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Introduction: Neurodevelopmental disorders (NDDs) are chronic brain diseases
linked to innate immune signaling abnormalities, affecting children with complex
gut-brain axis etiologies and limited targeted therapies. While infant microbes/
metabolites may predict childhood NDDs, their landscape and host-metabolism
interactions in NDDchildren remain unclear.

Methods: This study enrolled 40 NDDchildren (mean age: 518 + 177, F:M =
11:29) and 60 healthy controls (HCs; mean age:5.11 + 1.42, F:M = 25:35) from
Gansu Province Hospital Rehabilitation Center. Shotgun metagenomics and
untargeted metabolomics was used to analyze gut microbiota and fecal/
plasma metabolites, multi-omics integration analysis was performed to explore
host-microbe interactions.

Results: Clinically, NDD children showed self-care, concentration, and social
behavior deficits, with grandparents as primary caregivers, versus parents in HCs.
Microbiome analysis revealed reduced gut diversity and dysregulation in NDDs:
depleted beneficial taxa including Akkermansia muciniphila and Lactococcus lactis,
but enriched GABA/lactateproducing bacteria; and disrupted pathways included
polysaccharides/fatty acids/amino acid/purine ribonucleosides metabolism. Fecal
metabolomics identified 100 enriched metabolites including polyamines and GABA
in 45 pathways and 254 depleted metabolites including bile acids and butyrate in 57
pathways. Plasma metabolomics showed 321 enriched metabolites like free fatty
acids in 143 pathways and 270 depleted metabolites including glycerophospholipids
in 84 pathways. Notably, phenolic acids, arginine/proline metabolism, and HIF-1
signaling were enriched in both feces and plasma of NDDs children. Benzene
derivatives, indoles, steroid hormone biosynthesis, and tryptophan/tyrosine/
phenylalanine metabolism were increased in plasma but decreased in feces, while
oxidized lipids, amino acids and derivatives, metabolism of glycine/serine/threonine,
alanine/aspartate/glutamate, and cysteine/methionine showed the opposite pattern.
Venn analysis identified 29 common metabolites, with eight in KEGG maps. 11-
dehydrocorticosterone, LPC (17:0/0:0), adipic acid, and sucralose were decreased in
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feces but increased in plasma; 1-methylhistidine and trigonelline were decreased in
both; L-asparagine anhydrous was increased in feces but decreased in plasma; and
sarcosine increased in both. Microbe-metabolite correlation analyses linked these
metabolites to NDDs depleted species A. muciniphila, L. lactis, A. butyriciproducens,
and etc.

Discussions: Collectively, our study presents the first integrated profile of gut
microbiome, microbial metabolites, and host metabolome, reveals gut
microbiota dysbiosis, functional impairment, and metabolic disturbance in
pediatric NDDs. These findings provide a theoretical foundation for
microbiotaand metabolite-targeted therapeutic strategies in childhood NDDs.

KEYWORDS

pediatric neurodevelopmental disorders, combined metagenomic and metabolomic
analyses, gut microbiota dysbiosis, disturbed amino acids metabolism, decreased
protein digestion and absorption, increased fat digestion and absorption, reduced

purine and pyrimidine metabolism

Introduction

Childhood neurodevelopmental disorders (NDDs), including
autism spectrum disorders (ASD), attention deficit hyperactivity
disorder (ADHD), disorders of intellectual development, and
speech/language/learning disorders, are chronic brain conditions
that severely impair children’s cognitive, behavioral, and social
abilities (1, 2). With rising prevalence, NDDs impose significant
economic and emotional burdens on families and healthcare
systems (3). Despite extensive research on genetic, environmental,
and neurobiological factors, the complex pathogenesis of NDDs
remains incompletely understood (4).

Emerging evidence highlights the pivotal role of the gut
microbiota in host neurodevelopment and behavior regulation
(5). Through the bidirectional “gut-brain axis”—mediated by
neural, immune, endocrine, and metabolic pathways—gut
microbes influence brain function via multiple mechanisms (5).
They produce bioactive metabolites such as short-chain fatty acids
(6), neurotransmitters (7), and amino acid derivatives (8), directly
modulating neural development. Additionally, they indirectly
impact neurodevelopment by regulating intestinal barrier
integrity, immune responses, and inflammation (9).

Abbreviations: NDDs, Nurodevelopmental disorders; HCs, Healthy controls; ID,
Intellectual disability; IQ, Intelligence quotient; GABA, gamma-aminobutyric
acid; SCFAs, Short-chain fatty acids; BMI, Body mass index; MetaPhlAn,
Metagenomic Phylogenetic Analysis; HUMAnN, HMP Unified Metabolic
Analysis Network; PERMANOVA, Permutational Multivariate Analysis of
Variance; UPLC, Ultra Performance Liquid Chromatography; PCoA, Principal
coordinate analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; FDR,
False Discovery Rate; GDDS, The Gesell Developmental Diagnoses Scale; F/B,
Firmicutes/Bacteroidetes; OR, Occurrence rate; KO, KEGG Orthology; FC, Fold
change; PEA, Palmitoylethanolamide; ES, Effect size; RA, Relative abundance;
UniRef, UniProt Reference Clusters.
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Recent studies have identified distinct gut microbiota
alterations in NDDs. For example, ASD patients exhibit dysbiosis
characterized by imbalanced Bacteroidetes/Firmicutes ratios and
reduced short-chain fatty acid-producing bacteria (10, 11).
Metabolomic analyses also reveal dysregulations in amino acid,
energy, and neurotransmitter metabolism in NDD populations
(12). However, these investigations predominantly focus on either
microbiota or metabolome independently, lacking integrated
approaches to elucidate microbiota-host metabolic interactions
and their pathogenetic roles. Although a longitudinal study
demonstrated the predictive potential of combined metagenomic
and metabolomic profiling for early NDD risk assessment (13), the
specific signatures of gut microbiota, metabolites, and microbial-
host co-metabolites in childhood NDDs remain uncharacterized.

This study employs integrated metagenomic and metabolomic
approaches to comprehensively profile gut microbiota and metabolites
in children with NDDs and healthy controls (HCs). The primary
objectives are to: (1) identify NDD-associated microbial taxa by
comparing microbiota composition and function; (2) discover
potential metabolic biomarkers and dysregulated pathways; (3)
elucidate the roles of microbial-host co-metabolites in NDD
pathogenesis; and (4) establish correlations with clinical phenotypes to
inform early diagnosis and precision interventions. By advancing
understanding of microbiota-metabolite-host interactions, this
research will provide scientific underpinnings for developing
microbiota-based therapeutic strategies, including probiotics,
prebiotics, and metabolic modulation.

Methods
The aim, design and setting of the study

The present study was conducted to investigate the gut
microbiota and metabolomic characteristics in children with
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NDDs. 40 NDDs children and 60 HCs were recruited from the
pediatric rehabilitation department at Gansu Province Hospital
Rehabilitation Center (Lanzhou, Gansu) according to the
inclusion and exclusion criteria, which was shown as follows:

(1) Children presenting with symptoms of NDDs, such as
developmental delays in motor skills, including sitting up, rolling
over, crawling, and walking; communication difficulties such as
delayed speech or impaired language abilities; slower mastery of
self-care tasks (e.g., potty training, dressing, and feeding), limited
memory capacity for quick learning, inability to comprehend cause-
and-effect relationships, and challenges in logical reasoning and
problem-solving abilities; (2) Participants aged between 3 and 12
years; (3) Undergoing standardized assessments for IQ (less than
70), cognition, communication, etc., provided by the hospital; (4)
Absence of known inflammatory or chronic infectious diseases; (5)
No usage of medications such as antibiotics that affect the gut
microbial composition within the past month; (6) No comorbidity
with other mental disorders (e.g., epilepsy, schizophrenia) to avoid
their interference with gut microbiota and metabolites; (7) No
consumption of fermented foods including yogurt and pickles in
the last month; (8) Weaned participants with a diet primarily
consisting of rice, cooked wheat products, meat, vegetables; (9)
Daily milk intake less than 300 mL; (10) Complete availability of
sample information and phenotypic data.

The characteristics of participants,
phenotypes and samples collection

Assessment scales, including IQ, Developmental Milestones for
Infant Gross Motor Development, Fine Motor Function
Development in Infants and Toddlers, Cognitive Function
Development, Social Interaction and Emotional Development,
Speech and Language Function Development, as well as Game
Function Development were administered with the assistance of
guardians for each child. Additionally, sex, age, height, weight, body
mass index (BMI), premature or not, delivery mode, birth weight
and height, age of parents at birth, guardians, self-care ability of
daily living including eat independently, concentrate on the meal,
picky, wash before meals, tidy, labor, chosen clothes, chosen toys,
group activity, seek help were also recorded according to our pre-
designed questionnaire.

The study met cross-sectional sample size requirements, with
the control group sized at 1.5 times the study group. Sample size was
calculated using the formula:

Zﬁ/z .P-(1-P)
2

With a 95% confidence level (Zy, = 1.96), NDD prevalence
(P=1%-3% per WHO), and margin of error (E=0.05), minimum
sample sizes were 8-23 for NDD cases and 12-35 for controls. The
final sample included 40 NDD children and 60 healthy
controls (HCs).

The stool samples were collected from each child with the
assistance of their guardians and stored at -80°C. The blood samples
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were obtained by a professional nurse from the pediatric rehabilitation
department of the hospital and immediately centrifuged to obtain
plasma (4°C, 3000 rpm, 10 minutes) to store at -80°C. After all
samples were collected, both fecal and plasma samples were
transferred to the laboratory by dry ice for shotgun metagenomic
sequencing and untargeted metabolomics analysis.

Shotgun metagenomic sequencing

DNA extraction, library construction,
metagenomic sequencing

Fecal samples were transported to the laboratory by dry ice to
facilitate DNA extraction. The total DNA in each sample was
extracted following a previously described protocol (37). The
quantity and quality of the total DNA were assessed through the
NanoDrop Spectrophotometer ND-1000 (Thermo Fisher
Scientific). Metagenomic libraries were constructed using the
TruSeq DNA PCR-Free Library Preparation Kit (Illumina), and
their concentrations were determined by Qubit 2.0 fluorimeter
(Invitrogen). Sequencing of the metagenomic libraries was
performed using BGI-Seq500 with 150 bp paired-end sequencing
of ~ 350 bp inserts at BGI-Shenzhen (Shenzhen, China) (37).

Data filtering

The raw reads containing more than 50% low-quality bases
(quality < 20) or exceeding five ambiguous bases were filtered using
FASTP. The remaining reads were aligned to the human genome
(Hg19) to eliminate host DNA using bowtie2 (-m 100-600 -v 7 -p 6
-130 -r 1 -M 4 -c 0.95). The remaining high-quality reads were
utilized to obtain taxonomic and functional profiles.

Taxonomic profiling

The MetaPhlAn 3.0 (- input_type fastq - ignore_viruses - nproc
6) was employed to generate profiles of phyla, genera, and species
from the high-quality reads derived from metagenomic shotgun
sequencing data as previously documented (38).

Functional profiling

The HUMAnNN 3.0 (-i input_clean_data -0 output —threads 10 -
memory-use maximum -remove-temp-output) was employed to
accurately profile the abundance of microbial metabolic pathways
and other molecular functions from metagenomic sequencing data
as described (38).

Diversity analysis

The alpha diversity was assessed using various indices,
including Shannon, Simpson’s, and Inverse Simpson’s indexes,
depending on the related taxonomic profiles [R 4.2.1 vegan:
diversity (data, index = ‘richness/Shannon/Simpson/InSimpson’)].
Beta diversity was calculated based on the Bray-Curtis distance [(R
4.2.1 ape: pcoa (‘bray_curtis distance’, correction=“none”,
rm=NULL)], R 4.2.1 vegan: diversity [data, index = ‘bray_curtis
distance’)]. Permutational Multivariate Analysis of Variance
(PERMANOVA) was conducted by assessing the abundance
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profile of gut microbial species/genus through adonis function in R
4.2.1 with 1000 permutations.

Broad-targeted metabolomic examination
and analysis

Broad-targeted metabolomics, also known as untargeted
metabolomics, the untargeted metabolomic examination
encompasses sample preparation and extraction, UPLC separation,
and ESI-Q TRAP-MS/MS detection. The untargeted metabolomics
analysis in our study was conducted following previously
established protocols.

Principal coordinate analysis of microbial and
plasma metabolites

PCoA analysis was conducted using the ape comp statistical
function in R (version 4.2.1) based on Bray-Curtis distances
calculated from the fecal and plasma metabolites profiles.

Selection of the differential metabolites between
two groups

Differences in microbial composition and plasma metabolites
between NDDs children and HCs were assessed using the Wilcoxon
rank-sum test. The result was statistically significant at the
0.05 level.

Compound annotation and KEGG pathways
enrichment analysis

The identified microbial and host blood metabolites of
significance were annotated with a KEGG ID by using the KEGG
compound database (http://www.kegg.jp/kegg/compound/). The
annotated metabolites were subsequently mapped to the KEGG
Pathway database (http://www.kegg.jp/kegg/pathway.html).

Statistical analysis

The differences in the gut microbiota, predicted functional
pathways, microbial metabolites, and host plasma metabolites were
compared using the Wilcoxon rank sum test. PERMANOVA was
employed to assess the impact of various phenotypes on the gut
microbial composition at genus and species levels, functionality, fecal
and plasma metabolisms. The P value was adjusted using the
Benjamini-Hochberg method to control False Discovery Rate
(FDR). Associations between significantly different gut microbes and
distinctly altered fecal/plasma metabolites were analyzed using
Spearman’s rank correlation analysis.

All the statistical analysis were based on packages in R (Version
4.2.1). PERMANOVA: vegan, adonis(t(otul) ~ phe [,1], data = phe,
permutations = 999, narm = T). Wilcoxon rank sum test:
wilcox.test(as.numeric(pr[i, f1]), as.numeric(pr[i, f2])). Heatmap:
pheatmap(cmt,scale = “none”,cluster_row = T, cluster_col = T,
display_numbers = pmt). A significance level of P < 0.05
was considered.
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Results

Phenotypic differences and PERMANOVA
analysis of gut microbiota and metabolites

This study included 60 HCs and 40 children with NDDs.
Demographic and clinical characteristics showed no significant
group differences in sex, age, body mass index (BMI), birth
height, birth weight, parental age, maternal childbearing age,
delivery mode, or defecation frequency (Supplementary Table
S1A). However, NDDs children exhibited significant deficits in
daily living skills (e.g., independent eating, meal concentration,
pre-meal hygiene, tidiness, clothing/toy preferences) and social
adaptability (e.g., group activity participation), as assessed by
caregiver-reported questionnaires (Supplementary Table S1A).
Using the Gesell Developmental Diagnosis Scale (GDDS), NDDs
children displayed substantial developmental delays: their average
developmental month equivalent was 28.63 + 12.96 months,
markedly lower than their chronological age of 5.18 + 1.77 years.
Their mean developmental quotient (DQ) and intelligence quotient
(IQ) were 47.02 + 19.29 and 42.68 *+ 17.16, respectively
(Supplementary Table S1A).

PERMANOVA (Permutational Multivariate Analysis of
Variance) revealed significant effects of NDDs status, age, and BMI
on both species- and genus-level gut microbiota composition
(Supplementary Table SIL). At the functional level, NDDs
significantly influenced gut microbial pathways annotated by Kyoto
Encyclopedia of Genes and Genomes (KEGG). While fecal
metabolome profiles showed no direct association with NDDs, age
was a significant covariate. For blood metabolites, NDDs status, age,
BMI, disease severity, and etiological factors (e.g., icterus, prematurity)
all exerted significant effects. To isolate NDDs-related signals, age and
BMI were adjusted for in subsequent analyses.

Characterization of gut microbial
composition in NDDs children vs. HCs

Metaphlan 3.0 analysis was employed to identify the taxonomic
profiles (Supplementary Table S1B). A total of eleven phyla, with
Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and
Verrucomicrobia comprising the five most abundant phyla across
all participants. Notably, Firmicutes and Verrucomicrobia were
significantly reduced in NDDs patients compared to HCs
(Figure 1A, Supplementary Table S1C). The Firmicutes/
Bacteroidetes (F/B) ratio was 2.03 in HCs versus 1.62 in NDDs
patients, reflecting a dysbiotic shift in microbial community structure.

At the genus level, 177 genera were annotated, with the top 20
abundant genera including Bacteroides, Bifidobacterium,
Faecalibacterium, Eubacterium, and Roseburia. Among these,
Eubacterium, Anaerostipes, Fusicatenibacter, Streptococcus, and
Akkermansia showed significant decreases in NDDs patients
relative to HCs (Figure 1B, Supplementary Table S1D). At the
species level, 522 species were identified, with the top 30 abundant
species including Faecalibacterium prausnitzii, Bacteroides
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FIGURE 1

Al phyla, top abundant genera and species in the gut microbiota of children with NDDs and healthy controls. (A) Distribution of all phyla in both
groups. (B) The top 20 most abundant genera in both groups. (C) The top 30 most abundant species in both groups. *P < 0.05. The table in the
figure shows the exact P-values and enrichment directions of significantly different taxa.

uniformis, and Eubacterium rectale. Notably, Bifidobacterium
adolescentis—a key gamma-aminobutyric acid (GABA)-producing
species—was significantly enriched in NDDs patients, while seven
species (Eubacterium sp. CAG:180, Anaerostipes hadrus,
Fusicatenibacter saccharivorans, Blautia wexlerae, Akkermansia
muciniphila, Eubacterium eligens, and Roseburia intestinalis) were
depleted in NDDs compared to HCs (Figure 1C, Supplementary
Table S1E).

Principal coordinate analysis (PCoA) revealed significant
segregation in gut microbial composition between NDDs patients
and HCs at both the genus (Figure 2A, P = 0.0265) and species
(Supplementary Figure S1, P = 0.0351) levels. Alpha diversity
analyses using the Inverse Simpson, Simpson, and Shannon
indices consistently showed reduced microbial diversity in NDDs
patients compared to HCs at both taxonomic levels (P < 0.05,
Figure 2B, Supplementary Table S1F). Comparative analysis
identified 23 differentially abundant genera and 47 species (P <
0.05, |Effect Size (ES)| > 0.2, Occurrence Rate (OR) > 0.1) between
groups. At the genus level, Lactobacillus and Megasphaera were
significantly enriched in NDDs patients, while Akkermansia,
Lactococcus, Anaeromassilibacillus, and 18 other genera were
depleted (Figure 2C). At the species level, Bifidobacterium
adolescentis, Lactobacillus sanfranciscensis, and Haemophilus sp.
HMSC71HO05 were overrepresented in NDDs, whereas
Akkermansia muciniphila, Lactococcus lactis, Streptococcus
salivarius, and 16 other species were underrepresented
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(Figure 2D). Notably, many NDDs-enriched species, such as
Lactobacillus spp., are known butyrate producers, suggesting
potential links to metabolic dysregulation in NDDs.

Differences in gut microbial function
between children with NDDs and HCs

HUMANN 3.0 was used to characterize gut microbial functional
profiles (Supplementary Table S1G). Principal coordinate analysis
(PCoA) based on Bray-Curtis distances revealed significant
segregation in microbial molecular functions between NDDs
patients and HCs at both the UniProt Reference Clusters
(UniRef) pathway level (Figure 3A) and KEGG Orthology (KO)
level (Figure 3B). UniRef pathway analysis identified 452 functional
pathways (Supplementary Table S1H), of which 49 were
significantly differentially abundant (P < 0.01, [ES| > 0.2, Mean
OR > 0.1)—all enriched in HCs (Figure 3C). These pathways
predominantly involved glycometabolism (e.g., glycolysis,
stachyose degradation, anaerobic energy metabolism) and amino
acid biosynthesis (e.g., L-arginine, L-ornithine, L-methionine).

At the KO level, 4,032 KOs were annotated, with 89 showing
significant group differences (P < 0.01, ES > 0.3 or < -0.4, Mean OR
> 0.1, Supplementary Table S1I). Notably, only eight KOs were
enriched in NDDs patients, while 81 were HC-enriched. The latter
included enzymes and transporters involved in carbohydrate
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FIGURE 2

Characteristics and differential analysis of gut microbiota between two groups. (A) PCoA based on Bray-curtis distances at the genus level revealed
significant compositional divergence between two groups. (B) Alpha diversity analysis using Shannon/Simpson/inverse Simpson indices
demonstrated significant reductions in gut microbial richness and evenness in children with NDDs at both genus and species levels. (C) Significantly
different genera between two groups. (D) Significantly different species between two groups.

metabolism (e.g., L-fuculose-phosphate aldolase, ABC-type sugar
transport systems), consistent with UniRef pathway findings
(Supplementary Figure S2).

To further investigate the microbial function, microbial
metabolism were detected. A total of 2,689 fecal metabolites were
identified, with 44 significantly upregulated in NDDs patients (P <
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0.05, FC > 2) and 58 in HCs (P < 0.05, FC < 0.5) (Supplementary
Figure S3, Supplementary Table S1J). NDDs-enriched metabolites
included L-2-aminobutyric acid, lactic acid, fatty acid derivatives
(e.g., 13-0x0ODE, 9-0x0ODE), GABA, sarcosine, and putrescine
(Figure 4A), predominantly mapped to KEGG pathways related to
energy metabolism (AMPK, HIF-1 signaling), amino acid
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downregulated in children with NDDs.

metabolism (arginine, proline, glutamate), and lipid metabolism
(linoleic acid, glycerophospholipid) (Figure 4B).

HC-enriched metabolites comprised short-chain fatty acids
(butyrate, propionate), neurotransmitter precursors (tryptophan,
phenylalanine, tyrosine), and bioactive molecules (dopamine,
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epinephrine, 3-methylindole) (Figure 4A), linked to pathways
such as phenylalanine/tyrosine/tryptophan metabolism, steroid
hormone biosynthesis, and phosphatidylinositol signaling
(Figure 4B). Notably, butyrate, propionate, and monoamine
neurotransmitters—key gut-brain axis mediators—were depleted
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in NDDs, while lactate (implicated in memory formation) showed
elevated levels in NDDs feces.

Alterations in plasma metabolites between
NDDs children and HCs

Plasma metabolomics, which focuses on profiling small-
molecule metabolites in blood, offers insights into disease
mechanisms and potential therapeutic targets. Using untargeted
metabolomics, we identified distinct metabolic signatures in
children with NDDs compared to HCs. A total of 1,527 blood
metabolites were detected, and principal coordinate analysis
(PCoA) based on Bray-Curtis dissimilarity revealed significant
separation in metabolic profiles between NDDs patients and HCs
(P = 0.0001, Figure 5A, Supplementary Table S1K).

Differential abundance analysis identified 258 significantly
altered metabolites (P < 0.05, |ES| > 0.4), including 161
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metabolites enriched in NDDs patients and 97 metabolites
enriched in HCs (Figure 5B). Mapping these metabolites to the
KEGG database annotated 139 metabolites with KEGG IDs, of
which 41 were associated with specific metabolic pathways. Among
these, 25 NDDs-enriched metabolites—including organic acids,
heterocyclic compounds, cholesterol, and acetic acid—were linked
to pathways such as arginine/proline metabolism, phenylalanine
metabolism, lysine degradation, tryptophan metabolism, tyrosine
metabolism, HIF-1 signaling, serotonergic synapse, and TCA cycle.
Conversely, 16 HC-enriched metabolites—such as Sn-glycero-3-
phosphocholine, 2-aminoethanesulfonic acid, methylmalonic acid,
and L-cysteine/L-glutamic acid—were primarily involved in ABC
transporters, neuroactive ligand-receptor interaction, glutamatergic
synapse, taurine/hypotaurine metabolism, and purine/pyrimidine
metabolism (Figure 5C).

These findings highlight widespread metabolic dysregulation in
NDDs, with perturbations in amino acid metabolism, energy
production (TCA cycle), neurotransmitter biosynthesis
(serotonergic/glutamatergic pathways), and lipid/cholesterol
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Plasma metabolome profile analysis between two groups. (A) PCoA based on Bray-curtis distance of plasma metabolites revealed significant
separation between two groups. (B) Volcano plot analysis identified markedly different plasma metabolites, with significantly up-regulated (red) and
down-regulated (blue) metabolites highlighted. (C) Heatmap showed the abundance of significantly different plasma metabolites between two
groups. (D) KEGG pathways significantly associated with different plasma metabolites.

homeostasis. The enrichment of butanoate and bile secretion
pathways in NDDs patients may further link gut microbial

metabolism to neurodevelopmental dysfunction, while HC-

enriched pathways suggest roles for synaptic signaling and

nutrient transport in neurocognitive health.
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Correlation analysis among gut microbiota,
fecal, and plasma metabolites

To reveal the effect of gut microbiota and metabolites on host
metabolism, Spearman’s rank correlation analysis was employed to
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FIGURE 6

Spearman’s rank correlation analysis revealed the relationships between the significantly different microbial species and the significantly differential

fecal metabolites between the two groups. * P < 0.05; + P < 0.01.

investigate associations between significantly altered gut microbiota,
fecal metabolites, and plasma metabolites (Supplementary Table SIM).
The analysis revealed a positive correlation between HC-enriched
microbial species and HC-specific fecal metabolites, with a reciprocal
trend observed in NDDs patients. Notably, Anaerofustis stercorihominis,
Clostridium leptum, Agathobaculum butyriciproducens, Anaerostipes
hadrus, Eubacterium eligens, and Eubacterium hallii—all depleted in
NDDs—exhibited strong positive correlations with fecal butyrate levels
(P = 0.0042), which were significantly reduced in NDDs patients.
Conversely, lactate-metabolizing microbes including Megasphaera
micronuciformis and M. Elsdenii were enriched in NDDs, while
lactate-producing species such as Clostridium asparagiforme,
Ruthenibacterium lactatiformans, and Lactococcus lactis were depleted.
Fecal GABA—elevated in NDDs with no plasma difference—correlated
positively with B. adolescentis, an NDDs-enriched species (Figure 6,
Supplementary Figure S4). Fecal dopamine levels—significantly reduced
in NDDs—correlated positively with HC-enriched species including
Clostridium leptum, Akkermansia muciniphila, and Blautia obeum, but
were negatively with NDDs-enriched Haemophilus sp. HMSC71HO5.
Epinephrine—also reduced in NDDs—correlated positively with HC-
enriched Agathobaculum butyriciproducens, Eubacterium eligens, and
Streptococcus sanguinis. Fecal acetylcholine showed no group difference,
but its derivative phosphocholine—positively correlated with Roseburia
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intestinalis and Eubacterium eligens—was reduced in NDDs, with a
negative correlation to Haemophilus sp. HMSC71HO05.

At the plasma level, NDDs-enriched species including B.
adolescentis, Lactobacillus sanfranciscensis were correlated with
NDDs-specific metabolites such as 4-acetamidobutyric acid and
indole-3-acetonitrile (Supplementary Figure S5), while HC-
enriched species including Ruminococcus lactatiformans,
Akkermansia muciniphila were associated with HC-enriched
metabolites like L-glutamic acid and phosphoenolpyruvate.
Similar trends were observed for differentially abundant genera
versus fecal/plasma metabolites (Supplementary Figures S6, S7),
reinforcing microbiota-metabolism linkages.

To further explore the comprehensive impact of gut microbiota
on intestinal and host metabolism, a Venn analysis was conducted.
The analysis identified 29 common differentially expressed
metabolites from 354 fecal and 591 plasma metabolites
(Supplementary Figure S8). Association studies between these
metabolites and significantly altered gut microbes showed positive
correlations between NDD-enriched gut microbes and NDD-enriched
fecal metabolites, while negative correlations were observed between
NDD-enriched microbes and HC-enriched fecal metabolites. The
same trends were evident in plasma metabolites (Figure 7). Among
the 29 common metabolites, eight were annotated in KEGG pathways:
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Spearman’s rank correlation analysis between significantly different species and the shared significantly different metabolites in feces and plasma.
(A) Association study between the gut species and common metabolites from feces. (B) Association study between the gut species and common
metabolites from plasma. The bold metabolites implicate the metabolites with KEGG map annotated. *P < 0.05; + P < 0.01.

11-Dehydrocorticosterone, L-asparagine anhydrous, sarcosine, 1-
methylhistidine, LPC(17:0/0:0), trigonelline, adipic acid, and
sucralose. Specifically:11-dehydrocorticosterone, LPC(17:0/0:0),
adipic acid, and sucralose were decreased in feces but increased in
plasma of NDD children; 1-methylhistidine and trigonelline were
decreased in both matrices; L-asparagine anhydrous was increased in
feces but decreased in plasma; Sarcosine was increased in both
(Figure 7). These metabolites are primarily involved in steroid
hormone biosynthesis, glycine/serine/threonine metabolism,
arginine/proline metabolism, choline metabolism in cancer,
glycerophospholipid metabolism, and pathways related to amino
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acid biosynthesis, protein digestion, and mineral absorption. Their
enrichment in NDD plasma suggests imbalances in energy and
nutrient metabolism in pediatric NDDs.

Discussion

The gut microbiome and its metabolic activities profoundly
influence human neurophysiology and mental health. However, the
landscape of gut microbial composition, functional pathways, microbial
metabolites, and host blood metabolism in children with NDDs remains

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1645137
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

poorly defined. Using shotgun metagenomic sequencing and broad-
targeted metabolomics, this study systematically characterized
differences in gut microbial structure, function, and host-microbial
metabolic interactions between NDDs children and age-, sex-, and
BMI-matched HCs. Significant disparities were observed in microbial
diversity, taxonomic composition, predicted functional pathways, and
fecal/plasma metabolites between groups.

Study cohort and clinical phenotyping

Forty NDDs children and 60 HCs were enrolled, with NDDs
patients exhibiting significant deficits in social interaction, self-care
abilities (e.g., independent eating, hygiene), and developmental
milestones. The average developmental age (28.63 + 12.96 months)
was markedly lower than chronological age (5.18 + 1.77 years), with
developmental quotient (47.02 + 19.29) and IQ (42.68 + 17.16)
reflecting severe neurodevelopmental impairment. Clinical
phenotypes showed no significant group differences in newborn
weight/height, parental age, or delivery mode. Notably, children
with NDDs were predominantly cared for by grandparents, whereas
healthy controls were parent-cared, underscoring caregivers’ critical
role during the 0-6-year developmental window. Additionally, NDD
children commonly had etiological histories of hyperbilirubinemia,
premature birth, or prolonged pregnancy, highlighting the importance
of prenatal and neonatal care.

Gut microbiome dysregulation in pediatric
NDDs

Metagenomic analysis uncovered profound differences in gut
microbial composition between NDDs patients and healthy
controls, characterized by reduced alpha diversity (species richness
and evenness) and distinct beta diversity at both genus and species
levels. At the phylum level, Firmicutes and Verrucomicrobia were
significantly depleted in NDDs, aligning with prior associations of
Firmicutes reduction with gastrointestinal and neurobehavioral
dysfunction. At lower taxonomic levels, NDDs patients exhibited
decreased abundance of 21 genera (e.g., Eubacterium, Akkermansia,
Lactococcus) and 44 species, including key short-chain fatty acid
(SCFA)-producing taxa such as Agathobaculum butyriciproducens
(14), Anaerostipes hadrus (15), Clostridium asparagiforme (16),
Eubacterium hallii (17), and other beneficial species including
Clostridium leptum and Eubacterium eligens. A. butyriciproducens
was reported to improve cognitive impairment in LPS-induced and
APP/PS1 mouse models of Alzheimer’s disease (14). A. hadrus is a
butyrate-producing bacterium capable of metabolizing 5-fluorouracil
(15). C. asparagiforme produced acetate, lactate, and ethanol as the
major products of glucose fermentation (16). E. hallii is a butyrate and
propionate-producing bacterium from infant feces (17). E. eligens can
utilize the galacturonide oligosaccharides DP4 and DP5 derived from
sugar beet pectin, strongly promotes the production of the anti-
inflammatory cytokine IL-10 in in vitro cell-based assays (18). C.
leptum is exceptional inducers of regulatory T cells (Tregs) in the
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colon and can be considered as therapeutic options for IBD and
allergies (19). The decrease of anti-inflammatory and butyrate-
producing bacteria in NDDs children reminded us a dysbiosis of
the gut microbiota. Consistently, the depletion of these SCFA-
producing microbes strongly correlates with reduced fecal butyrate
levels in NDDs, consistent with the established role of SCFAs in
modulating neuroinflammation and blood-brain barrier integrity in
neurological disorders (20). Conversely, NDDs patients showed
enrichment of Lactobacillus, Megasphaera, Lactobacillus
sanfranciscensis, and Bifidobacterium adolescentis. Megasphaera spp.,
previously linked to gastrointestinal symptoms like abdominal pain
and diarrhea in infants (13), may reflect altered gut dysbiosis in NDDs.
Lactobacillus species, including L. sanfranciscensis, a dominant
sourdough microbe (21, 22), have been shown to rescue
neurobehavioral deficits in preclinical models of maternal
microbiome dysbiosis (23), though their functional relevance in
NDDs remains unclear. B. adolescentis, a known GABA producer
(24), was significantly increased in NDDs. This species modulates host
metabolism, catalase activity, and lifespan in preclinical models (25),
and heat-inactivated strains promote colonic stem cell activation via
Paneth-like cells (26). The enrichment of B. adolescentis and L.
sanfranciscensis in NDDs may represent a compensatory host
response to microbial dysregulation or dietary influences (e.g.,
sourdough and buns consumption), though mechanistic validation
is needed.

For predicted functional pathways, all the significantly different
pathways were highly abudnant in HC group. Further analysis
revealed that these microbial pathways were predominantly
involved in glycometabolism and amino acid biosynthesis
(UniRef/KO analysis), reflecting the metabolic dysfunction of the
gut microbiota in patients with NDD. These findings highlight
metabolic dysfunction, and a dual pattern of depletion (SCFA
producers) and selective enrichment (GABA producers and
opportunistic taxa) in the gut microbiota of children with NDDs,
underscoring the complex interplay between microbial ecology and
neurodevelopmental pathology.

Metabolic perturbations and gut-brain axis
links

Fecal and plasma metabolomics revealed profound metabolic
dysregulation in NDDs, with reduced fecal butyrate levels directly
linked to depletion of butyrate-producing taxa [such as Clostridium
spp. and Eubacterium spp.). SCFAs are critical mediators of gut-brain
signaling and neuroinflammation (27). NDDs patients exhibited
reduced abundance of lactate-producing bacteria (Lactococcus lactis
(28), Ruthenibacterium lactatiformans (29) and Clostridium
asparagiforme (10)] but increased lactate-consuming Megasphaera
micronuciformis (30), despite undetectable fecal/plasma lactate (likely
converted to pyruvate or glucose metabolism). This shift may disrupt
lactate’s role in neural excitation and memory formation (31). Elevated
fecal GABA in NDDs correlated with B. adolescentis (a GABA
producer), but reduced plasma GABA derivatives [e.g, glutamate
(32)] suggested impaired central nervous system integration. Reduced
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fecal dopamine and plasma epinephrine in NDDs correlated with HC-
enriched microbes further implicated microbial dysbiosis in
neurotransmitter deficits (33, 34). Stable fecal acetylcholine levels but
reduced phosphocholine (a downstream metabolite) indicated altered
cholinergic signaling (35). Tryptophan metabolism revealed reduced
fecal kynurenine metabolites (xanthurenic acid, 3-methylindole)
alongside increased plasma kynurenine pathway intermediates,
reflecting disrupted gut-liver-brain metabolic crosstalk (36).
Dysregulated fecal phenolic metabolites (e.g., 3-hydroxy-
phenylacetate) and elevated plasma tyrosine derivatives (e.g.,
thyroxine) highlighted perturbations in phenylalanine/tyrosine
metabolism, potentially impacting catecholamine and thyroid
hormone biosynthesis.

KEGG pathway annotation indicates significant reprogramming
of both microbial and host metabolism in NDDs children. Specifically,
in the gut, NDDs children exhibited enhanced amino acid metabolism,
accompanied by reduced histidine metabolism and glycerophospholipid
metabolism. In contrast, plasma metabolites showed upregulated
lipid metabolism, vitamin digestion and absorption, and serotonergic
synapse activity, alongside downregulated protein metabolism,
glutamatergic synapse function, long-term depression/potentiation,
mineral absorption, taurine and hypotaurine metabolism, ABC
transporters, and the FoxO signaling pathway. Notably, several
pathways displayed opposing trends between gut and plasma:
phenylalanine, tyrosine, and tryptophan biosynthesis, as well as
tryptophan/tyrosine metabolism and steroid hormone biosynthesis,
were reduced in the gut but increased in plasma. Conversely,
purine metabolism, cysteine and methionine metabolism, and glycine,
serine, and threonine metabolism were enriched in the gut but
diminished in plasma. Additionally, three pathways were highly
abundant in both gut and plasma of NDDs children: the HIF-1
signaling pathway (which plays a key role in the body’s response to
low oxygen concentrations or hypoxia), lysine degradation [via the
saccharopine formation and pipecolic acid pathways, clinically linked
to severe neurometabolic disorders such as pyridoxine-dependent
epilepsy and glutaric aciduria type 1 (39)], and carbohydrate
metabolism. Collectively, these results suggest that NDDs children
exhibit dysfunction in nutrient and energy metabolism in both the
gut and plasma, with abnormal redox reactions potentially contributing
to these metabolic perturbations.

Correlation analysis between significantly differential species and
fecal/plasma metabolites revealed several insightful interaction
networks that merit consideration in future studies. Butyrate,
whichxwas significantly decreased in the gut of children with
NDDs, showed a significant positive association with Rothia
mucilaginosa, Roseburia intestinalis, Eubacterium eligens,
Agathobaculum butyriciproducens, and Eubacterium sp. CAG:180;
and also exhibited positive association with known butyrate-
producers including Anaerostipes hadrus and Eubacterium hallii.
Dopamine, another metabolite significantly reduced in NDDs
children, was significantly positively correlated with NDDs-
downregulated species including Clostridium leptum, Anaerotruncus
colihominis, Gordonibacter pamelaeae, Ruthenibacterium
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lactatiformans, Eisenbergiella tayi, Akkermansia muciniphila.
Phosphocholine, which was significantly decreased in NDDs
children, showed a significant positive association with Eubacterium
eligens and Roseburia intestinalis, but a negative association with
Haemophilus sp. HMSC71HO05. These results suggest that
supplementation with butyrate, dopamine, and choline may increase
the relative abundance of these beneficial species (which are reduced
in NDDs children) and thereby alleviate NDDs symptoms.
Conversely, L-lactic acid and GABA, which were significantly
elevated in children with NDDs, displayed a significant negative
correlation with beneficial species enriched in healthy controls
(HCs) while showing a positive association with NDDs-enriched
Haemophilus sp. HMSC71HO05. This implies that reducing the
abundance of lactate- and GABA-producing species could also
mitigate the clinical symptoms of NDDs.

While this study establishes a foundation link between gut
microbiome-metabolome interactions and NDDs in children, it has
certain limitations that warrant attention in future research, including
the use of a single-center cohort and the lack of mechanistic validation.
In subsequent studies we aim to expand the sample size and enhance
geographic diversity to account for regional variations in the
microbiota. We will also utilize animal models to dissect causality
between specific microbes/metabolites and NDDs phenotypes.
Additionally, the effects of metabolites on the growth of specific
microorganisms should be investigated, and microbiota-targeted
interventions—such as probiotic supplementation and short-chain
fatty acid (SCFA) administration—will be explored for their
therapeutic potential in pediatric NDDs.

In conclusion, this study systematically characterized the gut
microbiome, microbial and host metabolome profiles in pediatric
NDDs, underscoring complex microbiota-host metabolic
interactions, identifying dysregulated SCFA/lactate-producing
bacteria, neurotransmitter deficits, and aromatic amino acid
metabolism abnormalities, as well as metabolic disturbances of
major energy and nutrient metabolism including carbohydrates/
proteins/fat digestion and absorption. Our findings provide a novel
framework for understanding gut-brain axis involvement in
pediatric NDDs and prioritize microbial-metabolite targets for
diagnostic and therapeutic development.
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