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Single-cell multi-omics analysis
reveals cellular subpopulations
associated with relapse in
high-risk B-ALL following
intensified chemotherapy
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Introduction: Acute lymphoblastic leukemia (ALL) is the most prevalent

malignant tumor in children, with B-cell ALL (B-ALL) accounting for 85% of

cases. Despite advancements in chemotherapy and supportive care, a subset of

high-risk B-ALL patients still experience relapse post-treatment. The molecular

mechanisms underlying the relapses after intensified chemotherapy remain

poorly understood.

Methods:We performed an integrated single-cell multi-omics analysis combining

single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing

(scATAC-seq) on peripheral blood mononuclear cells (PBMCs) from pediatric

high-risk B-ALL patients following early intensified chemotherapy, as well as

from healthy controls. Bioinformatic pipelines were applied to assess cellular

composition, chromatin accessibility, gene ontology enrichment, spectral

clustering, and copy number variation.

Results: Significant differences in cellular composition were observed between

the remission and non-remission groups, with the non-remission group

exhibiting a notable increase in HSC/MPP and Pro-B cells. Copy number

variation (CNV) analysis also revealed that the CNV levels in HSC/MPP and Pro-

B cells were higher in the non-remission group compared to other cell types. We

subsequently identified a subcluster associated with resistance to intensified

therapy within both the HSC/MPP and Pro-B cell groups. The drug-resistant

subcluster of HSC/MPP cells was characterized by high expression of TCF4, EBF1,

ERG, AL589693.1, and CRIM1, as well as enrichment of the allograft rejection

pathway and the Notch signaling pathway. The drug-resistant subcluster of Pro-

B cells was characterized by high expression of RPS29, B2M, RPL41, RPS21, NEIL1,

AC007384.1, and CRIM1, as well as enrichment of the B cell receptor

signaling pathway.
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Discussion: Our study identified distinct cellular subpopulations associated with

treatment failure, provide insights into the molecular mechanisms underlying

treatment resistance in B-ALL and may inform the development of targeted

therapies for high-risk patients.
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Introduction

Acute lymphoblastic leukemia (ALL) is the most common

malignant tumor in children (1). B-cell acute lymphoblastic

leukemia (B-ALL), which originates from B-lineage lymphoid

progenitor cells, accounts for 85% of it and is characterized by

the clonal expansion of immature B lymphocytes and suppression

of normal hematopoiesis. With the continuous development of

combined chemotherapy, risk stratification, the combination of new

drugs, and advances in supportive treatment, the prognosis for

children with B-ALL is now very high, with a five-year survival rate

exceeding 90% (1, 2). However, for those patients categorized as

high-risk, the prognosis remains less favorable, prompting the use

of early intensified chemotherapy regimens such as CAML

(Cyclophosphamide, Cytosine arabinoside, 6-Mercaptopurine,

and Pegaspargase) to enhance treatment outcomes. Despite these

efforts, a considerable subset of patients exhibits resistance to

intensified chemotherapy, resulting in subsequent relapses, with

the molecular underpinnings of this resistance remaining

largely enigmatic.

Single-cell RNA sequencing (scRNA-seq) and single-cell Assay

for Transposase Accessible Chromatin sequencing (scATAC-seq)

are powerful tools that enable a comprehensive dissection of cellular

heterogeneity and chromatin accessibility at the individual cell level

(3). Wang et al. have uncovered the remarkable heterogeneity of

exhausted T cells in B-ALL, characterizing these subsets by their

unique expression signatures by scRNA-seq (4). Granja et al.,

utilizing an integrative approach of scRNA-seq and scATAC-seq

in the study of mixed phenotype acute leukemia, have pinpointed

potential regulatory elements and transcription factors linked to

leukemia-specific genes, with a particular emphasis on the crucial

role of the transcription factor RUNX1 (5).These technologies

provide an unprecedented opportunity to identify novel

biomarkers associated with treatment response and relapse in

high-risk B-ALL patients.

Although single-cell RNA sequencing has been increasing

applied to study leukemia heterogeneity, the integration of

transcriptomic and epigenetic single-cell data remains rare in B-

ALL research. Our study uniquely combines scRNA-seq and

scATAC-seq to dissert the interplay between transcriptional states

and chromatin accessibility at relapse, offering a more comprehensive
02
understanding of treatment resistance mechanisms. This dual-

modality design allows us to pinpoint not only the cellular

composition but also the regulatory logic underlying relapse, which

has not been systematically investigated in high-risk pediatric B-ALL.

This study aims to leverage the power of scRNA-seq and

scATAC-seq to delineate the molecular landscape of peripheral

blood mononuclear cells (PBMCs) in high-risk B-ALL patients post

early intensification treatment. We hypothesized that distinct

immune subpopulations, particularly HSC/MPP and Pro-B cells,

carry transcriptional and chromatin accessibility signatures that are

associated with resistance to intensified chemotherapy and may

serve as predictors of relapse. The identification of such biomarkers

may pave the way for the development of targeted therapies and

personalized treatment strategies, ultimately improving the

prognosis for high-risk B-ALL patients.
Methods

Study design and patient cohort

Our study includes a cohort of six pediatric patients diagnosed

with high-risk B-ALL who underwent early intensification

treatment using the CAML protocol (Supplementary Table S1).

High-risk B-ALL was diagnosed based on current Chinese pediatric

ALL risk stratification guidelines. Peripheral blood samples were

collected post-treatment, with a focus on the second round of

treatment where three patients achieved remission and three

experienced relapses. Additionally, peripheral blood samples from

three age-matched healthy controls were obtained for

comparative analysis.
Sample collection and processing

Peripheral blood mononuclear cells (PBMCs) were isolated

from the collected samples using density gradient centrifugation

at 600×g for 25 minutes at 20°C. Cell number and viability were

assessed by fluorescence using Reward C100 cell counter. Informed

consent was obtained from all participants or their guardians, and

the study was approved by the Institutional Review Board.
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Single-cell RNA sequencing

PBMCs were subjected to scRNA-seq to capture the

transcriptomic landscape of individual cells. Single-cell RNA

sequencing libraries were prepared using the Chromium Single

Cell 3’V2 Reagent Kit, and generated using the 10x Genomic

platform. All libraries were sequenced on Illumina NovaSeq 6000

platform. Each sample generated approximately 110 – 140 million

raw bases, with Q30 scores above 91%. Quality control, data

normalization, and dimensionality reduction were performed

using established computational methods.

Upon receiving the FASTQ files from the 10x Genomics single-

cell RNA sequencing results, we utilized Cell Ranger software

(v7.1.0, 10x Genomics, USA) to align barcodes and UMIs to the

reference genome (GRCh38), followed by filtering and quantifying

gene expression at the single-cell level, resulting in a cell-gene

expression matrix. Putative doublets were identified and removed

using Scrublet (Scanpy pipeline) and DoubletFinder (Seurat

workflow), based on the expected doublet rate from 10x

Genomics specifications. This matrix was then processed using

Seurat (v4.3.0, Satija Lab, USA) and Scanpy (v1.9.3, Theis Lab,

Germany) (6). Cells were retained if they exhibited between 200 and

5,000 detected genes, 500 to 25,000 unique molecular identifiers

(UMIs), and less than 10% mitochondrial gene expression. To

further ensure data quality, doublets were identified using

DoubletFinder (v2.0.3), with an expected doublet rate of 8%

based on cell loading density and a pK value of 0.09. Cells with a

doublet prediction score greater than 0.25 were excluded prior to

downstream normalization. Cells with fewer than 200 detected

genes or with mitochondrial gene read counts exceeding 10%

were excluded. We integrated the data across different samples

using the IntegrateLayers function through Canonical Correlation

Analysis (CCA). Dimensionality reduction was performed via

Principal Component Analysis (PCA), and the resulting data were

clustered using UMAP. The clusters were annotated using ScType

(v1.1.0, Ianevski Lab, Finland) (7), and the expression of marker

genes for various immune cell types was examined. Following

annotation, the R software (v4.3.1, R Foundation for Statistical

Computing, Austria) was employed to calculate the proportion of

each cell type across sample groups.
Single-cell ATAC sequencing

For the single-cell ATAC-seq data, Cell Ranger ATAC (v2.1.0,

10x Genomics, USA) was used to align the reads to the reference

genome and calculate the binding activity across genomic regions.

The binding sites and abundance information were read using

Signac (v1.9.0, Stuart Lab, USA) (8), and the genomic regions

were annotated accordingly. Nuclei with 3,000 – 100,000 unique

fragments, transcription start site (TSS) enrichment score ≥8, and

fraction of reads in peaks (FRiP) ≥0.20 were retained. Potential

doublets were identified using the ArchR addDoubletScores()

function with an expected rate of 5%, and nuclei with scores >1.0

were excluded prior to downstream analysis. The distribution of
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binding peaks across various genomic elements was computed and

statistically analyzed. Data normalization was performed, and

sample integration was achieved using the Harmony algorithm

(v0.1.0, Korsunsky Lab, USA), followed by UMAP clustering. To

integrate single-cell transcriptomic and ATAC-seq data, the

FindTransferAnchors function was used to calculate transfer

anchors, and single-cell ATAC-seq data were annotated based on

the single-cell RNA-seq data. The R software was then used to

calculate the distribution proportions of each cell type within the

single-cell ATAC-seq data.

Using the Seurat package’s FindAllMarkers function, cell-type-

specific regulatory peaks were identified (9). Overrepresented

motifs were found by FindMotifs function. Subsequent functional

enrichment analysis of these marker genes was conducted using the

ClusterProfiler (v4.6.0, Yu Lab, China) and GSVA (v1.46.0

Hanzelmann Lab, Germany) packages to identify cell types closely

related to the study’s focus (10). The distribution of these motifs

across cell types and genes was analyzed using single-cell ATAC-

seq data.
Data integration and analysis

The scRNA-seq and scATAC-seq data were integrated using

advanced computational approaches to dissect the cellular

heterogeneity and regulatory programs in high-risk B-ALL.

Differential gene expressions and chromatin accessibility analysis

were performed to identify markers associated with treatment

response and relapse. We constructed regulatory networks by

integrating scATAC-seq data with scRNA-seq data, using

SCENIC to infer potential regulatory interactions between

transcription factors and their target genes (11).

For subgroup analysis of HSC/MPP cells, the relevant clusters

were extracted from the integrated dataset. Cells were re-

normalized using SCTransform, incorporating donor ID and

percentage of mitochondrial gene expression as covariates. We

selected the top 1,500 highly variable genes and conducted PCA,

using the first 15 principal components for UMAP visualization and

Louvain clustering. Batch effect correction was applied using the

Harmony algorithm, with donor ID specified as the batch variable,

and performed prior to dimensionality reduction. This approach

ensured that downstream clustering reflected true biological

heterogeneity within the HSC/MPP compartment.
Bioinformatic pipeline

We employed a robust bioinformatic pipeline that includes

quality control, doublet detection, data normalization,

dimensionality reduction using tools like PCA and t-SNE, and

clustering algorithms to classify cells into distinct subtypes. Pathway

enrichment analysis and gene set variation analysis (GSVA) were

conducted to interpret the biological significance of the observed

changes. Using the inferCNV algorithm (v1.0, Broad Institute,

USA) for CNV analysis, with normal pro-B cells as references.
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“High CNV” refers to greater variability in chromosomal expression

profiles as estimated by inferCNV, relative to reference Pro-B cells.

Both gains and losses contribute to the CNV score.

All the visualizations, including UMAP plots, violin plots,

heatmaps, dot plots, and bar charts, were generated using Seurat

(v4.3.0), ggplot2 (v3.4.0), and ComplexHeatmap (v2.14.0) packages

in R. Motif logos and accessibility tracks were plotted using ArchR

and Signac.

Statistical analyses were performed in R unless otherwise stated.

Comparisons between two groups were conducted using the

Wilcoxon rank−sum test. For multiple comparisons, adjusted p

−values were calculated using the Benjamini-Hochberg method to

control the false discovery rate (FDR), with significance thresholds

set at adjusted p < 0.05.
Results

Identification of cellular composition in B-
ALL and healthy PBMC samples

To construct the landscape of cell type-specific open chromatin

features and gene expression profile at the single cell level, we

performed sc-RNASeq and scATAC-seq analysis on PBMCs

samples from six high risk pediatric B-ALL patients with and

three healthy controls (CK1, CK2, CK3) to explore their cellular

composition (Supplementary Figure S1). PBMCs were chosen due

to their accessibility and reduced invasiveness, especially in

pediatric patients undergoing frequent procedures. These high-

risk patients had al l undergone the standard CAML
Frontiers in Immunology 04
(Cyclophosphamide, Cytosine arabinoside, 6-Mercaptopurine,

and Pegaspargase) chemotherapy regimen. Specifically, we

selected three patients who achieved complete remission (CR1,

CR2, CR3) and three who experienced non-remission (NCR1,

NCR2, NCR3) following two courses of intensified treatment.

After an initial quality control assessment and doublet removal,

we obtained a total of 76458 cells, with 38773 cells from healthy

donors and 37685 cells from B-ALL patients, median number of

estimated cells were 6861, and the ATAC Median high-quality

fragments per cell were 5071. After performing normalization and

log1p transformation, highly-variable gene select ion,

dimensionality reduction, batch correction, and Leiden clustering,

cells originating from samples were separately annotated into

distinct broad cell types and visualized via Uniform Manifold

Approximation and Projection (UMAP). We identified 9 main

clusters in parallel according to the gene profile. These clusters

were annotated as CD8+ NKT-like cells, classical monocytes, HSC/

MPP cells, memory CD4+ T cells, naïve B cells, naïve CD4+ T cells,

naïve CD8+ T cells, pre-B cells, pro-B cells, and progenitor cells

based on the expression of known markers for each cell type

(Figures 1A, B) (12–15).

We then analyzed the relative proportions of cell clusters

(Figures 1C, D). The cellular composition of the ALL remission

group (CR group) is similar to that of the normal group (CK), with

naïve CD4 T cells and CD8+ NKT-like cells being predominant.

However, the cellular composition of the non-remission group (NCR

group) is significantly different from the CR group, characterized by the

highest proportion of Pro-B cells (p<0.0001), a marked increase in

HSC/MPP cells (p=0.0001), and a significant decrease in naïve CD4 T

cells (p=0.0002) and naïve B cells(Figure 1E).
FIGURE 1

Single-cell transcriptomic analysis in ALL patient PBMC cells and healthy donor PBMC cells. (A) UMAP plots of nine color-coded cell clusters of all
the samples. (B) Dot plots show the signature gene expression levels across the 9 distinct cell types. (C) UMAP plots of the CK, CR and NCR groups.
(D) Relative proportion of cell clusters in each group across the 9 cellular clusters. (E) Histogram of the difference in cell proportion between the CR
group and the NCR group. PBMC, Peripheral blood mononuclear cell; UMAP, uniform manifold approximation and projection for dimension
reduction; CK, control group; CR, remission group; NCR, non-remission group.
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Chromatin accessibility different in each
cell type

The chromatin accessibility profile of individual cells is captured by

scATAC-seq. Cell-type-specific chromatin accessibility profiles are

relatively unknown. So, we used Seurat’s label transfer method to

predict scATAC-seq cell types based on annotated scRNA-seq data.

The detailed analysis methods were executed as previously described.

Comparison between scATAC-seq cell-type predictions obtained by

label transfer and curated annotations of unsupervised clusters

indicates that all major cell types were present in both datasets and

that scATAC-seq is comparable to scRNA-seq in the detection and

assignment of cell identities (Figures 2A, B). Subsequently, we

investigated the differences in chromatin accessibility among CK, CR

and NCR groups (Figure 2C). In the CK group, naïve CD4 T cells were

predominant, followed by classical monocytes and HSC/MPP cells

(Figure 2D). In the CR group, CD8+ NKT-like cells were dominant,

which is in line with the findings from scRNA-seq. Relative to the CK

group, the CR group exhibited a notable increase in the proportion of

memory CD4+ T cells and CD8+ NKT-like cells, alongside a

significant reduction in the proportion of naïve CD4 T cells. The

cellular composition of the NCR group diverged markedly from the

other groups, with Pro-B cells predominating and accounting for more

than half of the cells. In contrast to the CR group, the NCR group

showcased a significant upsurge in the proportion of HSC/MPP cells

(p<0.0001), naïve B cells(p<0.0001) and Pro-B cells (p<0.0001),

coupled with a substantial decrease in the proportion of CD8+

NKT-like cells (p<0.0001), classical monocytes (p<0.0001), memory

CD4+ T cells (p<0.0001), naïve CD4 T cells (p<0.0001), and naïve CD8

T cells (p<0.0001) (Figure 2E).
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Gene ontology enrichment in HSC/MPP
cells and Pro-B cells

Given the most pronounced differences in the relative

proportions of HSC/MPP cells and Pro-B cells between the CR

group and the NCR group, and the concordance of findings from

scRNA-seq and scATAC-seq multi-omics analyses, we

concentrated our investigation on these two specific subgroups.

We analyzed the differentially expressed genes (DEGs) in HSC/

MPP cells and Pro-B cells between the NCR and CR groups. The

gene ontology (GO) analysis of DEGs in HSC/MPP revealed that

the B cell receptor signaling pathway and antigen receptor-

mediated signaling pathway were upregulated in NCR

(Figure 3A), while lymphocyte differentiation and T cell receptor

signaling pathway were downregulated in NCR (Figure 3B). GO

analysis of DEGs in Pro-B revealed that pathways governing the

regulation of transcription, gene expression, and biosynthetic

processes were enhanced in the NCR group (Figure 3C),

contrasted with a suppression of signaling pathways involved in

DNA replication within the NCR group (Figure 3D).
Spectral clustering of specific subtype cells
(HSC/MPP and Pro-B)

In order to further characterize the intrinsic structure and

potential functional subtypes, we performed spectral clustering on

HSCs cells using UMAP. As a result, we identified three stable

subclusters in HSCs cells (Figure 4A). The CK group was mainly

composed of subcluster 1, the CR group was predominantly made
FIGURE 2

Single-cell ATAC-seq analysis in ALL patient PBMC cells and healthy donor PBMC cells. (A) UMAP plot visualizing clusters of PBMCs derived from
scATAC-seq data. (B) Dot plots show the binding sites accessibility levels of representative genes across the 9 distinct cell types. (C) UMAP plots of
the CK, CR and NCR groups. (D) Relative proportion of cell clusters in each group across the 9 cellular clusters. (E) Histogram of the difference in
cell proportion between the CR group and the NCR group. PBMC, Peripheral blood mononuclear cell; UMAP, uniform manifold approximation and
projection for dimension reduction; CK, control group; CR, remission group; NCR, non-remission group.
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up of cells from subcluster 2, and the Pro-B cells of the NCR group

were found in subcluster 0 (Figure 4B). Subcluster 0 included cells

expressing TCF4, EBF1, ERG, AL589693.1, and CRIM1 genes

(Figure 4C). Subcluster 1 included cells expressing genes like

RPS27, RPL41, RPS15A, RPS18, and RPL13. Subcluster 2

included cells expressing genes such as RASA3, CD247, EML4,
Frontiers in Immunology 06
SKAP1, and ANKRD44. The TNF signaling pathway and T cell

receptor signaling pathway were enriched in subcluster 2, while

allograft rejection pathway and Notch signaling pathway were

enriched in subcluster 0 (Figure 4D).

For the spectral clustering of Pro-B cells, five subclusters were

identified (Figure 5A). The CK group was predominantly composed of
FIGURE 4

Spectral clustering of HSC/MPP cells. (A) Three main HSC/MPP cell subclusters were identified by UMAP analysis. (B) UMAP plots of HSC/MPP cells
in the CK, CR and NCR groups. (C) The bar chart shows the proportions of each subclusters of HSC/MPP cells in the CK, CR and NCR groups. (D)
Dot plots show the expression levels of top 5 DEGs across the three HSC/MPP subclusters. (D) GO analysis of DEGs in the three HSC/MPP
subclusters. (E) Heatmap showing normalized enrichment scores (NES) of enriched pathways across HSC/MPP clusters, with color scale indicating
relative pathway activity.
FIGURE 3

Gene ontology (GO) enrichment analysis. Compared with the CR group, the Enriched GO terms of HSCs/MPPs showed the pathway of up-
regulation (A) and down-regulation (B) in the NCR group. Compared with the CR group, the Enriched GO terms of Pro-B cells showed the pathway
of up-regulation (C) and down-regulation (D) in the NCR group.
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subcluster 1, along with some cells from subcluster 4 (Figure 5B). The

CR group was mainly made up of cells from subcluster 2, while the

Pro-B cells from the NCR group belonged to subclusters 0 and 3. Each

subcluster expressed its unique set of characteristic genes. The relative

expression levels of cluster-specific markers in the five cellular

subclusters of Pro-B have been presented in Figure 5C. RPS29, B2M,

RPL41, and RPS21 were expressed across subclusters 0, 1, 2, and 3, but

exhibited the highest expression in subcluster 1. In addition to RPS29,

B2M, RPL41, and RPS21, subcluster 0 also included cells expressing the

genes NEIL1, AC007384.1, and CRIM1. Subcluster 2 further included

cells expressing genes such as HMGB2, PTPRC, SKAP1, and TUBA1B.

Subcluster 4 was relatively distinct from the other subclusters, primarily

consisting of cells expressing genes like GP1BB, NRGN, PF4, OAZ1,

and PPBP. GSEA enrichment analysis showed that the B cell receptor

signaling pathway was enriched in subcluster 0, while the cell cycle,

DNA replication, and mismatch repair pathways were enriched in

subclusters 3 and 2 (Figure 5D). Gene ontology enrichment analysis

further revealed distinct functional programs among the HSC/MPP

and Pro-B clusters (Figures 4E, 5E).
Copy number variation analysis to
distinguish malignant cells

Copy number variation (CNV) analysis has been widely used in

scRNA‐seq to investigate disease evolvement and development. To

identify the cellular origin of malignant cells, we utilized the

inferCNV algorithm to analyze the chromosomal CNV levels

between different cell types (Figure 6A). As expected, the CNV

levels in in the NCR group were significantly higher than those in
Frontiers in Immunology 07
the CR group (Figure 6A). Within the NCR group, HSS/MPP cells

and pro-B cells exhibited higher CNV levels than other cell types.

We further analyzed the CNV levels in the three subclusters of

HSC/MPP cells and the five subclusters of Pro-B cells. The results

indicated that subcluster 0 of HSC/MPP cells had the highest CNV

levels (Figure 6B), while in Pro-B cells, subgroup 0 exhibited the

highest CNV levels, followed by subgroup 3 (Figure 6C).
Correlation between cell-type-specific
chromatin accessible degree and gene
expression level in HSC/MPP cells and Pro-
B cells

Compared to other cell types, HSC/MPP cells in scATAC-seq had

a large number of differential peaks of chromatin accessibility

(Figure 7A). With transcription factor motif analysis, we found that

the binding sites of FOSL2, FOS, FOSL1, BATF, JUN, JUNB had higher

accessibility in the HSC/MPP than in other cell types (Figures 7B, C).

However, only FOSL2 had a significant level of expression in the HSC/

MPP group, while the expression levels of other genes were relatively

low. When comparing HSC/MPP cells between NCR and CR groups,

no differential peaks in binding site accessibility were observed

(Figure 7B). Furthermore, expression patterns of representative

immune-related genes across cell types were also assessed (Figure 7D).

The analysis of the Pro-B subgroup in scATAC-seq showed that

the binding sites of EBF3, EBF1, MAZ, ZNF148, KLF15, NHLH1,

and KLF5 had higher accessibility in Pro-B cells than in other cell

types (Figures 8A-C). We further analyzed the expression

differences of these genes in scRNA-seq and found that EBF1 and
FIGURE 5

Spectral clustering of Pro-B cells. (A) Five main Pro-B cell subclusters were identified by UMAP analysis. (B) UMAP plots of Pro-B cells in the CK, CR
and NCR groups. (C) The bar chart shows the proportions of each subclusters of Pro-B cells in the CK, CR and NCR groups. (D) Dot plots show the
expression levels of top 5 DEGs across the three Pro-B subclusters. (D) GO analysis of DEGs in the five Pro-B subclusters. (E) Heatmap showing
normalized enrichment scores (NES) of enriched pathways across Pro-B cell clusters, with color scale indicating relative pathway activity.
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ZNF148 were highly expressed in Pro-B cells (Figure 8D). When

comparing Pro-B cells between NCR and CR groups, the differential

peaks in NCR were mainly downregulated, which means they were

predominantly enriched in the CR group (Figure 8E). We found

that the accessibility of KLF15, SP1, SP3, NRF1, ZBTB14, EGR1,

EGR3 binding sites in Pro-B was higher in the CR group than in the

NCR groups (Figure 8F). Among them, SP1, SP3, NRF1 also

showed higher expression levels in scRNA-seq in the CR group

compared to the NCR group, which is consistent with scATAC-

seq (Figure 8G).
Frontiers in Immunology 08
Discussion

The standard intensive therapy for high-risk B-ALL patients

currently involves two cycles of the CAML protocol. Despite this,

some patients exhibit resistance to early intensified treatment,

resulting in therapeutic failure. However, our understanding of

the molecular mechanisms underlying chemotherapy sensitivity

and the identification of patients who are likely to benefit from

such treatments remains limited. Literature has indicated that

infants with CD10-positive blasts, in the absence of 11q23/MLL
FIGURE 7

Correlation between cell-type-specific chromatin accessible degree and gene expression level in HSC/MPP cells. (A) Differential peaks of chromatin
accessibility between HSC/MPP cells and other cell types. (B) Transcription factor motif analysis. (C) Genes with differential accessibility between
HSC/MPP cells and other cell types. (D) The expression of representative genes in different cell types.
FIGURE 6

Copy number variation (CNV) analysis of all cell types (A), HSC/MPP cells (B) and Pro-B cells (C).
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rearrangements, tend to have improved outcomes and respond

better to intensified therapy (16). Infants with B-ALL harboring

germline MLL genes show superior responses to chemotherapy

compared to those with rearranged MLL genes, achieving a 5-year

event-free survival rate of 95.5% with manageable treatment toxicity

(17). Traditional diagnostic methods, which assess the average

mutations and expressions across a population of cells, can

obscure the signals of cellular heterogeneity, particularly

overlooking the signals from rare cell types. To address this, we

employed single-cell RNA sequencing (scRNA-seq) combined with

single-cell ATAC sequencing (scATAC-seq) to analyze differential

gene expressions in specific cellular subsets within peripheral blood

mononuclear cells (PBMCs) from B-ALL patients who experienced

remission or relapse following intensive therapy, as well as from

healthy controls. By clustering these expression profiles, we inferred

genes associated with relapse within particular cell types.

The scRNA-seq results elucidate that the cellular composition

of the remission group is similar to that of the normal group, which

also demonstrates the effectiveness of the treatment at the cellular

level. However, the cellular composition of the non-remission

group is significantly different from the other groups, with the

most pronounced changes observed in the HSC/MPP and Pro-B

cell populations. In both the remission and normal groups, the

proportions of these two types of cells are relatively low, whereas in

the non-remission group, the proportions of these cells have

increased dramatically, becoming the predominant types. This

may be due to the failure of intensified therapy, where normal

hematopoiesis in leukemia continues to be suppressed, leading to

anemia, thrombocytopenia, and neutropenia. The body

compensates by increasing the number of HSC/MPP cells, which
Frontiers in Immunology 09
possess multilineage differentiation and self-renewal capabilities

(18). Simultaneously, there is an arrest of B cell development at

the Pro-B stage, impeding cellular maturation and precipitating the

accumulation of these immature cell forms.

Compared to the scRNA-seq analysis, the scATAC-seq analysis

reveals even greater differences in cellular proportions among the

normal, remission, and non-remission groups, possibly because the

epigenome is more prone to change than the transcriptome. In the

non-remission group, the cell proportions based on chromatin

accessibility also show that HSC/MPP and Pro-B cells are the most

predominant, which is consistent with the scRNA-seq findings. CNV

analysis also demonstrates that the CNV levels in HSC/MPP and Pro-B

cells are higher in the NCR group than in other cell types, indicating

that malignant cells in PBMCs are primarily concentrated in these two

cell populations. Therefore, we focus our analysis on these two

subgroups. CNV differences observed between CR and NCR groups

may reflect individual genomic background rather than therapy-

specific changes. We interpret CNV variation as a correlate of clonal

genomic instability, but not direct proof of malignancy.

Further stratification of HSC/MPP identified three distinct

subclusters, with the normal, remission, and non-remission groups

each corresponding to different subclusters. The HSC/MPP cells from

the NCR group are predominantly found in subcluster 0, which shows

high expression of TCF4, EBF1, ERG, AL589693.1, and CRIM1, along

with enrichment of the allograft rejection pathway and the Notch

signaling pathway. These associations suggest that this subpopulation

may be involved in resistance to intensified therapy. However, these

findings are observational and require functional validation to

determine any causal role. TCF4 is a transcription factor belonging

to the basic helix-loop-helix (bHLH) family, which is involved in
FIGURE 8

Correlation between cell-type-specific chromatin accessible degree and gene expression level in Pro-B cells. (A) Differential peaks of chromatin
accessibility between Pro-B cells and other cell types. (B) Transcription factor motif analysis in Pro-B cells. (C) Genes with differential accessibility
between Pro-B cells and other cell types. (D) The expression of representative genes in different cell types. (E) Differential peaks of chromatin
accessibility in Pro-B cells between non-remission group and remission group. (F) Transcription factor motif analysis of Pro-B cells in remission
group. (G) The expression of representative genes in normal, remission and non-remission group.
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lymphoid cell differentiation (19). In B-ALL, TCF4 may linked in the

regulation of B cell proliferation and differentiation, as well as the self-

renewal of leukemic stem cells. EBF1 is a key transcription factor in B

cell development, essential for the proliferation andmaturation of early

B cells (20). Its aberrant expression may be associated with the

proliferation and survival of leukemia cells (21). ERG is a member of

the ETS family, involved in multiple cellular processes, including cell

proliferation, differentiation, and migration (22). In B-ALL, ERG may

be involved in the migration and invasion of leukemic cells, as well as

resistance to therapy. CRIM1 is a transmembrane protein that

modulates the bone morphogenetic protein (BMP) signaling

pathway, which plays a role in various cellular processes, including

cell differentiation and proliferation (23, 24). It may be involved in

regulating the differentiation of leukemia cells and their response to

treatment. Current research on the biology of ALL has identified

several recurrent ALLs with targetable pathways, including the Notch

signaling pathway (25). The upregulation of the Notch signaling

pathway in subcluster 0 of HSC/MPP cells suggests a possible role in

relapse biology, but functional studies are necessary to determine

whether this pathway is directly involved in therapy resistance.

In addition to its role in hematopoietic development and

leukemogenesis, Notch signaling has been implicated in immune

modulation and resistance to immunotherapy (26). Studies in T-cell

acute lymphoblastic leukemia (T-ALL) and other malignancies have

shown that aberrant Notch activation may suppress T cell activation,

promote an immunosuppressive tumor microenvironment, or alter

immune checkpoint expression (27, 28). These mechanisms may

contribute to poor responses to immunotherapies such as CAR-T

cells or immune checkpoint inhibitors. Although our study did not

directly examine immunotherapy response, the enrichment of Notch

signaling in the NCR-associated HSC/MPP subpopulation raises the

possibility that this pathway may influence immune escape and

warrants further investigation in the context of relapsed B-ALL.

Pro-B cells were stratified into 5 subclusters through spectral

clustering, with the NCR group corresponding to subclusters 0 and 3,

among which the majority of the pro-B cells in NCR were in

subcluster 0. This subcluster is characterized by high expression of

RPS29, B2M, RPL41, RPS21, NEIL1, AC007384.1, and CRIM1, as

well as enrichment of the B cell receptor signaling pathway. Previous

studies have shown that treatment with glucocorticoids leads to

enrichment of the B cell receptor signaling pathway in B-ALL cells,

and that B cell development is crucial for glucocorticoid resistance in

B-ALL cells (29). Therefore, the upregulation of the B cell receptor

signaling pathway in subcluster 0 of Pro-B cells may also contribute

to the patients’ resistance to intensified chemotherapy.

Due to the clinical constraints and ethical consideration, the

sample size in our study is limited and not longitudinally paired. As

a result, caution should be exercised in extrapolating our findings, and

larger, paired cohort studies will be necessary to validate the identified

subpopulations and mechanisms. Future validations are needed. First,

the potential pathogenic genes identified have not yet undergone

functional validation and require further functional experiments for

confirmation in the future. Secondly, although these genes may all be

related to the relapse of intensified therapy in B-ALL, our sample size is

small, and a larger sample is needed to verify the universality and
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specificity of these relapse genes in specific cell types. Thirdly, our study

is limited by the absence of full molecular subtype classification for each

B-ALL patient, which poses a challenge given the extensive

heterogeneity of the disease. Over 20 subtypes have been recognized,

many of which are associated with distinct prognoses and treatment

responses. While our inferCNV-based approach provides insights into

global genomic instability, it may not detect subtype defined by gene

fusion or single-nucleotide variants. Fourthly, all single-cell data in this

study were derived from peripheral blood mononuclear cells (PBMCs),

rather than from the bone marrow microenvironment, which is the

primary site of leukemic development in B-ALL. While PBMCs

provide a minimally invasive snapshot of systemic immune and

leukemic cell states, they may not fully capture the complexity of

interactions occurring in the bone marrow niche. Future studies

involving bone marrow samples will be essential to validate and

extend these findings.

Although in the absence of in vitro validation, our conclusions are

supported by consistency with previous studies. The relapse-associated

HSC/MPP subcluster enriched for TCF4, EBF1, and ERG expression,

together with Notch signaling, aligns with reports implicating these

factors in B-cell development, leukemic stemness, and therapy

resistance (20–22). Similarly, the Pro-B subcluster characterized by

RPS29, B2M, and enrichment of the BCR pathway corresponds with

published evidence linking BCR signaling to glucocorticoid resistance

in B-ALL (26, 28). Prior studies have also emphasized the role of

CRIM1 and BMP signaling in leukemic differentiation and drug

response (23, 24, 29). Taken together, these consistencies with the

literature reinforce the robustness of our multi-omics findings, while

also highlighting Notch and BCR signaling as promising axes for future

mechanistic and therapeutic exploration.

In conclusion, our study has identified genes within specific cellular

subsets that are associated with the failure of intensified therapy in B-

ALL, thereby enriching the existing knowledge base for the

investigation of drug resistance mechanisms in B-ALL. Additionally,

we posit that the disruption of signaling pathways due to aberrant

expression of these genes may be a significant contributor to

therapeutic resistance. Consequently, the development of targeted

inhibitors against these genes and their associated pathways could

potentially overcome drug resistance in B-ALL, thereby enhancing

therapeutic outcomes and providing increased benefits to patients.
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