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Purpose: Alpha-enolase (ENO1), the enzyme catalyzing 2-phosphoglycerate

conversion to phosphoenolpyruvate, is highly expressed in diffuse large B-cell

lymphoma (DLBCL) and correlates with adverse clinical outcomes. Thus,

understanding the relationship between ENO1-related gene (ERG) network and

DLBCL is imperative. Here, we integrated multi-omics profiling (RIP-seq, RNA-

seq, and protein interactome analysis) to identify ERGs and established a

prognostic model by machine learning algorithms.

Methods:We identified eleven hub genes (CHERP, SYNE2, INTS1, FAP, MMP9, LRP5,

RBM8A, PRMT5, SLC25A6, PABPC4, PSTPIP2) using RNA sequencing, RNA

immunoprecipitation sequencing, and protein interaction profiling. A prognostic

model was constructed using univariate Cox regression and least absolute shrinkage

and selection operator (LASSO) regression in the GSE10846 dataset and validated in

two independent cohorts. DLBCL patients were stratified into high- and low-risk

groups based on the model, and clinical characteristics were compared. The tumor

immune microenvironment (TIME) was analyzed using CIBERSORT and xCell

algorithms to explore correlations with the ERG score. Drug sensitivity assays in

DLBCL cell lines were performed to validate the model’s predictive capacity for

chemotherapy response. Furthermore, the functional role of PABPC4, a key gene in

the scoring system, was investigated through in vitro and in vivo experiments.

Results: A prognostic model including 11 hub genes was established. Patients in

the high-risk group exhibited worse clinical outcomes and an immunosuppressive

TIME, characterized by altered expression of immune checkpoint-related proteins.

This group demonstrated increased sensitivity to vincristine, etoposide, and

oxaliplatin. Knockdown of PABPC4 significantly inhibited cell proliferation,

reduced colony formation, and delayed tumor growth in vivo.

Conclusions: The ERG scoring system offers a robust and precise tool for

predicting survival and guiding personalized treatment in DLBCL patients.
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1 Introduction

Non-Hodgkin lymphoma (NHL) is a common malignant

hematological disease, with diffuse large B-cell lymphoma

(DLBCL) being the major subtype, accounting for approximately

30–50% of NHL cases (1). DLBCL is often highly aggressive and is

characterized by the diffuse growth of medium- to large B-lymphoid

cells. On the basis of its cell of origin, DLBCL can be classified into

two subtypes: germinal center B-cell-like (GCB) and activated B-

cell-like (ABC). These two subtypes have distinct genomic profiles

and different clinical outcomes, with the ABC subtype being

associated with poorer prognosis (2). The standard chemotherapy

regimen for DLBCL is R-CHOP (rituximab, cyclophosphamide,

doxorubicin, vincristine, and prednisone). Although this regimen

has good safety, 40–50% of patients still experience drug resistance

or relapse (3), underscoring the urgent need for robust prognostic

biomarkers to guide risk stratification and personalized therapeutic

strategies. Recent advances in multi-omics analyses have

highlighted the critical role of dysregulated RNA metabolism and

protein translation in cancer progression, yet the prognostic

implications of these pathways in DLBCL remain underexplored.

ENO1 (alpha-enolase) is a multifunctional protein that

catalyzes glycolysis by converting 2-phospho-D-glycerate to

phosphoenolpyruvate and enhances cell migration through

plasminogen recruitment and plasmin activation (4–8). As an

RNA-binding protein, ENO1 stabilizes oncogenic mRNAs (e.g.,

YAP and IRP1) to promote hepatocarcinogenesis (9, 10).

Additionally, it modulates immune responses by interacting with

immune-related molecules, potentially facilitating tumor immune

evasion through microenvironment remodeling (11–15). These

pleiotropic roles position ENO1 as a pivotal regulator of cancer

metabolism, invasion, and immunosuppression. However, the

broader landscape of ENO1-related genes (ERGs) and their

collective impact on DLBCL prognosis and tumor biology

remain unknown.

In this study, we performed an integrated analysis of ERGs via

data from RNAseq, RIPseq, and protein interaction profiles to

explore their functions in DLBCL. We then constructed and

validated a risk assessment model that effectively predicts the

prognosis of patients with DLBCL. With this model, we identified

chemotherapy drugs that are more sensitive to high-risk patients

and validated these findings through cell experiments. We also

evaluated the relationship between the immune microenvironment

and the risk model and found that the high-risk group tended to

develop an immunosuppressive TME. Moreover, we are the first to

evaluate the impact of the PABPC4 protein on the proliferation and

prognosis of DLBCL. Both in vitro and in vivo experiments

demonstrated that high expression of PABPC4 promotes the

proliferation of DLBCL and is negatively correlated with overall

survival (OS). Our study provides new insights into the role of the

ENO1 interaction network in the development of DLBCL and offers

guidance for the prognosis and precision medicine of

DLBCL patients.
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2 Materials and methods

The flowchart of this study is shown in Supplementary Figure 1.

Initially, we performed unsupervised clustering, functional

enrichment, survival analysis, and clinical correlation analysis of

ENO1−related genes using the GSE10846 dataset. Subsequently, a

clinical prognostic model based on 11 ERGs was constructed

through Cox regression, LASSO regression, and Kaplan-Meier

analysis. The predictive accuracy of this model was externally

validated in the GSE87371 and GSE181063 cohorts, with

evaluations covering survival outcome, clinical feature correlation,

prognostic stratification, tumor immune microenvironment, and

drug sensitivity. Furthermore, cell−based assays were conducted to

experimentally verify the model’s drug sensitivity predictions.

Finally, the functional role of the key gene PABPC4 in DLBCL

was validated through both cellular experiments and mouse models.

A detailed description of the experimental procedures is

provided below.
2.1 Identification of ENO1-related genes

2.1.1 RNA sequencing and differential expression
analysis

RNA-seq was performed as previously reported (8). Total RNA

was isolated from Burkitt lymphoma Daudi cells and Daudi cells

with ENO1 knockdown (shENO1) using TRIzol reagent

(Invitrogen). RNA quality control was performed by assessing

concentration (Qubit 2.0 Fluorometer, Life Technologies) and

integrity (Bioanalyzer 2100, Agilent Technologies). Sequencing

libraries were prepared and subjected to paired-end 150-bp

sequencing on the Illumina NovaSeq platform (Novogene,

China). Raw reads were processed using the DESeq2 pipeline to

identify differentially expressed genes (DEGs). Genes with |log2 fold

change| > 1 (2-fold change) and an FDR-adjusted p-value <0.05

were considered statistically significant. This analysis revealed 82

DEGs significantly altered upon ENO1 knockdown, which were

selected for downstream functional investigation.

2.1.2 RIP-seq analysis of ENO1-bound RNAs
To identify ENO1-associated RNAs, we performed RNA

immunoprecipitation sequencing (RIP-seq) in Burkitt lymphoma

Daudi cells and Daudi cells stably overexpressing ENO1-Flag

(Daudi-ENO1-Flag OE). Cells were lysed under native conditions,

and ENO1-RNA complexes were immunoprecipitated using an

an t i -ENO1 ant ibody (Abcam, #ab227978) . Pa ra l l e l

immunoprecipitation with anti-IgG antibody (Abcam,

#ab172730) served as the negative control.

Immunoprecipitated RNAs were isolated, and cDNA libraries

were prepared for 150 bp paired-end sequencing on an Illumina

HiSeq X Ten platform (AB Life, China). To ensure robust peak

identification, we employed three independent analytical methods:

Piranha (16) (for peak calling based on read density), CIMS (17)
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(Crosslink-Induced Mutation Site analysis for precise binding site

mapping), and ABLife’s proprietary peak-calling algorithm. Only

RNA targets consistently identified by all three methods (n=32)

with ≥2-fold enrichment and FDR-adjusted p-value <0.05 were

considered high-confidence ENO1-binding partners and selected

for downstream analysis.

2.1.3 Protein-protein interaction mass
spectrometry analysis

To identify ENO1-interacting proteins, we performed

immunoprecipitation coupled with mass spectrometry (IP-MS) in

Burkitt lymphoma Raji cells. Cell lysates were pre-cleared with

Protein A/G beads and subsequently immunoprecipitated

overnight at 4°C using an anti-ENO1 antibody (Abcam,

#ab227978), with anti-IgG antibody (Abcam, #ab172730) serving

as the negative control. Immune complexes were rigorously washed

with low-salt buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.1%

NP-40) and high-salt buffer (50 mM Tris-HCl pH 7.4, 500 mM

NaCl, 0.1% NP-40) (each wash repeated five times to minimize

non-specific binding). Bound proteins were eluted and digested

with trypsin (Promega) for LC-MS/MS analysis (performed by

Novogene, China). MS data were processed using MaxQuant and

searched against the UniProt human protein database. High-

confidence ENO1-interacting proteins were defined as those

showing≥4-fold enrichment (log2FC≥2) in ENO1-IP versus IgG

control with an FDR-adjusted p-value<0.05, identifying 345

candidates for subsequent validation and functional studies.

In total, 459 genes were identified as ERGs.
2.2 Functional enrichment analysis

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes

and Genomes) enrichment analyses were performed with the

“clusterProfiler R” package (18).
2.3 Data collection

RNA-seq data and clinical information were obtained from

GEO (https://www.ncbi.nlm.nih.gov/geo/). The training set

comprised 412 DLBCL samples (GSE10846), while validation

used 1,144 (GSE181063) and 221 samples (GSE87371). Gene

expression data and corresponding clinical data from each dataset

were retrieved using Bioconductor packages (19). Ethical approval

for public database use was granted by Dalian Medical University’s

ethics committee.
2.4 Consensus clustering analysis of ERGs

Patients with DLBCL from the GSE10846 cohort were clustered

into distinct subtypes via the “ConsensusClusterPlus” package (20)

in R software according to the expression of ERGs. OS (overall

survival) analysis was performed via KM (Kaplan-Meier) curves in
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the different clusters. The clinical features of the different clusters

were analyzed and are shown in the form of heatmaps.
2.5 Construction and validation of the ERG
scoring model

Prognostic ERGs were identified using univariate Cox regression

(“survival” package) (21) and LASSO analysis (“glmnet” package) (22)

in GSE10846. An 11-gene risk signature was derived via multivariate

Cox regression, with scores calculated as: ERG score = ∑ (Expi × coefi)

(Expi = gene expression; coefi = coefficient). Patients were stratified

into low-/high-risk groups by median score.

Next, principal component analysis (PCA) was performed to

validate the reliability of clustering on the basis of the ERG score via

the “stats” package of R. OS analysis on the basis of the KM curve

was performed in different risk groups. Time-dependent receiver

operating characteristic (ROC) curve analysis was conducted via the

“Time ROC” package (23) in R to assess the accuracy and reliability

of the ERG scoring signature.
2.6 Clinical correlations and independent
prognostic value of the ERG risk score

Clinical feature differences between risk groups were analyzed

using Wilcoxon and chi-square tests (GSE10846 dataset). Univariate/

multivariate Cox analyses assessed the ERG score’s independent

prognostic value. To explore the interrelationship of the different

variables, a nomogram was generated via the “rms” package of R.
2.7 Immune landscape analysis

The infiltrating immune cell compositions were calculated via

CIBERSORT (24) and xCell (25) and compared between the high-

and low-risk groups in the GSE10846 dataset. The immune score,

stromal score and estimate score were calculated via the ESTIMATE

algorithm. The microenvironment score was calculated via xCell.
2.8 Evaluation of drug sensitivity

The R package “oncoPredict” (26) was used to predict the half-

maximal inhibitory concentration (IC50) of chemotherapeutic drugs on

the basis of the Genomics of Drug Sensitivity in Cancer (GDSC). The

estimated results were compared between the high-risk and low-risk groups.
2.9 Quantitative real-time polymerase
chain reaction and ERG risk scores for
DLBCL cell lines

Total RNA was extracted using TRIzol and reverse transcribed

to cDNA. Gene expression levels in 6 DLBCL cell lines were
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quantified by qRT-PCR (SYBR® Green Premix, Accurate

Biotechnology) using the 2−DCt method. ERG risk scores were

calculated as: ERG score = ∑ (Expi × coefi). Primer sequences are

provided in Supplementary Materials.
2.10 Cell proliferation assay

The cells were seeded in 96-well plates at a density of 5,000 cells/

well in complete medium. After incubation with drugs at different

concentrations for 48 h, CCK8 reagent was added to each well, and

the cells were incubated in a cell incubator for 2 h. The absorbance

was measured at 450 nm via a microplate reader (Ex800; Biotek).
2.11 Stable cell line construction

sgRNAs were inserted into the LentiCRISPRv2 plasmid

according to the manufacturer’s instructions. Lentivirus packaging

was performed as previously reported (8). The cells were

subsequently transfected with lentivirus. Polybrene was used to

increase transduction efficiency. Stable cell lines were obtained via

puromycin selection.

The sequences of the sgRNAs are listed below.

sgPABPC4-1: 5’- caccGCAGCCACTCGTTGCATATAC-3’

sgPABPC4-2: 5’- caccGCAACCAGTATATGCAACGAG-3’
2.12 Colony formation assay

Cells were seeded into 24-well plates with 1,000 cells per well

and cultured in complete medium supplemented with 1.3%

methylcellulose (Sigma). The colonies were photographed via a

microscope (Olympus) after 10 days.
2.13 In vivo experiments

The in vivo study procedures were conducted in accordance

with the guidelines of the Institutional Animal Care and Use

Committee and approved by the Institutional Ethics Committee

of Dalian Medical University (Approval number: AEE20061). We

have adhered to ARRIVE guide l ines and up load a

completed checklist.

Female BALB/c nude mice (aged 4–5 weeks; weight, 14–17 g)

were purchased from GemPharmatech Co., Ltd. (Nanjing, China)

and housed in a specific pathogen-free (SPF) facility under

controlled conditions in Dalian Medical University. Mice were

randomly allocated using stratified randomization based on body

weight. To assess the impact of PABPC4 on the proliferation of

tumor cells in vivo, we employed the method of subcutaneous

tumorigenesis. Pilot studies indicated a 50% tumor formation rate

for SU-DHL4 cells in BALB/c nude mice. To ensure statistical

power with anticipated attrition, we established xenografts in 10
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mice per group (allowing detection of ≥2-fold differences with 80%

power at a=0.05, based on two-tailed t-test assumptions). Control

SU-DHL4 cells (1×107 in 100 mL Matrigel) were subcutaneously

injected into the right anterior flank, while SU-DHL4-sgPABPC4

cells (1×107 in 100 mL Matrigel) were similarly implanted in the

contralateral hind limb. Tumor cell injections were performed by a

researcher blinded to group identity using coded syringes. The body

weights of the mice were measured every other day. Animals failing

to develop palpable tumors by Day 20 were excluded from efficacy

analysis. Once tumor formation was observed, the size of the

tumors was monitored daily. When the tumors reached a size of

20 mm, the mice were euthanized by intraperitoneal injection

of pentobarbital sodium (100 mg/kg; Sigma-Aldrich), in

accordance with the AVMA Guidelines for Euthanasia (2020).

The tumors were then excised, weighed, and then subjected to

immunohistochemistry.
2.14 Statistical analysis

Statistical analyses used R 4.3.1. Group comparisons employed

Wilcoxon or Kruskal-Wallis tests. Cox regression assessed ERG

score’s prognostic value. Error bars show SD; significance levels:

*p<0.05, **p<0.01, ***p<0.001.
3 Results

3.1 Identification of ERGs and functional
enrichment analysis

Integrated analysis of transcriptomic, RIP-seq, and PPI-MS data

identified 459 ERGs (Figure 1A). GO/KEGG analyses revealed

enrichment in RNA splicing, translation initiation, and mRNA

metabolic processes (Supplementary Figures 2A, B), suggesting

ERGs’ role in RNA processing and protein synthesis.
3.2 Molecular clustering of the ERGs in
DLBCL

Given the low incidence rate of Burkitt lymphoma (BL) (27),

which poses challenges for building clinical prediction models

requiring large sample sizes, and considering that DLBCL shares

key clinical features with BL—such as high proliferative and

invasive characteristics—while exhibiting a higher prevalence

(28), we selected DLBCL for molecular clustering analysis based

on ERG expression.

We performed a consensus clustering analysis of the GSE10846

dataset to investigate the relationship between the expression of 459

ERGs and the prognosis of patients with DLBCL. The optimal

number of clusters (k = 2) was determined from the CDF curve

(Figure 1B). The 414 patients with DLBCL could be divided into

two clusters (Cluster 1: n=180; Cluster 2: n=234) according to the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1644020
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2025.1644020
expression of ERGs (Figure 1C). Survival analysis revealed that

Cluster 1 was significantly correlated with worse OS than was

Cluster 2 (Figure 1D). We subsequently compared the clinical

features between the two clusters. The heatmap revealed that

Cluster 2 was significantly correlated with the number of

extranodal sites (Figure 1E).
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3.3 Construction of a prognostic ERG
scoring model

To obtain a more applicable and reliable classifier to predict the

prognosis of patients with DLBCL, univariate Cox regression was

used, and 39 prognosis-related genes (p<0.001) were identified
FIGURE 1

Identification of ENO1-related genes (ERGs) and consensus clustering analysis of identified ERGs in the GSE10846 dataset. (A) Differentially
expressed genes between the Daudi and Daudi-shENO1 groups, protein expression genes from ENO1 RIPseq, and ENO1-interacting protein genes
from Co-IP were selected as ERGs. (B) Consensus matrix heatmap defining two clusters (k = 2). (C) Consensus clustering cumulative distribution
function (CDF) with k values ranging from 2–9 in the GSE10846 dataset. (D) KM curve for the two clusters. (E) Differences in clinical characteristics
between the two distinct clusters.
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(Figure 2A). GO and KEGG enrichment analyses revealed that these

genes were closely related to RNA splicing, the spliceosomal

complex, the exon–exon junction complex, ATP hydrolysis

activity, and helicase activity (Supplementary Figures 2C, D).

LASSO/multivariate Cox analyses yielded an 11-gene signature:

protective genes (CHERP, SYNE2, INTS1, FAP, MMP9; HR<1) and

risk genes (LRP5, RBM8A, PRMT5, SLC25A6, PABPC4, PSTPIP2;

HR>1) (Figures 2B–E, Supplementary Figure 3).

Among the 11 ERG genes, PSTPIP2, MMP9, and FAP

were identified from RNA-seq as transcriptionally regulated

by ENO1, showing significant downregulation upon shENO1

(logFC = -1.5, -1.6, -1.2; all *p* < 0.05 vs. controls); RIP-seq confirmed

direct binding of ENO1protein to INTS1mRNA (5-fold enrichment vs.

IgG, *p* <0.05); andPPI-MS revealedENO1-centric protein complexes,

including strong binding to PABPC4 (6.8-fold vs. IgG, *p* < 0.001) and

exclusive interactions with CHERP, SYNE2, LRP5, RBM8A, PRMT5,

and SLC25A6 (undetected in IgG controls; Supplementary Table 1).

Network analysis (GeneMANIA, https://genemania.org;

Supplementary Figure 4) demonstrated significant co-expression

and genetic interactions among these genes, with functional

annotation implicating mRNA splicing, RNA 3’-end processing,

and coagulation pathways. Strikingly, subgroup enrichment

analysis (DAVID, https://davidbioinformatics.nih.gov/

summary.jsp; Supplementary Table 2) revealed mechanistic

convergence. The RNA-binding module (ENO1, RBM8A,

PABPC4, CHERP) was enriched in RNA stability/degradation

and mRNA surveillance pathways (post-transcriptional

regulation). And the protease module (FAP, MMP9) participated

in endopeptidase activity, linking to extracellular matrix remodeling

and metastasis. These data collectively validate the 11 ERGs as

functionally coordinated partners of ENO1 in DLBCL pathogenesis.

Next, the risk score of each DLBCL patient in GSE10846 was

calculated using the gene expression level and the estimated

coefficient according to the formula mentioned in the methods

section. Patients were then divided into high-risk and low-risk

groups according to the median risk score (Supplementary

Figure 5A). The scatter plot revealed a greater mortality rate in

the high-risk group than in the low-risk group (Figure 3A). DLBCL

patients were well separated into two clusters after PCA (Figure 3B).

The KM curve further indicated a worse clinical outcome in the

high-risk group (Figure 3C). Finally, we evaluated the model via

time-dependent ROC analysis. The areas under the curve (AUCs)

for 1-, 3-, and 5-year OS were 0.753, 0.777, and 0.772, respectively

(Figure 3D). These results indicated good prediction performance

of the ERG scoring model in DLBCL patients.
3.4 Validation of the ERG scoring model

To evaluate the predictive performance of the ERG scoring

model, datasets GSE181063 and GSE87371 were used as validation

sets. Each patient in the datasets was calculated for risk score via the

formula obtained previously and then divided into high-risk and

low-risk groups on the basis of the median score, with red

representing the high-risk group and green representing the low-
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risk group (Supplementary Figures 5B, C). The high-risk group had

a higher mortality rate (Supplementary Figures 5D, E). Similarly,

the PCA results revealed that the high-risk and low-risk groups

were distinctly separated into two clusters (Supplementary

Figures 5F, G), with the high-risk group having a poorer

prognosis (Supplementary Figures 5H, I). Finally, the area under

the curve (AUC) for the GSE181063 dataset at 1, 3, and 5 years was

0.626, 0.612, and 0.603, respectively; for the GSE87371 dataset, the

AUCs at 1, 3, and 5 years were 0.661, 0.679, and 0.714, respectively

(Supplementary Figures 5J, K). These results indicated that the ERG

scoring model had excellent performance in predicting the

prognosis of DLBCL patients.
3.5 Analysis of the correlations between
ERG scores and clinical features

Next, we analyzed the correlation between the ERG score and

the clinicopathological characteristics of DLBCL patients in the

GSE10846 dataset. We observed that ERG risk scores were higher in

patients over the age of 60, patients with the ABC subtype, patients

with an Eastern Cooperative Oncology Group (ECOG) score

greater than 2, and patients with serum LDH concentrations

above the normal value. Additionally, the ERG risk score was

significantly associated with clinical stage and metastasis status,

but it was not significantly related to sex (Figures 3E–M). These

results were also validated in the GSE181063 and GSE87371

datasets (Supplementary Figures 6, 7).

To further assess whether the ERG scoring model is an

independent prognostic factor for predicting OS in DLBCL

patients, we conducted univariate and multivariate regression

analyses in the GSE10846 dataset. The results of the univariate

regression analysis revealed that the ERG score, age, subtype,

Eastern Cooperative Oncology Group (ECOG) score, and LDH

were significantly associated with the survival of DLBCL patients

(Supplementary Table 3). The results of the multivariate regression

analysis indicated that the ERG score is an independent prognostic

factor for evaluating the OS of DLBCL patients, with HR = 1.17,

95% CI = 1.10–1.24, and p < 0.001 (Figure 4A). To further evaluate

the clinical utility of the model, we constructed a prognostic

nomogram based on the ERG score and clinical features

(Figure 4B). The calibration curve results demonstrated that the

model had good prognostic ability (Figure 4C).
3.6 Correlation between the ERG risk score
and the immune landscape

We next investigated the potential correlation between the ERG

score and the immune landscape of DLBCL. Analysis using the

CIBERSORT algorithm revealed a distinct immune profile in the

high-risk group, characterized by significantly reduced levels of

gamma delta T cells and M0 macrophages, alongside significantly

elevated levels of resting NK cells and M2 macrophages compared

to the low-risk group (Figure 5A). This shift is biologically
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significant because gamma delta T cells are known for their potent

innate anti-tumor activity, including direct cytotoxicity and

cytokine production (29). Conversely, M2 macrophages are

classically associated with promoting tumor progression by

suppressing immune responses, facilitating angiogenesis, and

supporting tissue remodeling in the tumor microenvironment
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(TME) (30). The observed decrease in potentially pro-

i n fl amma t o r y M0 ma c r o p h a g e s a n d i n c r e a s e i n

immunosuppressive M2 macrophages further supports an

immunosuppressive shift. The increase in resting NK cells (which

typically have lower cytotoxic activity than activated NK cells) may

also contribute to diminished immune surveillance.
FIGURE 2

Identification of prognostic ERGs in the GSE10846 dataset. (A) P values and hazard ratios of 39 ERGs related to DLBCL prognosis according to
univariate Cox regression analysis. (B) Selection of the optimal parameter (lambda) in the LASSO model. (C) LASSO coefficient profiles of 39 ERGs
from univariate Cox regression analysis. (D) P values and hazard ratios of the 11 retained candidate genes according to multivariate Cox regression
analysis. (E) Multivariate Cox coefficient of the 11 candidate genes for ERG scoring model construction.
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Further supporting this interpretation, analysis via the xCell

algorithm (Supplementary Figure 8) confirmed the significant

decrease in CD8+ T cells and additionally revealed significant

increases in activated dendritic cells (aDCs), memory B cells,
Frontiers in Immunology 08
NKT cells, and Th1 cells within the high-risk group. While the

increase in Th1 cells and NKT cells might initially suggest enhanced

anti-tumor immunity, the overall context is crucial. The significant

loss of key cytotoxic effectors (gamma delta T cells, CD8+ T cells),
FIGURE 3

Construction and validation of the ERG scoring model and correlations between the ERG score and clinical features in the GSE10864 dataset.
(A) Distribution of the survival status and ERG expression in DLBCL patients in the GSE10864 cohorts. (B) PCA of the DLBCL patients in the
GSE10864 cohorts on the basis of the ERG score. (C) KM analyses of the ERG scores in theGSE10864 cohorts. (D) Time-dependent ROC curves
of the ERG scores in the GSE10864 cohorts. Correlations of the ERG score with age (E), subtype (F), ECOG score (G), LDH level (H), clinical stage
(I), patient status (J), extranodal infiltration (K), and gender (L). (M) Heatmap showing the differences in clinical characteristics between the two risk
clusters. *p< 0.05; **p< 0.01; ***p< 0.001.
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coupled with the dominance of immunosuppressive M2

macrophages, suggests that any potential pro-inflammatory

signals from Th1/NKT cells may be insufficient or actively

suppressed within this TME. The role of increased aDCs and

memory B cells in this specific high-risk context warrants further

investigation but does not negate the strong immunosuppressive

signals from the other observed changes.

Critically, the collective impact of these cellular alterations

points towards an immunosuppressed TME in the high-risk

group. This conclusion is further substantiated by results from

the ESTIMATE algorithm. The high-risk group exhibited
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significantly lower ESTIMATE scores, stromal scores, and

microenvironment scores compared to the low-risk group

(Figures 5B–E). These lower scores strongly imply a reduction in

the overall immune cell infiltration and stromal components within

the TME of high-risk patients. This depletion of immune cells aligns

with the observed decrease in key anti-tumor effectors and

reinforces the notion of an immune-evasive microenvironment.

Further characterizing the immunosuppressive TME, we

observed significant dysregulation of immune checkpoint molecules

in the high-risk group (Supplementary Figure 9A). Critically, there

was significant downregulation of genes associated with immune
FIGURE 4

Multivariate Cox regression analysis and the nomogram based on the ERG score, IPI and clinical features in the GSE10846 cohort. (A) Multivariate
Cox regression analysis of ERG score, IPI and clinical features in GSE10846 training cohort. (B) A nomogram for the prediction of the 1-, 3- and
5-year survival probabilities of DLBCL patients according to the ERG score, IPI and clinical factors. (C) Nomogram-predicted percentages and the
observed probabilities of 1-, 3- and 5-year survival. *p< 0.05; **p< 0.01; ***p< 0.001.
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activation and co-stimulation, including B2M, CD28, CD40LG,

ICOS, CD86, IL23A, and LDHA. The downregulation of these

molecules likely impairs T cell activation, antigen presentation, and

effector function (31–34). Conversely, genes associated with immune

suppression or exhaustion were significantly upregulated, including

LGALS9 [galectin-9, ligand for TIM-3 (35)], TNFSF9 [4-1BBL,

complex role but often associated with exhaustion in chronic

settings (36)], YTHDF1 [linked to immunosuppression (37)], and

PVR [CD155, ligand for inhibitory receptors TIGIT/CD96 (38)].
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Strikingly, the downregulation of activating/co-stimulatory genes

correlated with poor prognosis, while upregulation of inhibitory/

exhaustion-related genes was associated with worse clinical outcomes

(Supplementary Figure 9B).

Therefore, our integrated analyses demonstrate that a high ERG

risk score is associated with an immune landscape characterized by

immunosuppressive polarization and dysregulated immune

checkpoints expression, which provides a mechanistic basis

linking high ERG scores to poor clinical outcomes in DLBCL.
FIGURE 5

Correlation analysis of the ERG score with the immune landscape in GSE10846. (A) Proportion of 22 immune cells between the low-risk and high-
risk groups according to CIBERSORT. ESTIMATE score (B), stromal score (C), immune score (D) and microenvironment score (E) between the high-
score and low-score groups. **p< 0.01; ***p< 0.001; ****p< 0.0001.
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3.7 Prognostic value of the ERG score in
the prediction of therapeutic response

Although drug resistance is a challenge in the treatment of

DLBCL, the R-CHOP regimen remains the first-line chemotherapy

regimen for DLBCL in clinical practice. Studies have shown that

providing patients with personalized treatment plans can improve

the remission rate of the disease. Therefore, we further conducted

an analysis of the correlation between ERG scores and the

sensitivity of patients to chemotherapy drugs via the

“oncoPredict” R package. We found that patients in the high-risk

group were more sensitive to vincristine (p < 0.001), etoposide

(p = 0.001), and platinum drugs (p < 0.001) (Figure 6A).

To verify the accuracy of this prediction, we conducted further

validation in DLBCL cell lines. First, we detected the expression

levels of the 11 prognostic genes via qRT–PCR (Supplementary

Table 4) and divided the 6 DLBCL cell lines into high- and low-risk

groups on the basis of the previous risk scoring formula. Among

them, OCI-LY1, OCI-LY3, and DB were in the high-risk group,

whereas OCI-LY7, U2932, and SU-DHL4 were in the low-risk

group (Figure 6B). Next, we detected the IC50 values of

vincristine, epirubicin, and oxaliplatin in 6 cell lines via a cell

viability assay. The results are shown in Figure 6C, where high-risk

group cells were more sensitive to vincristine and oxaliplatin, with

p values of 0.02 and 0.004, respectively. The difference in the

sensitivity of high- and low-risk cells to epirubicin was not

significant. However, the epirubicin IC50 values of the high-risk

group cells were lower than those of the low-risk group cells. These

results were consistent with the predictions from bioinformatics,

suggesting that the sensitivity of DLBCL patients to chemotherapy

drugs can be predicted on the basis of ERG scores.
3.8 Experimental evaluation of PABPC4
function in DLBCL

In our constructed ERG scoring system, we noted that PABPC4

contributes the most to the degree of risk. To date, the role of

PABPC4 in the development of DLBCL has not been reported.

Therefore, we first analyzed the expression of PABPC4 in DLBCL

via the GEPIA website (http://gepia.cancer-pku.cn). The results

revealed that PABPC4 was significantly upregulated in DLBCL

(Supplementary Figure 10A). We then analyzed the relationship

between PABPC4 expression and the OS of DLBCL patients in the

GSE10846 dataset. We found that patients with high expression of

PABPC4 had a poorer prognosis (Supplementary Figure 10B).

These results suggest that PABPC4 may promote the occurrence

of DLBCL.

Next, we constructed PABPC4-knockdown cell lines from the

DLBCL cell line SU-DHL4 and the Burkitt lymphoma cell line Daudi

(Figure 7A). Compared with that of control cells, the proliferation rate

of sgPABPC4 SU-DHL4 cells was reduced by approximately 50%

(Figures 7B, C). Moreover, the number of colonies formed

by sgPABPC4 cells was approximately 60% of that formed

by control cells. The viability and number of colonies formed by
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Daudi-sgPABPC4 cells were approximately 30% and 50% of those

formed by the control cells, respectively. (Figures 7D, E). Furthermore,

we assessed the impact of PABPC4 on the proliferation of DLBCL

tumors in vivo via the subcutaneous tumorigenesis method. Compared

with that of the control group, the proliferation ability of sgPABPC4

cells in vivo was significantly reduced (Figures 7F–H), while no

significant change in the body weight of the mice was observed

(Supplementary Figure 10C). Immunohistochemical results revealed

that the Ki67 index percentage in the sgPABPC4 group was

significantly lower than that in the control group (Figures 7I–K).

These results indicate that PABPC4 can promote the proliferation of

DLBCL cells both in vitro and in vivo.
4 Discussion

The pronounced heterogeneity in survival outcomes among

DLBCL patients underscores the critical need for refined risk

stratification. While traditional clinical indices (IPI, R-IPI, NCCN-

IPI) offer valuable prognostic guidance, their reliance solely on clinical

parameters overlooks the impact of molecular heterogeneity and

tumor microenvironment (TME) dynamics (39, 40). Our study

addressed this gap by integrating gene expression profiles of ERGs

with clinical variables. In this study, we established a prognostic

evaluation model based on ERGs via machine learning methods.

This ERG-based classifier assessed the prognosis of DLBCL patients

effectively and emerged as an independent prognostic factor in

multivariate analysis. Critically, the model’s alignment with adverse

clinical features (including age >60 years, ABC subtype, advanced

stage, and elevated LDH) reinforces its biological relevance and

potential utility in treatment personalization.

Beyond prognostication, our model reveals fundamental

mechan i sms o f DLBCL progre s s ion through tumor

microenvironment (TME) reprogramming. High-risk patients

exhibited profound immunosuppressive remodeling characterized

by two synergistic alterations: (1) Cellular imbalance featuring

enrichment of pro-tumorigenic M2 macrophages (established

promoters of DLBCL malignant phenotypes (41, 42)) and

depletion of CD8+ T cells [critical effectors of antitumor

immunity (43, 44)]; and (2) Immune checkpoint dysregulation

marked by elevated LAG3 [an inhibitory receptor that suppresses

T-cell activation via MHC class II binding (45, 46)] coupled with

suppression of B2M [impairing MHC-I antigen presentation (31)]

and CD28 [compromising T-cell co-stimulation (48)]. These

findings illuminate how ERG-driven molecular programs foster

an immune-tolerant niche, potentially explaining the poor

outcomes in high-risk patients and suggesting actionable targets

for immunotherapy.

Precision medicine can improve treatment outcomes and prolong

patient survival. Our model’s capacity to predict therapeutic response

represents a key translational advance. We found that patients in the

high-risk group were more sensitive to vincristine, epirubicin, and

oxaliplatin, which was validated in six DLBCL cell lines. This facilitates

rational drug selection for aggressive DLBCL subsets, moving beyond

empirical chemotherapy assignment. Moreover, the convergence of
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ERG scores with immune checkpoint expression further supports

combinatorial strategies.

Additionally, in the ERG scoring system, PABPC4 received the

highest score, suggesting its critical role in the progression of DLBCL.

We generated stable PABPC4-knockdown cell lines via the CRISPR-

Cas9 system, and both in vitro and in vivo studies demonstrated that

the overexpression of PABPC4 promoted tumor proliferation.

PABPC4 is an RNA processing protein that plays a crucial role in

enhancing translation and mRNA stability, thereby promoting gene

expression. Yufeng Yuan and colleagues reported that PABPC4
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contributes to liver cancer progression by stabilizing the mRNAs of

TRIM37 and CDC27 (47). Our study pioneers the functional

characterization of PABPC4 in DLBCL. We had validated that there

was an interaction between ENO1 and PABPC4 by co-

immunoprecipitation (data not shown), further research is needed to

elucidate the mechanistic basis of PABPC4-driven lymphomagenesis,

particularly its RNA-stabilizing functions in DLBCL-specific contexts.

More importantly, in this study, we discovered that the

functional enrichment of ERGs was associated primarily with

signaling pathways related to RNA splicing and RNA stability.
FIGURE 6

Evaluation of therapeutic response and drug sensitivity via the ERG scoring model. (A) The predicted IC50 values of vincristine, epirubicin, and
oxaliplatin between the high- and low-risk groups via the R package “oncoPredict”. (B) Six DLBCL cell lines were separated into high- and low-risk
groups on the basis of the ERG scoring model. (C) The actual IC50 values of vincristine, epirubicin, and oxaliplatin in the 6 DLBCL cell lines.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1644020
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yan et al. 10.3389/fimmu.2025.1644020
Previous studies have shown that ENO1 promotes the development

of liver cancer by binding to the YAP and IRP 1 mRNAs (9, 10).

However, to date, there have been no reports regarding the

involvement of ENO1 in RNA splicing. Therefore, further

experimental validation is needed.
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Our study has limitations that warrant mention. First, the ERG

signature was derived from a BL cell model, which possesses a

genetic background distinct from that of DLBCL. Nevertheless, its

robust prognostic performance across DLBCL cohorts suggests it

captures fundamental biological processes shared among aggressive
FIGURE 7

Knockdown of PABPC4 inhibits B lymphoma cell proliferation and colony formation in vitro and in vivo. (A) PABPC4 expression in stable sgPABPC4
SU-DHL4 and Daudi cell lines. (B, C) Cell viability of control and sgPABPC4 cells at different time points. (D) Effects of PABPC4 knockdown on cell
colony formation. Representative images of colony formation by different cells are shown. (E) Statistical analysis of the colony numbers and colony
diameters in (D). Representative images (F), tumor volumes (G), and tumor weights (H) of xenografts derived from the indicated cells are shown.
(I) Immunohistochemical results of PABPC4 and Ki67 expression in tumors from different xenograft groups. (J, K) Statistical analysis of the results in (I).
**p< 0.01; ***p< 0.001; ****p< 0.0001.
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B-cell lymphomas. Second, the experimental validation does not

distinguish whether the interactions between the model genes and

ENO1 are direct physical interactions or indirect functional

relationships, a question that merits further investigation.
5 Conclusion

In conclusion, we developed a scoring model based on ERGs

that not only predicts the prognosis of DLBCL patients but also

guides therapeutic decision-making. Furthermore, for the first time,

we validated both in vitro and in vivo that PABPC4 promotes the

progression of DLBCL, offering new perspectives on the underlying

mechanisms of DLBCL development.
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27. López C, Burkhardt B, Chan JKC, Leoncini L, Mbulaiteye SM, OgwangMD, et al.
Burkitt lymphoma. Nat Rev Dis Prim. (2022) 8:78. doi: 10.1038/s41572-022-00404-3

28. Dabrowska-Iwanicka A, Nowakowski GS. DLBCL: who is high risk and how
should treatment be optimized? Blood. (2024) 144:2573–82. doi: 10.1182/
blood.2023020779

29. Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease. Signal
Transduction Targeting Ther. (2023) 8(1):235. doi: 10.1038/s41392-023-01471-y

30. Li C, Xu X, Wei S, Jiang P, Xue L, Wang J, et al. Tumor-associated macrophages:
potential therapeutic strategies and future prospects in cancer. J Immunother Cancer.
(2021) 9(1):e001341. doi: 10.1136/jitc-2020-001341

31. Wang H, Liu B, Wei J. Beta2-microglobulin(B2M) in cancer immunotherapies:
Biological function, resistance and remedy. Cancer Lett. (2021) 517:96–104.
doi: 10.1016/j.canlet.2021.06.008

32. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. CD28 costimulation:
from mechanism to therapy. Immunity. (2016) 44:973–88. doi: 10.1016/
j.immuni.2016.04.020

33. Halliday N, Williams C, Kennedy A, Waters E, Pesenacker AM, Soskic B, et al.
CD86 is a selective CD28 ligand supporting foxP3+ Regulatory T cell homeostasis in
the presence of high levels of CTLA-4. Front Immunol. (2020) 11:600000. doi: 10.3389/
fimmu.2020.600000

34. Yan J, Smyth MJ, Teng MWL. Interleukin (IL)-12 and IL-23 and their conflicting
roles in cancer. Cold Spring Harb Perspect Biol. (2018) 10(7):a028530. doi: 10.1101/
cshperspect.a028530

35. Yang R, Sun L, Li CF, Wang YH, Yao J, Li H, et al. Galectin-9 interacts with PD-1
and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nat
Commun. (2021) 12:832. doi: 10.1038/s41467-021-21099-2

36. Wu J, Wang Y. Role of TNFSF9 bidirectional signal transduction in antitumor
immunotherapy. Eur J Pharmacol. (2022) 928:175097. doi: 10.1016/j.ejphar.2022.175097

37. Bao Y, Zhai J, Chen H, Wong CC, Liang C, Ding Y, et al. Targeting m(6)A reader
YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal
cancer. Gut. (2023) 72:1497–509. doi: 10.1136/gutjnl-2022-328845

38. Zhan M, Zhang Z, Zhao X, Zhang Y, Liu T, Lu L, et al. CD155 in tumor
progression and targeted therapy. Cancer Lett. (2022) 545:215830. doi: 10.1016/
j.canlet.2022.215830

39. Ruppert AS, Dixon JG, Salles G, Wall A, Cunningham D, Poeschel V, et al.
International prognostic indices in diffuse large B-cell lymphoma: A comparison of IPI,
R-IPI, and NCCN-IPI. Blood. (2020) 135:2041–8. doi: 10.1182/blood.2019002729

40. Mikhaeel NG, Heymans MW, Eertink JJ, de Vet HCW, Boellaard R, Dührsen U,
et al. Proposed new dynamic prognostic index for diffuse large B-cell lymphoma:
international metabolic prognostic index. J Clin Oncol. (2022) 40:2352–60.
doi: 10.1200/JCO.21.02063

41. Kim S, Jeong H, Ahn HK, Han B, Lee KC, Song YK, et al. Increased CCL2/CCR2
axis promotes tumor progression by increasing M2 macrophages in MYC/BCL2
double-expressor DLBCL. Blood Adv . (2024) 8:5773–88. doi: 10.1182/
bloodadvances.2024013699

42. Huang YH, Cai K, Xu PP, Wang L, Huang CX, Fang Y, et al. CREBBP/EP300
mutations promoted tumor progression in diffuse large B-cell lymphoma through
altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1
axis. Signal Transduction Targeting Ther. (2021) 6(1):10. doi: 10.1038/s41392-020-
00437-8

43. van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human
cancer: insights from single-cell analysis. Nat Rev Cancer. (2020) 20:218–32.
doi: 10.1038/s41568-019-0235-4

44. Wang Y, Tong C, Lu Y, Wu Z, Guo Y, Liu Y, et al. Characteristics of
premanufacture CD8+T cells determine CAR-T efficacy in patients with diffuse large
B-cell lymphoma. Signal Transduction Targeting Ther. (2023) 8(1):409. doi: 10.1038/
s41392-023-01659-2

45. Cai L, Li Y, Tan J, Xu L, Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer
immunotherapy. J Hematol Oncol. (2023) 16:1–34. doi: 10.1186/s13045-023-01499-1

46. Keane C, Law SC, Gould C, Birch S, Sabdia MB, Merida de Long L, et al. LAG3: A
novel immune checkpoint expressed by multiple lymphocyte subsets in diffuse large B-
cell lymphoma. Blood Adv. (2020) 4:1367–77. doi: 10.1182/bloodadvances.2019001390

47. Jiang X, Wang G, Liu Y, Mei C, Yao Y, Wu X, et al. A novel long non-coding
RNA RP11-286H15.1 represses hepatocellular carcinoma progression by promoting
ubiquitination of PABPC4. Cancer Lett. (2021) 499:109–21. doi: 10.1016/
j.canlet.2020.11.038

48. Lotze MT, Olejniczak SH, Skokos D. CD28 co-stimulation: novel insights and
applications in cancer immunotherapy. Nat Rev Immunol. (2024) 24(12):878–95.
doi: 10.1038/s41577-024-01061-1
frontiersin.org

https://doi.org/10.1002/ajh.26151
https://doi.org/10.1038/s41571-019-0225-1
https://doi.org/10.1038/s41571-019-0225-1
https://doi.org/10.1016/j.omto.2021.12.026
https://doi.org/10.1182/blood-2008-08-170837
https://doi.org/10.1038/s41419-020-03087-4
https://doi.org/10.1186/s13045-015-0117-5
https://doi.org/10.1186/s13045-015-0117-5
https://doi.org/10.1016/j.biopha.2024.116970
https://doi.org/10.1038/s41589-023-01391-6
https://doi.org/10.1038/s43018-021-00299-1
https://doi.org/10.1186/s12865-017-0212-1
https://doi.org/10.1080/2162402X.2017.139064213
https://doi.org/10.1093/jjco/hyq028
https://doi.org/10.1007/s00262-013-1429-3
https://doi.org/10.1038/s41417-022-00569-9
https://doi.org/10.1093/bioinformatics/bts569
https://doi.org/10.1038/nbt.1873
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/nmeth.3252
https://doi.org/10.1186/gb-2004-5-11-r94
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1111/j.0006-341X.2000.00337.x
https://doi.org/10.1111/j.0006-341X.2000.00337.x
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1038/s41572-022-00404-3
https://doi.org/10.1182/blood.2023020779
https://doi.org/10.1182/blood.2023020779
https://doi.org/10.1038/s41392-023-01471-y
https://doi.org/10.1136/jitc-2020-001341
https://doi.org/10.1016/j.canlet.2021.06.008
https://doi.org/10.1016/j.immuni.2016.04.020
https://doi.org/10.1016/j.immuni.2016.04.020
https://doi.org/10.3389/fimmu.2020.600000
https://doi.org/10.3389/fimmu.2020.600000
https://doi.org/10.1101/cshperspect.a028530
https://doi.org/10.1101/cshperspect.a028530
https://doi.org/10.1038/s41467-021-21099-2
https://doi.org/10.1016/j.ejphar.2022.175097
https://doi.org/10.1136/gutjnl-2022-328845
https://doi.org/10.1016/j.canlet.2022.215830
https://doi.org/10.1016/j.canlet.2022.215830
https://doi.org/10.1182/blood.2019002729
https://doi.org/10.1200/JCO.21.02063
https://doi.org/10.1182/bloodadvances.2024013699
https://doi.org/10.1182/bloodadvances.2024013699
https://doi.org/10.1038/s41392-020-00437-8
https://doi.org/10.1038/s41392-020-00437-8
https://doi.org/10.1038/s41568-019-0235-4
https://doi.org/10.1038/s41392-023-01659-2
https://doi.org/10.1038/s41392-023-01659-2
https://doi.org/10.1186/s13045-023-01499-1
https://doi.org/10.1182/bloodadvances.2019001390
https://doi.org/10.1016/j.canlet.2020.11.038
https://doi.org/10.1016/j.canlet.2020.11.038
https://doi.org/10.1038/s41577-024-01061-1
https://doi.org/10.3389/fimmu.2025.1644020
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	ENO1-related gene signature predicts prognosis and therapeutic response in diffuse large B-cell lymphoma
	1 Introduction
	2 Materials and methods
	2.1 Identification of ENO1-related genes
	2.1.1 RNA sequencing and differential expression analysis
	2.1.2 RIP-seq analysis of ENO1-bound RNAs
	2.1.3 Protein-protein interaction mass spectrometry analysis

	2.2 Functional enrichment analysis
	2.3 Data collection
	2.4 Consensus clustering analysis of ERGs
	2.5 Construction and validation of the ERG scoring model
	2.6 Clinical correlations and independent prognostic value of the ERG risk score
	2.7 Immune landscape analysis
	2.8 Evaluation of drug sensitivity
	2.9 Quantitative real-time polymerase chain reaction and ERG risk scores for DLBCL cell lines
	2.10 Cell proliferation assay
	2.11 Stable cell line construction
	2.12 Colony formation assay
	2.13 In vivo experiments
	2.14 Statistical analysis

	3 Results
	3.1 Identification of ERGs and functional enrichment analysis
	3.2 Molecular clustering of the ERGs in DLBCL
	3.3 Construction of a prognostic ERG scoring model
	3.4 Validation of the ERG scoring model
	3.5 Analysis of the correlations between ERG scores and clinical features
	3.6 Correlation between the ERG risk score and the immune landscape
	3.7 Prognostic value of the ERG score in the prediction of therapeutic response
	3.8 Experimental evaluation of PABPC4 function in DLBCL

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References




