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Purpose: Alpha-enolase (ENO1), the enzyme catalyzing 2-phosphoglycerate
conversion to phosphoenolpyruvate, is highly expressed in diffuse large B-cell
lymphoma (DLBCL) and correlates with adverse clinical outcomes. Thus,
understanding the relationship between ENO1-related gene (ERG) network and
DLBCL is imperative. Here, we integrated multi-omics profiling (RIP-seqg, RNA-
seq, and protein interactome analysis) to identify ERGs and established a
prognostic model by machine learning algorithms.

Methods: We identified eleven hub genes (CHERP, SYNE2, INTS1, FAP, MMP9, LRP5,
RBM8A, PRMT5, SLC25A6, PABPC4, PSTPIP2) using RNA sequencing, RNA
immunoprecipitation sequencing, and protein interaction profiling. A prognostic
model was constructed using univariate Cox regression and least absolute shrinkage
and selection operator (LASSO) regression in the GSE10846 dataset and validated in
two independent cohorts. DLBCL patients were stratified into high- and low-risk
groups based on the model, and clinical characteristics were compared. The tumor
immune microenvironment (TIME) was analyzed using CIBERSORT and xCell
algorithms to explore correlations with the ERG score. Drug sensitivity assays in
DLBCL cell lines were performed to validate the model's predictive capacity for
chemotherapy response. Furthermore, the functional role of PABPC4, a key gene in
the scoring system, was investigated through in vitro and in vivo experiments.
Results: A prognostic model including 11 hub genes was established. Patients in
the high-risk group exhibited worse clinical outcomes and an immunosuppressive
TIME, characterized by altered expression of immune checkpoint-related proteins.
This group demonstrated increased sensitivity to vincristine, etoposide, and
oxaliplatin. Knockdown of PABPC4 significantly inhibited cell proliferation,
reduced colony formation, and delayed tumor growth in vivo.

Conclusions: The ERG scoring system offers a robust and precise tool for
predicting survival and guiding personalized treatment in DLBCL patients.
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1 Introduction

Non-Hodgkin lymphoma (NHL) is a common malignant
hematological disease, with diffuse large B-cell lymphoma
(DLBCL) being the major subtype, accounting for approximately
30-50% of NHL cases (1). DLBCL is often highly aggressive and is
characterized by the diffuse growth of medium- to large B-lymphoid
cells. On the basis of its cell of origin, DLBCL can be classified into
two subtypes: germinal center B-cell-like (GCB) and activated B-
cell-like (ABC). These two subtypes have distinct genomic profiles
and different clinical outcomes, with the ABC subtype being
associated with poorer prognosis (2). The standard chemotherapy
regimen for DLBCL is R-CHOP (rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisone). Although this regimen
has good safety, 40-50% of patients still experience drug resistance
or relapse (3), underscoring the urgent need for robust prognostic
biomarkers to guide risk stratification and personalized therapeutic
strategies. Recent advances in multi-omics analyses have
highlighted the critical role of dysregulated RNA metabolism and
protein translation in cancer progression, yet the prognostic
implications of these pathways in DLBCL remain underexplored.

ENOI1 (alpha-enolase) is a multifunctional protein that
catalyzes glycolysis by converting 2-phospho-D-glycerate to
phosphoenolpyruvate and enhances cell migration through
plasminogen recruitment and plasmin activation (4-8). As an
RNA-binding protein, ENOI1 stabilizes oncogenic mRNAs (e.g.,
YAP and IRP1) to promote hepatocarcinogenesis (9, 10).
Additionally, it modulates immune responses by interacting with
immune-related molecules, potentially facilitating tumor immune
evasion through microenvironment remodeling (11-15). These
pleiotropic roles position ENOI as a pivotal regulator of cancer
metabolism, invasion, and immunosuppression. However, the
broader landscape of ENOl-related genes (ERGs) and their
collective impact on DLBCL prognosis and tumor biology
remain unknown.

In this study, we performed an integrated analysis of ERGs via
data from RNAseq, RIPseq, and protein interaction profiles to
explore their functions in DLBCL. We then constructed and
validated a risk assessment model that effectively predicts the
prognosis of patients with DLBCL. With this model, we identified
chemotherapy drugs that are more sensitive to high-risk patients
and validated these findings through cell experiments. We also
evaluated the relationship between the immune microenvironment
and the risk model and found that the high-risk group tended to
develop an immunosuppressive TME. Moreover, we are the first to
evaluate the impact of the PABPC4 protein on the proliferation and
prognosis of DLBCL. Both in vitro and in vivo experiments
demonstrated that high expression of PABPC4 promotes the
proliferation of DLBCL and is negatively correlated with overall
survival (OS). Our study provides new insights into the role of the
ENOLI interaction network in the development of DLBCL and offers
guidance for the prognosis and precision medicine of
DLBCL patients.
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2 Materials and methods

The flowchart of this study is shown in Supplementary Figure 1.
Initially, we performed unsupervised clustering, functional
enrichment, survival analysis, and clinical correlation analysis of
ENO1-related genes using the GSE10846 dataset. Subsequently, a
clinical prognostic model based on 11 ERGs was constructed
through Cox regression, LASSO regression, and Kaplan-Meier
analysis. The predictive accuracy of this model was externally
validated in the GSE87371 and GSE181063 cohorts, with
evaluations covering survival outcome, clinical feature correlation,
prognostic stratification, tumor immune microenvironment, and
drug sensitivity. Furthermore, cell-based assays were conducted to
experimentally verify the model’s drug sensitivity predictions.
Finally, the functional role of the key gene PABPC4 in DLBCL
was validated through both cellular experiments and mouse models.
A detailed description of the experimental procedures is
provided below.

2.1 Identification of ENO1-related genes

2.1.1 RNA sequencing and differential expression
analysis

RNA-seq was performed as previously reported (8). Total RNA
was isolated from Burkitt lymphoma Daudi cells and Daudi cells
with ENOI1 knockdown (shENO1) using TRIzol reagent
(Invitrogen). RNA quality control was performed by assessing
concentration (Qubit 2.0 Fluorometer, Life Technologies) and
integrity (Bioanalyzer 2100, Agilent Technologies). Sequencing
libraries were prepared and subjected to paired-end 150-bp
sequencing on the Illumina NovaSeq platform (Novogene,
China). Raw reads were processed using the DESeq2 pipeline to
identify differentially expressed genes (DEGs). Genes with |log2 fold
change| > 1 (2-fold change) and an FDR-adjusted p-value <0.05
were considered statistically significant. This analysis revealed 82
DEGs significantly altered upon ENOI knockdown, which were
selected for downstream functional investigation.

2.1.2 RIP-seq analysis of ENO1-bound RNAs

To identify ENO1l-associated RNAs, we performed RNA
immunoprecipitation sequencing (RIP-seq) in Burkitt lymphoma
Daudi cells and Daudi cells stably overexpressing ENOI1-Flag
(Daudi-ENO1-Flag OE). Cells were lysed under native conditions,
and ENOI-RNA complexes were immunoprecipitated using an
anti-ENO1 antibody (Abcam, #ab227978). Parallel
immunoprecipitation with anti-IgG antibody (Abcam,
#ab172730) served as the negative control.

Immunoprecipitated RNAs were isolated, and cDNA libraries
were prepared for 150 bp paired-end sequencing on an Illumina
HiSeq X Ten platform (AB Life, China). To ensure robust peak
identification, we employed three independent analytical methods:
Piranha (16) (for peak calling based on read density), CIMS (17)
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(Crosslink-Induced Mutation Site analysis for precise binding site
mapping), and ABLife’s proprietary peak-calling algorithm. Only
RNA targets consistently identified by all three methods (n=32)
with >2-fold enrichment and FDR-adjusted p-value <0.05 were
considered high-confidence ENO1-binding partners and selected
for downstream analysis.

2.1.3 Protein-protein interaction mass
spectrometry analysis

To identify ENOIl-interacting proteins, we performed
immunoprecipitation coupled with mass spectrometry (IP-MS) in
Burkitt lymphoma Raji cells. Cell lysates were pre-cleared with
Protein A/G beads and subsequently immunoprecipitated
overnight at 4°C using an anti-ENO1 antibody (Abcam,
#ab227978), with anti-IgG antibody (Abcam, #ab172730) serving
as the negative control. Immune complexes were rigorously washed
with low-salt buffer (50 mM Tris-HCI pH 7.4, 150 mM NacCl, 0.1%
NP-40) and high-salt buffer (50 mM Tris-HCI pH 7.4, 500 mM
NaCl, 0.1% NP-40) (each wash repeated five times to minimize
non-specific binding). Bound proteins were eluted and digested
with trypsin (Promega) for LC-MS/MS analysis (performed by
Novogene, China). MS data were processed using MaxQuant and
searched against the UniProt human protein database. High-
confidence ENOIl-interacting proteins were defined as those
showing>4-fold enrichment (log2FC>2) in ENOI1-IP versus IgG
control with an FDR-adjusted p-value<0.05, identifying 345
candidates for subsequent validation and functional studies.

In total, 459 genes were identified as ERGs.

2.2 Functional enrichment analysis

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes
and Genomes) enrichment analyses were performed with the
“clusterProfiler R” package (18).

2.3 Data collection

RNA-seq data and clinical information were obtained from
GEO (https://www.ncbi.nlm.nih.gov/geo/). The training set
comprised 412 DLBCL samples (GSE10846), while validation
used 1,144 (GSE181063) and 221 samples (GSE87371). Gene
expression data and corresponding clinical data from each dataset
were retrieved using Bioconductor packages (19). Ethical approval
for public database use was granted by Dalian Medical University’s
ethics committee.

2.4 Consensus clustering analysis of ERGs

Patients with DLBCL from the GSE10846 cohort were clustered
into distinct subtypes via the “ConsensusClusterPlus” package (20)
in R software according to the expression of ERGs. OS (overall
survival) analysis was performed via KM (Kaplan-Meier) curves in
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the different clusters. The clinical features of the different clusters
were analyzed and are shown in the form of heatmaps.

2.5 Construction and validation of the ERG
scoring model

Prognostic ERGs were identified using univariate Cox regression
(“survival” package) (21) and LASSO analysis (“glmnet” package) (22)
in GSE10846. An 11-gene risk signature was derived via multivariate
Cox regression, with scores calculated as: ERG score = ¥ (Expi x coefi)
(Expi = gene expression; coefi = coefficient). Patients were stratified
into low-/high-risk groups by median score.

Next, principal component analysis (PCA) was performed to
validate the reliability of clustering on the basis of the ERG score via
the “stats” package of R. OS analysis on the basis of the KM curve
was performed in different risk groups. Time-dependent receiver
operating characteristic (ROC) curve analysis was conducted via the
“Time ROC” package (23) in R to assess the accuracy and reliability
of the ERG scoring signature.

2.6 Clinical correlations and independent
prognostic value of the ERG risk score

Clinical feature differences between risk groups were analyzed
using Wilcoxon and chi-square tests (GSE10846 dataset). Univariate/
multivariate Cox analyses assessed the ERG score’s independent
prognostic value. To explore the interrelationship of the different
variables, a nomogram was generated via the “rms” package of R.

2.7 Immune landscape analysis

The infiltrating immune cell compositions were calculated via
CIBERSORT (24) and xCell (25) and compared between the high-
and low-risk groups in the GSE10846 dataset. The immune score,
stromal score and estimate score were calculated via the ESTIMATE
algorithm. The microenvironment score was calculated via xCell.

2.8 Evaluation of drug sensitivity

The R package “oncoPredict” (26) was used to predict the half-
maximal inhibitory concentration (ICs,) of chemotherapeutic drugs on
the basis of the Genomics of Drug Sensitivity in Cancer (GDSC). The
estimated results were compared between the high-risk and low-risk groups.

2.9 Quantitative real-time polymerase
chain reaction and ERG risk scores for
DLBCL cell lines

Total RNA was extracted using TRIzol and reverse transcribed
to cDNA. Gene expression levels in 6 DLBCL cell lines were
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quantified by qRT-PCR (SYBR® Green Premix, Accurate

“AC method. ERG risk scores were

Biotechnology) using the 2
calculated as: ERG score = ¥ (Expi X coefi). Primer sequences are

provided in Supplementary Materials.

2.10 Cell proliferation assay

The cells were seeded in 96-well plates at a density of 5,000 cells/
well in complete medium. After incubation with drugs at different
concentrations for 48 h, CCK8 reagent was added to each well, and
the cells were incubated in a cell incubator for 2 h. The absorbance
was measured at 450 nm via a microplate reader (Ex800; Biotek).

2.11 Stable cell line construction

sgRNAs were inserted into the LentiCRISPRv2 plasmid
according to the manufacturer’s instructions. Lentivirus packaging
was performed as previously reported (8). The cells were
subsequently transfected with lentivirus. Polybrene was used to
increase transduction efficiency. Stable cell lines were obtained via
puromycin selection.

The sequences of the sgRNAs are listed below.

sgPABPC4-1: 5- caccGCAGCCACTCGTTGCATATAC-3’

sgPABPC4-2: 5’- caccGCAACCAGTATATGCAACGAG-3

2.12 Colony formation assay

Cells were seeded into 24-well plates with 1,000 cells per well
and cultured in complete medium supplemented with 1.3%
methylcellulose (Sigma). The colonies were photographed via a
microscope (Olympus) after 10 days.

2.13 In vivo experiments

The in vivo study procedures were conducted in accordance
with the guidelines of the Institutional Animal Care and Use
Committee and approved by the Institutional Ethics Committee
of Dalian Medical University (Approval number: AEE20061). We
have adhered to ARRIVE guidelines and upload a
completed checklist.

Female BALB/c nude mice (aged 4-5 weeks; weight, 14-17 g)
were purchased from GemPharmatech Co., Ltd. (Nanjing, China)
and housed in a specific pathogen-free (SPF) facility under
controlled conditions in Dalian Medical University. Mice were
randomly allocated using stratified randomization based on body
weight. To assess the impact of PABPC4 on the proliferation of
tumor cells in vivo, we employed the method of subcutaneous
tumorigenesis. Pilot studies indicated a 50% tumor formation rate
for SU-DHL4 cells in BALB/c nude mice. To ensure statistical
power with anticipated attrition, we established xenografts in 10
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mice per group (allowing detection of >2-fold differences with 80%
power at 0=0.05, based on two-tailed t-test assumptions). Control
SU-DHL4 cells (1x10” in 100 pL Matrigel) were subcutaneously
injected into the right anterior flank, while SU-DHL4-sgPABPC4
cells (1x107 in 100 pL Matrigel) were similarly implanted in the
contralateral hind limb. Tumor cell injections were performed by a
researcher blinded to group identity using coded syringes. The body
weights of the mice were measured every other day. Animals failing
to develop palpable tumors by Day 20 were excluded from efficacy
analysis. Once tumor formation was observed, the size of the
tumors was monitored daily. When the tumors reached a size of
20 mm, the mice were euthanized by intraperitoneal injection
of pentobarbital sodium (100 mg/kg; Sigma-Aldrich), in
accordance with the AVMA Guidelines for Euthanasia (2020).
The tumors were then excised, weighed, and then subjected to
immunohistochemistry.

2.14 Statistical analysis

Statistical analyses used R 4.3.1. Group comparisons employed
Wilcoxon or Kruskal-Wallis tests. Cox regression assessed ERG
score’s prognostic value. Error bars show SDj significance levels:
*p<0.05, **p<0.01, **p<0.001.

3 Results

3.1 Identification of ERGs and functional
enrichment analysis

Integrated analysis of transcriptomic, RIP-seq, and PPI-MS data
identified 459 ERGs (Figure 1A). GO/KEGG analyses revealed
enrichment in RNA splicing, translation initiation, and mRNA
metabolic processes (Supplementary Figures 2A, B), suggesting
ERGs’ role in RNA processing and protein synthesis.

3.2 Molecular clustering of the ERGs in
DLBCL

Given the low incidence rate of Burkitt lymphoma (BL) (27),
which poses challenges for building clinical prediction models
requiring large sample sizes, and considering that DLBCL shares
key clinical features with BL—such as high proliferative and
invasive characteristics—while exhibiting a higher prevalence
(28), we selected DLBCL for molecular clustering analysis based
on ERG expression.

We performed a consensus clustering analysis of the GSE10846
dataset to investigate the relationship between the expression of 459
ERGs and the prognosis of patients with DLBCL. The optimal
number of clusters (k = 2) was determined from the CDF curve
(Figure 1B). The 414 patients with DLBCL could be divided into
two clusters (Cluster 1: n=180; Cluster 2: n=234) according to the
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FIGURE 1

Identification of ENO1-related genes (ERGs) and consensus clustering analysis of identified ERGs in the GSE10846 dataset. (A) Differentially
expressed genes between the Daudi and Daudi-shENO1 groups, protein expression genes from ENO1 RIPseq, and ENO1-interacting protein genes
from Co-IP were selected as ERGs. (B) Consensus matrix heatmap defining two clusters (k = 2). (C) Consensus clustering cumulative distribution
function (CDF) with k values ranging from 2-9 in the GSE10846 dataset. (D) KM curve for the two clusters. (E) Differences in clinical characteristics

between the two distinct clusters.
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expression of ERGs (Figure 1C). Survival analysis revealed that 3.3 Construction of a prognostic ERG
Cluster 1 was significantly correlated with worse OS than was scoring model

Cluster 2 (Figure 1D). We subsequently compared the clinical
features between the two clusters. The heatmap revealed that

To obtain a more applicable and reliable classifier to predict the

Cluster 2 was significantly correlated with the number of  prognosis of patients with DLBCL, univariate Cox regression was
extranodal sites (Figure 1E). used, and 39 prognosis-related genes (p<0.001) were identified
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(Figure 2A). GO and KEGG enrichment analyses revealed that these
genes were closely related to RNA splicing, the spliceosomal
complex, the exon-exon junction complex, ATP hydrolysis
activity, and helicase activity (Supplementary Figures 2C, D).
LASSO/multivariate Cox analyses yielded an 11-gene signature:
protective genes (CHERP, SYNE2, INTS1, FAP, MMP9; HR<1) and
risk genes (LRP5, RBM8A, PRMTS5, SLC25A6, PABPC4, PSTPIP2;
HR>1) (Figures 2B-E, Supplementary Figure 3).

Among the 11 ERG genes, PSTPIP2, MMPY9, and FAP
were identified from RNA-seq as transcriptionally regulated
by ENOI, showing significant downregulation upon shENO1
(logFC = -1.5, -1.6, -1.2; all *p* < 0.05 vs. controls); RIP-seq confirmed
direct binding of ENOLI protein to INTS1 mRNA (5-fold enrichment vs.
IgG, *p* <0.05); and PPI-MS revealed ENO1-centric protein complexes,
including strong binding to PABPC4 (6.8-fold vs. IgG, *p* < 0.001) and
exclusive interactions with CHERP, SYNE2, LRP5, RBMS8A, PRMTS5,
and SLC25A6 (undetected in IgG controls; Supplementary Table 1).

Network analysis (GeneMANIA, https://genemania.org;
Supplementary Figure 4) demonstrated significant co-expression
and genetic interactions among these genes, with functional
annotation implicating mRNA splicing, RNA 3’-end processing,
and coagulation pathways. Strikingly, subgroup enrichment
analysis (DAVID, https://davidbioinformatics.nih.gov/
summary.jsp; Supplementary Table 2) revealed mechanistic
convergence. The RNA-binding module (ENO1, RBM8A,
PABPC4, CHERP) was enriched in RNA stability/degradation
and mRNA surveillance pathways (post-transcriptional
regulation). And the protease module (FAP, MMP9) participated
in endopeptidase activity, linking to extracellular matrix remodeling
and metastasis. These data collectively validate the 11 ERGs as
functionally coordinated partners of ENO1 in DLBCL pathogenesis.

Next, the risk score of each DLBCL patient in GSE10846 was
calculated using the gene expression level and the estimated
coefficient according to the formula mentioned in the methods
section. Patients were then divided into high-risk and low-risk
groups according to the median risk score (Supplementary
Figure 5A). The scatter plot revealed a greater mortality rate in
the high-risk group than in the low-risk group (Figure 3A). DLBCL
patients were well separated into two clusters after PCA (Figure 3B).
The KM curve further indicated a worse clinical outcome in the
high-risk group (Figure 3C). Finally, we evaluated the model via
time-dependent ROC analysis. The areas under the curve (AUCs)
for 1-, 3-, and 5-year OS were 0.753, 0.777, and 0.772, respectively
(Figure 3D). These results indicated good prediction performance
of the ERG scoring model in DLBCL patients.

3.4 Validation of the ERG scoring model

To evaluate the predictive performance of the ERG scoring
model, datasets GSE181063 and GSE87371 were used as validation
sets. Each patient in the datasets was calculated for risk score via the
formula obtained previously and then divided into high-risk and
low-risk groups on the basis of the median score, with red
representing the high-risk group and green representing the low-
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risk group (Supplementary Figures 5B, C). The high-risk group had
a higher mortality rate (Supplementary Figures 5D, E). Similarly,
the PCA results revealed that the high-risk and low-risk groups
were distinctly separated into two clusters (Supplementary
Figures 5F, G), with the high-risk group having a poorer
prognosis (Supplementary Figures 5H, I). Finally, the area under
the curve (AUC) for the GSE181063 dataset at 1, 3, and 5 years was
0.626, 0.612, and 0.603, respectively; for the GSE87371 dataset, the
AUGs at 1, 3, and 5 years were 0.661, 0.679, and 0.714, respectively
(Supplementary Figures 5], K). These results indicated that the ERG
scoring model had excellent performance in predicting the
prognosis of DLBCL patients.

3.5 Analysis of the correlations between
ERG scores and clinical features

Next, we analyzed the correlation between the ERG score and
the clinicopathological characteristics of DLBCL patients in the
GSE10846 dataset. We observed that ERG risk scores were higher in
patients over the age of 60, patients with the ABC subtype, patients
with an Eastern Cooperative Oncology Group (ECOG) score
greater than 2, and patients with serum LDH concentrations
above the normal value. Additionally, the ERG risk score was
significantly associated with clinical stage and metastasis status,
but it was not significantly related to sex (Figures 3E-M). These
results were also validated in the GSE181063 and GSE87371
datasets (Supplementary Figures 6, 7).

To further assess whether the ERG scoring model is an
independent prognostic factor for predicting OS in DLBCL
patients, we conducted univariate and multivariate regression
analyses in the GSE10846 dataset. The results of the univariate
regression analysis revealed that the ERG score, age, subtype,
Eastern Cooperative Oncology Group (ECOG) score, and LDH
were significantly associated with the survival of DLBCL patients
(Supplementary Table 3). The results of the multivariate regression
analysis indicated that the ERG score is an independent prognostic
factor for evaluating the OS of DLBCL patients, with HR = 1.17,
95% CI = 1.10-1.24, and p < 0.001 (Figure 4A). To further evaluate
the clinical utility of the model, we constructed a prognostic
nomogram based on the ERG score and clinical features
(Figure 4B). The calibration curve results demonstrated that the
model had good prognostic ability (Figure 4C).

3.6 Correlation between the ERG risk score
and the immune landscape

We next investigated the potential correlation between the ERG
score and the immune landscape of DLBCL. Analysis using the
CIBERSORT algorithm revealed a distinct immune profile in the
high-risk group, characterized by significantly reduced levels of
gamma delta T cells and MO macrophages, alongside significantly
elevated levels of resting NK cells and M2 macrophages compared
to the low-risk group (Figure 5A). This shift is biologically
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Identification of prognostic ERGs in the GSE10846 dataset. (A) P values and hazard ratios of 39 ERGs related to DLBCL prognosis according to
univariate Cox regression analysis. (B) Selection of the optimal parameter (lambda) in the LASSO model. (C) LASSO coefficient profiles of 39 ERGs
from univariate Cox regression analysis. (D) P values and hazard ratios of the 11 retained candidate genes according to multivariate Cox regression
analysis. (E) Multivariate Cox coefficient of the 11 candidate genes for ERG scoring model construction.

significant because gamma delta T cells are known for their potent
innate anti-tumor activity, including direct cytotoxicity and
cytokine production (29). Conversely, M2 macrophages are
classically associated with promoting tumor progression by
suppressing immune responses, facilitating angiogenesis, and
supporting tissue remodeling in the tumor microenvironment
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(TME) (30). The observed decrease in potentially pro-
inflammatory MO macrophages and increase in
immunosuppressive M2 macrophages further supports an
immunosuppressive shift. The increase in resting NK cells (which
typically have lower cytotoxic activity than activated NK cells) may
also contribute to diminished immune surveillance.
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Further supporting this interpretation, analysis via the xCell
algorithm (Supplementary Figure 8) confirmed the significant
decrease in CD8" T cells and additionally revealed significant
increases in activated dendritic cells (aDCs), memory B cells,
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NKT cells, and Thl cells within the high-risk group. While the
increase in Th1 cells and NKT cells might initially suggest enhanced
anti-tumor immunity, the overall context is crucial. The significant
loss of key cytotoxic effectors (gamma delta T cells, CD8" T cells),
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coupled with the dominance of immunosuppressive M2
macrophages, suggests that any potential pro-inflammatory
signals from Th1/NKT cells may be insufficient or actively
suppressed within this TME. The role of increased aDCs and
memory B cells in this specific high-risk context warrants further
investigation but does not negate the strong immunosuppressive
signals from the other observed changes.

Critically, the collective impact of these cellular alterations
points towards an immunosuppressed TME in the high-risk
group. This conclusion is further substantiated by results from
the ESTIMATE algorithm. The high-risk group exhibited
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significantly lower ESTIMATE scores, stromal scores, and
microenvironment scores compared to the low-risk group
(Figures 5B-E). These lower scores strongly imply a reduction in
the overall immune cell infiltration and stromal components within
the TME of high-risk patients. This depletion of immune cells aligns
with the observed decrease in key anti-tumor effectors and
reinforces the notion of an immune-evasive microenvironment.
Further characterizing the immunosuppressive TME, we
observed significant dysregulation of immune checkpoint molecules
in the high-risk group (Supplementary Figure 9A). Critically, there
was significant downregulation of genes associated with immune
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activation and co-stimulation, including B2M, CD28, CD40LG,
ICOS, CD86, IL23A, and LDHA. The downregulation of these
molecules likely impairs T cell activation, antigen presentation, and
effector function (31-34). Conversely, genes associated with immune
suppression or exhaustion were significantly upregulated, including
LGALS9 [galectin-9, ligand for TIM-3 (35)], TNFSF9 [4-1BBL,
complex role but often associated with exhaustion in chronic
settings (36)], YTHDF1 [linked to immunosuppression (37)], and
PVR [CD155, ligand for inhibitory receptors TIGIT/CD96 (38)].
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Strikingly, the downregulation of activating/co-stimulatory genes
correlated with poor prognosis, while upregulation of inhibitory/
exhaustion-related genes was associated with worse clinical outcomes
(Supplementary Figure 9B).

Therefore, our integrated analyses demonstrate that a high ERG
risk score is associated with an immune landscape characterized by
immunosuppressive polarization and dysregulated immune
checkpoints expression, which provides a mechanistic basis
linking high ERG scores to poor clinical outcomes in DLBCL.
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3.7 Prognostic value of the ERG score in
the prediction of therapeutic response

Although drug resistance is a challenge in the treatment of
DLBCL, the R-CHOP regimen remains the first-line chemotherapy
regimen for DLBCL in clinical practice. Studies have shown that
providing patients with personalized treatment plans can improve
the remission rate of the disease. Therefore, we further conducted
an analysis of the correlation between ERG scores and the
sensitivity of patients to chemotherapy drugs via the
“oncoPredict” R package. We found that patients in the high-risk
group were more sensitive to vincristine (p < 0.001), etoposide
(p = 0.001), and platinum drugs (p < 0.001) (Figure 6A).

To verify the accuracy of this prediction, we conducted further
validation in DLBCL cell lines. First, we detected the expression
levels of the 11 prognostic genes via qRT-PCR (Supplementary
Table 4) and divided the 6 DLBCL cell lines into high- and low-risk
groups on the basis of the previous risk scoring formula. Among
them, OCI-LY1, OCI-LY3, and DB were in the high-risk group,
whereas OCI-LY7, U2932, and SU-DHL4 were in the low-risk
group (Figure 6B). Next, we detected the ICs, values of
vincristine, epirubicin, and oxaliplatin in 6 cell lines via a cell
viability assay. The results are shown in Figure 6C, where high-risk
group cells were more sensitive to vincristine and oxaliplatin, with
p values of 0.02 and 0.004, respectively. The difference in the
sensitivity of high- and low-risk cells to epirubicin was not
significant. However, the epirubicin ICs, values of the high-risk
group cells were lower than those of the low-risk group cells. These
results were consistent with the predictions from bioinformatics,
suggesting that the sensitivity of DLBCL patients to chemotherapy
drugs can be predicted on the basis of ERG scores.

3.8 Experimental evaluation of PABPC4
function in DLBCL

In our constructed ERG scoring system, we noted that PABPC4
contributes the most to the degree of risk. To date, the role of
PABPC4 in the development of DLBCL has not been reported.
Therefore, we first analyzed the expression of PABPC4 in DLBCL
via the GEPIA website (http://gepia.cancer-pku.cn). The results
revealed that PABPC4 was significantly upregulated in DLBCL
(Supplementary Figure 10A). We then analyzed the relationship
between PABPC4 expression and the OS of DLBCL patients in the
GSE10846 dataset. We found that patients with high expression of
PABPC4 had a poorer prognosis (Supplementary Figure 10B).
These results suggest that PABPC4 may promote the occurrence
of DLBCL.

Next, we constructed PABPC4-knockdown cell lines from the
DLBCL cell line SU-DHL4 and the Burkitt lymphoma cell line Daudi
(Figure 7A). Compared with that of control cells, the proliferation rate
of sgPABPC4 SU-DHIA4 cells was reduced by approximately 50%
(Figures 7B, C). Moreover, the number of colonies formed
by sgPABPC4 cells was approximately 60% of that formed
by control cells. The viability and number of colonies formed by
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Daudi-sgPABPC4 cells were approximately 30% and 50% of those
formed by the control cells, respectively. (Figures 7D, E). Furthermore,
we assessed the impact of PABPC4 on the proliferation of DLBCL
tumors in vivo via the subcutaneous tumorigenesis method. Compared
with that of the control group, the proliferation ability of sgPABPC4
cells in vivo was significantly reduced (Figures 7F-H), while no
significant change in the body weight of the mice was observed
(Supplementary Figure 10C). Immunohistochemical results revealed
that the Ki67 index percentage in the sgPABPC4 group was
significantly lower than that in the control group (Figures 7I-K).
These results indicate that PABPC4 can promote the proliferation of
DLBCL cells both in vitro and in vivo.

4 Discussion

The pronounced heterogeneity in survival outcomes among
DLBCL patients underscores the critical need for refined risk
stratification. While traditional clinical indices (IPI, R-IPI, NCCN-
IPI) offer valuable prognostic guidance, their reliance solely on clinical
parameters overlooks the impact of molecular heterogeneity and
tumor microenvironment (TME) dynamics (39, 40). Our study
addressed this gap by integrating gene expression profiles of ERGs
with clinical variables. In this study, we established a prognostic
evaluation model based on ERGs via machine learning methods.
This ERG-based classifier assessed the prognosis of DLBCL patients
effectively and emerged as an independent prognostic factor in
multivariate analysis. Critically, the model’s alignment with adverse
clinical features (including age >60 years, ABC subtype, advanced
stage, and elevated LDH) reinforces its biological relevance and
potential utility in treatment personalization.

Beyond prognostication, our model reveals fundamental
mechanisms of DLBCL progression through tumor
microenvironment (TME) reprogramming. High-risk patients
exhibited profound immunosuppressive remodeling characterized
by two synergistic alterations: (1) Cellular imbalance featuring
enrichment of pro-tumorigenic M2 macrophages (established
promoters of DLBCL malignant phenotypes (41, 42)) and
depletion of CD8" T cells [critical effectors of antitumor
immunity (43, 44)]; and (2) Immune checkpoint dysregulation
marked by elevated LAG3 [an inhibitory receptor that suppresses
T-cell activation via MHC class II binding (45, 46)] coupled with
suppression of B2M [impairing MHC-I antigen presentation (31)]
and CD28 [compromising T-cell co-stimulation (48)]. These
findings illuminate how ERG-driven molecular programs foster
an immune-tolerant niche, potentially explaining the poor
outcomes in high-risk patients and suggesting actionable targets
for immunotherapy.

Precision medicine can improve treatment outcomes and prolong
patient survival. Our model’s capacity to predict therapeutic response
represents a key translational advance. We found that patients in the
high-risk group were more sensitive to vincristine, epirubicin, and
oxaliplatin, which was validated in six DLBCL cell lines. This facilitates
rational drug selection for aggressive DLBCL subsets, moving beyond
empirical chemotherapy assignment. Moreover, the convergence of
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ERG scores with immune checkpoint expression further supports
combinatorial strategies.

Additionally, in the ERG scoring system, PABPC4 received the
highest score, suggesting its critical role in the progression of DLBCL.
We generated stable PABPC4-knockdown cell lines via the CRISPR-
Cas9 system, and both in vitro and in vivo studies demonstrated that
the overexpression of PABPC4 promoted tumor proliferation.
PABPC4 is an RNA processing protein that plays a crucial role in
enhancing translation and mRNA stability, thereby promoting gene
expression. Yufeng Yuan and colleagues reported that PABPC4
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contributes to liver cancer progression by stabilizing the mRNAs of
TRIM37 and CDC27 (47). Our study pioneers the functional
characterization of PABPC4 in DLBCL. We had validated that there
was an interaction between ENOI1 and PABPC4 by co-
immunoprecipitation (data not shown), further research is needed to
elucidate the mechanistic basis of PABPC4-driven lymphomagenesis,
particularly its RNA-stabilizing functions in DLBCL-specific contexts.

More importantly, in this study, we discovered that the
functional enrichment of ERGs was associated primarily with
signaling pathways related to RNA splicing and RNA stability.
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Knockdown of PABPC4 inhibits B lymphoma cell proliferation and colony formation in vitro and in vivo. (A) PABPC4 expression in stable sgPABPC4
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() Immunohistochemical results of PABPC4 and Ki67 expression in tumors from different xenograft groups. (J, K) Statistical analysis of the results in (I).

**p< 0.01; ***p< 0.001; ****p< 0.0001.

Previous studies have shown that ENO1 promotes the development
of liver cancer by binding to the YAP and IRP 1 mRNAs (9, 10).
However, to date, there have been no reports regarding the
involvement of ENOI1 in RNA splicing. Therefore, further

experimental validation is needed.

Frontiers in Immunology

Our study has limitations that warrant mention. First, the ERG
signature was derived from a BL cell model, which possesses a
genetic background distinct from that of DLBCL. Nevertheless, its
robust prognostic performance across DLBCL cohorts suggests it

captures fundamental biological processes shared among aggressive
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B-cell lymphomas. Second, the experimental validation does not
distinguish whether the interactions between the model genes and
ENOI1 are direct physical interactions or indirect functional
relationships, a question that merits further investigation.

5 Conclusion

In conclusion, we developed a scoring model based on ERGs
that not only predicts the prognosis of DLBCL patients but also
guides therapeutic decision-making. Furthermore, for the first time,
we validated both in vitro and in vivo that PABPC4 promotes the
progression of DLBCL, offering new perspectives on the underlying
mechanisms of DLBCL development.
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