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Introduction: This research aimed to explore key immune-related inflammatory
genes and associated molecular mechanisms on hypertrophic scar (HTS), to
provide new perspectives for disease prognosis and diagnosis.

Methods: The gene expression profiles were obtained from the public GEO
database. The immune-related inflammatory genes were identified based on
DEGs from HTS vs. normal samples, immune-related genes explored by WGCNA,
as well as inflammation-related genes from the database. Signature genes were
screened using machine learning methods, followed by nomogram validation.
Then, the immune infiltration, GSEA pathway analysis, target drug prediction and
interaction analysis associated with signature genes were further investigated.
Finally, validation analysis was performed using tissue samples from HTS patients
to verify the expression of signature genes.

Results: A total of 73 differentially expressed immune-related inflammatory genes
were identified. Through three machine learning analysis approaches, four signature
genes (COL1AL A2M, TIMP1, and COL1A2) were identified, and they exhibited strong
prognostic value in nomogram analysis. Immune infiltration and GSEA analysis
revealed significant associations between these signature genes and Nature killer
T cells, as well as the ECM receptor interaction pathway. Validation analysis via gRT-
PCR and Western blot confirmed significant differential expression of all signature
genes in HTS compared with normal skin tissues. Furthermore, transfection of HTS
fibroblasts with si-COL1A1 not only reduced COL1A1 expression but also suppressed
fibroblasts proliferation while promoting apoptosis, indicating that COL1A1
promotes proliferation and inhibits apoptosis in HTS fibroblasts.

Discussion: The immune-inflammation related genes COL1Al, A2M, TIMP1, and
COL1A2 were identified as novel signature genes in HTS. The nomogram
established based on these genes demonstrated high clinical diagnosis value.
These findings provide evidence for early diagnosis and personalized therapeutic
strategies in HTS management.

hypertrophic scar, immune-related inflammatory gene, signature genes and mode,
immune cell infiltration, machine learning, validation analysis
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1 Introduction

Hypertrophic scar (HTS) is a prevalent fibrotic skin disorder
that typically arises following trauma, surgery, or burns,
characterized by excessive proliferation of cutaneous tissue and
abnormal collagen deposition (1). Although HTS does not pose a
direct life-threatening risk, it can cause functional impairments and
significant psychological distress (2). Currently, it is more efficient
to prevent HTS than treat them, and reliable biomarkers for early
identification and prediction of HTS can considerably impact the
overall outcome.

The pathogenesis of HTS is complex, involving multiple cell
types and molecular pathways, particularly dysregulation of
immune-inflammatory responses (3). For example, the
accumulation of pro-fibrotic immune cells, including M2
macrophages, dendritic cells, mast cells, and Th2 cells, induces
the transition of fibroblasts to myofibroblasts through the
transforming growth factor-betal (TGF-B1) signaling pathway
(4). Furthermore, inflammation is also one of the determining
factors for wound healing, and the intensity of inflammation is
positively correlated to final scar sizes (5-7). Therefore, immune-
related inflammatory responses play a pivotal role in the formation
and progression of HTS (8). Studies have demonstrated significant
immune cell infiltration and up-regulation of inflammatory factors
in HS tissues, suggesting that dysregulation of the immune
microenvironment may be a core driver of HTS pathogenesis (9).
For instance, abnormal accumulation of immune cells (e.g., T cells
and B cells) in HTS tissues has been widely reported (10). These
cells promote fibroblast activation and excessive collagen deposition
through releasing pro-inflammatory factors and growth factors.
Additionally, aberrant activation of inflammation-related signaling
pathways such as NF-xB is recognized as a crucial mechanism in
HTS formation (11). At present, the role of immune-related
inflammatory biomarkers has attracted attention, but most exhibit
limitations including small sample sizes and methodological
constraints (12, 13). In recent years, the application of machine
learning algorithms in biomedicine has expanded significantly,
showing strong potential for biomarker screening and validation
(14). By integrating multi-omics data via machine learning models,
researchers can identify disease-associated key genes from extensive
gene expression datasets and develop predictive models. However,
machine learning applications in HTS research remain nascent,
with few studies targeting immune-related inflammatory
biomarkers screening and validation.

In this study, we aim to systematically identify and validate
immune-related inflammatory biomarkers in HTS using multiple
machine learning algorithms, integrated with bioinformatics
analysis and experimental validation. Furthermore, the biological
functions of these biomarkers will be verified through in vitro
studies, with the ultimate goal of providing novel insights and
potential therapeutic targets for HTS management.
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2 Materials and methods
2.1 Microarray data and data preprocessing

Profiles associated with HTS in Gene Expression Omnibus
(GEO, https://www.ncbinlm.nih.gov/gds/?term=) database were
selected following the selection criteria: 1) Independent
expression profiles of HTS; 2) Both HTS and normal controls
were involved; 3) Total sample size in each profile was more than
6; 4) Test specimens from datasets of human (Homo sapiens) skin
tissues. Finally, three datasets including GSE178411 (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE178411),
GSE181540 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE181540) and GSE188952 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE188952) were downloaded. GSE178411
and GSE181540 served as training datasets, while GSE188952 was
used as the validation dataset in this study. Bridely, GSE178411
included data from 28 HTS samples and 24 normal controls, based
on GPL24676 platform. GSE181540 included data from 3 HTS
samples and 3 normal controls, based on GPL20301 platform.
GSE188952 included data from 5 HTS samples and 3 normal
controls, based on GPL16791 platform.

To ensure data comparability and analytical reliability, the
following preprocessing steps were performed after downloading
the raw CEL files in this study: First, background correction and
standardization were conducted using the Robust Multi-array
Average (RMA) method from the R package affy, which included
background correction, quantile normalization, and log2
transformation to reduce technical noise. Second, probe
annotation and gene merging were carried out by mapping
probes to gene symbols based on the latest annotation files. For
multiple probes corresponding to the same gene, the average
expression value was taken as the representative. Probes without
matching gene symbols were eliminated using the probe expression
matrix and annotation file. Third, missing value handling involved
removing probes with a missing value ratio exceeding 20% and
imputing sporadic missing values using the k-nearest neighbors
(KNN) imputation method. Fourth, if the data originated from
multiple experimental batches, batch effect correction was
performed using the ComBat method in the sva package (version
4.3.3). Finally, low-expression gene filtering was implemented to
remove genes whose expression values fell within the lowest 25th
percentile in more than 80% of the samples, thereby reducing
interference from low-information features in the analysis.

2.2 DEGs, GSEA and immune landscape
analysis

We employed the limma package in R (version 3.58.1) (15) to
identify differentially expressed genes (DEGs) between HTS and
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normal samples across two training datasets. First, we performed
significance analysis of gene expression using log2 fold change (FC)
and P-values, selecting DEGs with Benjamini-Hochberg (BH)-
adjusted (adj) P < 0.05 and |log,FC| > 1. Next, Gene Set
Enrichment Analysis (GSEA) (16) was conducted with thresholds
of adjusted P < 0.05 and NES > 1 to identify significant pathways.
The ssGSEA algorithm (17) was then applied to assess infiltration
levels of 28 immune cell subtypes based on training set expression
profiles. Finally, we employed the ggplot2 (version 3.5.0) package in
R to calculate the Pearson correlation coefficient, analyzing
correlations among immune cells.

2.3 WGCNA analysis

The analysis commenced with performing variance analysis on
the HTS sample expression matrix of to identify the top 5000 most
variable genes. We further employed WGCNA (version 1.72-5) to
construct a gene co-expression network. Specifically, it can
transform high-dimensional transcriptome data into gene
modules, revealing gene clusters with similar expression patterns
and their underlying biological functions. Meanwhile, it enables
direct correlation analysis between co-expression modules and
phenotypes, facilitating the identification of gene groups
significantly associated with immune cells. Additionally, through
modular analysis, WGCNA reduces the number of statistical tests,
thereby enhancing the robustness of results. Furthermore, it is well-
suited for large-scale data, as it maintains high computational
efficiency and interpretability even when clustering 5,000 genes.

At first, the soft threshold was employed to transform the
adjacency matrix into a continuous range from 1 to 30. This was
done to guarantee that the resultant network conformed to a power-
law distribution, which better represents the characteristics of
biological networks. In WGCNA analysis, module selection
adheres to the following criteria: first, the soft threshold (3) was
identified via the pickSoftThreshold function, selecting the smallest
[ value that enables the network to approximate scale-free topology
(typically with R > 0.85); second, the minimum module size was set
to 100 genes to avoid statistical instability caused by excessively
small modules; finally, Pearson correlation coefficients and p-values
between each module eigengene and immune cells were computed,
with modules meeting |correlation| = 0.75 and p < 0.05 prioritized
for subsequent analysis. After that, the blockwiseModules function
was used to generate the scale-free network, and module partition
analysis was carried out. For each module, the module membership
and gene significance were computed.

2.4 Investigation of immune-inflammation
gene associated HTS

Inflammation-related genes were retrieved from the MSigDB

database, with subsequent removal of duplicates entries. Then, the
cross genes among DEGs, modules genes in WGCNA and
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inflammation-related genes were revealed by using Venn
diagram analysis.

2.5 The enrichment and interaction
analysis based on cross genes

GO function and KEGG pathway analyses were implemented
using the clusterProfiler package in R for intersecting genes. The
GO function encompasses biological process (BP), cellular
component (CC), and molecular function (MF). For the current
enrichment analysis, an adjusted P value less than 0.05 was set as the
threshold. Subsequently, based on the STING database (version:
11.0) (18), the protein interaction information was retrieved.
Protein-protein interaction (PPI) pairs among the differentially
expressed high-mobility group proteins (DE-HMGs) were
predicted, with a combined_score greater than 0.4. The PPI
network was built using Cytoscape (version: 3.8.2) software. The
maximum clique centrality (MCC), maximum neighborhood
component (MNC), degree centrality (Degree), and edge
percolated component (EPC) topology algorithms within the
cytoHubba package of the Cytoscape software were applied.
These algorithms were used to identify hub genes, taking into
account the TOP 30 nodes in the PPI network.

2.6 Signature genes exploration and
evaluation

In the feature screening stage, LASSO regression was used for
dimensionality reduction of high-dimensional expression data—it
achieves automatic feature selection by compressing some
regression coefficients to zero through L1 regularization during
fitting, which can effectively reduce redundant variables and
mitigate the impact of multicollinearity. Specifically, the R
package glmnet was used to perform 10-fold cross-validation
under a series of regularization parameters A, and the feature set
corresponding to lambda.min (the A with the minimum cross-
validation error) was selected as input for subsequent modeling. In
the classification stage, support Vector Machines (SVM) was
employed to build a prediction model, which has strong
generalization ability in the analysis of high-dimensional, small-
sample, and noisy biological data, and is particularly suitable for
problems with nonlinear decision boundaries. Therefore, the radial
basis function (RBF) kernel was prioritized to capture complex
nonlinear patterns, and the penalty coefficient C and kernel
parameter y were optimized through grid search combined with
cross-validation. To further evaluate feature stability and model
generalization performance, random forest (RF) was
simultaneously used for modeling and feature importance
ranking. RF stably handles high-dimensional data and calculates
variable importance scores by constructing multiple decision trees
and using out-of-bag (OOB) data for error estimation, the
parameter optimization of which involves adjusting the number
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of decision trees (ntree) and the number of random features (mtry)
through grid search, selecting the parameter combination with the
lowest OOB error. To ensure model robustness and generalizability,
all algorithms adopt 10-fold cross-validation: the data is randomly
divided into 10 subsets, with one subset used as the validation set
and the remaining nine as the training set in turn. Within each fold,
feature selection, model training, and parameter optimization were
performed in sequence to prevent data leakage, and grid search was
conducted to optimize key hyperparameters for LASSO (A), SVM
(C/y), and RF (ntree/mtry) respectively, with the cross-validation
process repeated more than 100 times. Additionally, measures such
as separating feature selection from model training to avoid leakage
of training set information, comparing multiple algorithms (SVM
and RF) to verify feature reproducibility, randomly dividing
training/validation sets multiple times to ensure results do not
depend on a single data split, and combining OOB error with
cross-validation for dual evaluation of model performance further
guarantee the robustness and reliability of the models.

The genes that were commonly identified by all three
algorithms were regarded as the signature genes for HTS.
Wilcoxon signed rank tests were performed to evaluate the
differential expression of the signature genes between the HTS
and controls, based on all training datasets and the validation
dataset. Receiver operating characteristic (ROC) curves analysis
was performed using the pROC package (version 1.12.1). This was
done to calculate the Area Under the Curve (AUC) value for each
signature gene when comparing HTS samples with normal samples.
Furthermore, the signature genes were employed for constructing a
nomogram through the rms package in R. A nomogram was
established based on the nomoScore values of all genes by using
the rms package (version 6.3-0). In addition, a calibration curve, a
decision curve, and a clinical curve were generated to assess the
performance of the nomogram.

2.7 Integration analysis on signature genes

In this study, using GeneMANIA, a PPI network was
constructed. This network incorporated feature genes and 20
interacting partners to analyze colocalization and functional
correlations. The DSigDB was then utilized to build a drug-target
interaction network, elucidating relationships between the feature
genes and drugs. GSEA was performed for signature genes, with
significant pathways defined by adjusted P-value (adj P) less than
0.05 and a Normalized Enrichment Score (NES) greater than 1.

2.8 Patients and sample collection

Tissue samples were obtained from 12 HTS patients, and these
patients were recruited from the Department of Burn and Wound
Repair in our Hospital. They were aged between 23 and 65. All 12
patients were found to develop HTS based on wounds. Paired
samples of HTS and adjacent non-lesional skin were collected from
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each patient. Primary fibroblasts were isolated from both tissue
types. Samples were immediately stored in sterile pre-cooled
physiological saline and transported to the laboratory within 1
hour for immediate processing. This research protocol was
approved by the Ethics Committee of Weifang People’s Hospital.
The informed consent of all participants was obtained.

2.9 Cell culture

Harvested tissues from 12 HTS patients were washed thrice
with PBS containing dual antibiotics (100 U/mL penicillin and 100
ug/mL streptomycin) to eliminate blood and contaminants. The
tissues were then minced into tiny fragments of about Imm? and
uniformly seeded into culture flasks. Flasks containing DMEM with
10% FBS and 1% GlutaMAX were incubated at 37°C with 5% CO,
for cell cultivation. Once the cells migrated from the tissue pieces
and reached 90% confluence, cells were passaged using 0.25%
trypsin-EDTA. Cells from the 3rd to the 5th passage were
employed for the subsequent experiments.

2.10 Quantitative real-time PCR analysis

Total RNA was isolated from both 12 HTS tissues and normal
skin tissues using TRIzol reagent (Invitrogen, USA), adhering to the
manufacturer’s instructions. The concentration and purity of the
extracted RNA were determined with a NanoDrop
spectrophotometer (Thermo Fisher Scientific, USA). The
PrimeScript RT reagent kit (Takara, Japan) was utilized to
synthesize cDNA. QRT-PCR was performed on a QuantStudio 5
Real-Time PCR System (Applied Biosystems, USA) with SYBR
Green Master Mix (Roche, Switzerland). Target gene expression
levels were quantified, with GAPDH as the endogenous control. All
primer details are provided in Supplementary Table S1. The relative
expression levels of the diagnostic genes were computed using the 2°
AACT method (19).

2.11 Western blot analysis

Protein was extracted using RIPA lysis buffer (Beyotime, China)
supplemented with protease inhibitors. Protein concentrations were
measured using the BCA Protein Assay Kit (Thermo Fisher
Scientific, USA). Equal quantities of protein (30 pg) were
subjected to separation via SDS-PAGE and then transferred onto
PVDF membranes (Millipore, USA). The membranes were blocked
with 5% non-fat milk and then incubated at 4°C overnight with
primary antibodies. These primary antibodies were against COL1AI
(1:1000, Abcam, USA), A2M (1:1000, Abcam, USA), TIMPI
(1:1000, Abcam, USA), COL1A2 (1:1000, Abcam, USA), and
GAPDH (1:5000, Abcam, USA). After washing, the membranes
were incubated for 1 hour at room temperature with HRP-
conjugated secondary antibodies (1:5000, Abcam, USA). Protein
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bands were visualized using an ECL detection system (Bio-Rad,
USA), and the intensities of the bands were quantified using
Image] software.

2.12 The siRNA transfection and efficiency
evaluation

To investigate the biological function of COLIAI, siRNA
targeting COLIAI (si-COL1A1) and a negative control siRNA (si-
NC) were synthesized by GenePharma (China). All 12 HTS tissue-
derived fibroblasts were transfected with si-COL1AL1 or si-NC using
Lipofectamine 3000 (Invitrogen, USA) following the manufacturer’s
guidelines. Forty-eight hours post-transfection, total RNA was
extracted. COLIAI knockdown efficiency was then verified
through qRT-PCR.

2.13 CCK-8 assay detection of proliferation
activity

Cell proliferation was evaluated using CCK-8 (Dojindo, Japan)
assay. Fibroblasts transfected with si-COL1A1 or si-NC were plated
into 96-well plates at a seeding density of 5x10°cells per well. At 0,
24, 48, and 72 hours after seeding, 10 pL of CCK-8 solution was
added to each well. After incubation at 37°C for 2 hours. The
absorbance at 450 nm was measured using a microplate reader
(BioTek, USA). All experiment were performed in triplicate.

2.14 Flow cytometry detection of fibroblast
apoptosis

Apoptosis was evaluated using the Annexin V-FITC/PI
Apoptosis Detection Kit (BD Biosciences, USA). Fibroblasts
transfected with si-COL1Al or si-NC were collected 48 hours
after the transfection process. These cells were washed with PBS
and then resuspended in binding buffer. Subsequently, the cells
were stained with Annexin V-FITC and PI (propidium iodide) for
15 minutes at room temperature in darkness. The apoptotic cells
were analyzed using a BD FACSCalibur flow cytometer (BD
Biosciences, USA). Data were analyzed using FlowJo software
(Tree Star, USA).

2.15 Statistical analysis

Statistical analyses were carried out using GraphPad Prism 9.0
software. An unpaired t-test and Wilcoxon rank-sum test were
applied to assess the differences between the two groups. Pearson’s
correlation analysis was used to identify correlations between
variables. All statistical tests were two-sided, and a P-value of 0.05
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was considered to indicate statistical significance. The study design
flowchart is provided in Supplementary Figure SI.

3 Results

3.1 DEGs, GSEA and immune infiltration
analysis in HTS groups vs. normal groups

After data preprocessing, a total of 31 HTS samples and 27
normal samples were enrolled based on two training datasets
(Figures 1A, B). Then, differential expression analysis identified a
total of 2244 DEGs including 1249 up-regulated genes and 995
down-regulated genes between HTS and normal samples
(Figure 1C). The outcome of the heatmap analysis demonstrated
that all the samples could be distinctly differentiated according to
the various groups (Figure 1D). Moreover, the top 6 significant up-
and down-regulated pathways between HTS and normal groups
were revealed by GSEA analysis (Figure 1E). The result showed that
significantly dysregulated KEGG pathways were predominantly
associated with immune response, inflammatory processes, and
metabolic regulation, suggesting their potential roles in the
pathogenesis of HTS. Finally, based on ssGSEA algorithm,
comparative analysis revealed 25 differentially infiltrated immune
cells (DICs) between HTS and normal groups with P < 0.05
(Figure 1F). For example, activated B cells showed significantly
increased infiltration in HTS compared to normal controls (P <
0.0001). Furthermore, the correlation analysis revealed
predominantly significant positive associations among the
majority of immune cell types, suggesting a coordinated immune
response in the tissue microenvironment (Figure 1G).

3.2 WGCNA analysis and DE-HMGs
investigation

The hierarchical clustering results based on the top 5000 genes
demonstrated good data quality and reliability, providing a solid
foundation for subsequent analysis (Figure 2A). Then, WGCNA
analysis was conducted using a soft-threshold of 8 and a fitting
degree of 0.85 (Figure 2B). Consequently, two modules were
identified based on the combination results of dynamic tree
cutting (Figure 2C). The correlation between the modules and
different groups was visualized with a heatmap (Figure 2D). The
analysis revealed that the black module (r = 0.51, P < 0.001) and
brown module (r = 0.5, P < 0.001) had the strongest positive
correlations with HTS, identifying them as key modules in this
study. Gene significant analysis demonstrated a strong correlation
among module genes and HTS (Figure 2E). Thus, these 1253
module genes were enrolled for the following analysis.
Furthermore, the VENN plot analysis identified a total of 73
common genes among DEGs, modules genes and inflammation-
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FIGURE 1
Integration investigation for hypertrophic scar (HTS) samples vs. normal samples based on training datasets. (A, B) PCA distribution of expressed data
before and after removing batch effects in SVA. (C) the volcano plot showed the differentially expressed genes (DEGs) between HTS samples and
normal samples. (D) the heatmap showed all samples could be separated by different groups (samples). (E) the TOP 6 significant up-regulated and
down-regulated pathways between HTS group and normal group revealed by GSEA analysis. (F) immune infiltration analysis revealed the outstanding
immune cells between HTS group and normal group. (G) the correlation analysis for immune cells by using heatmap analysis. *P<0.05, **P<0.01,
***P<0.001, ****P<0.0001.

related genes (Figure 2F), which were used as cross genes for
following analysis.

3.3 Cross gene and associated analysis

By intersecting DEGs, WGCNA module genes, and
inflammatory genes from databases, a total of 73 immune-
inflammatory-related genes differentially expressed in HTS were
identified (Supplementary Figure S2). Subsequently, the GO and
KEGG enrichment analyses revealed that these genes were
predominantly grouped into functions such as regulation of the
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inflammatory response (BP, GO:0050727) (Figure 3A), protease
binding (MF, GO:0002020) (Figure 3B) and collagen-containing
extracellular matrix (CC, G0:0062023) (Figure 3C). Meanwhile,
these genes were mainly enriched in pathways including
complement and coagulation cascades (hsa04610) (Figure 3D).
Furthermore, the PPI analysis revealed a network established by
63 nodes (genes) and 254 interactions (Figure 3E). In addition, the
topology analysis based on MCC, MNC, EPC and Degree
algorithms explored 30 key genes from top 30 nodes in the PPI
network (Figure 3F). Notably, the intersection of the top 30 genes
identified by each algorithm remained 30, indicating high
consistency in their prioritization.
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The result of WCGNA analysis. (A) the hierarchical clustering analysis based on the TOP5000 genes. (B) the scale free soft-threshold distribution

(C) clustering analysis for models: dynamic tree cut and merged dynamic represented the module before and after the merge module; the different
colors in the figure represented different modules. (D) the heatmap for correlation between modules and traits. (E) the gene significant analysis

for genes in brown module and yellow module. (F) the VENN plot analysis revealed 73 common genes (cross genes) for HTS among DEGs,

inflammation-related genes and module genes.

3.4 Signature genes investigation and
evaluation

Three advanced machine learning algorithms were employed to
analyze the 30 key genes. The LASSO regression analysis
successfully singled out five significant genes (Figures 4A, B). At
the same time, the SVM-RFE method identified seven genes
(Figures 4C, D). Moreover, the Random Forest algorithm,
utilizing a MeanDecreaseGini threshold greater than 2, uncovered
the top six genes (Figures 4E, F). The intersection of genes selected
by these various methods resulted in a final set of four signature
genes, including A2M, COL1Al, COL1A2 and TIMPI, for
investigation of HTS (Supplementary Figure S3). The evaluation
analysis was performed on four signature genes. The results showed
that all signature genes were significantly up-regulated in the HTS
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group when compared to the normal group in the training dataset
(Figure 4G), and ROC analysis showed that AUC values for each
gene were larger than 0.982 in both training dataset (Figure 4H). In
addition, the analysis based on the validation gene set further
confirmed the results obtained from the training set (Figures 41, J).

3.5 Nomogram investigation based on
signature genes

A nomogram was established using grouping information and
expression of six signature genes (Figure 5A). Each variable was
scored on the point scale axis. The analyses of calibration curve
(Figure 5B), decision curve (Figure 5C) and clinical curve
(Figure 5D) showed the margin of error between actual HTS risk

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1645721
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Liu et al.

10.3389/fimmu.2025.1645721

GO enrichment analysis (BP)

regulation of inflammatory response
regulation of angiogenesis

regulation of vasculature development
positive regulation of angiogenesis p.adjust
positive regulation of vasculature development se07
positive regulation of response to external stimulus
positive regulation of cytokine production e
wound healing

negative regulation of inflammatory response

response to lipopolysaccharide

o
(&)
5
&

Count

Complement and coagulation cascades
AGE-RAGE signaling pathway in diabetic complications

Coronavirus disease - COVID-19

Staphylococcus aureus infection p.adjust

Pertussis 2e-04

. " 4e-04
ECM-receptor interaction
6e-04

Shigellosis 8e-04
Focal adhesion

Amoebiasis

Py
m
(2]
®
)
3
E
=2
3
)
2
o
=1
o
<
@,
)

Proteoglycans in cancer

o,
=

25

50 75 100
Count

B
GO enrichment analysis (MF)
platelet-derived growth factor binding -
vascular endothelial growth factor receptor binding - p-adjust
growth factor binding _ 0.0025
0.0050
growth factor receptor binding -
00075
virus receptor activity - 0.0100
exogenous protein binding -
glycosaminoglycan binding _
growth factor activity _
0.0 25 5.0 75
Count
D
GO enrichment analysis (CC)
collagen-containing extracellular matrix _
secretory granule membrane _
platelet alpha granule -
fibrillar collagen trimer . p-adjust
banded collagen fibril . 2e-04
) 4e-04
collagen trimer -
6e-04
blood microparticle - 8e-04
endoplasmic reticulum lumen -
protein complex involved in cell adhesion -
external side of plasma membrane -
0 5 10 15
Count
F

FIGURE 3

The immune-inflammation associated HTS genes (cross genes) and associated analysis. (A) the significant GO-BP functions assembled by cross
genes. (B) the significant GO-MF functions assembled by cross genes. (C) the significant GO-CC functions assembled by cross genes. (D) the
significant KEGG pathways enriched by cross genes. (E) the protein-protein interaction network constructed by cross genes. (F) the VENN plot

revealed 30 key genes related with HTS based on four topology analysis.

and predicted risk was minimal, suggesting high prediction
accuracy for HTS within the nomogram model.

3.6 Integration analysis for signature genes

The GeneMANIA database was utilized to analyze the
functional interactions of the signature genes, resulting in the
construction of a gene-gene interaction network. The network
displayed four signature gene nodes encircled by 20 nodes
representing genes with significant associations, suggesting
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potential functional linkages and regulatory relationships
(Figure 6A). Based on the DSigDB database, we identified four
signature genes and their interacting drugs. Notably, compounds
such as Phenytoin (CTD 00006527) and TITANIUM (CTD
00006899) showed strong interactions with the signature genes,
suggesting potential therapeutic relevance (Figure 6B). Moreover,
the GSEA analysis showed that all signature genes were enriched in
pathways such as the extracellular matrix (ECM) receptor
interaction and ribosome (Figure 6C). Furthermore, the immune
correlation analysis we performed showed that signature genes were
significantly correlated with immune cells like Natural killer T cells
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(all P < 0.05), which collectively contribute to the immune
microenvironment (Figure 6D).

3.7 Signature genes were differentially
expressed between HTS tissue and normal
skin tissue

The expression levels of A2M, COLIA1, COL1A2, and TIMPI in
12 HTS tissues and normal skin tissues were analyzed using qRT-
PCR and Western blot. The results of qRT-PCR demonstrated that
compared to normal skin tissues, the expression of A2M, COLIA]I,
COL1A2, and TIMPI was significantly upregulated in HTS tissues
(all P < 0.001) (Figure 7A). Western blot analysis revealed that the
protein levels of A2M, COLIAI, COLIA2, and TIMPI were
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significantly elevated in HTS tissues compared to normal skin
tissues (Figure 7B).

3.8 COL1A1 promoted fibroblast
proliferation in HTS

A previous study demonstrated that COLIAI was significantly
dysregulated in HTS tissues (20). Existing studies have revealed that
COLIAI plays a crucial role in the process of tissue fibrosis by
directly regulating collagen fibril formation (21). This is highly
consistent with the major pathological features of HTS. Therefore,
COL1A1 was selected as the target gene for following
functional validation.
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To deeply explore the function of the COLIAI gene in HTS, we
transfected si-COL1A1 into HTS fibroblasts. Compared with the
group transfected with negative control si-NC, COLIAI mRNA
expression was significantly reduced after transfection with si-
COL1A1 (P < 0.001), which confirmed the efficiency of the
siRNA-mediated gene knockdown (Figure 7C). The CCK-8 assay
was utilized to evaluate the effect of COLI1AI gene knockdown on
the proliferation ability of HTS fibroblasts. The results indicated
that the knockdown of COLIAI significantly inhibited the
proliferation of HTS fibroblasts (P < 0.05) (Figure 7D). The
proliferation rate of cells transfected with si-COL1Al was
markedly lower than that of si-NC-transfected cells, suggesting
that COLIAI plays a role in promoting the proliferation of
fibroblasts in HTS.

3.9 COL1A1 suppressed fibroblast
apoptosis in HTS

In addition, flow cytometry analysis was performed to detect the
apoptosis. The results showed that compared with the si-NC group,
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the knockdown of COLIA1 significantly increased the proportion of
apoptotic cells (P < 0.001) (Figure 7E). These results implied that
COLIALI exerted an anti-apoptotic effect in HTS fibroblasts.

4 Discussion

HTS is a pathological state marked by an overactive state of
fibroblasts, abnormal accumulation of extracellular matrix, and the
continuous presence of an inflammatory response. Notably,
immune and inflammatory responses play pivotal roles in the
formation and progression of HTS (22). Based on differential
expression analysis and GSEA, this study revealed significantly
up-regulated immune- and inflammation-related pathways in
HTS, including the complement and coagulation cascades, as well
as ECM-receptor interactions. Indeed, the activation of the
complement system has been demonstrated to promote fibroblast
proliferation and collagen deposition, while dysregulation of ECM-
receptor interactions directly contributes to tissue fibrosis in HTS. A
previous study demonstrated that COLIAI and COLIA2 directly
facilitate collagen fibril formation, leading to ECM deposition (23).
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Meanwhile, dysregulation of TIMPI may exacerbate fibrosis
by reducing the inhibition of matrix metalloproteinases
(MMPs), thereby disrupting the crucial MMP-TIMP balance
that is essential for ECM turnover (24). In addition, the
immunoregulatory function of A2M may be impaired in HTS,
potentially leading to uncontrolled inflammation and fibroblast
activation (25). These processes are further supported by the
GSEA results from the present study, which highlight significant
enrichment of ECM-receptor interactions and complement
cascades and pathways that are intricately interconnected with
both fibrotic processes and immune responses (26). Notably, the
immune correlation analysis in the current study revealed a strong
association between the signature genes and infiltrating immune
cells, such as natural killer T cells and activated B cells. This might
indicate the existence of a feedforward loop, in which cytokines
derived from immune cells induce fibroblast activation and collagen
production, while the ECM components regulate the recruitment
and polarization of immune cells. These interactions emphasize the
importance of immune and fibrotic components in targeted HTS
therapy, providing a new perspective for understanding the
immune microenvironment of HTS.

COLIAI encodes the ol chain of type I collagen, a major
component of the ECM critical that is critical for maintaining skin
structure and facilitating wound healing (27). COLIA1 drives
fibroblast activation and excessive collagen deposition,
contributing to scar hypertrophy and ECM remodeling (7).
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Previous evidence showed that the roles of multiple molecules in
the proliferation of HTS fibroblasts were mediated by Coll1A1 (20,
28). Additionally, it has been demonstrated as a valuable indicator
of immune cell infiltration and the expression of immune-related
genes (29). A2M is a multifunctional protease inhibitor and acute-
phase reactant involved in immune regulation, cytokine
sequestration, and inflammation resolution (30). Reduced A2M
expression in HTS suggests impaired immunosuppressive function,
potentially exacerbating inflammatory responses and fibroblast
activation (25). TIMPI, as a metalloproteinase inhibitor that
regulates ECM degradation by inhibiting MMPs (31), has recently
emerged as a potential immune functional biomarker by interacting
with multiple co-receptors and cell-surface receptors, including
CD74, LRP1, and CD63 (32, 33). In the formation of HTS, the
levels of TIMP-1 served as an important mediator for endostar (34).
COLIA2 encodes the 02 chain of type I collagen, forming
heterotrimeric fibrils essential for skin tensile strength (35). Loss
of Smad-interacting protein 1 leads to the upregulation of COL1A2,
resulting in excessive accumulation of the ECM and promoting scar
formation (36). COLIA2 acts in concert with COL1A1 to boost
collagen biosynthesis and drive the formation of fibrotic scars (37).
In this study, the four signature genes that were closely related to
HTS were screened out through WGCNA and machine learning
algorithms. In addition, qRT-PCR analysis showed up-regulation of
COLIAI, COLIA2 and TIMPI, and down-regulation of A2M in
HTS tissues compared to normal skin tissues. Western blot analysis
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further verified these expression patterns at the protein level. These
findings not only reveal the key molecular mechanisms of HTS but
also provide potential drug targets for clinical treatment.

In addition, we constructed a nomogram model based on core
genes, which can effectively predict the risk of HTS occurrence. As
an intuitive prediction tool, the nomogram has been widely applied
in the clinical diagnosis of various diseases (38). However, the
clinical application of nomogram on HTS is rare. Our model, by
integrating the expression levels of multiple genes, could accurately
predict the risk of HTS occurrence. The predictive performance of
the model has been validated through a calibration curve and
decision curve analyses. The construction of this model provides
a new tool for the early diagnosis of HTS and offers potential
reference for personalized treatment.

Notably, there are some limitations should be noted. First, the
sample size for validation is relatively small. Although qRT-PCR,
Western blot, and cell experiments confirmed the differential
expression of signature genes and the role of COL1Al, the
limited number of HTS patient tissue samples and fibroblasts
used may restrict the generalizability of the findings, failing to
fully reflect the heterogeneity across different populations or clinical
subtypes of HTS. Second, the study relies heavily on publicly
available microarray data from the GEO database. Such data may
be affected by batch effects, variations in preprocessing protocols,
and incomplete clinical metadata, which could introduce biases and
impact the robustness of the identified signature genes and
associated mechanisms. Third, the nomogram’s generalizability
across ethnicities and scar subtypes remains unknown. These
limitations highlight the need for future studies with larger,
multi-center validation cohorts and integrated in-house
sequencing data to further verify the conclusions.

5 Conclusions
In conclusion, our study identified four immune-related
inflammatory biomarkers for HTS, and successfully constructed a

nomogram for clinical diagnosis. These findings offered new
insights into HTS pathogenesis and potential therapeutic targets.
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