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Single-cell multi-omics analysis
reveals cellular subpopulations
associated with relapse in
high-risk B-ALL following
Intensified chemotherapy
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Introduction: Acute lymphoblastic leukemia (ALL) is the most prevalent
malignant tumor in children, with B-cell ALL (B-ALL) accounting for 85% of
cases. Despite advancements in chemotherapy and supportive care, a subset of
high-risk B-ALL patients still experience relapse post-treatment. The molecular
mechanisms underlying the relapses after intensified chemotherapy remain
poorly understood.

Methods: We performed an integrated single-cell multi-omics analysis combining
single-cell RNA sequencing (scRNA-seq) and single-cell ATAC sequencing
(scATAC-seq) on peripheral blood mononuclear cells (PBMCs) from pediatric
high-risk B-ALL patients following early intensified chemotherapy, as well as
from healthy controls. Bioinformatic pipelines were applied to assess cellular
composition, chromatin accessibility, gene ontology enrichment, spectral
clustering, and copy number variation.

Results: Significant differences in cellular composition were observed between
the remission and non-remission groups, with the non-remission group
exhibiting a notable increase in HSC/MPP and Pro-B cells. Copy number
variation (CNV) analysis also revealed that the CNV levels in HSC/MPP and Pro-
B cells were higher in the non-remission group compared to other cell types. We
subsequently identified a subcluster associated with resistance to intensified
therapy within both the HSC/MPP and Pro-B cell groups. The drug-resistant
subcluster of HSC/MPP cells was characterized by high expression of TCF4, EBF1,
ERG, AL589693.1, and CRIM1, as well as enrichment of the allograft rejection
pathway and the Notch signaling pathway. The drug-resistant subcluster of Pro-
B cells was characterized by high expression of RPS29, B2M, RPL41, RPS21, NEIL1,
AC007384.1, and CRIM1, as well as enrichment of the B cell receptor
signaling pathway.
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Discussion: Our study identified distinct cellular subpopulations associated with
treatment failure, provide insights into the molecular mechanisms underlying
treatment resistance in B-ALL and may inform the development of targeted
therapies for high-risk patients.

high-risk B-ALL, scRNA-seq, scATAC-seq, PBMCs, CNV

Introduction

Acute lymphoblastic leukemia (ALL) is the most common
malignant tumor in children (1). B-cell acute lymphoblastic
leukemia (B-ALL), which originates from B-lineage lymphoid
progenitor cells, accounts for 85% of it and is characterized by
the clonal expansion of immature B lymphocytes and suppression
of normal hematopoiesis. With the continuous development of
combined chemotherapy, risk stratification, the combination of new
drugs, and advances in supportive treatment, the prognosis for
children with B-ALL is now very high, with a five-year survival rate
exceeding 90% (1, 2). However, for those patients categorized as
high-risk, the prognosis remains less favorable, prompting the use
of early intensified chemotherapy regimens such as CAML
(Cyclophosphamide, Cytosine arabinoside, 6-Mercaptopurine,
and Pegaspargase) to enhance treatment outcomes. Despite these
efforts, a considerable subset of patients exhibits resistance to
intensified chemotherapy, resulting in subsequent relapses, with
the molecular underpinnings of this resistance remaining
largely enigmatic.

Single-cell RNA sequencing (scRNA-seq) and single-cell Assay
for Transposase Accessible Chromatin sequencing (scATAC-seq)
are powerful tools that enable a comprehensive dissection of cellular
heterogeneity and chromatin accessibility at the individual cell level
(3). Wang et al. have uncovered the remarkable heterogeneity of
exhausted T cells in B-ALL, characterizing these subsets by their
unique expression signatures by scRNA-seq (4). Granja et al,
utilizing an integrative approach of scRNA-seq and scATAC-seq
in the study of mixed phenotype acute leukemia, have pinpointed
potential regulatory elements and transcription factors linked to
leukemia-specific genes, with a particular emphasis on the crucial
role of the transcription factor RUNX1 (5).These technologies
provide an unprecedented opportunity to identify novel
biomarkers associated with treatment response and relapse in
high-risk B-ALL patients.

Although single-cell RNA sequencing has been increasing
applied to study leukemia heterogeneity, the integration of
transcriptomic and epigenetic single-cell data remains rare in B-
ALL research. Our study uniquely combines scRNA-seq and
scATAC-seq to dissert the interplay between transcriptional states
and chromatin accessibility at relapse, offering a more comprehensive
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understanding of treatment resistance mechanisms. This dual-
modality design allows us to pinpoint not only the cellular
composition but also the regulatory logic underlying relapse, which
has not been systematically investigated in high-risk pediatric B-ALL.

This study aims to leverage the power of scRNA-seq and
scATAC-seq to delineate the molecular landscape of peripheral
blood mononuclear cells (PBMCs) in high-risk B-ALL patients post
early intensification treatment. We hypothesized that distinct
immune subpopulations, particularly HSC/MPP and Pro-B cells,
carry transcriptional and chromatin accessibility signatures that are
associated with resistance to intensified chemotherapy and may
serve as predictors of relapse. The identification of such biomarkers
may pave the way for the development of targeted therapies and
personalized treatment strategies, ultimately improving the
prognosis for high-risk B-ALL patients.

Methods
Study design and patient cohort

Our study includes a cohort of six pediatric patients diagnosed
with high-risk B-ALL who underwent early intensification
treatment using the CAML protocol (Supplementary Table SI).
High-risk B-ALL was diagnosed based on current Chinese pediatric
ALL risk stratification guidelines. Peripheral blood samples were
collected post-treatment, with a focus on the second round of
treatment where three patients achieved remission and three
experienced relapses. Additionally, peripheral blood samples from
three age-matched healthy controls were obtained for
comparative analysis.

Sample collection and processing

Peripheral blood mononuclear cells (PBMCs) were isolated
from the collected samples using density gradient centrifugation
at 600xg for 25 minutes at 20°C. Cell number and viability were
assessed by fluorescence using Reward C100 cell counter. Informed
consent was obtained from all participants or their guardians, and
the study was approved by the Institutional Review Board.
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Single-cell RNA sequencing

PBMCs were subjected to scRNA-seq to capture the
transcriptomic landscape of individual cells. Single-cell RNA
sequencing libraries were prepared using the Chromium Single
Cell 3°’V2 Reagent Kit, and generated using the 10x Genomic
platform. All libraries were sequenced on Illumina NovaSeq 6000
platform. Each sample generated approximately 110 — 140 million
raw bases, with Q30 scores above 91%. Quality control, data
normalization, and dimensionality reduction were performed
using established computational methods.

Upon receiving the FASTQ files from the 10x Genomics single-
cell RNA sequencing results, we utilized Cell Ranger software
(v7.1.0, 10x Genomics, USA) to align barcodes and UMIs to the
reference genome (GRCh38), followed by filtering and quantifying
gene expression at the single-cell level, resulting in a cell-gene
expression matrix. Putative doublets were identified and removed
using Scrublet (Scanpy pipeline) and DoubletFinder (Seurat
workflow), based on the expected doublet rate from 10x
Genomics specifications. This matrix was then processed using
Seurat (v4.3.0, Satija Lab, USA) and Scanpy (v1.9.3, Theis Lab,
Germany) (6). Cells were retained if they exhibited between 200 and
5,000 detected genes, 500 to 25,000 unique molecular identifiers
(UMIs), and less than 10% mitochondrial gene expression. To
further ensure data quality, doublets were identified using
DoubletFinder (v2.0.3), with an expected doublet rate of 8%
based on cell loading density and a pK value of 0.09. Cells with a
doublet prediction score greater than 0.25 were excluded prior to
downstream normalization. Cells with fewer than 200 detected
genes or with mitochondrial gene read counts exceeding 10%
were excluded. We integrated the data across different samples
using the IntegrateLayers function through Canonical Correlation
Analysis (CCA). Dimensionality reduction was performed via
Principal Component Analysis (PCA), and the resulting data were
clustered using UMAP. The clusters were annotated using ScType
(v1.1.0, Tanevski Lab, Finland) (7), and the expression of marker
genes for various immune cell types was examined. Following
annotation, the R software (v4.3.1, R Foundation for Statistical
Computing, Austria) was employed to calculate the proportion of
each cell type across sample groups.

Single-cell ATAC sequencing

For the single-cell ATAC-seq data, Cell Ranger ATAC (v2.1.0,
10x Genomics, USA) was used to align the reads to the reference
genome and calculate the binding activity across genomic regions.
The binding sites and abundance information were read using
Signac (v1.9.0, Stuart Lab, USA) (8), and the genomic regions
were annotated accordingly. Nuclei with 3,000 - 100,000 unique
fragments, transcription start site (TSS) enrichment score 8, and
fraction of reads in peaks (FRiP) >0.20 were retained. Potential
doublets were identified using the ArchR addDoubletScores()
function with an expected rate of 5%, and nuclei with scores >1.0
were excluded prior to downstream analysis. The distribution of
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binding peaks across various genomic elements was computed and
statistically analyzed. Data normalization was performed, and
sample integration was achieved using the Harmony algorithm
(v0.1.0, Korsunsky Lab, USA), followed by UMAP clustering. To
integrate single-cell transcriptomic and ATAC-seq data, the
FindTransferAnchors function was used to calculate transfer
anchors, and single-cell ATAC-seq data were annotated based on
the single-cell RNA-seq data. The R software was then used to
calculate the distribution proportions of each cell type within the
single-cell ATAC-seq data.

Using the Seurat package’s FindAllMarkers function, cell-type-
specific regulatory peaks were identified (9). Overrepresented
motifs were found by FindMotifs function. Subsequent functional
enrichment analysis of these marker genes was conducted using the
ClusterProfiler (v4.6.0, Yu Lab, China) and GSVA (v1.46.0
Hanzelmann Lab, Germany) packages to identify cell types closely
related to the study’s focus (10). The distribution of these motifs
across cell types and genes was analyzed using single-cell ATAC-
seq data.

Data integration and analysis

The scRNA-seq and scATAC-seq data were integrated using
advanced computational approaches to dissect the cellular
heterogeneity and regulatory programs in high-risk B-ALL.
Differential gene expressions and chromatin accessibility analysis
were performed to identify markers associated with treatment
response and relapse. We constructed regulatory networks by
integrating scATAC-seq data with scRNA-seq data, using
SCENIC to infer potential regulatory interactions between
transcription factors and their target genes (11).

For subgroup analysis of HSC/MPP cells, the relevant clusters
were extracted from the integrated dataset. Cells were re-
normalized using SCTransform, incorporating donor ID and
percentage of mitochondrial gene expression as covariates. We
selected the top 1,500 highly variable genes and conducted PCA,
using the first 15 principal components for UMAP visualization and
Louvain clustering. Batch effect correction was applied using the
Harmony algorithm, with donor ID specified as the batch variable,
and performed prior to dimensionality reduction. This approach
ensured that downstream clustering reflected true biological
heterogeneity within the HSC/MPP compartment.

Bioinformatic pipeline

We employed a robust bioinformatic pipeline that includes
quality control, doublet detection, data normalization,
dimensionality reduction using tools like PCA and t-SNE, and
clustering algorithms to classify cells into distinct subtypes. Pathway
enrichment analysis and gene set variation analysis (GSVA) were
conducted to interpret the biological significance of the observed
changes. Using the inferCNV algorithm (v1.0, Broad Institute,
USA) for CNV analysis, with normal pro-B cells as references.
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“High CNV” refers to greater variability in chromosomal expression
profiles as estimated by inferCNV, relative to reference Pro-B cells.
Both gains and losses contribute to the CNV score.

All the visualizations, including UMAP plots, violin plots,
heatmaps, dot plots, and bar charts, were generated using Seurat
(v4.3.0), ggplot2 (v3.4.0), and ComplexHeatmap (v2.14.0) packages
in R. Motif logos and accessibility tracks were plotted using ArchR
and Signac.

Statistical analyses were performed in R unless otherwise stated.
Comparisons between two groups were conducted using the
Wilcoxon rank-sum test. For multiple comparisons, adjusted p
—values were calculated using the Benjamini-Hochberg method to
control the false discovery rate (FDR), with significance thresholds
set at adjusted p < 0.05.

Results

Identification of cellular composition in B-
ALL and healthy PBMC samples

To construct the landscape of cell type-specific open chromatin
features and gene expression profile at the single cell level, we
performed sc-RNASeq and scATAC-seq analysis on PBMCs
samples from six high risk pediatric B-ALL patients with and
three healthy controls (CK1, CK2, CK3) to explore their cellular
composition (Supplementary Figure S1). PBMCs were chosen due
to their accessibility and reduced invasiveness, especially in
pediatric patients undergoing frequent procedures. These high-
risk patients had all undergone the standard CAML

10.3389/fimmu.2025.1645546

(Cyclophosphamide, Cytosine arabinoside, 6-Mercaptopurine,
and Pegaspargase) chemotherapy regimen. Specifically, we
selected three patients who achieved complete remission (CR1,
CR2, CR3) and three who experienced non-remission (NCRI,
NCR2, NCR3) following two courses of intensified treatment.

After an initial quality control assessment and doublet removal,
we obtained a total of 76458 cells, with 38773 cells from healthy
donors and 37685 cells from B-ALL patients, median number of
estimated cells were 6861, and the ATAC Median high-quality
fragments per cell were 5071. After performing normalization and
loglp transformation, highly-variable gene selection,
dimensionality reduction, batch correction, and Leiden clustering,
cells originating from samples were separately annotated into
distinct broad cell types and visualized via Uniform Manifold
Approximation and Projection (UMAP). We identified 9 main
clusters in parallel according to the gene profile. These clusters
were annotated as CD8+ NKT-like cells, classical monocytes, HSC/
MPP cells, memory CD4+ T cells, naive B cells, naive CD4+ T cells,
naive CD8+ T cells, pre-B cells, pro-B cells, and progenitor cells
based on the expression of known markers for each cell type
(Figures 1A, B) (12-15).

We then analyzed the relative proportions of cell clusters
(Figures 1C, D). The cellular composition of the ALL remission
group (CR group) is similar to that of the normal group (CK), with
naive CD4 T cells and CD8+ NKT-like cells being predominant.
However, the cellular composition of the non-remission group (NCR
group) is significantly different from the CR group, characterized by the
highest proportion of Pro-B cells (p<0.0001), a marked increase in
HSC/MPP cells (p=0.0001), and a significant decrease in naive CD4 T
cells (p=0.0002) and naive B cells(Figure 1E).
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Single-cell transcriptomic analysis in ALL patient PBMC cells and healthy donor PBMC cells. (A) UMAP plots of nine color-coded cell clusters of all
the samples. (B) Dot plots show the signature gene expression levels across the 9 distinct cell types. (C) UMAP plots of the CK, CR and NCR groups.
(D) Relative proportion of cell clusters in each group across the 9 cellular clusters. (E) Histogram of the difference in cell proportion between the CR
group and the NCR group. PBMC, Peripheral blood mononuclear cell; UMAP, uniform manifold approximation and projection for dimension
reduction; CK, control group; CR, remission group; NCR, non-remission group.
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Chromatin accessibility different in each
cell type

The chromatin accessibility profile of individual cells is captured by
scATAC-seq. Cell-type-specific chromatin accessibility profiles are
relatively unknown. So, we used Seurat’s label transfer method to
predict scATAC-seq cell types based on annotated scRNA-seq data.
The detailed analysis methods were executed as previously described.
Comparison between scATAC-seq cell-type predictions obtained by
label transfer and curated annotations of unsupervised clusters
indicates that all major cell types were present in both datasets and
that scATAC-seq is comparable to scRNA-seq in the detection and
assignment of cell identities (Figures 2A, B). Subsequently, we
investigated the differences in chromatin accessibility among CK, CR
and NCR groups (Figure 2C). In the CK group, naive CD4 T cells were
predominant, followed by classical monocytes and HSC/MPP cells
(Figure 2D). In the CR group, CD8+ NKT-like cells were dominant,
which is in line with the findings from scRNA-seq. Relative to the CK
group, the CR group exhibited a notable increase in the proportion of
memory CD4+ T cells and CD8+ NKT-like cells, alongside a
significant reduction in the proportion of naive CD4 T cells. The
cellular composition of the NCR group diverged markedly from the
other groups, with Pro-B cells predominating and accounting for more
than half of the cells. In contrast to the CR group, the NCR group
showcased a significant upsurge in the proportion of HSC/MPP cells
(p<0.0001), naive B cells(p<0.0001) and Pro-B cells (p<0.0001),
coupled with a substantial decrease in the proportion of CD8+
NKT-like cells (p<0.0001), classical monocytes (p<0.0001), memory
CD4+ T cells (p<0.0001), naive CD4 T cells (p<0.0001), and naive CD8
T cells (p<0.0001) (Figure 2E).
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Gene ontology enrichment in HSC/MPP
cells and Pro-B cells

Given the most pronounced differences in the relative
proportions of HSC/MPP cells and Pro-B cells between the CR
group and the NCR group, and the concordance of findings from
scRNA-seq and scATAC-seq multi-omics analyses, we
concentrated our investigation on these two specific subgroups.
We analyzed the differentially expressed genes (DEGs) in HSC/
MPP cells and Pro-B cells between the NCR and CR groups. The
gene ontology (GO) analysis of DEGs in HSC/MPP revealed that
the B cell receptor signaling pathway and antigen receptor-
mediated signaling pathway were upregulated in NCR
(Figure 3A), while lymphocyte differentiation and T cell receptor
signaling pathway were downregulated in NCR (Figure 3B). GO
analysis of DEGs in Pro-B revealed that pathways governing the
regulation of transcription, gene expression, and biosynthetic
processes were enhanced in the NCR group (Figure 3C),
contrasted with a suppression of signaling pathways involved in
DNA replication within the NCR group (Figure 3D).

Spectral clustering of specific subtype cells
(HSC/MPP and Pro-B)

In order to further characterize the intrinsic structure and
potential functional subtypes, we performed spectral clustering on
HSCs cells using UMAP. As a result, we identified three stable
subclusters in HSCs cells (Figure 4A). The CK group was mainly
composed of subcluster 1, the CR group was predominantly made
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Single-cell ATAC-seq analysis in ALL patient PBMC cells and healthy donor PBMC cells. (A) UMAP plot visualizing clusters of PBMCs derived from
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of representative genes across the 9 distinct cell types. (C) UMAP plots of

the CK, CR and NCR groups. (D) Relative proportion of cell clusters in each group across the 9 cellular clusters. (E) Histogram of the difference in
cell proportion between the CR group and the NCR group. PBMC, Peripheral blood mononuclear cell; UMAP, uniform manifold approximation and
projection for dimension reduction; CK, control group; CR, remission group; NCR, non-remission group.
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up of cells from subcluster 2, and the Pro-B cells of the NCR group
were found in subcluster 0 (Figure 4B). Subcluster 0 included cells
expressing TCF4, EBF1, ERG, AL589693.1, and CRIM1 genes
(Figure 4C). Subcluster 1 included cells expressing genes like

RPS27, RPL41, RPS15A, RPS18, and RPL13. Subcluster 2

included cells expressing genes such as RASA3, CD247, EML4,

HSC/MPP cells

SKAPI, and ANKRD44. The TNF signaling pathway and T cell
receptor signaling pathway were enriched in subcluster 2, while
allograft rejection pathway and Notch signaling pathway were
enriched in subcluster 0 (Figure 4D).

For the spectral clustering of Pro-B cells, five subclusters were
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in the CK, CR and NCR groups. (C) The bar chart shows the proportions of each subclusters of HSC/MPP cells in the CK, CR and NCR groups. (D)
Dot plots show the expression levels of top 5 DEGs across the three HSC/MPP subclusters. (D) GO analysis of DEGs in the three HSC/MPP
subclusters. (E) Heatmap showing normalized enrichment scores (NES) of enriched pathways across HSC/MPP clusters, with color scale indicating

relative pathway activity.
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subcluster 1, along with some cells from subcluster 4 (Figure 5B). The
CR group was mainly made up of cells from subcluster 2, while the
Pro-B cells from the NCR group belonged to subclusters 0 and 3. Each
subcluster expressed its unique set of characteristic genes. The relative
expression levels of cluster-specific markers in the five cellular
subclusters of Pro-B have been presented in Figure 5C. RPS29, B2M,
RPLA41, and RPS21 were expressed across subclusters 0, 1, 2, and 3, but
exhibited the highest expression in subcluster 1. In addition to RPS29,
B2M, RPLA41, and RPS21, subcluster 0 also included cells expressing the
genes NEIL1, AC007384.1, and CRIML1. Subcluster 2 further included
cells expressing genes such as HMGB2, PTPRC, SKAP1, and TUBAIB.
Subcluster 4 was relatively distinct from the other subclusters, primarily
consisting of cells expressing genes like GP1BB, NRGN, PF4, OAZl,
and PPBP. GSEA enrichment analysis showed that the B cell receptor
signaling pathway was enriched in subcluster 0, while the cell cycle,
DNA replication, and mismatch repair pathways were enriched in
subclusters 3 and 2 (Figure 5D). Gene ontology enrichment analysis
further revealed distinct functional programs among the HSC/MPP
and Pro-B clusters (Figures 4E, 5E).

Copy number variation analysis to
distinguish malignant cells

Copy number variation (CNV) analysis has been widely used in
scRNA-seq to investigate disease evolvement and development. To
identify the cellular origin of malignant cells, we utilized the
inferCNV algorithm to analyze the chromosomal CNV levels
between different cell types (Figure 6A). As expected, the CNV
levels in in the NCR group were significantly higher than those in

Pro-B Cell

10.3389/fimmu.2025.1645546

the CR group (Figure 6A). Within the NCR group, HSS/MPP cells
and pro-B cells exhibited higher CNV levels than other cell types.

We further analyzed the CNV levels in the three subclusters of
HSC/MPP cells and the five subclusters of Pro-B cells. The results
indicated that subcluster 0 of HSC/MPP cells had the highest CNV
levels (Figure 6B), while in Pro-B cells, subgroup 0 exhibited the
highest CNV levels, followed by subgroup 3 (Figure 6C).

Correlation between cell-type-specific
chromatin accessible degree and gene
expression level in HSC/MPP cells and Pro-
B cells

Compared to other cell types, HSC/MPP cells in scATAC-seq had
a large number of differential peaks of chromatin accessibility
(Figure 7A). With transcription factor motif analysis, we found that
the binding sites of FOSL2, FOS, FOSL1, BATF, JUN, JUNB had higher
accessibility in the HSC/MPP than in other cell types (Figures 7B, C).
However, only FOSL2 had a significant level of expression in the HSC/
MPP group, while the expression levels of other genes were relatively
low. When comparing HSC/MPP cells between NCR and CR groups,
no differential peaks in binding site accessibility were observed
(Figure 7B). Furthermore, expression patterns of representative
immune-related genes across cell types were also assessed (Figure 7D).

The analysis of the Pro-B subgroup in scATAC-seq showed that
the binding sites of EBF3, EBF1, MAZ, ZNF148, KLF15, NHLH],
and KLF5 had higher accessibility in Pro-B cells than in other cell
types (Figures 8A-C). We further analyzed the expression
difterences of these genes in scRNA-seq and found that EBF1 and
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ZNF148 were highly expressed in Pro-B cells (Figure 8D). When
comparing Pro-B cells between NCR and CR groups, the differential
peaks in NCR were mainly downregulated, which means they were
predominantly enriched in the CR group (Figure 8E). We found
that the accessibility of KLF15, SP1, SP3, NRF1, ZBTB14, EGRI,
EGR3 binding sites in Pro-B was higher in the CR group than in the
NCR groups (Figure 8F). Among them, SP1, SP3, NRF1 also
showed higher expression levels in scRNA-seq in the CR group
compared to the NCR group, which is consistent with scATAC-
seq (Figure 8G).

HSCIMPP cells

120

o Oown-Regulated

-Logl0 FDR

o UpRegulted

BATEIUN

FosLIN

ok T Tkt

3 12345678010ma3 12
FosLIING

ase7soumzas 1

;;;;;;; 101 123456789101

FIGURE 7

and Pro-B cells (C).

Discussion

The standard intensive therapy for high-risk B-ALL patients
currently involves two cycles of the CAML protocol. Despite this,
some patients exhibit resistance to early intensified treatment,
resulting in therapeutic failure. However, our understanding of
the molecular mechanisms underlying chemotherapy sensitivity
and the identification of patients who are likely to benefit from
such treatments remains limited. Literature has indicated that
infants with CD10-positive blasts, in the absence of 11q23/MLL
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Correlation between cell-type-specific chromatin accessible degree and gene expression level in Pro-B cells. (A) Differential peaks of chromatin
accessibility between Pro-B cells and other cell types. (B) Transcription factor motif analysis in Pro-B cells. (C) Genes with differential accessibility
between Pro-B cells and other cell types. (D) The expression of representative genes in different cell types. (E) Differential peaks of chromatin
accessibility in Pro-B cells between non-remission group and remission group. (F) Transcription factor motif analysis of Pro-B cells in remission
group. (G) The expression of representative genes in normal, remission and non-remission group.

rearrangements, tend to have improved outcomes and respond
better to intensified therapy (16). Infants with B-ALL harboring
germline MLL genes show superior responses to chemotherapy
compared to those with rearranged MLL genes, achieving a 5-year
event-free survival rate of 95.5% with manageable treatment toxicity
(17). Traditional diagnostic methods, which assess the average
mutations and expressions across a population of cells, can
obscure the signals of cellular heterogeneity, particularly
overlooking the signals from rare cell types. To address this, we
employed single-cell RNA sequencing (scRNA-seq) combined with
single-cell ATAC sequencing (scATAC-seq) to analyze differential
gene expressions in specific cellular subsets within peripheral blood
mononuclear cells (PBMCs) from B-ALL patients who experienced
remission or relapse following intensive therapy, as well as from
healthy controls. By clustering these expression profiles, we inferred
genes associated with relapse within particular cell types.

The scRNA-seq results elucidate that the cellular composition
of the remission group is similar to that of the normal group, which
also demonstrates the effectiveness of the treatment at the cellular
level. However, the cellular composition of the non-remission
group is significantly different from the other groups, with the
most pronounced changes observed in the HSC/MPP and Pro-B
cell populations. In both the remission and normal groups, the
proportions of these two types of cells are relatively low, whereas in
the non-remission group, the proportions of these cells have
increased dramatically, becoming the predominant types. This
may be due to the failure of intensified therapy, where normal
hematopoiesis in leukemia continues to be suppressed, leading to
anemia, thrombocytopenia, and neutropenia. The body
compensates by increasing the number of HSC/MPP cells, which
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possess multilineage differentiation and self-renewal capabilities
(18). Simultaneously, there is an arrest of B cell development at
the Pro-B stage, impeding cellular maturation and precipitating the
accumulation of these immature cell forms.

Compared to the scRNA-seq analysis, the scATAC-seq analysis
reveals even greater differences in cellular proportions among the
normal, remission, and non-remission groups, possibly because the
epigenome is more prone to change than the transcriptome. In the
non-remission group, the cell proportions based on chromatin
accessibility also show that HSC/MPP and Pro-B cells are the most
predominant, which is consistent with the scRNA-seq findings. CNV
analysis also demonstrates that the CNV levels in HSC/MPP and Pro-B
cells are higher in the NCR group than in other cell types, indicating
that malignant cells in PBMCs are primarily concentrated in these two
cell populations. Therefore, we focus our analysis on these two
subgroups. CNV differences observed between CR and NCR groups
may reflect individual genomic background rather than therapy-
specific changes. We interpret CNV variation as a correlate of clonal
genomic instability, but not direct proof of malignancy.

Further stratification of HSC/MPP identified three distinct
subclusters, with the normal, remission, and non-remission groups
each corresponding to different subclusters. The HSC/MPP cells from
the NCR group are predominantly found in subcluster 0, which shows
high expression of TCF4, EBF1, ERG, AL589693.1, and CRIM1, along
with enrichment of the allograft rejection pathway and the Notch
signaling pathway. These associations suggest that this subpopulation
may be involved in resistance to intensified therapy. However, these
findings are observational and require functional validation to
determine any causal role. TCF4 is a transcription factor belonging
to the basic helix-loop-helix (bHLH) family, which is involved in
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lymphoid cell differentiation (19). In B-ALL, TCF4 may linked in the
regulation of B cell proliferation and differentiation, as well as the self-
renewal of leukemic stem cells. EBF1 is a key transcription factor in B
cell development, essential for the proliferation and maturation of early
B cells (20). Its aberrant expression may be associated with the
proliferation and survival of leukemia cells (21). ERG is a member of
the ETS family, involved in multiple cellular processes, including cell
proliferation, differentiation, and migration (22). In B-ALL, ERG may
be involved in the migration and invasion of leukemic cells, as well as
resistance to therapy. CRIMI is a transmembrane protein that
modulates the bone morphogenetic protein (BMP) signaling
pathway, which plays a role in various cellular processes, including
cell differentiation and proliferation (23, 24). It may be involved in
regulating the differentiation of leukemia cells and their response to
treatment. Current research on the biology of ALL has identified
several recurrent ALLs with targetable pathways, including the Notch
signaling pathway (25). The upregulation of the Notch signaling
pathway in subcluster 0 of HSC/MPP cells suggests a possible role in
relapse biology, but functional studies are necessary to determine
whether this pathway is directly involved in therapy resistance.

In addition to its role in hematopoietic development and
leukemogenesis, Notch signaling has been implicated in immune
modulation and resistance to immunotherapy (26). Studies in T-cell
acute lymphoblastic leukemia (T-ALL) and other malignancies have
shown that aberrant Notch activation may suppress T cell activation,
promote an immunosuppressive tumor microenvironment, or alter
immune checkpoint expression (27, 28). These mechanisms may
contribute to poor responses to immunotherapies such as CAR-T
cells or immune checkpoint inhibitors. Although our study did not
directly examine immunotherapy response, the enrichment of Notch
signaling in the NCR-associated HSC/MPP subpopulation raises the
possibility that this pathway may influence immune escape and
warrants further investigation in the context of relapsed B-ALL.

Pro-B cells were stratified into 5 subclusters through spectral
clustering, with the NCR group corresponding to subclusters 0 and 3,
among which the majority of the pro-B cells in NCR were in
subcluster 0. This subcluster is characterized by high expression of
RPS29, B2M, RPL41, RPS21, NEIL1, AC007384.1, and CRIM1, as
well as enrichment of the B cell receptor signaling pathway. Previous
studies have shown that treatment with glucocorticoids leads to
enrichment of the B cell receptor signaling pathway in B-ALL cells,
and that B cell development is crucial for glucocorticoid resistance in
B-ALL cells (29). Therefore, the upregulation of the B cell receptor
signaling pathway in subcluster 0 of Pro-B cells may also contribute
to the patients’ resistance to intensified chemotherapy.

Due to the clinical constraints and ethical consideration, the
sample size in our study is limited and not longitudinally paired. As
a result, caution should be exercised in extrapolating our findings, and
larger, paired cohort studies will be necessary to validate the identified
subpopulations and mechanisms. Future validations are needed. First,
the potential pathogenic genes identified have not yet undergone
functional validation and require further functional experiments for
confirmation in the future. Secondly, although these genes may all be
related to the relapse of intensified therapy in B-ALL, our sample size is
small, and a larger sample is needed to verify the universality and
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specificity of these relapse genes in specific cell types. Thirdly, our study
is limited by the absence of full molecular subtype classification for each
B-ALL patient, which poses a challenge given the extensive
heterogeneity of the disease. Over 20 subtypes have been recognized,
many of which are associated with distinct prognoses and treatment
responses. While our inferCNV-based approach provides insights into
global genomic instability, it may not detect subtype defined by gene
fusion or single-nucleotide variants. Fourthly, all single-cell data in this
study were derived from peripheral blood mononuclear cells (PBMCs),
rather than from the bone marrow microenvironment, which is the
primary site of leukemic development in B-ALL. While PBMCs
provide a minimally invasive snapshot of systemic immune and
leukemic cell states, they may not fully capture the complexity of
interactions occurring in the bone marrow niche. Future studies
involving bone marrow samples will be essential to validate and
extend these findings.

Although in the absence of in vitro validation, our conclusions are
supported by consistency with previous studies. The relapse-associated
HSC/MPP subcluster enriched for TCF4, EBFI, and ERG expression,
together with Notch signaling, aligns with reports implicating these
factors in B-cell development, leukemic stemness, and therapy
resistance (20-22). Similarly, the Pro-B subcluster characterized by
RPS29, B2M, and enrichment of the BCR pathway corresponds with
published evidence linking BCR signaling to glucocorticoid resistance
in B-ALL (26, 28). Prior studies have also emphasized the role of
CRIM1 and BMP signaling in leukemic differentiation and drug
response (23, 24, 29). Taken together, these consistencies with the
literature reinforce the robustness of our multi-omics findings, while
also highlighting Notch and BCR signaling as promising axes for future
mechanistic and therapeutic exploration.

In conclusion, our study has identified genes within specific cellular
subsets that are associated with the failure of intensified therapy in B-
ALL, thereby enriching the existing knowledge base for the
investigation of drug resistance mechanisms in B-ALL. Additionally,
we posit that the disruption of signaling pathways due to aberrant
expression of these genes may be a significant contributor to
therapeutic resistance. Consequently, the development of targeted
inhibitors against these genes and their associated pathways could
potentially overcome drug resistance in B-ALL, thereby enhancing
therapeutic outcomes and providing increased benefits to patients.
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