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Vaccination is one of the most effective methods for controlling animal infectious
diseases, and the use of adjuvants plays crucial role in enhancing the immune
efficacy of vaccines, particularly in inactivated and subunit vaccines. With the
continuous advancement of research in animal immunology and immune
mechanisms, our understanding of the functions of cells and cytokines in
immune responses has become increasingly comprehensive, laying a solid
foundation for the development of novel vaccines and adjuvants. Cytokines are
a class of proteins secreted by the animal body that regulate innate and adaptive
immune responses through interaction with specific receptors. To date,
numerous studies have investigated the potential of using cytokines as
adjuvants to enhance the efficacy of veterinary vaccines. This review focuses
on cytokines as veterinary vaccine adjuvants, with special attention to the current
research progress and mechanisms of cytokines such as interleukins, interferons,
chemokines, and colony-stimulating factors. Additionally, examples of the
application of cytokine-based adjuvants in combination with veterinary
vaccines will be discussed to provide further insights and references for the
development of cytokine-based veterinary adjuvants.
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1 Introduction

Vaccination is one of the most effective strategies for controlling infectious diseases in
livestock and poultry. Adjuvants, as immune enhancers, also play an indispensable role in
the immunological control and prevention of animal diseases. Currently, adjuvants are
widely used in the preparation of vaccines, particularly in those with weaker
immunogenicity such as inactivated vaccines, synthetic peptide vaccines, subunit
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vaccines, and DNA vaccines (1, 2). Adjuvants can effectively reduce
the number of immunizations and the amount of antigens needed,
while directing the immune response towards the desired direction
(3). Additionally, adjuvants help to overcome antigen competition
issues in combined vaccines and improve their efficacy in
immunocompromised animals (4, 5). However, the majority of
veterinary vaccine adjuvants still rely on traditional adjuvants such
as aluminum hydroxide and oil emulsions, which, despite their
widespread use, are often associated with side effects like joint pain
and muscle discomfort (6). For example, the well-known Freund’s
adjuvant can cause severe adverse reactions, leading to local
inflammatory lesions, pain, and discomfort. Given these
limitations, there is an urgent need to develop safer and more
effective new adjuvants to improve vaccine safety and
immune efficacy.

Cytokines are soluble proteins produced upon stimulation by
immunogens, mitogens, or other factors, and they play critical roles
in signal transduction (7). By binding to specific receptors,
cytokines can regulate various biological processes, including
innate and adaptive immunity, hematopoiesis, cell growth, and
tissue repair (8). Recent studies have demonstrated that

10.3389/fimmu.2025.1643855

recombinant cytokines can enhance the host resistance to disease,
improve physiological functions, and maintain immune
homeostasis. These findings suggest that cytokines have
significant potential in enhancing vaccine efficacy and
adjuvant activity.

Cytokines encompass a wide variety of molecules, including
interleukins, interferons, tumor necrosis factor superfamily, colony-
stimulating factors, chemokines, and growth factors. Due to their
origin from the animal’s own body, cytokines are efficient, safe, and
specific, with clear species specificity, which minimizes the risks of
residues and adverse side effects compared to traditional adjuvants.
Using cytokines as adjuvants in veterinary vaccines not only
significantly enhances vaccine efficacy but also ensures the food
safety of livestock and poultry products. Therefore, developing
cytokine-based adjuvants is crucial for supporting the sustainable
growth of the livestock industry and driving socio-economic
progress. With increasing research on cytokines as vaccine
adjuvants, diverse delivery methods and carrier systems have
become a focus. These strategies play critical roles in cytokine
stability, targeting, and immune activation. Figure 1 provides a
schematic illustration of these common approaches.
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FIGURE 1

Delivery methods and carrier systems of cytokines adjuvants in veterinary vaccines.
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This paper discusses the current research on cytokine-based
vaccine adjuvants, with a focus on the application status and
adjuvant mechanisms of major cytokines such as interleukins,
interferons, chemokines, and colony-stimulating factors in
veterinary vaccine development. This review aims to provide
theoretical references and practical guidance for the research and
development of cytokine-based adjuvants.

2 Interleukins

Interleukins (IL) were initially described as cytokines produced
by leukocytes that regulate interactions among these cells. Today,
ILs refer to a family of cytokines with well-characterized molecular
structures and biological functions that play critical roles in
immune regulation. ILs mediate the transmission of information,
activation and regulation of immune cells, as well as the activation,
proliferation, and differentiation of T and B cells. They also play
essential roles in inflammatory responses. Table 1 presents the key

10.3389/fimmu.2025.1643855

mechanisms of cytokine-related vaccines of interleukin class, the
antigens used, and the corresponding supporting literature.

2.11L-1B

IL-1P directly influences the proliferation and differentiation of
CD4 and CD8 T cells, particularly IL-4-producing cells, and also
enhances the tissue localization and memory responses of CD8 T
cells (21). The production and release of IL-1f are stimulated by
pathogen-associated molecular patterns (PAMPs) or damage-
associated molecular patterns (DAMPs). IL-1B as an adjuvant
with a recombinant PRRSV vaccine induce a robust T-cell
immune response, increase IFN-y and IL-4 levels, and elicit
higher serum antibody levels (9). This indicates that IL-1B has a
dual role in enhancing both cellular and humoral immune
responses. Furthermore, IL-1f serves as an effective mucosal
vaccine adjuvant based on the capacity of attracting both innate
and adaptive immune cells through the induction of chemokines

TABLE 1 Comprehensive overview of cytokine-related vaccines of interleukin class: mechanisms, types, antigens, and references.

Related mechanism of action

References

Cytokine name

Promotes T-cell immune responses, enhances levels of IFN-

v and IL-4, and elicits higher serum antibody levels
IL-1B Enhances both cellular and humoral immune responses,
specifically induces tissue-resident memory T cells,
improves heterosubtypic immunity against influenza A
viruses

Enhances the levels of FMDV-specific antibodies, increases

the proliferative responses of antigen-specific spleen cells
IL-2

Induces higher levels of neutralizing antibodies and IL-4

expression, while reducing tissue damage upon challenge

Induces IgG production, promotes Th2 cell differentiation,

reduces organ damage and virus shedding in vaccinated
chickens

Elevates Th1/Th2 cytokine levels, alleviates intestinal
damage

Increases antibody levels, enhances immune responses,
reduces bacterial infection-induced damage, and

IL-6 significantly decreases mortality

Induces earlier and higher antibody titers, enhances vaccine

immunogenicity

Promoting Thl-type immune responses and enhancing

antigen presentation, thereby synergistically boosting both

humoral and cellular immunity
IL-12

Increases IgG antibody levels, induces a mixed IgG1/IgG2a

response dominated by IgG2a, enhances IFN-y secretion,
and prolonged the survival of immunized mice

Vaccine type Antigen

Porcine Reproductive and

Recombinant vaccine Respiratory Syndrome 9)

Virus

Mucosal vaccine Influenza A viruse (10)

. Foot-and-mouth disease
Nanovaccine

(11

virus

Rabbit hemorrhagic disease

DNA vaccine (12)

virus

Recombinant vaccine Newcastle disease virus

(13)

DNA vaccine (14)

Trichinella spiralis

Recombinant DNA vaccine Vibrio harveyi (15)

Inactivated RNA vaccine Rabies virus (16)

DNA vaccine Newcastle disease virus

17)

Recombinant vaccine Toxoplasma gondi (18)

Supports the long-term persistence of CD8+ T cells and
IL-15 extends immune duration, improves levels of neutralizing

antibodies and increased Thl and Th2 responses

Induces higher antibody titers and stronger CTL responses

IL-18 in guinea pigs, compensating for the limited cellular

immunity
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. X Foot-and-mouth disease
Inactivated vaccine (19)

virus

. Foot-and-mouth disease
DNA vaccine (20)

virus
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and adhesion molecules (22), specifically inducing tissue-resident
memory T cells mediated a rapid clearance of secondary IAV
infections in mice, which improves heterosubtypic immunity
against influenza A viruses (10).

2.2 1L-2

IL-2 is a cytokine that promotes the growth of bone marrow-
derived T lymphocytes and was one of the first cytokines to be
characterized at the molecular level (23). IL-2 enhances the growth
activity of various cells, particularly the proliferation of CD4+ and
CD8+ T lymphocytes (24). Additionally, IL-2 promotes the
production of cytokines by natural killer (NK) cells and synergizes
with IL-12 to enhance NK cell cytotoxic activity (25). In B cells, IL-2
primarily influences antibody secretion (26). There have been
numerous reports on the use of recombinant IL-2 as a vaccine
adjuvant (27, 28). Recombinant IL-2 encapsulated in nano-
liposomes significantly enhances the levels of foot-and-mouth
disease virus (FMDV)-specific antibodies and the concentrations of
IFN-y secreted from spleen cells through Thl immune response as
well as maintain longer periods of time to stimulate T and B cell
proliferation and differentiation to improve antibody secretion, which
successfully solves the shortcoming of a short half-life of IL-12.
Additionally, it increases the proliferative responses of antigen-
specific spleen cells, demonstrating its effective adjuvant properties
(11). Co-expression of the IL-2 and VP60 genes in a DNA vaccine for
rabbit hemorrhagic disease induced higher levels of neutralizing
antibodies and IL-4 expression, while reducing tissue damage upon
challenge, confirming the effectiveness of IL-2 as an adjuvant (12).

2.31L-4

IL-4 is a type I cytokine with a four-o-helix bundle structure
that exhibits pleiotropic effects across multiple lineages. While IL-4
is produced by various immune cells, it is primarily secreted by
activated CD4+ T cells (29). IL-4 mediates host sensitization and
parasitic responses via IgE and induces IgG production, particularly
IgGl in B cells (30-32). In humans and mice, IL-4 acts as a T-cell
growth factor and promotes Th2 cell differentiation. Studies have
shown that recombinant Newcastle disease virus (NDV) expressing
chicken IL-4 significantly reduced organ damage and virus
shedding in vaccinated chickens compared to wild-type virus,
indicating potential antiviral and protective adjuvant effects of IL-
4 (13). As a genetic adjuvant, IL-4 co-expressed in a Trichinella
spiralis DNA vaccine significantly elevated Th1/Th2 cytokine levels,
alleviated intestinal damage, and demonstrated effective adjuvant
functionality (14).

2.4 1L-6

IL-6 is a multifunctional pro-inflammatory cytokine with
diverse roles in inflammation, immune responses, and
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hematopoiesis. IL-6 synergizes with transforming growth factor-3
(TGF-B) to promote the differentiation of naive CD4+ T cells,
thereby enhancing adaptive immune responses (33). Furthermore,
IL-6 promotes the production of IL-21, aids in the differentiation of
T follicular helper (Tth) cells (34) and CD8+ T cells (35), and
induces B cell differentiation into plasma cells (36), thereby
enhancing antibody production. The co-expression of IL-6 as the
molecular adjuvant with FMDV DNA vaccine, induced a higher
ratio ofIgG2a/IgG1, higher levels of expression of IFN-yin CD4+
and CD8+ T cells, IL-4 in CD4+ T cells, and in vivo antigen-specific
cytotoxic response, which confirm both Thl and Th2 immune
response are activated (37). Both recombinant IL-6 protein and
plasmids expressing the IL-6 gene have been used as adjuvants in
studies on Japanese flounder (Paralichthys olivaceus). These
adjuvants increased antibody levels, enhanced immune responses,
reduced bacterial infection-induced damage, and significantly
decreased mortality (15). Moreover, vaccination of mice with
recombinant rabies virus expressing IL-6 resulted in earlier and
higher antibody titers compared to the wild-type virus,
demonstrating the potential adjuvant activity of IL-6 in

enhancing vaccine immunogenicity (16).

2.51L-12

IL-12 is a member of the interleukin-12 (IL-12) family cytokines
with an integral effect in activating cellular immune responses in
mammals (38). When pathogens infect the host, IL-12 stimulates
Thl cell to release IFN-y, promoting the Thl cellular immune
response and enhance the host’s property to clear the pathogens.
For intracellular pathogens, IL-12 induces macrophages or
cytotoxic T lymphocytes (CTLs) to destroy infected cells (39, 40).
Macrophages exhibit strengthened activation activities based on
regulation of IL-12 and upregulate the production and release of
nitric oxide (NO) to further enhance the ability for antigen
clearance (41). Multiple functional studies have highlighted IL-12
as a potential vaccine adjuvant with immunomodulatory properties.
Co-delivery of an IL-12-expressing plasmid with an NDV F gene
DNA vaccine using electroporation has been shown to significantly
enhance immune responses in chickens, resulting in higher
neutralizing antibody levels, increased lymphocyte proliferation,
reduced viral shedding, and complete protection compared to the
DNA vaccine alone (17). In addition, co-immunization with an IL-
12 eukaryotic expression plasmid and a Toxoplasma gondii multi-
epitope vaccine (pcROP8) enhanced the Thl response and IFN-y
secretion, thereby providing heightened vaccine protection (18).

2.6 IL-15

IL-15 is a critical factor for the development, proliferation, and
activation of effector NK cells and CD8+ memory T cells. It plays
important roles in NK cell proliferation, cytotoxicity, cytokine
production, NK cell-macrophage interactions, and the
maintenance of CD4+/CD8+ memory T cell homeostasis (42). IL-
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15 supports the long-term persistence of CD8+ T cells and
effectively extends immune duration, making it a preferred
adjuvant for improving immune responses and vaccine longevity
(43). The inactivated vaccine is short activities to the immune
response, when bovine-derived IL-15 has been used as an adjuvant
in guinea pigs immunized with an inactivated FMDYV vaccine, the
IL-15 adjuvanted vaccine maintained neutralizing antibody levels
for up to six months in animals receiving. As well as Compared to
animals immunized with the inactivated vaccine alone, those
vaccinated with IL-15 adjuvants exhibited stronger Thl and Th2
immune responses (19).

2.6 IL-18

IL-18, initially identified as an interferon-y-inducing factor (44),
synergizes with IL-12, mitogens, or microbial agents to promote
IFN-y production by T cells and NK cells (45-47). IL-18 also
induces the expression of granulocyte-macrophage colony-
stimulating factor (GM-CSF) in peripheral blood mononuclear
cells (PBMCs) (44, 48-50) and stimulates IL-13 production (51).
When IL-18 plasmids encapsulated in PLGA nanoparticles were
used as adjuvants in combination with a foot-and-mouth disease
virus DNA vaccine, they induced higher antibody titers and
stronger CTL responses in guinea pigs, compensating for the
limited cellular immunity often observed with inactivated FMDV
vaccines (20).

3 Interferons

Interferons (IFNs) are a large class of cytokines that are critical in
activating the immune response of the host. IFNs are categorized into
three types: Type I, Type II, and Type III, all of which have the ability
to activate antiviral activity by interacting with their respective
receptors (52). Type I IFNs (primarily IFN-o, -, and -)
participate in viral clearance by inducing immune responses and
provide protection against acute viral infections. Type II IFN (IFN-y),
primarily produced by activated NK cells and T cells, plays a pivotal
role in both innate and adaptive immunity (53). Type III IFNs (IFN-
Al, -A2, and -A3) are associated with antiviral immune responses at
epithelial surfaces, with their receptors being most abundantly
expressed in cells of epithelial origin (54, 55). Table 2 presents the
key mechanisms of cytokine-related vaccines of interferons class, the
antigens used, and the corresponding supporting literature.

3.1 Type | IFNs

Type I IFNs possess immunomodulatory properties and can
regulate the activity of other cytokines (62). They enhance the
maturation and activation of dendritic cells (56, 63), promote Th1-
type immune responses, and activate B cells to facilitate antibody
production (64, 65). A combination of recombinant porcine IFN-o
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protein and inactivated influenza vaccine has been shown to
significantly upregulate the expression of immunomodulatory
cytokines such as IL-2, IL-6, IL-10, IL-18, and IFN-y. This
combination also significantly increases the transcription of
homing factors CCR9 and CCRI10, induces a strong mucosal
innate immune response, and enhances antibody levels (53). In
another study, immunization with a Venezuelan equine
encephalitis virus (VEEV) vaccine containing an IFN-o plasmid
adjuvant in mice resulted in the robust expression of antiviral
proteins and induced specific immunity against VEEV (57).

3.2 Type Il IFN

Type I IEN is primarily produced by activated Th cells and NK
cells (66). It is a multifunctional homodimeric cytokine, with IFN-y
being its sole member (58, 59). The main biological function of IFN-
Yy is to induce the expression of various immune factors, thereby
enhancing the body’s immune response. Several studies have
demonstrated that IFN-y is an effective adjuvant for veterinary
vaccines. For instance, immunization of mice with a recombinant
Hyalomma asiaticum rHasCPL protein subunit vaccine combined
with an IFN-y adjuvant increased the production of IFN-yand IL-4,
enhanced antibody levels, and improved the protective efficacy of
the vaccine in mice (67). In vitro experiments have shown that the
expression of porcine IFN-y can significantly enhance the pro-
inflammatory immune response in cells infected with PRRSV (68).
Additionally, in Japanese flounder, the use of an IFN-y adjuvant
with an Edwardsiella tarda subunit vaccine effectively increased
survival rates, upregulated the expression of immune-related genes,
and enhanced antibody production (69). Furthermore, a study
assessing the immunoadjuvant effects of a recombinant poIFN-y-
poGM-CSF fusion protein in an inactivated PRRSV vaccine
administered to piglets found that the coadministration of poIFN-
v-linker-poGM-CSF and PRRSV KV significantly increased
neutralizing antibody titers, accelerated viral clearance, reduced
clinical symptoms, and prevented highly pathogenic PRRSV
infection (70). This reinforces the critical role of IFN-y and its
fusion proteins in enhancing vaccine efficacy and providing
protection against viral infections in veterinary medicine.

3.3 Type IIl IFN

Type III IFNs (IFN-A1, A2, and A3) are structurally related to
Type I TFNs and the IL-10 family (60), and are also known as IL-29,
IL-28a, and IL-28b (61, 71). Their receptor, IL-28Rq, is expressed
on a limited range of cells such as macrophages, peripheral blood
lymphocytes, conventional dendritic cells, epithelial cells, and
plasmacytoid dendritic cells (61, 72). IFN-A primarily acts on
these cell types to regulate antiviral immunity, thus possessing
potential as an adjuvant to enhance immune responses. In studies
where a Porcine Reproductive and Respiratory Syndrome (PRRS)
DNA vaccine expressing IFNA1 was used to immunize mice, there
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TABLE 2 Comprehensive overview of cytokine-related vaccines of interferon

Cytokine name Related mechanism of action

Upregulates the expression of immunomodulatory

cytokines such as IL-2, IL-6, IL-10, IL-18, and IFN-y,

increases the transcription of homing factors CCR9
Type I IFNs (primarily IFN- and CCR10, induces a strong mucosal innate immune
@, -B, and -0) response, and enhances antibody levels

Promotes strong expression of antiviral proteins and

10.3389/fimmu.2025.1643855

class: mechanisms, types, antigens, and references.

Vaccine type Antigen References

Combination vaccine Influenza virus (51)

Venezuelan equine

. ° K R Recombinant vaccine s (56)
induces specific immunity against VEEV encephalitis virus
Induces the expression of various immune factors,
increases the production of IFN-y and IL-4, enhances . . L

L. . Subunit vaccine Hyalomma asiaticum (57)
the body's immune response and antibody levels,
improves the protective efficacy of the vaccine in mice
Increases survival rates, upregulates the expression of

Type II IFN (IFN-y) K preg K P R . Edwardsiella tarda

immune-related genes, and enhances antibody Subunit vaccine (58)

. (enterobacter)
production
Increases neutralizing antibody titers, accelerates viral . .

e . . Porcine reproductive and
clearance, reduces clinical symptoms, and prevents Inactivated vaccine K . (59)
. . . . respiratory syndrome virus
highly pathogenic PRRSV infection
Type III TENs (IEN-AL, )2 Regulates antiviral immunity, upregulates serum Porci ducti d
e s -AL A2, o . L . orcine reproductive an
P antibodies and activates the STAT signaling pathway, DNA vaccine P (60, 61)

and A3
) and enhances the immune protective effect of vaccine

was an upregulation of serum antibodies and activation of the STAT
signaling pathway. This suggests that IFNA1 can enhance the
immune protective effect of PRRSV DNA vaccines (73, 74).

4 Chemokines

Chemokines are a class of cytokines that play a significant role
in inducing cell migration and motility, stimulating intracellular
signaling pathways (75). They regulate lymphocyte development,
activation, and effector functions and play a crucial role in immune
surveillance. Many chemokines have been shown to be effective
immunological adjuvants, enhancing the protective effects induced
by viral, bacterial, and parasitic vaccines (76, 77). They are
categorized into four major subclasses based on their conserved
cysteine motifs, known as C, CC, CXC, and CX3C (78). Table 3
presents the key mechanisms of cytokine-related vaccines of
chemokines class, the antigens used, and the corresponding
supporting literature.

41CCL4

CCL4, also known as Macrophage Inflammatory Protein-1§3
(MIP-1B) (79), is effective chemoattractant for CD4+CD25+ T cell
populations and is a phenotypic characteristic of regulatory T cells
(80). CCL35.2 in crucian carp has the highest identity with
mammalian CCL4. Using CCL35.2 plasmid adjuvant in
combination with a DNA vaccine to immunize crucian carp can
effectively upregulate the mRNA expression of key immune genes
IL-1PB, IL-2, IFN-Y2, and viperin in Carassius auratus gibelio. It also
increases the levels of complement C3, lysozyme, and total
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respiratory syndrome virus

superoxide dismutase, significantly enhancing the resistance of
crucian carp to Cyprinid herpesvirus 2 (81).

4.2 CCL28

CCL28, also known as Mucosa-Associated Epithelial Chemokine
(MEC), has unique immunoregulatory properties in various mucosal
areas, attracting IgA and directing their migration to different
mucosal sites (82, 83). Many chemokines are effective immune
adjuvants in various model systems, enhancing protection induced
by viral, bacterial, and parasitic vaccines, and regulating the direction
and magnitude of induced immune responses produced by DNA,
protein, subunit, or peptide vaccines (77). When used as a virus-like
particle (VLP) vaccine adjuvant for influenza vaccines, CCL28 can act
as an immune stimulant in a membrane-bound form, eliciting a
systemic mucosal immune response and significantly enhancing the
host’s cross-protective efficacy against heterologous viruses (84).
Furthermore, studies have shown that the addition of a CCL28
adjuvant in H3N2 influenza vaccines can induce a significant
increase in IgA levels and hemagglutination inhibition (HI) titers,
enhancing long-term cross-protection against H3N2 influenza virus
(85). A vaccination strategy that employs the intramuscular co-
delivery of CCL27 or CCL28 has been shown to generate strong
systemic and local immune responses, leading to the production of
long-lived antibodies that neutralize influenza (86).

5 Colony-stimulating factors

Members of the CSF superfamily are involved in the generation of
mammalian bone marrow cells, including monocytes, macrophages,

frontiersin.org
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TABLE 3 Comprehensive overview of cytokine-related vaccines of chemokines class: mechanisms, types, antigens, and references.

Cytokine name Related mechanism of action Vaccine type Antigen References

Effectively lures CD4+, CD25+ T cells, regulates T

CCL4
cells

DNA vaccine Vibrio anguillarum (76)

Upregulates the mRNA expression of key immune
genes IL-IB, IL-2, TEN-y2, and viperin in Carassius
auratus gibelio, increases the levels of complement
C3, lysozyme, and total superoxide dismutase, as
well as enhances resistance to pathogens

CCL35.2 DNA vaccine Cyprinid herpesvirus 2 (77)

eliciting a systemic mucosal immune response,
significantly enhancing the host's cross-protective
efficacy against heterologous viruses, producing
long-lived antibodies, and improving mucosal
antibody levels and local immune responses.

Chimeric virus-like H3N2 subtype Influenza

virus

79, 80
particles vaccine ( )

CCL28

Elicited elevated peripheral IFN-gamma and

long-lived antibody responses

dendritic cells, and polymorphonuclear phagocytes such as neutrophils
and eosinophils. This family contains three key members: Macrophage
Colony-Stimulating Factor (M-CSF or CSF-1), Granulocyte Colony-
Stimulating Factor (G-CSF or CSF-3), and Granulocyte-Macrophage
Colony-Stimulating Factor (GM-CSF or CSF-2). Among these, GM-
CSF has been extensively studied for its potential as an adjuvant.
Table 4 presents the key mechanisms of cytokine-related vaccines of
colony stimulate factor, the antigens used, and the corresponding
supporting literature.

5.1 GM-CSF

GM-CSF is a hematopoietic growth factor produced by various
immune cells (87). It stimulates the proliferation and differentiation
of bone marrow progenitor cells into granulocytes and
macrophages (88), as well as activating and maintaining mature
bone marrow cells (89). GM-CSF responds to immune cell survival,
differentiation, and proliferation by inducing various signaling
pathways, which is a key step in helping the immune system fight
infections (90). GM-CSF levels significantly increase during
inflammatory responses (90, 91), and multiple studies have
demonstrated that T cell-derived GM-CSF plays an essential role
in immune responses against a variety of pathogens, such as
Mycobacterium tuberculosis, Epstein-Barr virus, and Human

antigen-specific IgG while driving antigen-specific T-
cell secretion of cytokine and antibody production,

HIN1 subtype Influenza

DNA vaccine K
virus

(81)

Immunodeficiency Virus and the rabies virus (92-96). Based on
its pro-inflammatory effects induced by recruiting and activating
bone marrow cells (90), recombinant pGM-CSF has been tested as a
co-adjuvant with pFLIC protein in conjunction with a Porcine
Circovirus (PCV) vaccine to immunize pigs. This approach
significantly elevated PCV-specific antibody levels, stimulated
CD4+ and CD8+ T cell proliferation, and upregulated the
transcription of IL-1, IL-8, and IL-17, indicating a robust
enhancement of both humoral and cellular immune responses
(97). Similarly, the combination of GM-CSF and APS as a
complex immunostimulant in a PRV vaccine model resulted in
higher levels of PRV-specific gB and neutralizing antibodies, and
concurrently increased the production of cytokines including IL-4,
IL-10, IL-2, and IEN-7y (98). These findings indicate that GM-CSF-
based adjuvant strategies have promising application prospects.

6 Other cytokines with adjuvant
potential

Other cytokines reported to have potential as veterinary vaccine
adjuvants include Interferon-Induced Transmembrane Proteins
(IFITMs), B-cell Activating Factor (BAFF), o-Galactosylceramide
(a-GalCer), Fms-like Tyrosine Kinase 3 Ligand (FLT3-L), and

TABLE 4 Comprehensive overview of cytokine-related vaccines of colony stimulate factor: mechanisms, types, antigens, and references.

Related mechanism of action

Cytokine name

Vaccine type Antigen References

Stimulates the proliferation and differentiation of bone marrow
progenitor cells into granulocytes and macrophages, activates and
maintains mature bone marrow cells, as well as plays an essential

GM-CSF

Elevates PCV-specific antibody levels, stimulates CD4+ and CD8+
T cell proliferation, upregulates the transcription of IL-1, IL-8, and

IL-17, and also enhances immune protection

Frontiers in Immunology

role in immune responses against a variety of pathogens

Mycobacterium
tuberculosis, Epstein-
Recombinant vaccine Barr virus, Human (77, 83-90)
Immunodeficiency Virus

and so on

Inactivated vaccines and i . X .
i X Porcine circovirus virus (90)
subunit vaccines
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CD40L (Table 5). IFITMs: Transgenic chickens overexpressing
IFITM1 can effectively resist H5N1 influenza virus infection by
inhibiting viral replication within the body (99). Although most
studies on chicken IFITMI and IFITM3 functionality have been
conducted in vitro or in chicken embryos (100), recent findings
suggest that recombinant avian-derived antiviral proteins, including
cIFITM1, cIFITM3, and cViperin, can serve as effective adjuvants in
inactivated HON2 subtype avian influenza vaccines (101). This
highlights the potential of these proteins not only in enhancing
viral resistance but also in improving the efficacy of avian influenza
vaccines. BAFF: Incorporating membrane-anchored BAFF into
Rabies Virus (RABV) virus-like particles (VLPs) induced higher
antibody titers compared to inactivated RABV vaccines,
demonstrating that BAFF is an effective membrane-anchored
molecular adjuvant (102) a-GalCer: When used as an adjuvant
with an inactivated HIN1 swine influenza vaccine administered
intranasally, oi-GalCer enhanced Thl cytokine (IFN-y and IL-12)
secretion in the lungs, reduced the levels of immunosuppressive
cytokines (IL-10 and TGF-f), and decreased lung viral loads (103).
FLT3-L: Exogenous FLT3-L addition promoted the proliferation of
CD141+ dendritic cells (DCs) and CDl1c+ DCs in mouse blood,
spleen, and bone marrow, thereby improving antigen presentation
capabilities. This indicates its potential to enhance vaccine
immunogenicity and promote antigen recognition, although
research is currently limited and requires further exploration
(104). CD40L: The co-administration of plasmid-expressed
CD40L with Montanide " GELO1 adjuvant enhanced the
protective efficacy of a Bovine Herpesvirus-1 (BoHV-1) DNA
vaccine. This combination increased the percentage of PBMCs
and upregulated the expression of IFN-v and IL-4 in cattle (105).
The co-expression of CD40L and CD205 also receive the similar
results (106).

10.3389/fimmu.2025.1643855

7 Conclusion

In modern veterinary vaccine industries, vaccine adjuvants are
considered crucial bridges between innate and adaptive immunity.
An effective adjuvant can enhance the immunogenicity of a vaccine
through various mechanisms, including promoting cytokine
production, inducing antibody generation, regulating immune
type switching, optimizing surface delivery to immune tissues,
and improving the uptake efficiency of antigen-presenting cells.
Moreover, the application of nanomaterials holds promise for
further enhancing the effects of cytokine adjuvants by optimizing
release characteristics and improving bioavailability, thus providing
new support for immunological enhancement of vaccines (107,
108). As shown in Figure 2, the potential benefits of cytokines as
vaccine adjuvants include different types of cytokines and their
corresponding mechanisms, which play a crucial role in enhancing
the immunogenicity of vaccines. This review summarizes the
research and applications of different cytokines as veterinary
vaccine adjuvants.

Interleukin enhances humoral and cellular immunity, induces
Th1 and Th2 type responses in key effector cells, thereby prolonging
the duration of immunity and improving the actual protective effect
of vaccines. Interferon can upregulate the expression of immune
regulatory cytokines and activate key signaling pathways such as
STAT. On the one hand, it promotes high-level immune responses
in mucosal areas, and on the other hand, it synergistically enhances
humoral and cellular immunity at the systemic level, activating
multifunctional T cell responses. In addition, interferon can
stimulate strong pro-inflammatory responses while also avoiding
pathological damage by regulating T cells and other mechanisms,
endowing vaccines with faster onset speed, wider cross protection
range, stronger pathogen clearance ability, and significantly

TABLE 5 Comprehensive overview of cytokine-related vaccines of other cytokines: mechanisms, types, antigens, and references.

Related mechanism of action

Cytokine name

Vaccine type Antigen References

Resists virus infection by inhibiting viral replication within the

body

H5N1 subt; infls
Inactivated vaccine subtype trtuenza 1)

virus

IFITM1

vaccines, inhibits the replication, invasion, and spread of HON2

ATV within the host

Enhances viral resistance and the efficacy of avian influenza

HIN2 subtype avian

Inactivated vaccine . .
influenza virus

(93)

Induces higher antibody titers, improves the speed and intensity of

BAFF

anchored molecular adjuvant, may enhance the efficacy of

currently used inactivated vaccines based on rabies.

anti rabies antibody response, and as an effective membrane-

Inactivated vaccine Rabies virus (94)

Enhances Thl cytokine (IFN-y and IL-12) secretion in the lungs,

reduces the levels of immunosuppressive cytokines (IL-10 and

o-GalCer

TGF-B), and decreases lung viral loads, as well as enhances the

HIN1 subtype swine
Inactivated vaccine P (95)

influenza virus

cross protective immunity of vaccines and innate and adaptive

immune responses to antigens

FLT3-L . . . .
immunogenicity and promotes antigen recognition

Enhances the protective efficacy of vaccines, increases the

CD40L
upregulates the expression of IFN-y and IL-4 in cattle
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Improvs antigen presentation capabilities, enhances vaccine

percentage of peripheral blood mononuclear cells (PBMCs) and

Recombinant vaccine No specific pathogen (96)

DNA vaccine Bovine Herpesvirus-1 97)
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FIGURE 2
Potential benefits of cytokines as adjuvants in in veterinary vaccines.

prolonged protection duration. Chemokines can precisely regulate
immune cells such as CD4+, CD25+T cells, fully activate immune
molecules, induce the expression of specific antiviral proteins,
enhance immune response, and increase antibody levels. GM-CSF
serves as a bridge between innate and acquired immunity, activating
cells to promote the quantity and function of antigen-presenting
cells, and significantly increasing pathogen specific antibody levels
and enhancing immune protection against pathogens. Due to their
natural presence in the host organism, cytokines exhibit good
biocompatibility and safe immunomodulatory effects,
demonstrating significant potential as candidate adjuvants for
vaccines. In recent years, numerous studies have explored the use
of cytokines as vaccine adjuvants, clarifying the mechanisms by
which they enhance immune responses. These studies indicate that
cytokine-based adjuvants can effectively improve the
immunogenicity of vaccines. Furthermore, the combination of
various cytokines as adjuvants represents a promising strategy

Frontiers in Immunology

and may become a major focus for future adjuvant research and
development (109, 110).

With the development of new technologies, the advancement of
novel adjuvants is imperative, while their side effects must be
continuously monitored to ensure vaccine safety. For low-cost
veterinary vaccines, reducing the production cost of new
adjuvants is particularly crucial (111). Additionally, research into
the combination of nanomaterials and cytokines will further
promote the application of novel cytokine-based adjuvants,
supporting their feasibility in the veterinary vaccine market.
However, to date, no commercialized cytokine-based veterinary
vaccine adjuvants have been introduced. Given the frequent
occurrence of animal diseases, future research must continuously
improve veterinary vaccines and their adjuvants. This will provide
new solutions to address the ever-evolving challenges posed by
infectious diseases, thus enhancing animal health and the
sustainable development of the livestock industry.
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