employed for the subsequent experiments.
2.10 Quantitative real-time PCR analysis

Total RNA was isolated from both 12 HTS tissues and normal

skin tissues using TRIzol reagent (Invitrogen, USA), adhering to the

manufacturer’s instructions. The concentration and purity of the

ex t rac t ed RNA were de te rmined wi th a NanoDrop

spectrophotometer (Thermo Fisher Scientific, USA). The

PrimeScript RT reagent kit (Takara, Japan) was utilized to

synthesize cDNA. QRT-PCR was performed on a QuantStudio 5

Real-Time PCR System (Applied Biosystems, USA) with SYBR

Green Master Mix (Roche, Switzerland). Target gene expression

levels were quantified, with GAPDH as the endogenous control. All

primer details are provided in Supplementary Table S1. The relative

expression levels of the diagnostic genes were computed using the 2-

DDCT method (19).
2.11 Western blot analysis

Protein was extracted using RIPA lysis buffer (Beyotime, China)

supplemented with protease inhibitors. Protein concentrations were

measured using the BCA Protein Assay Kit (Thermo Fisher

Scientific, USA). Equal quantities of protein (30 μg) were

subjected to separation via SDS-PAGE and then transferred onto

PVDF membranes (Millipore, USA). The membranes were blocked

with 5% non-fat milk and then incubated at 4°C overnight with

primary antibodies. These primary antibodies were against COL1A1

(1:1000, Abcam, USA), A2M (1:1000, Abcam, USA), TIMP1

(1:1000, Abcam, USA), COL1A2 (1:1000, Abcam, USA), and

GAPDH (1:5000, Abcam, USA). After washing, the membranes

were incubated for 1 hour at room temperature with HRP-

conjugated secondary antibodies (1:5000, Abcam, USA). Protein
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bands were visualized using an ECL detection system (Bio-Rad,

USA), and the intensities of the bands were quantified using

ImageJ software.
2.12 The siRNA transfection and efficiency
evaluation

To investigate the biological function of COL1A1, siRNA

targeting COL1A1 (si-COL1A1) and a negative control siRNA (si-

NC) were synthesized by GenePharma (China). All 12 HTS tissue-

derived fibroblasts were transfected with si-COL1A1 or si-NC using

Lipofectamine 3000 (Invitrogen, USA) following the manufacturer’s

guidelines. Forty-eight hours post-transfection, total RNA was

extracted. COL1A1 knockdown efficiency was then verified

through qRT-PCR.
2.13 CCK-8 assay detection of proliferation
activity

Cell proliferation was evaluated using CCK-8 (Dojindo, Japan)

assay. Fibroblasts transfected with si-COL1A1 or si-NC were plated

into 96-well plates at a seeding density of 5×103cells per well. At 0,

24, 48, and 72 hours after seeding, 10 μL of CCK-8 solution was

added to each well. After incubation at 37°C for 2 hours. The

absorbance at 450 nm was measured using a microplate reader

(BioTek, USA). All experiment were performed in triplicate.
2.14 Flow cytometry detection of fibroblast
apoptosis

Apoptosis was evaluated using the Annexin V-FITC/PI

Apoptosis Detection Kit (BD Biosciences, USA). Fibroblasts

transfected with si-COL1A1 or si-NC were collected 48 hours

after the transfection process. These cells were washed with PBS

and then resuspended in binding buffer. Subsequently, the cells

were stained with Annexin V-FITC and PI (propidium iodide) for

15 minutes at room temperature in darkness. The apoptotic cells

were analyzed using a BD FACSCalibur flow cytometer (BD

Biosciences, USA). Data were analyzed using FlowJo software

(Tree Star, USA).
2.15 Statistical analysis

Statistical analyses were carried out using GraphPad Prism 9.0

software. An unpaired t-test and Wilcoxon rank-sum test were

applied to assess the differences between the two groups. Pearson’s

correlation analysis was used to identify correlations between

variables. All statistical tests were two-sided, and a P-value of 0.05
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was considered to indicate statistical significance. The study design

flowchart is provided in Supplementary Figure S1.
3 Results

3.1 DEGs, GSEA and immune infiltration
analysis in HTS groups vs. normal groups

After data preprocessing, a total of 31 HTS samples and 27

normal samples were enrolled based on two training datasets

(Figures 1A, B). Then, differential expression analysis identified a

total of 2244 DEGs including 1249 up-regulated genes and 995

down-regulated genes between HTS and normal samples

(Figure 1C). The outcome of the heatmap analysis demonstrated

that all the samples could be distinctly differentiated according to

the various groups (Figure 1D). Moreover, the top 6 significant up-

and down-regulated pathways between HTS and normal groups

were revealed by GSEA analysis (Figure 1E). The result showed that

significantly dysregulated KEGG pathways were predominantly

associated with immune response, inflammatory processes, and

metabolic regulation, suggesting their potential roles in the

pathogenesis of HTS. Finally, based on ssGSEA algorithm,

comparative analysis revealed 25 differentially infiltrated immune

cells (DICs) between HTS and normal groups with P < 0.05

(Figure 1F). For example, activated B cells showed significantly

increased infiltration in HTS compared to normal controls (P <

0.0001). Furthermore, the correlation analysis revealed

predominantly significant positive associations among the

majority of immune cell types, suggesting a coordinated immune

response in the tissue microenvironment (Figure 1G).
3.2 WGCNA analysis and DE-HMGs
investigation

The hierarchical clustering results based on the top 5000 genes

demonstrated good data quality and reliability, providing a solid

foundation for subsequent analysis (Figure 2A). Then, WGCNA

analysis was conducted using a soft-threshold of 8 and a fitting

degree of 0.85 (Figure 2B). Consequently, two modules were

identified based on the combination results of dynamic tree

cutting (Figure 2C). The correlation between the modules and

different groups was visualized with a heatmap (Figure 2D). The

analysis revealed that the black module (r = 0.51, P < 0.001) and

brown module (r = 0.5, P < 0.001) had the strongest positive

correlations with HTS, identifying them as key modules in this

study. Gene significant analysis demonstrated a strong correlation

among module genes and HTS (Figure 2E). Thus, these 1253

module genes were enrolled for the following analysis.

Furthermore, the VENN plot analysis identified a total of 73

common genes among DEGs, modules genes and inflammation-
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related genes (Figure 2F), which were used as cross genes for

following analysis.
3.3 Cross gene and associated analysis

By intersecting DEGs, WGCNA module genes, and

inflammatory genes from databases, a total of 73 immune-

inflammatory-related genes differentially expressed in HTS were

identified (Supplementary Figure S2). Subsequently, the GO and

KEGG enrichment analyses revealed that these genes were

predominantly grouped into functions such as regulation of the
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inflammatory response (BP, GO:0050727) (Figure 3A), protease

binding (MF, GO:0002020) (Figure 3B) and collagen-containing

extracellular matrix (CC, GO:0062023) (Figure 3C). Meanwhile,

these genes were mainly enriched in pathways including

complement and coagulation cascades (hsa04610) (Figure 3D).

Furthermore, the PPI analysis revealed a network established by

63 nodes (genes) and 254 interactions (Figure 3E). In addition, the

topology analysis based on MCC, MNC, EPC and Degree

algorithms explored 30 key genes from top 30 nodes in the PPI

network (Figure 3F). Notably, the intersection of the top 30 genes

identified by each algorithm remained 30, indicating high

consistency in their prioritization.
FIGURE 1

Integration investigation for hypertrophic scar (HTS) samples vs. normal samples based on training datasets. (A, B) PCA distribution of expressed data
before and after removing batch effects in SVA. (C) the volcano plot showed the differentially expressed genes (DEGs) between HTS samples and
normal samples. (D) the heatmap showed all samples could be separated by different groups (samples). (E) the TOP 6 significant up-regulated and
down-regulated pathways between HTS group and normal group revealed by GSEA analysis. (F) immune infiltration analysis revealed the outstanding
immune cells between HTS group and normal group. (G) the correlation analysis for immune cells by using heatmap analysis. *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.
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3.4 Signature genes investigation and
evaluation

Three advanced machine learning algorithms were employed to

analyze the 30 key genes. The LASSO regression analysis

successfully singled out five significant genes (Figures 4A, B). At

the same time, the SVM-RFE method identified seven genes

(Figures 4C, D). Moreover, the Random Forest algorithm,

utilizing a MeanDecreaseGini threshold greater than 2, uncovered

the top six genes (Figures 4E, F). The intersection of genes selected

by these various methods resulted in a final set of four signature

genes, including A2M, COL1A1, COL1A2 and TIMP1, for

investigation of HTS (Supplementary Figure S3). The evaluation

analysis was performed on four signature genes. The results showed

that all signature genes were significantly up-regulated in the HTS
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group when compared to the normal group in the training dataset

(Figure 4G), and ROC analysis showed that AUC values for each

gene were larger than 0.982 in both training dataset (Figure 4H). In

addition, the analysis based on the validation gene set further

confirmed the results obtained from the training set (Figures 4I, J).
3.5 Nomogram investigation based on
signature genes

A nomogram was established using grouping information and

expression of six signature genes (Figure 5A). Each variable was

scored on the point scale axis. The analyses of calibration curve

(Figure 5B), decision curve (Figure 5C) and clinical curve

(Figure 5D) showed the margin of error between actual HTS risk
FIGURE 2

The result of WCGNA analysis. (A) the hierarchical clustering analysis based on the TOP5000 genes. (B) the scale free soft-threshold distribution.
(C) clustering analysis for models: dynamic tree cut and merged dynamic represented the module before and after the merge module; the different
colors in the figure represented different modules. (D) the heatmap for correlation between modules and traits. (E) the gene significant analysis
for genes in brown module and yellow module. (F) the VENN plot analysis revealed 73 common genes (cross genes) for HTS among DEGs,
inflammation-related genes and module genes.
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and predicted risk was minimal, suggesting high prediction

accuracy for HTS within the nomogram model.
3.6 Integration analysis for signature genes

The GeneMANIA database was utilized to analyze the

functional interactions of the signature genes, resulting in the

construction of a gene-gene interaction network. The network

displayed four signature gene nodes encircled by 20 nodes

representing genes with significant associations, suggesting
Frontiers in Immunology 08
potential functional linkages and regulatory relationships

(Figure 6A). Based on the DSigDB database, we identified four

signature genes and their interacting drugs. Notably, compounds

such as Phenytoin (CTD 00006527) and TITANIUM (CTD

00006899) showed strong interactions with the signature genes,

suggesting potential therapeutic relevance (Figure 6B). Moreover,

the GSEA analysis showed that all signature genes were enriched in

pathways such as the extracellular matrix (ECM) receptor

interaction and ribosome (Figure 6C). Furthermore, the immune

correlation analysis we performed showed that signature genes were

significantly correlated with immune cells like Natural killer T cells
FIGURE 3

The immune-inflammation associated HTS genes (cross genes) and associated analysis. (A) the significant GO-BP functions assembled by cross
genes. (B) the significant GO-MF functions assembled by cross genes. (C) the significant GO-CC functions assembled by cross genes. (D) the
significant KEGG pathways enriched by cross genes. (E) the protein-protein interaction network constructed by cross genes. (F) the VENN plot
revealed 30 key genes related with HTS based on four topology analysis.
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FIGURE 4

Signature genes investigation and evaluation. (A, B) LASSO Cox analysis revealed nine optimal genes: the Y-axis in the A represented the coefficient
of the variable, while the X-axis represented the value of log (lambda); the two dotted lines in B represented two special lambda values: lambda.min
on the left and lambda.1se on the right; the lambda between these two values was considered appropriate. (C) the accuracy for SVM-RFE analysis.
(D) the error rate for SVM-RFE analysis. (E) relationship between the number of trees and the error rate in a RF model. (F) the Top 6 genes selected
by using RF algorithm. (G, H) the validation analysis for signature genes based on training datasets: box plot in G showed the expression of signature
genes between EM group and control group, while the ORC curve in H represented the AUC value for all signature genes. (I, J) the validation
analysis for signature genes based on validation dataset. *P < 0.05; ****P < 0.0001.
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(all P < 0.05), which collectively contribute to the immune

microenvironment (Figure 6D).
3.7 Signature genes were differentially
expressed between HTS tissue and normal
skin tissue

The expression levels of A2M, COL1A1, COL1A2, and TIMP1 in

12 HTS tissues and normal skin tissues were analyzed using qRT-

PCR and Western blot. The results of qRT-PCR demonstrated that

compared to normal skin tissues, the expression of A2M, COL1A1,

COL1A2, and TIMP1 was significantly upregulated in HTS tissues

(all P < 0.001) (Figure 7A). Western blot analysis revealed that the

protein levels of A2M, COL1A1, COL1A2, and TIMP1 were
Frontiers in Immunology 10
significantly elevated in HTS tissues compared to normal skin

tissues (Figure 7B).
3.8 COL1A1 promoted fibroblast
proliferation in HTS

A previous study demonstrated that COL1A1 was significantly

dysregulated in HTS tissues (20). Existing studies have revealed that

COL1A1 plays a crucial role in the process of tissue fibrosis by

directly regulating collagen fibril formation (21). This is highly

consistent with the major pathological features of HTS. Therefore,

COL1A1 was selected as the target gene for following

functional validation.
FIGURE 5

Nomogram analysis for signature genes. (A) nomogram model constructed by four signature genes predicting the risk of HTS: the nomogram
was used by summing all points identified on the scale for each variable; the total points projected on the bottom scales indicate the risk of HTS.
(B) calibration curve analysis to validate the predicable of nomogram. (C) the decision curve analysis used to evaluate optimal threshold for current
nomogram. (D) the clinical curve for evaluating the predictive power of nomograph model.
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To deeply explore the function of the COL1A1 gene in HTS, we

transfected si-COL1A1 into HTS fibroblasts. Compared with the

group transfected with negative control si-NC, COL1A1 mRNA

expression was significantly reduced after transfection with si-

COL1A1 (P < 0.001), which confirmed the efficiency of the

siRNA-mediated gene knockdown (Figure 7C). The CCK-8 assay

was utilized to evaluate the effect of COL1A1 gene knockdown on

the proliferation ability of HTS fibroblasts. The results indicated

that the knockdown of COL1A1 significantly inhibited the

proliferation of HTS fibroblasts (P < 0.05) (Figure 7D). The

proliferation rate of cells transfected with si-COL1A1 was

markedly lower than that of si-NC-transfected cells, suggesting

that COL1A1 plays a role in promoting the proliferation of

fibroblasts in HTS.
3.9 COL1A1 suppressed fibroblast
apoptosis in HTS

In addition, flow cytometry analysis was performed to detect the

apoptosis. The results showed that compared with the si-NC group,
Frontiers in Immunology 11
the knockdown of COL1A1 significantly increased the proportion of

apoptotic cells (P < 0.001) (Figure 7E). These results implied that

COL1A1 exerted an anti-apoptotic effect in HTS fibroblasts.
4 Discussion

HTS is a pathological state marked by an overactive state of

fibroblasts, abnormal accumulation of extracellular matrix, and the

continuous presence of an inflammatory response. Notably,

immune and inflammatory responses play pivotal roles in the

formation and progression of HTS (22). Based on differential

expression analysis and GSEA, this study revealed significantly

up-regulated immune- and inflammation-related pathways in

HTS, including the complement and coagulation cascades, as well

as ECM-receptor interactions. Indeed, the activation of the

complement system has been demonstrated to promote fibroblast

proliferation and collagen deposition, while dysregulation of ECM-

receptor interactions directly contributes to tissue fibrosis in HTS. A

previous study demonstrated that COL1A1 and COL1A2 directly

facilitate collagen fibril formation, leading to ECM deposition (23).
FIGURE 6

Integration analysis for signature genes. (A) the PPI interaction network analysis for signature genes: different circle represented different gene, while
different color represented functions associated with signature gene. (B) the TOP 10 target drugs predicted for signature genes: the redder the color,
the more significant the P value. (C) the Gene Set Enrichment Analysis (GSEA) analysis based on signature genes. (D) immune correlation analysis for
signature genes. *P < 0.05; **P < 0.01.
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Meanwhile, dysregulation of TIMP1 may exacerbate fibrosis

by reducing the inhibition of matrix metalloproteinases

(MMPs), thereby disrupting the crucial MMP-TIMP balance

that is essential for ECM turnover (24). In addition, the

immunoregulatory function of A2M may be impaired in HTS,

potentially leading to uncontrolled inflammation and fibroblast

activation (25). These processes are further supported by the

GSEA results from the present study, which highlight significant

enrichment of ECM-receptor interactions and complement

cascades and pathways that are intricately interconnected with

both fibrotic processes and immune responses (26). Notably, the

immune correlation analysis in the current study revealed a strong

association between the signature genes and infiltrating immune

cells, such as natural killer T cells and activated B cells. This might

indicate the existence of a feedforward loop, in which cytokines

derived from immune cells induce fibroblast activation and collagen

production, while the ECM components regulate the recruitment

and polarization of immune cells. These interactions emphasize the

importance of immune and fibrotic components in targeted HTS

therapy, providing a new perspective for understanding the

immune microenvironment of HTS.

COL1A1 encodes the a1 chain of type I collagen, a major

component of the ECM critical that is critical for maintaining skin

structure and facilitating wound healing (27). COL1A1 drives

fibroblast activation and excessive collagen deposition,

contributing to scar hypertrophy and ECM remodeling (7).
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Previous evidence showed that the roles of multiple molecules in

the proliferation of HTS fibroblasts were mediated by Col1A1 (20,

28). Additionally, it has been demonstrated as a valuable indicator

of immune cell infiltration and the expression of immune-related

genes (29). A2M is a multifunctional protease inhibitor and acute-

phase reactant involved in immune regulation, cytokine

sequestration, and inflammation resolution (30). Reduced A2M

expression in HTS suggests impaired immunosuppressive function,

potentially exacerbating inflammatory responses and fibroblast

activation (25). TIMP1, as a metalloproteinase inhibitor that

regulates ECM degradation by inhibiting MMPs (31), has recently

emerged as a potential immune functional biomarker by interacting

with multiple co-receptors and cell-surface receptors, including

CD74, LRP1, and CD63 (32, 33). In the formation of HTS, the

levels of TIMP-1 served as an important mediator for endostar (34).

COL1A2 encodes the a2 chain of type I collagen, forming

heterotrimeric fibrils essential for skin tensile strength (35). Loss

of Smad-interacting protein 1 leads to the upregulation of COL1A2,

resulting in excessive accumulation of the ECM and promoting scar

formation (36). COL1A2 acts in concert with COL1A1 to boost

collagen biosynthesis and drive the formation of fibrotic scars (37).

In this study, the four signature genes that were closely related to

HTS were screened out through WGCNA and machine learning

algorithms. In addition, qRT-PCR analysis showed up-regulation of

COL1A1, COL1A2 and TIMP1, and down-regulation of A2M in

HTS tissues compared to normal skin tissues. Western blot analysis
FIGURE 7

Validation analysis for signature genes. (A) qRT-PCR analysis showed significant differences in the expression levels of signature genes including
COL1A1, A2M, TIMP1, and COL1A2 between hypertrophic scar (HTS) tissue and normal skin tissue. (B) Western blot analysis was carried out on
samples from HTS tissue and normal skin tissue to confirm the expression differences of COL1A1, A2M, TIMP1, and COL1A2 at the protein level.
(C) to verify the efficiency of siRNA - mediated knockdown, HTS fibroblasts were transfected with si-COL1A1, and the change in COL1A1 mRNA
expression was compared with the si-negative control (si-NC) group. (D) CCK-8 assays were conducted on HTS fibroblasts transfected with si-
COL1A1 to determine the impact of COL1A1 knockdown on cell proliferation at 24, 48, and 72 hours post-transfection. (E) flow cytometry analysis
was applied to HTS fibroblasts transfected with si-COL1A1 to evaluate the effect of COL1A1 knockdown on apoptosis, with comparison to the si-NC
group. ***P < 0.001.
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further verified these expression patterns at the protein level. These

findings not only reveal the key molecular mechanisms of HTS but

also provide potential drug targets for clinical treatment.

In addition, we constructed a nomogram model based on core

genes, which can effectively predict the risk of HTS occurrence. As

an intuitive prediction tool, the nomogram has been widely applied

in the clinical diagnosis of various diseases (38). However, the

clinical application of nomogram on HTS is rare. Our model, by

integrating the expression levels of multiple genes, could accurately

predict the risk of HTS occurrence. The predictive performance of

the model has been validated through a calibration curve and

decision curve analyses. The construction of this model provides

a new tool for the early diagnosis of HTS and offers potential

reference for personalized treatment.

Notably, there are some limitations should be noted. First, the

sample size for validation is relatively small. Although qRT-PCR,

Western blot, and cell experiments confirmed the differential

expression of signature genes and the role of COL1A1, the

limited number of HTS patient tissue samples and fibroblasts

used may restrict the generalizability of the findings, failing to

fully reflect the heterogeneity across different populations or clinical

subtypes of HTS. Second, the study relies heavily on publicly

available microarray data from the GEO database. Such data may

be affected by batch effects, variations in preprocessing protocols,

and incomplete clinical metadata, which could introduce biases and

impact the robustness of the identified signature genes and

associated mechanisms. Third, the nomogram’s generalizability

across ethnicities and scar subtypes remains unknown. These

limitations highlight the need for future studies with larger,

multi-center validation cohorts and integrated in-house

sequencing data to further verify the conclusions.
5 Conclusions

In conclusion, our study identified four immune-related

inflammatory biomarkers for HTS, and successfully constructed a

nomogram for clinical diagnosis. These findings offered new

insights into HTS pathogenesis and potential therapeutic targets.
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