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Prostate cancer (PCa) remains a leading cause of cancer-related mortality in men

worldwide, primarily due to its propensity for therapy resistance and metastasis.

Emerging evidence underscores that exosomes, nanoscale extracellular vesicles,

act as critical mediators of intercellular communication within the tumor

microenvironment (TME), particularly via the non-coding RNAs (ncRNAs) they

transport. These molecules include microRNAs (miRNAs), circular RNAs

(circRNAs), and long non-coding RNAs (lncRNAs). Exosomal ncRNAs drive

tumor progression, immune evasion, and therapy resistance by reprogramming

neighboring stromal cells, immune cells, and malignant cells. This review

systematically examines the multifaceted roles of exosomal ncRNAs in

remodeling the prostate cancer tumor microenvironment, focusing on their

communication between tumor cells, tumor-stromal cells (including immune

cells), and within the pre-metastatic niche preceding bone metastasis. We

emphasize their mechanisms of action and clinical relevance. These findings

position exosomal ncRNAs as central drivers of prostate cancer progression,

revealing novel diagnostic and therapeutic opportunities. Future research must

address challenges in standardizing exosome isolation techniques, resolving

spatiotemporal heterogeneity, and advancing clinical translation to fully realize

the potential of exosome-based strategies in precision oncology.
KEYWORDS

exosomes, non-coding RNA, prostate cancer, tumor microenvironment,
immune microenvironment
1 Introduction

Prostate cancer (PCa) is the second most prevalent malignant tumor in males globally,

primarily affecting individuals aged 45–60, as evidenced by recent epidemiological data (1).

As reported by the International Agency for Research on Cancer’s GLOBOCAN database,

PCa accounted for over 1.4 million new cases and 375,000 deaths worldwide in 2020 and
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demonstrates a rising trend (1–3). Notably, managing advanced

metastatic and castration-resistant prostate cancer (CRPC) remains

a critical clinical challenge (4). While early-stage localized PCa is

curable via surgery or radiotherapy (5-year survival rate

approaching 100%) (5), recent research evaluating robot-assisted

laparoscopic radical prostatectomy reported biochemical

recurrence in approximately 10.19% of T3aN0-stage patients

within 15.22 months post-surgery (6). However, the 5-year

survival rate plummets to 30% once distant metastasis occurs (5).

Despite advancements in surgical, radiotherapeutic, and endocrine

therapies for PCa, substantial challenges persist. Tumor

heterogeneity leads to marked variability in therapeutic responses,

particularly to chemotherapy and endocrine interventions (7).

Prolonged treatment durations exacerbate therapy-related side

effects and complications, adversely affecting patients ’

psychological and physiological well-being, treatment adherence,

and quality of life (8). These challenges underscore the necessity for

deeper mechanistic investigations into PCa pathogenesis to refine

therapeutic strategies.

Cancer is widely recognized as a dynamic evolutionary process

driven by intricate interactions between tumor cells and the tumor

microenvironment (TME) (9, 10). Emerging studies have established

that prostate cancer invasiveness is closely linked to its distinctly

heterogeneous TME (11, 12). The TME comprises tumor cells,

cancer-associated fibroblasts (CAFs), immune cells, vascular

endothelial cells, and extracellular matrix (ECM). Non-cellular

components, including growth factors, extracellular vesicles, and

acellular ECM, collectively form a dynamic, pro-metastatic, and

therapy-resistant ecosystem (13, 14). Exosomes, a subtype of

extracellular vesicles, have emerged as pivotal mediators of

intercellular communication within the TME, owing to their ability

to regulate tumor progression via transport of non-coding RNAs

(ncRNAs) (15, 16). These nanoscale vesicles, which are actively

secreted by cells and range from 30 to 150 nm in diameter, are not

merely cellular waste products but originate frommultivesicular bodies

(MVBs). The endosomal membrane buds inward to form an MVB,

which contains numerous intraluminal vesicles; this MVB

subsequently fuses with the plasma membrane, releasing these

vesicles into the extracellular space as exosomes (17). Consequently,

exosomes carry a diverse molecular “cargo” derived from their parent

cells, including specific membrane proteins (e.g., CD9, CD63, CD81),

cytoplasmic proteins, and nucleic acids (e.g., ncRNAs). Among these

components, surface integrins and tissue-specific markers (e.g., PSMA)

facilitate the targeted delivery of exosomes to specific tissues (18, 19).

Luo et al. demonstrated that tumor-derived exosomes promote

prostate cancer angiogenesis and metastasis by delivering

phosphoglycerate mutase 1 (PGAM1), which binds g-actin (ACTG1)

(20). Exosomes also play a central role in CRPC progression. For

instance, androgen deprivation therapy (ADT) alters exosomal miRNA

profiles (e.g., upregulated miR-423-3p), driving the transition from

androgen-dependent prostate cancer (ADPC) to CRPC via regulation

of AR-V7 and ERG expression (21).

Evidence (22, 23) has shown that exosomes participate in the

diagnosis and treatment of prostate cancer, acting as participants in

pathophysiological mechanisms, biomarkers in cancer progression,
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and therapeutic tools. For instance, exosomes promote the

progression of prostate cancer by carrying signaling molecules to

act on tumor cells. However, growing recognition of ncRNAs has

spurred extensive research into the functional roles of exosomal

ncRNAs in prostate cancer. Table 1 summarizes the mechanisms by

which exosomal ncRNAs regulate prostate cancer progression. As

evidenced by the compiled data, exosomal ncRNAs drive prostate

cancer progression via diverse mechanisms, including competing

endogenous RNA (ceRNA) networks and epigenetic regulation.

Despite considerable advances in exosomal ncRNA research,

current studies remain predominantly centered on modulating

prostate cancer cellular phenotypes (33). Critical gaps persist in

understanding their sorting mechanisms, spatiotemporal

heterogeneity, and clinical translation challenges. Two prominent

examples include the paucity of longitudinal data on dynamic

changes in exosomal ncRNA expression throughout disease

progression, and the limited evidence for their clinical utility as

interventional targets. Furthermore, the complexity of cell-cell

communication networks within the TME necessitates stematic

categorization to elucidate underlying principles and inform

clinical strategies. This review synthesizes findings from the past

five years to systematically map ncRNA-mediated cellular

interaction networks within the prostate cancer TME. Specifically,

it examines the role of exosomal ncRNAs in facilitating

communication: (1) between tumor cells; (2) between tumor and

stromal cells; (3) between tumor and immune cells; and (4) in

shaping the microenvironment of prostate cancer bone metastases

(Figure 1). Our objective is to identify novel therapeutic targets and

early diagnostic biomarkers while advancing combinatorial

treatment approaches. Deciphering the regulatory signaling logic

across cell types of exosomal ncRNAs may accelerate biomarker

discovery and enable ncRNA-based therapeutic interventions,

advancing the long-term goal of precision oncology for advanced

prostate cancer.
2 Exosomal ncRNA-mediated
crosstalk between tumor cells

Acting as key messengers in intercellular communication,

exosomes play a multifaceted role in prostate cancer progression.

This section examines the mechanisms by which exosomal ncRNAs

mediate cellular crosstalk within the tumor microenvironment,

promote tumor heterogeneity, and disseminate chemoresistance.

Furthermore, it provides an in-depth exploration of their pivotal

role in the development of CRPC and associated therapy resistance.
2.1 Exosome-mediated tumor cell–tumor
cell signaling

The TME facilitates interactions between tumor cells and

neighboring non-target bystander cells, generating biological

phenomena termed the paracrine-like oncogenic influence (34,

35). This confirms that in the TME, interactions exist among
frontiersin.org
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FIGURE 1

Outline of this review. This article takes the exosomal ncRNA communication in the tumor microenvironment of prostate cancer as the core starting
point, systematically examining its functions in tumor-tumor, tumor-stromal, and tumor-immune cell crosstalk, as well as its pivotal role in shaping
the bone metastatic niche. (MSC, mesenchymal stem cell; MDSC, myeloid-derived suppressor cell; BMSC, bone marrow mesenchymal stem cell;
TAM, tumor-associated macrophage; CAF, cancer-associated fibroblast; Treg, regulatory T cell; EC, endothelial cell).
TABLE 1 Overview of exosomal ncRNAs in prostate cancer.

Exosomal ncRNAs Expression in PCa Function Target ncRNAs Target genes Reference

circTFDP2 Up
Proliferation (+)
Migration (+)

/ PARP1 (24)

lncHOXD-AS1 Up
Invasion (+)
Migration (+)

/ FOXM1 (25)

lncA1BG-AS1 Down
Proliferation (+)
Migration (+)
Invasion (+)

miR-361-5p ZC3H13(m6A) (26)

miR-423-5p Up

Proliferation (+)
Migration (+)
Invasion (+)
Apoptosis (−)

/ FRMD3 (27)

circ_0081234 Up
Migration (+)
Invasion (+)
EMT (+)

miR-1 MAP3K1 (28)

circHIPK3 Up
Proliferation (+)
Migration (+)
Invasion (+)

miR-212 BMI-1 (29)

lincROR Up Resistance (+) / MYH9 (30)

lncLINC01213 Up AD resistance (+) / Wnt (31)

miR-184 Up Angiogenesis (+) / not mentioned (32)
F
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EMT, epithelial-mesenchymal transition; AD, androgen; PAPR1, poly(ADP‐ribose) polymerase 1; FOXM1, forkhead box protein M1; ZC3H13, zinc finger CCCH-type containing 13; FRMD3,
FERM domain containing 3; MAP3K1, mitogen-activated protein kinase kinase 1; BMI-1, B-cell-specific moloney murine leukemia virus insertion site 1; MYH9, non-muscle myosin heavy chain
IIA;/, exosomal ncRNAs do not regulate signaling pathways via the molecular sponge mechanism on ncRNAs.
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tumor cells, further promoting tumor maintenance and

development. These intercellular interactions can be achieved

through direct cell contact or indirectly via secreted factors, and

ncRNAs carried by exosomes play a crucial role in this process (36).

Dai et al. (37) demonstrated that exosomal miR-183, upregulated in

prostate cancer, enhances proliferation, invasion, and migration of

LNCaP cells. Similarly, prostate cancer-derived exosomes transport

circRNAs to exert analogous oncogenic effects. For instance,

exosomal circKDM4A acts as a molecular sponge for miR-338-

3p, alleviating its suppression of CUL4B to activate the ubiquitin-

proteasome system, thereby fostering tumor proliferation and

therapy resistance (38). Mechanical cues, including fluid shear

stress, induce prostate cancer cells to release exosomes enriched

with miR-21-5p (39). Uptake of these exosomes by adjacent cancer

cells modulates migration-associated signaling pathways, altering

cellular morphology and motility. These findings underscore the

role of exosomal crosstalk in the TME and elucidate a novel

mechanism whereby mechanical cues regulate metastasis via

exosomal miRNA signaling.
2.2 Role of exosomes in driving
intratumoral heterogeneity

Even within the same tumor, cancer cells exhibit heterogeneity

in morphology, invasiveness, and responses to hormones or

therapies, a phenomenon termed intratumoral heterogeneity (40,

41). This heterogeneity drives tumor progression and therapeutic

failure (42). However, with the continuous deepening of research,

researchers have found that during the process of tumor evolution,

there are interactions among these heterogeneous cells. Often, high-

grade tumor cells transfer malignant phenotypes (e.g., increased

invasiveness, therapy resistance) to low-grade tumor

subpopulations via exosomal cargo, enhancing their abilities in

proliferation, invasion, and drug resistance. For example,

exosomes derived from high-Gleason-score prostate cancer cells

deliver miR-153 to adjacent cells, which modulates genes involved

in cell cycle regulation and migration, thereby altering recipient cell

behavior (43). Exosomal miR-150-5p was also significantly

correlated with high Gleason scores and implicated in metastatic

progression (44). Similarly, invasive prostate cancer cells secrete

elevated levels of exosomal miR-424, which promotes tumor growth

and metastasis by targeting downstream cell cycle regulators (45).

In CRPC, plasma exosomes contain high levels of miR-222-3p and

miR-375, which activate mTORC1 and STAT3 signaling via specific

gene targets, enhancing cell proliferation and anti-apoptotic

potential (46, 47).
2.3 Exosomal mechanisms in
chemoresistance

Exosomal ncRNAs also mediate horizontal drug resistance

transfer. Drug-resistant cells release FTH1P8, a pseudogene-

derived RNA molecule, that binds ferritin heavy chain (FTH1) to
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reduce intracellular labile iron, inhibiting ferroptosis induction and

spreading resistance to naive cells (48). Furthermore, researchers

have found that a variety of circRNAs contribute to docetaxel

resistance: circ-SFMBT2 acts as a miR-136-5p sponge to

derepress TRIB1 and activate MAPK signaling (49); circ-XIAP

upregulates TPD52 via miR-1182 sponging, inhibiting autophagy

(50); and circSLC4A7 relieves miR-1205-mediated suppression of

MAPT, enhancing microtubule stability (51). Collectively, these

findings highlight exosomal communication as a critical driver of

tumor heterogeneity and identify novel targets for overcoming

docetaxel resistance.
2.4 Exosomal communication in ADT
resistance and CRPC progression

In addition to chemotherapeutic resistance, ADT resistance in

prostate cancer represents a critical challenge, as the development of

CRPC signifies progression to a more aggressive and refractory

stage (52). Elucidating CRPC pathogenesis and identifying

predictive biomarkers remain central objectives in current

research. A recent study (53) demonstrated that during ADT-

induced transition from androgen-dependent to androgen-

independent prostate cancer, exosome secretion and cargo

composition undergo significant alterations. Androgens were

further shown to modulate exosomal miRNA expression profiles

and surface protein levels, thereby altering exosome targeting

specificity and intercellular communication dynamics. This

discovery uncovered a novel ADT resistance mechanism:

exosomal ncRNA-mediated cell communication. Subsequent

investigations corroborated the pivotal role of exosomal ncRNAs

in CRPC progression. Both previous prospective cohort studies and

plasma exosomal miRNA sequencing results have shown that miR-

423-3p is significantly upregulated in CRPC patients, suggesting its

important role in CRPC (54). More direct evidence (46, 55)

indicated that prostate cancer-derived exosomes transfer miR-

222-3p and let-7a-5p between cells. By modulating AR-V7 and

ERG expression, these exosomal miRNAs facilitate the

transdifferentiation of ADPC cells into androgen-independent

prostate cancer (AIPC)-like cells, thereby driving androgen

resistance development (summarized in Figure 2).
3 Exosomal ncRNA communication in
tumor-stromal cell interactions

The non-malignant components within the tumor

microenvironment, along with their interacting molecular

networks, are collectively termed the stroma of the tumor

microenvironment (16). Functionally, these stromal components

not only provide support for tumor cells but also act as pivotal

regulatory hubs for modulating the biological behaviors of tumors,

thereby having a profound influence on tumor progression (56, 57).

The stroma comprises non-cellular components with the

extracellular matrix as the central element, along with cellular
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components including CAFs, immune cells (such as tumor-

associated macrophages and lymphocytes), endothelial cells, and

mesenchymal stem cells (58–60). Mounting evidence (61–63)

suggests that tumor cells and the stroma within the tumor

microenvironment mutually regulate the biological behaviors of

tumors, including proliferation, invasion, metastasis, immune

escape, and treatment resistance, via intricate bidirectional

interactions. In this context, we primarily focus on the

communication mediated by exosomal ncRNAs between tumor

cells and stromal cells.
3.1 Exosomal ncRNA communication with
CAFs

CAFs constitute a heterogeneous population of activated

fibroblasts predominantly located within the tumor stroma and

represent one of the most abundant stromal cell types in the tumor

microenvironment (64, 65). A recent text mining study (66)

analyzing CAFs revealed that the research emphasis on CAFs has

transitioned from their basic biological properties in the early

research phase to their functional versatility, including pro-

fibrotic activity, metabolic regulation, and extracellular matrix

remodeling, as well as their interactions with other constituents of
Frontiers in Immunology 05
the tumor microenvironment, such as immune cells and exosomes.

Analogously, numerous investigations have explored the

interactions among CAFs, exosomes, and tumor cells in prostate

cancer. These investigations have further delineated the molecular

mechanisms underlying chemotherapy and castration resistance.

For instance, miR-423-5p has been shown to promote

chemotherapy resistance in tumor cells by targeting the TGF-b/
Smad and ferroptosis pathways (67, 68). These findings not only

propose a novel therapeutic target for countering drug resistance

but also imply that detecting exosomal miR-423-5p could serve as a

prognostic biomarker.

Furthermore, CAFs facilitate the adaptation of prostate cancer

cells to adverse conditions, including androgen deprivation and

hypoxia, by downregulating exosomal ncRNA miR-146a-5p (69).

Another study (70) revealed that CAFs can secrete specific miRNAs,

including miR-154 and miR-376c, and transfer them to tumor cells

through exosomes. These miRNAs specifically target and suppress

the expression of NKX3-1, leading to the dysregulation of the AR

signaling pathway and driving the transformation of prostate cancer

ce l l s towards cas t ra t ion res i s t ance . Under hypox ic

microenvironments, CAFs can secrete exosomal miRNAs,

including miR-500a-3p. MiR-500a-3p stabilizes heat shock factor

1 (HSF1) by inhibiting the E3 ubiquitin ligase FBXW7, thereby

promoting the metastasis of prostate cancer cells in response to
FIGURE 2

Exosomal ncRNA communication between tumor cells. In the tumor microenvironment of prostate cancer, tumor cells transfer ncRNAs (such as
miR-183 and circKDM4A) through exosomes to regulate the biological behaviors of neighboring cells, promoting proliferation, invasion, and drug
resistance, as well as tumor evolution and treatment resistance. For example, highly invasive cancer cells reprogram low-grade cells via exosomal
miR-153/150-5p/424, while drug-resistant cells transmit chemotherapy resistance through exosomal circRNAs (such as circ-SFMBT2/XIAP/SLC4A7)
or the pseudogene FTH1P8. These mechanisms reveal the central role of exosomal ncRNAs in the progression and drug resistance of prostate
cancer. (TPM1, tropomyosin 1; PTPN4, phosphatase nonreceptor type 4; CUL4B, cullin 4B; STAT3, signal transducer and activator of transcription 3;
TRIB1, tribbles homolog 1; TPD52, tumor protein D52; MAPT, microtubule-associated protein tau).
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hypoxic stress (71). These studies collectively highlight the

facilitatory role of CAFs in promoting the progression of prostate

cancer cells via exosomal communication. They provide novel

mechanistic insights into the resistance of prostate cancer to

chemotherapy and androgen deprivation therapy and offer new

perspectives for developing strategies to overcome tumor

drug resistance.
3.2 Exosomal ncRNA communication with
MSCs

Besides CAFs, mesenchymal stem cells (MSCs) represent

another crucial cell type within the tumor microenvironment

stroma. MSCs are a subtype of adult stem cells exhibiting multi-

directional differentiation potential. They can be sourced from

diverse tissues, including bone marrow, adipose tissue, and

umbilical cord (72). Additionally, they are attracted to the tumor

microenvironment by chemokines, such as cytokines and growth

factors, secreted by tumors (73). MSCs exhibit a dual function in

relation to tumor cells. On one hand, they can facilitate

tumorigenesis and progression through mechanisms such as

immune suppression, angiogenesis promotion, and stromal

remodeling. For instance, gastric cancer cell-derived small

extracellular vesicles can induce metabolic reprogramming of

bone marrow-derived MSCs (BM-MSCs) via the ERK-PPARg-
CPT1A signaling pathway, thereby enhancing lymphatic

metastasis potential (74–76). On the other hand, MSCs can exert

an anti-tumor effect by inducing tumor cell apoptosis, inhibiting

cell proliferation, or secreting anti-angiogenic factors, such as

thrombospondin-1 (TSP-1) (77).

Recent investigations have demonstrated that in prostate

cancer, MSCs can exert an anti-tumor function by secreting

exosomes that shuttle ncRNAs to tumor cells. For instance,

exosomal miR-187 originating from bone marrow-derived

mesenchymal stem cells has been verified to infiltrate prostate

cancer cells. It inhibits the proliferation, migration, and invasion

of prostate cancer cells and promotes apoptosis by targeting the

CD276/JAK3-STAT3-Slug axis (78). Analogously, another study

(79) revealed that bone marrow-derived mesenchymal stem cells

can transfer miR-99b-5p to prostate cancer cells through exosomes.

This action inhibits the IGF1R signaling pathway, subsequently

reducing tumor growth and decreasing drug resistance. The results

of these studies are highly promising. The differential expression of

exosomal ncRNAs, identified through gene chip sequencing,

suggests that these expression profiles hold potential as diagnostic

or prognostic biomarkers. Furthermore, MSCs, which are key

components of the tumor microenvironment, represent potential

therapeutic targets. For instance, engineered MSCs can be utilized

as drug delivery vehicles to enhance therapeutic efficacy by targeting

tumor sites and releasing anti-tumor agents. As reported in the

study by Kurniawati et al. (80), exosomes derived from

mesenchymal stem cells were utilized as a delivery vehicle for let-

7c to specifically target the MYC and AKT2 signaling pathways in

castration-resistant prostate cancer cells. The results indicated that
Frontiers in Immunology 06
the exosomes encapsulating let-7c decreased the tumor volume by

62% and abrogated enzalutamide resistance. This study capitalizes

on the natural targeting capabilities of stem cells and exosomes to

offer an effective and targeted tumor treatment strategy.
3.3 Exosomal ncRNA communication with
endothelial cells

It is worth noting that endothelial cells, another important cell type

in the tumor stroma of prostate cancer, have also been found to have

communication via exosomal ncRNAs with tumor cells. Endothelial

cells within the tumor microenvironment contribute to tumor

progression beyond their well-established role in supporting

angiogenesis and nutrient supply. These cells engage in signal

transduction with cancer cells via the secretion of various growth

factors. For example, they can upregulate immune checkpoint

molecules such as PD-L1, fostering an immunosuppressive

microenvironment that impairs the anti-tumor immune response

(81). Recent studies have further elucidated that endothelial cells

function as critical hubs for the communication of extracellular

vesicles, including exosomes. Through the reception and release of

bioactive molecules, they significantly extend their regulatory influence

over tumor biological behavior. In vitro experiments have found that

exosomes secreted by PC-3 cells can promote the proliferation,

migration, and lumen formation of endothelial cells. Further research

(82) has confirmed that PC-3 exosomes are rich in certain pro-

angiogenic proteins and microRNAs (such as miR-210). These

molecules can promote angiogenesis by activating the relevant

signaling pathways within endothelial cells (summarized in Figure 3).

This result not only provides a new perspective for a deeper

understanding of the angiogenesis mechanism of prostate cancer but

also offers potential targets and strategies for the treatment of prostate

cancer, suggesting that interventions targeting PC-3 exosomes and

their related signaling pathways may help inhibit the angiogenesis and

tumor growth of prostate cancer.
4 Exosome-derived ncRNAs modulate
tumor-immune cell dialogues

The role of the immune response in tumorigenesis should not be

underestimated. Consequently, the tumor immune microenvironment

(TIME), a critical component of the TME, has attracted significant

research interest. TIME centers on immune regulation within the

TME, encompassing immune cells (e.g., T cells, myeloid-derived

suppressor cells (MDSCs), tumor-associated macrophages (TAMs)),

immune checkpoint molecules (e.g., PD-1/PD-L1), cytokines

(e.g., IL-6, TGF-b), and their interactive networks (83, 84).
4.1 Immune cells in TIME

Immune cells within the TME constitute the fundamental

components of the tumor immune ecosystem. These immune
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cells exhibit not only remarkable diversity in cell types but also

intricate complexity in their functions, being capable of either

suppressing tumor progression or enabling tumor immune

escape. For example, during the early tumorigenic stages, immune

cells such as CD8+ T cells and natural killer (NK) cells exert anti-

tumor effects via immune surveillance (85). In contrast, MDSCs and

M2-polarized macrophages secrete a repertoire of cytokines that

establish an immunosuppressive microenvironment conducive to

tumor progression (86, 87). Notably, a bidirectional regulatory

relationship exists between tumor cells and immune cells. Tumor

cells can establish an immunosuppressive microenvironment and

evade immune surveillance by modulating immune cells. For

instance, tumor cells can upregulate glycolysis (the Warburg

effect), thereby competing for glucose in the microenvironment

and impairing T cell function. Simultaneously, tumor cells can

hinder the maturation of dendritic cells via lipid metabolites, such

as prostaglandin E2 (88). Moreover, tumors can attract TAMs and

MDSCs by secreting factors including vascular endothelial growth

factor (VEGF) and colony-stimulating factor 1 (CSF-1). These

recruited cells subsequently secrete enzymes, such as arginase 1

(Arg1) and inducible nitric oxide synthase (iNOS), which consume

arg in ine cruc ia l for T ce l l ac t iva t ion and genera te

immunosuppressive metabolites (89). In summary, the TIME

represents a complex ecosystem comprising tumor cells, immune

cells, diverse cytokines, and metabolites within tumor tissues. Its

dynamic equilibrium directly influences tumor initiation,

progression, metastasis, and the response to therapy, positioning

it as one of the central areas of current tumor research.
Frontiers in Immunology 07
4.2 Overview of the prostate cancer TIME

Unlike most tumors, the TIME of prostate cancer is predominantly

immunosuppressive. Even at advanced tumor stages, the

immunosuppressive microenvironment persists (90, 91). Specifically,

it exhibits low PD-L1 expression, sparse immune cell infiltration (e.g.,

reduced CD8+ T cell abundance), and an enrichment of inhibitory

immune cell populations, such as TAMs, MDSCs, and regulatory T

cells (Tregs) (92). Moreover, the secretion of inhibitory cytokines,

including transforming growth factor-b (TGF-b), interleukin-8 (IL-8),
and interleukin-10 (IL-10), further intensifies immunosuppression

(93). When compared to other solid tumors, like bladder cancer,

prostate cancer represents a typical “immune-cold tumor.” In both

the primary tumor site and in CRPC, immune cell infiltration is

minimal. Likewise, in metastatic prostate cancer, particularly in bone

metastases, the immune microenvironment exhibits enhanced

immunosuppression, marked by an enrichment of M2-polarized

macrophages and T-cell exhaustion (94, 95). This results in a low

response rate to immune checkpoint inhibitors, such as PD-1/PD-L1

antibodies (96, 97). Additionally, recent studies have demonstrated that

the androgen receptor (AR) signaling pathway plays a pivotal role in

prostate cancer and engages in complex interactions with the immune

microenvironment. AR signaling not only promotes the growth of

prostate cancer epithelial cells but also directly regulates the

establishment of the immune microenvironment by inhibiting

antigen presentation (e.g., major histocompatibility complex class I

(MHC-I) expression) and facilitating the recruitment of

immunosuppressive cells (e.g., MDSCs) (98). Another study (99) has
FIGURE 3

Exosomal ncRNA communication between tumor cells and stromal cells in the TME. Stromal components (such as CAFs, MSCs, and endothelial
cells) in the tumor microenvironment form a bidirectional communication network with prostate cancer cells through exosomal ncRNAs, regulating
tumor progression and treatment resistance. Exosomal miR-423-5p/miR-432-5p secreted by CAFs promotes chemoresistance and metastasis by
targeting GREM2/CHAC1. The absence of CAF exosomal miR-500a-3p/miR-146a-5p induced by hypoxia or ADT enhances tumor adaptability.
Exosomal miR-187/miR-99b-5p derived from MSCs can inhibit tumor growth. In addition, endothelial cells promote angiogenesis through exosomal
miR-210, collectively forming a key regulatory network of the tumor microenvironment and providing a new strategy for intervening in prostate
cancer by targeting stromal exosomes. (CAF, cancer-associated fibroblasts; MSC, mesenchymal stem cell; EC, endothelial cell; GREM2, gremlin-2;
CHAC1, ChaC glutathione specific gamma-glutamylcyclotransferase 1; EGFR, epidermal growth factor receptor; ERK, extracellular regulated protein
kinases; NKX3-1, NK3 homeobox 1; FBXW7, F-box and WD repeat domain-containing 7; HSF1, heat shock transcription factor 1; IGF1R, Insulin-like
growth factor 1 receptor).
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indicated that ADT can induce dynamic alterations in the composition

of immune cells within the tumor microenvironment. Long-term ADT

can activate immunosuppressive factors, such as interferon alpha 17

(IFNA17), contributing to the formation of a drug-resistant

microenvironment, although the underlying mechanism remains

incompletely understood. These immune features of prostate cancer

present significant challenges to current immunotherapy strategies for

prostate tumors.

Thus, delving deeper into the mechanisms underlying cell

functions within the immune microenvironment of prostate cancer

holds substantial potential for surmounting this challenge.

Subsequently, we summarize the communication mediated by

exosomal ncRNAs between tumor cells and immune cells within the

tumor microenvironment, aiming to further elucidate the cell

communication network in the immune microenvironment of

prostate cancer.
4.3 Immunostimulatory exosomal ncRNA
communication

As previously discussed, the tumor immune microenvironment

displays temporal heterogeneity. During the early phases of

tumorigenesis, the immune microenvironment predominantly exerts

a tumor-suppressive effect. Nevertheless, as the tumor advances, a

tumor-immunosuppressive microenvironment gradually emerges. We

hypothesized that this might be partially attributable to the exosomal

communication between tumor cells and immune cells. In the prostate

cancer tumor microenvironment, exosomes function as critical

mediators of intercellular communication, regulating complex

immune responses through the delivery of bioactive molecules.

Although macrophage polarization is a key aspect of this regulation,

the influence of exosomes on other immune cells warrants further

investigation. Research (100) demonstrates that exosomes secreted by

prostate cancer cells are enriched with the chemokine CXCL14. Upon

uptake by macrophages, these exosomes trigger NF-kB signaling to

induce M2 polarization, thereby establishing an immunosuppressive

microenvironment that facilitates tumor progression. Similarly,

exosomes derived from PC3 cells promote M2 macrophage

polarization via the delivery of miR-let-7b (101). Furthermore, recent

studies (102) indicate that YY1 expression in M2 macrophages is

upregulated by super-enhancers, promoting the secretion of exosomes

containing circ-0000326. Following their uptake by prostate cancer

cells, these exosomes elevate FZD7 expression by sponging miR-1258,

which activates the Wnt/b-catenin signaling pathway and forms a

positive feedback loop. Beyond macrophages, other immune cells

significantly contribute to prostate cancer progression. For instance,

exosomes from MDSCs advance CRPC through the S100A9/

circMID1/miR-506-3p/MID1 axis. Mechanistically, exosomal S100A9

upregulates circMID1, which then sequesters miR-506-3p, alleviating

its suppression of MID1 and subsequently activating the mTOR

signaling pathway. Notably, inhibiting S100A9 significantly

attenuates the tumor-promoting effects of these exosomes, reducing

tumor growth by 51% (103). Meanwhile, miR-95 within TAM-derived

exosomes drives tumor malignancy through multiple mechanisms. It
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directly targets the JUNB gene to enhance proliferation, invasion, and

epithelial-mesenchymal transition in prostate cancer cells.

Concurrently, miR-95 impairs endocytosis by suppressing SNX1

expression, thereby amplifying cellular sensitivity to growth factors

like EGF and promoting migration and angiogenesis. Clinical analyses

confirm that elevated miR-95 expression correlates with adverse

clinicopathological features (104).
4.4 Immunosuppressive exosomal ncRNA
communication

Regarding tumor-suppressive mechanisms, exosomal ncRNAs

employ diverse regulatory pathways. For instance, the lncRNA

ZNF667-AS1, derived from prostate cancer cells and delivered via

exosomes, binds to the U2AF1 protein. This interaction impairs the

stability of transforming growth factor-b receptor 1 (TGFBR1) mRNA,

resulting in decreased TGFBR1 expression. This downregulation not

only inhibits the expansion of Tregs, thereby attenuating the

immunosuppressive microenvironment, but also significantly enhances

tumor cell chemosensitivity to docetaxel. Animal experiments confirmed

that the administration of exosomes carrying ZNF667-AS1 increased

chemosensitivity by 2.3-fold (105). Separately, exosomal miR-203

secreted by prostate cancer cells induces macrophage polarization

toward the M1 phenotype by suppressing SOCS3 expression and

subsequently activating the STAT1 signaling pathway. The polarized

M1 macrophages secrete cytokines, including tumor necrosis factor-a
and interleukin-12, which directly inhibit tumor cell proliferation and

migration while inducing apoptosis. In a mouse model, miR-203

overexpression reduced tumor volume by 58%, demonstrating its

therapeutic potential to reverse the immunosuppressive

microenvironment through macrophage reprogramming (106).

Collectively, these studies reveal a complex, exosome-mediated

regulatory network within the prostate cancer tumor

microenvironment. On one hand, immune cells such as MDSCs and

TAMs accelerate tumor progression by delivering oncogenic molecules

like circMID1 and miR-95. Conversely, exosomes derived from tumor

cells can also carry tumor-suppressive molecules such as ZNF667-AS1

and miR-203, which inhibit tumor growth by modulating Treg

expansion, promoting anti-tumor macrophage polarization, and

enhancing chemosensitivity. (summarized in Figure 4). These studies

further elucidate themechanisms underlying prostate cancer progression

and enhance our understanding of the prostate cancer tumor

immune microenvironment.
5 Exosomal ncRNA signaling in
remodeling the bone metastatic
tumor microenvironment

5.1 Overview of PCa bone metastasis
biology

Bone metastasis in advanced prostate cancer is one of the

primary causes of death among patients, and this metastatic
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process is governed by intricate molecular mechanisms (107).

Generally, this metastatic process encompasses several key steps,

including primary tumor invasion, EMT, the survival and homing

of circulating tumor cells, colonization within the bone

microenvironment, and the bidirectional regulation between

osteolysis and osteogenesis (108). Prostate cancer cells

gain migratory capacity via EMT, detach from the primary tumor

locus, and subsequently enter the circulatory system. Subsequently,

these cells migrate through the bloodstream and lymphatic vessels.

Guided by chemokines, they home in a directional manner to the

bone marrow microenvironment (109, 110). Notably, certain tumor

cel ls that have colonized within the bone metastasis

microenvironment may enter a dormant state and can be

reactivated subsequently upon stimulation by environmental

factors, such as inflammatory factors (111, 112). Osteoblasts,

osteoclasts, and mesenchymal stem cells within the bone marrow

secrete growth factors, thereby creating a microenvironment

conducive to tumor growth (113). Within this bone metastasis

microenvironment, cancer cells activate osteoblasts and osteoclasts

through the secretion of diverse factors, leading to the induction of

osteoblastic and osteoclastic lesions. In prostate cancer, the lesions

are predominantly osteoblastic, with accompanying osteolytic

activities. Conversely, the activated osteoblasts and osteoclasts

secrete growth factors, which in turn further stimulate tumor

growth, thus establishing a vicious cycle (114). During the process
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of bone metastasis, osteoblasts secrete chemokines and growth

factors, which serve as tumor homing signals and facilitate the

adhesion of tumor cells to the tumor stroma (115, 116). Meanwhile,

upon activation, osteoclasts induce bone resorption, releasing TGF-

b, insulin-like growth factor-1 (IGF-1), calcium ions, and other

substances stored in the bone matrix, thereby providing

proliferation signals for tumor cells. Moreover, the cavities

generated by osteoclast-mediated bone resorption offer

physical space for tumor cell colonization (117). In summary,

bone metastasis in prostate cancer is the outcome of

dynamic interactions between cancer cells and the bone

microenvironment, involving crucial processes such as EMT,

chemokine-mediated homing, and the establishment of self-

reinforcing feedback loops. Additionally, the bone metastasis

process extensively entails interactions among diverse cell types,

with tumor cells, osteoblasts, and osteoclasts being particularly

significant. A more in-depth understanding of these mechanisms

is instrumental in the development of targeted therapeutic strategies

and the enhancement of patient prognosis. Future research

endeavors should concentrate on tumor heterogeneity, the

eradication of dormant cells , and the formulation of

microenvironment reprogramming strategies.

As previously discussed, within the bone metastasis

microenvironment, tumor cells, osteoblasts, and osteoclasts

interact with one another, giving rise to a cyclic “vicious triangle”.
FIGURE 4

Exosomal ncRNA communication between prostate cancer cells and immune cells in the TME. In the immune microenvironment of prostate cancer,
tumor cells and immune cells form a bidirectional regulatory network through exosomal ncRNAs. Exosomal CXCL14/miR-let-7b secreted by tumor
cells induces the polarization of M2 macrophages, and M2 macrophages activate the Wnt pathway through exosomal circ-0000326 to promote
tumor progression. Meanwhile, exosomal ZNF667-AS1/miR-203 of prostate cancer cells can inhibit Treg cells or induce M1 macrophages, enhancing
anti-tumor immunity. In addition, immune cells (such as MDSCs/TAMs) directly promote tumor proliferation and EMT through exosomal circMID1/
miR-95. This dynamic balance not only maintains the immunosuppressive microenvironment but also has the potential for immune activation,
providing new strategies for targeting the immune microenvironment. (MDSC, myeloid-derived suppressor cells; TAM, tumor associated
macrophage; M2, M2 macrophages; M1, M1 macrophages; MID1, midline1; JUNB, Jun B proto-oncogene; U2AF, U2 small nuclear RNA auxiliary
factor 1; FZD7, frizzled class receptor 7).
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This interaction not only perturbs bone homeostasis but also

establishes a mutually reinforcing cycle through the release of

diverse factors, thereby exacerbating disease progression.

Consequently, an increasing number of studies are commencing

to investigate the mechanisms underlying the interactions among

these three cell types. In this section, we summarize the

communication mediated by exosomal ncRNAs among these

three cell types during the bone metastasis process of

prostate cancer.
5.2 Tumor-derived exosomal ncRNAs
affecting bone cells

Certain exosomal ncRNAs can activate osteogenic

differentiation pathways, inducing a transition in the bone

microenvironment towards an “osteoblastic” phenotype that

provides structural support for tumor cell colonization. Among

these, lncRNA NEAT1 and miR-375 are key regulatory factors. In

vitro co-culture experiments have demonstrated that exosomes

derived from prostate cancer cells are internalized by human

bone marrow mesenchymal stem cells (hBMSCs). Subsequently,

NEAT1 sequesters miR-205-5p, which relieves the suppression of

RUNX2 and activates osteogenic differentiation signaling. This

finding was further validated in nude mouse models, where

exosomes overexpressing NEAT1 increased the number of

mineralized nodules in bone tissue and promoted the formation

of bone metastatic lesions (118). Similarly, in vitro experiments

confirmed that exosomal miR-375 promotes the proliferation and

migration of prostate cancer cells and induces the osteogenic

differentiation of hBMSCs by targeting the DIP2C gene and

consequently activating the Wnt/b-catenin pathway. Notably,

serum exosomes from patients with bone metastasis exhibited

significantly elevated miR-375 levels, and its expression positively

correlated with bone scan positivity, suggesting its involvement in

clinical bone metastasis progression (119).

In contrast to tumor-promoting ncRNAs, other exosomal

ncRNAs inhibit osteoblast proliferation and differentiation by

targeting key osteogenic genes, leading to diminished bone

formation and even osteolytic lesions. miR-1275 and miR-940 are

representative of this category, with the former’s inhibitory effect

underscoring the signaling complexity within the bone

microenvironment. In vitro osteoblast culture experiments

revealed that upon uptake of prostate cancer cell-derived

exosomal miR-1275, osteoblasts exhibit targeted silencing of the

SIRT2 gene. SIRT2 downregulation reduces RUNX2 deacetylation,

ultimately suppressing osteoblast proliferation and mineralization.

Verification in a mouse tibial injection model confirmed that

exosomes overexpressing miR-1275 reduce osteocalcin (OCN)

expression in bone tissue and exacerbate osteolytic damage,

providing a mechanistic explanation for the coexistence of

osteolytic and osteoblastic lesions in clinical prostate cancer bone

metastasis (120). Notably, exosomes isolated from a mouse

orthotopic prostate cancer model were found to significantly

impair osteoblast mineralization upon co-culture. This effect was
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mediated by exosomal miR-940, which suppresses the expression of

key osteogenic differentiation genes, including ALP and RUNX2

(121). This study identifies one of the few inhibitory ncRNAs

validated in in vivo models, presenting a stark contrast to the

multitude of ncRNAs that promote tumor progression.

This antagonistic relationship suggests that the bone

microenvironment is governed by a dynamic balance between

“pro-metastatic” and “anti-metastatic” signals, rather than being

driven solely by promotional influences. This insight provides a new

perspective for understanding the complex pathology of

bone metastasis.

The disruption of osteoclast differentiation balance is a major

contributor to bone damage in metastasis. Exosomal ncRNAs can

influence osteoclastogenesis by modulating relevant differentiation

pathways, with miR-92a-1-5p exerting a pro-osteoclast effect and

miR-148a an anti-osteoclast effect. In vitro experiments on

osteoclast precursor cells demonstrated that exosomal miR-92a-1-

5p targets and inhibits the expression of the COL1A1 gene. This not

only impairs osteogenic function but also activates osteoclastogenic

transcription factors such as NFATc1, thereby promoting the fusion

of precursor cells into mature, multinucleated osteoclasts (122).

Conversely, following their uptake by osteoclast precursor cells,

exosomes from prostate cancer PC-3 cells exert an anti-osteoclast

effect via the downregulation of miR-148a. The reduction in miR-

148a leads to the upregulation of its target gene, MAFB, and

concurrently inhibits the PI3K/AKT/mTOR pathway, ultimately

diminishing the formation of TRAP-positive multinucleated

cells (123).
5.3 Bone cell-derived exosomal ncRNAs
affecting tumor cells

Osteoblasts within the bone microenvironment do not passively

receive tumor-derived signals; they actively contribute to tumor

progression by secreting exosomes that deliver ncRNAs, which in

turn enhance the proliferation, migration, and bone colonization

capacity of prostate cancer cells. This process constitutes a critical

link in the pathological synergy between tumors and bone. Current

research has identified two core regulatory factors in this pathway:

miR-140-3p and circ-DHPS, whose mechanisms have been

validated through both in vitro and in vivo experiments. In vitro

studies demonstrated that exosomes secreted by osteoblasts are

internalized by prostate cancer cells (LNCaP, PC-3), subsequently

promoting cell proliferation and migration by modulating the

autophagic pathway. Subsequent validation in a nude mouse bone

metastasis model confirmed that injection of osteoblast-derived

exosomes significantly increased the burden of tumor cell

colonization in bone tissue (124). In CRPC, a distinct clinical

subtype, the role of osteoblast-derived exosomes is further

modulated. A key study (125) revealed that AR inactivation alters

the ncRNA cargo of osteoblast-derived exosomes, thereby

influencing tumor cell chemotactic migration. Specifically,

following AR knockdown in osteoblasts in vitro, the expression of

circular RNA circ-DHPS in their exosomes was significantly
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upregulated. Upon internalization by prostate cancer cells, circ-

DHPS acts as a molecular sponge for miR-214-3p. This

sequestration relieves the miR-214-3p-mediated suppression of

the chemokine CCL5, leading to enhanced CCL5 expression and

consequently promoting tumor cell adhesion and invasion.
5.4 Reciprocal signaling via MSCs

As multipotent stem cells within the bone microenvironment,

MSCs possess the capacity to differentiate into various lineages,

including osteoblasts and adipocytes, and are integral to immune

regulation and cytokine secretion. Exosomes derived from prostate

cancer cells can indirectly influence bone metabolic balance and

tumor progression by modulating MSC function. Key molecules

mediating this indirect communication include lncAY927529 and

miR-142-3p. In vitro experiments demonstrated that lncAY927529,

carried by prostate cancer cell-derived exosomes, is internalized by

ST2 cells (a model MSC line). By modulating autophagic activity in

ST2 cells, lncAY927529 influences the secretion of the chemokine

CXCL14, which in turn promotes the proliferation and invasion of

neighboring prostate cancer cells via a paracrine mechanism (126).

This pathway was validated using in vitro Transwell and co-culture

models, indicating that lncRNAs can indirectly contribute to

remodeling the bone metastatic niche by altering the secretory

profile of MSCs. Furthermore, the regulation of MSCs by exosomal

ncRNAs is susceptible to pharmacological intervention. As reported

in study (127), propofol, a commonly used clinical anesthetic, can

impair the osteogenic differentiation of MSCs by altering exosomal

ncRNA levels. Propofol treatment significantly reduced exosomal

miR-142-3p, concurrently inhibiting the osteogenic potential of

MSCs. Mechanistic investigation revealed that miR-142-3p

promotes osteogenesis by targeting and suppressing negative

regulators of this process, such as DKK1. Propofol abrogates

this pro-osteogenic effect by downregulating miR-142-3p,

ultimately impeding the formation of a hospitable bone

metastatic microenvironment.
5.5 Therapeutic and biomarker potential

The deepening understanding of regulatory mechanisms has

revealed the considerable clinical potential of exosomal ncRNAs for

the early diagnosis, prognostic assessment, and therapeutic

targeting of prostate cancer bone metastasis. Current research has

made preliminary progress in identifying diagnostic biomarkers

and exploring therapeutic strategies. For instance, a comparative

analysis of plasma exosomes from 82 patients with prostate cancer

bone metastasis, 65 patients without bone metastasis, and 40

healthy controls identified a signature of four differentially

expressed miRNAs (hsa-miR-125a-3p, hsa-miR-330-3p, hsa-miR-

339-5p, hsa-miR-613). Among these, the expression level of hsa-

miR-125a-3p was positively correlated with the stage of bone

metastasis, demonstrating a diagnostic sensitivity of 78.1% and a

specificity of 75.4% (128). Subsequent follow-up data indicated that
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patients with high hsa-miR-125a-3p expression had significantly

shorter bone metastasis-free survival, suggesting its utility not only

for early diagnosis but also as a prognostic indicator. Furthermore,

analysis of clinical samples confirmed that serum exosomal miR-

375 levels were significantly elevated in patients with bone

metastasis compared to those without, and its expression

positively correlated with the burden of bone metastatic lesions,

thereby reinforcing the feasibility of exosomal miRNAs as

diagnostic biomarkers (119).

Leveraging these elucidated regulatory mechanisms, targeting

exosomal ncRNAs or their downstream pathways has emerged as a

promising direction for treating bone metastasis. In vitro

experiments demonstrated that inhibition of miR-1275

significantly restored SIRT2/RUNX2 signaling in osteoblasts and

increased mineralized nodule formation (120). A separate study

confirmed that knockdown of miR-375 suppressed the proliferation

and migration of prostate cancer cells by attenuating Wnt pathway

activity (119). Moreover, a combination strategy that concurrently

targets key ncRNAs and critical pathway components within the

tumor-bone microenvironment may yield synergistic therapeutic

effects. For example, one investigation found that the combined

application of a miR-140-3p inhibitor and an AKT inhibitor more

potently suppressed the proliferation and bone colonization of

prostate cancer cells (124). This combinatorial approach

demonstrated robust anti-tumor efficacy in nude mouse models,

providing a strong experimental foundation for future clinical

translation. (summarized in Figure 5).
6 Conclusion and prospect

PCa, which ranks among the leading causes of cancer-related

fatalities in men globally, continues to present significant clinical

challenges regarding treatment resistance and metastatic spread. In

recent years, exosomes, serving as crucial mediators of intercellular

communication within the TME, have garnered substantial

attention. This is because of the distinctive roles played by the

ncRNAs they carry in regulating tumor progression, facilitating

immune escape, and contributing to drug resistance.

Exosomal ncRNAs act as “molecular messengers” in the TME of

PCa by mediating intercellular communication. In the intercellular

communication between tumor cells, exosomal ncRNAs serve as

molecular messengers, promoting tumor progression and

enhancing drug resistance. For instance, prostate cancer cells with

a high Gleason score secrete exosomal microRNAs (miR-153, miR-

150-5p, and miR-424), which reprogram neighboring low-grade

cells and enhance their invasive phenotypes (43–45). In addition,

the bidirectional exosomal communication between tumor cells and

stromal cells (such as CAFs and MSCs) further shapes the pro-

tumor microenvironment (67, 68, 70, 71, 78, 79). On the other

hand, the immune characteristics of the prostate cancer TIME are

closely associated with the regulation of exosomal ncRNAs. Tumor

cells induce the polarization of macrophages towards the M2

phenotype via exosomal CXCL14 or microRNA (miR-let-7b),

suppressing the anti-tumor immune response (100, 101).
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Meanwhile, circular RNA (circMID1) or microRNA (miR-95)

secreted by MDSCs or TAMs directly drives the progression of

CRPC (103, 104). Intriguingly, some exosomal ncRNAs (such as

ZNF667-AS1 or miR-203) can also counteract immunosuppression,

augmenting the anti-tumor effect by inhibiting the proliferation of

Tregs or inducing the polarization of M1 macrophages (105, 106).

This bidirectional regulation unveils the intricate role of exosomal

ncRNAs in the prostate cancer TIME, suggesting their potential as

targets for enhancing immunotherapy sensitivity. Similarly, in the

bone metastasis microenvironment, exosomal ncRNAs exacerbate

the imbalance between osteogenesis and osteolysis by mediating the

“vicious triangle” interaction (119, 122, 124, 125, 129). To

summarize, exosomal ncRNAs collectively drive the malignant

progression of prostate cancer by mediating complex intercellular

crosstalk within TME. Then, how does this intricate

communication network evolve as the disease progresses from

local advancement to castration resistance, and eventually

colonizes the bone? During tumor proliferation and early

metastasis, exosomal miR-183 promotes cancer cell invasion and

bone metastasis by targeting TPM1 (37), whereas circKDM4A

upregulates CUL4B by sponging miR-338-3p to drive malignant

progression (38). The progression to CRPC marks a critical turning

point, characterized by distinct alterations in exosomal ncRNA

expression: For instance, miR-222-3p and miR-375 enhance

treatment resistance by activating the mTOR signaling pathway

and the PTPN4/STAT3 axis, respectively (46, 47). Similarly, let-7a-
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5p and LINC01213 facilitate the transition to androgen-

independent growth, thereby promoting the development of

CRPC (31, 55). Furthermore, circRNAs including circ-SFMBT2,

circSLC4A7, and circ-XIAP confer docetaxel resistance via ceRNA

mechanisms, collectively forming a robust cross-resistance network

(49–51). The role of exosomal ncRNAs in remodeling the TME to

drive distant metastasis is also significant. For example,

CAF-derived miR-500a-3p and miR-423-5p remodel the

microenvironment to promote metastasis and drug resistance

under hypoxic or post-treatment conditions (50, 68).

Additionally, macrophage-associated circ-0000326 accelerates

disease progression via the Wnt signaling pathway (102).

Ultimately, in the terminal stage of bone metastasis, exosomal

molecules such as miR-375 and lncRNA NEAT1 orchestrate

osteoblastic and osteoclastic activity, thereby generating a pre-

metastatic niche that supports tumor colonization (118, 119).

Collectively, these findings delineate a detailed regulatory

network of exosomal ncRNAs throughout the dynamic evolution

of prostate cancer, thereby enhancing our understanding of its

underlying mechanisms.

In addition, exosomal ncRNAs have increasingly been applied

in clinical translational research. In the context of diagnosis, plasma

exosomal microRNA (miR-423-3p) or microRNA combinations

(such as miR-125a-3p, miR-613) have demonstrated potential as

early diagnostic markers for CRPC or bone metastasis (21, 130).

The stability and accessibility of ncRNAs render them ideal
FIGURE 5

The role of exosomal ncRNA communication in shaping the bone metastasis microenvironment of prostate cancer. In the bone metastasis
microenvironment of prostate cancer, tumor cells, osteoblasts, and osteoclasts form a “vicious triangle” through exosomal ncRNAs: PCa exosomes
carry NEAT1/miR-375 to induce the osteogenic differentiation of mesenchymal stem cells, while miR-1275/miR-92a-1-5p inhibits osteogenic activity
or activates osteoclasts, disrupting bone homeostasis. Osteoblasts promote tumor progression through exosomal miR-140-3p/circ-DHPS, and
ncRNAs related to osteoclast activation (such as miR-92a-1-5p) exacerbate osteolytic lesions. This suggests that targeting exosomal communication
in the bone microenvironment may become a new anti-metastasis strategy. (BMSC, bone marrow-derived mesenchymal stem cells; ACER2, alkaline
ceramidase 2; CCL5, C-C chemokine ligand 5; SIRT2, sirtuin 2; RUNX2, runt-related transcription factor 2; DIP2C, disco interacting protein 2
homolog C).
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biomarkers for early diagnosis. For example, in lung cancer, miRNA

panels derived from liquid biopsies can differentiate benign from

malignant lesions (131), while in prostate cancer, lncRNAs such as

PCA3 have been established as clinical diagnostic markers (132).

Furthermore, circRNAs exhibit significant potential as diagnostic

and prognostic markers for central nervous system tumors, a

property attributed to their high stability and tissue specificity

(133). Similarly, the expression profiles of exosomal ncRNAs in

hematological malignancies facilitate disease classification and

monitoring of therapeutic efficacy, underscoring their broad

potential in precision medicine (134). In the realm of treatment,

strategies such as engineering exosomes derived from MSCs to be

loaded with let-7c or targeting and inhibiting miR-222-3p have

significantly reversed drug resistance in preclinical models (80).

Furthermore, significant progress has been made in applying

exosomal ncRNAs in adjuvant immunotherapy. As previously

discussed, exosomal ncRNAs can modulate immune cells within

the tumor microenvironment to foster an immunosuppressive state.

Targeting these specific ncRNAs presents a promising strategy to

reverse immune escape and enhance the efficacy of checkpoint

blockade therapy (135). Additionally, certain exosomal miRNAs,

including miR-192 and miR-21, have been shown to regulate post-

vaccination immune responses, suggesting their potential utility as

vaccine adjuvants or predictive biomarkers for vaccine efficacy

(136). Despite these promising findings, the clinical translation of

exosomal ncRNAs faces several challenges. Significant inter-patient

heterogeneity presents a primary obstacle; for instance, in

hepatocellular carcinoma, individual variations in exosomal

miRNA expression profiles compromise their consistency as

universal biomarkers (137). A second major challenge is the

technical difficulty in detecting these ncRNAs due to their

exceptionally low abundance in bodily fluids, which often leads to

insufficient analytical sensitivity (138). The lack of standardized

protocols for exosome isolation represents another prominent issue,

as inconsistencies across different platforms hinder the

comparability of research findings and clinical results. This is

particularly problematic for central nervous system tumors, where

the blood-brain barrier limits the concentration of exosomal nucleic

acids in the periphery, and variability in detection sensitivity among

methods further obstructs clinical application (139). Finally, the

clinical utility of exosomal biomarkers requires validation in large-

scale, prospective cohorts. When considering exosomes as drug

delivery systems, additional complexities arise, including the need

to standardize isolation, purification, targeting efficiency, and large-

scale production, all of which complicate the regulatory approval

pathway (140, 141). In the future, it will be essential to establish

large-scale, multi-center cohorts to validate the diagnostic value of

exosomal ncRNAs. Additionally, developing more sensitive and

specific detection technologies (such as nano-flow cytometry) and

enriching tumor-specific exosomes in conjunction with surface

markers (such as prostate-specific membrane antigen, PSMA) will

enhance the sensitivity and specificity of detection. Simultaneously,

spatial transcriptomics or CRISPR-labeling tracking technologies

can be employed to analyze the dynamic changes of exosomal

ncRNAs during tumor progression, dormancy, and recurrence.
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This will contribute to uncovering the spatiotemporal patterns of

their regulatory networks. Second, treatment strategies targeting

exosomes must strike a balance between efficiency and safety.

From the perspective of mechanism research, the regulatory

network of exosomal ncRNAs extends far beyond the solitary

ceRNA model. In the future, it will be imperative to integrate multi-

omics data (such as the circRNA-miRNA-mRNA co-expression

network) to analyze their synergistic or antagonistic effects and

explore their interactions with epigenetic modifications. For instance,

exosomal lncA1BG-AS1 influences m6A modification by regulating

ZC3H13, indicating that epigenetic regulation could be a crucial

pathway for exosomal ncRNAs to exert their functions. Moreover,

the role of exosomes in tumor cell quiescence remains ambiguous.

Quiescent cells in the bone metastasis microenvironment sustain a

quiescent state by transferring molecules such as miR-34a via

exosomes. Targeting these “quiescent signals” could potentially

prevent metastasis recurrence, offering a direction for the

development of novel maintenance therapies. Furthermore,

regarding the clinical challenge of bone metastasis in PCa, the

“vicious cycle” mediated by exosomal ncRNAs offers multiple targets

for intervention. On the one hand, utilizing exosomes derived from

BMSCs to deliver anti-resorptive drugs or ncRNA antagonists (such as

miR-375) can directly disrupt the osteogenesis-tumor interaction. On

the other hand, modulating exosomal circ-DHPS or lncAY927529

could reverse the pro-metastatic microenvironment. Additionally,

inhibitors of exosomal microRNA (miR-92a-1-5p) that target

osteoclast activation could potentially restore bone homeostasis and

enhance the quality of life of patients. These certainly offer potential

directions, yet there remains a significant distance to traverse before

these goals can be truly accomplished.

In summary, exosomal ncRNAs serving as the “molecular bridge”

within the TME of PCa, drive disease progression by facilitating

complex intercellular communications and offer unparalleled

opportunities for accurate diagnosis and targeted treatment. Despite

the challenges they still encounter in exosome isolation techniques,

heterogeneity analysis, and clinical translation, through

interdisciplinary collaboration and technological innovation,

exosomal ncRNAs are hold potential to be a key contributor to

overcoming the treatment predicament of PCa. Future research

endeavors should concentrate on unveiling their dynamic regulatory

networks, formulating effective targeted strategies, and facilitating the

implementation of personalized treatment regimens. By decoding the

molecular language of exosomal ncRNAs, we can refine diagnostic

precision, guide individualized therapies, and ultimately improve

survival and quality of life for patients with advanced PCa.
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