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Vaccination is one of themost effective methods for controlling animal infectious

diseases, and the use of adjuvants plays crucial role in enhancing the immune

efficacy of vaccines, particularly in inactivated and subunit vaccines. With the

continuous advancement of research in animal immunology and immune

mechanisms, our understanding of the functions of cells and cytokines in

immune responses has become increasingly comprehensive, laying a solid

foundation for the development of novel vaccines and adjuvants. Cytokines are

a class of proteins secreted by the animal body that regulate innate and adaptive

immune responses through interaction with specific receptors. To date,

numerous studies have investigated the potential of using cytokines as

adjuvants to enhance the efficacy of veterinary vaccines. This review focuses

on cytokines as veterinary vaccine adjuvants, with special attention to the current

research progress and mechanisms of cytokines such as interleukins, interferons,

chemokines, and colony-stimulating factors. Additionally, examples of the

application of cytokine-based adjuvants in combination with veterinary

vaccines will be discussed to provide further insights and references for the

development of cytokine-based veterinary adjuvants.
KEYWORDS
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1 Introduction

Vaccination is one of the most effective strategies for controlling infectious diseases in

livestock and poultry. Adjuvants, as immune enhancers, also play an indispensable role in

the immunological control and prevention of animal diseases. Currently, adjuvants are

widely used in the preparation of vaccines, particularly in those with weaker

immunogenicity such as inactivated vaccines, synthetic peptide vaccines, subunit
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vaccines, and DNA vaccines (1, 2). Adjuvants can effectively reduce

the number of immunizations and the amount of antigens needed,

while directing the immune response towards the desired direction

(3). Additionally, adjuvants help to overcome antigen competition

issues in combined vaccines and improve their efficacy in

immunocompromised animals (4, 5). However, the majority of

veterinary vaccine adjuvants still rely on traditional adjuvants such

as aluminum hydroxide and oil emulsions, which, despite their

widespread use, are often associated with side effects like joint pain

and muscle discomfort (6). For example, the well-known Freund’s

adjuvant can cause severe adverse reactions, leading to local

inflammatory lesions, pain, and discomfort. Given these

limitations, there is an urgent need to develop safer and more

effective new adjuvants to improve vaccine safety and

immune efficacy.

Cytokines are soluble proteins produced upon stimulation by

immunogens, mitogens, or other factors, and they play critical roles

in signal transduction (7). By binding to specific receptors,

cytokines can regulate various biological processes, including

innate and adaptive immunity, hematopoiesis, cell growth, and

tissue repair (8). Recent studies have demonstrated that
Frontiers in Immunology 02
recombinant cytokines can enhance the host resistance to disease,

improve physiological functions, and maintain immune

homeostasis. These findings suggest that cytokines have

significant potential in enhancing vaccine efficacy and

adjuvant activity.

Cytokines encompass a wide variety of molecules, including

interleukins, interferons, tumor necrosis factor superfamily, colony-

stimulating factors, chemokines, and growth factors. Due to their

origin from the animal’s own body, cytokines are efficient, safe, and

specific, with clear species specificity, which minimizes the risks of

residues and adverse side effects compared to traditional adjuvants.

Using cytokines as adjuvants in veterinary vaccines not only

significantly enhances vaccine efficacy but also ensures the food

safety of livestock and poultry products. Therefore, developing

cytokine-based adjuvants is crucial for supporting the sustainable

growth of the livestock industry and driving socio-economic

progress. With increasing research on cytokines as vaccine

adjuvants, diverse delivery methods and carrier systems have

become a focus. These strategies play critical roles in cytokine

stability, targeting, and immune activation. Figure 1 provides a

schematic illustration of these common approaches.
FIGURE 1

Delivery methods and carrier systems of cytokines adjuvants in veterinary vaccines.
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This paper discusses the current research on cytokine-based

vaccine adjuvants, with a focus on the application status and

adjuvant mechanisms of major cytokines such as interleukins,

interferons, chemokines, and colony-stimulating factors in

veterinary vaccine development. This review aims to provide

theoretical references and practical guidance for the research and

development of cytokine-based adjuvants.
2 Interleukins

Interleukins (IL) were initially described as cytokines produced

by leukocytes that regulate interactions among these cells. Today,

ILs refer to a family of cytokines with well-characterized molecular

structures and biological functions that play critical roles in

immune regulation. ILs mediate the transmission of information,

activation and regulation of immune cells, as well as the activation,

proliferation, and differentiation of T and B cells. They also play

essential roles in inflammatory responses. Table 1 presents the key
Frontiers in Immunology 03
mechanisms of cytokine-related vaccines of interleukin class, the

antigens used, and the corresponding supporting literature.
2.1 IL-1b

IL-1b directly influences the proliferation and differentiation of

CD4 and CD8 T cells, particularly IL-4-producing cells, and also

enhances the tissue localization and memory responses of CD8 T

cells (21). The production and release of IL-1b are stimulated by

pathogen-associated molecular patterns (PAMPs) or damage-

associated molecular patterns (DAMPs). IL-1b as an adjuvant

with a recombinant PRRSV vaccine induce a robust T-cell

immune response, increase IFN-g and IL-4 levels, and elicit

higher serum antibody levels (9). This indicates that IL-1b has a

dual role in enhancing both cellular and humoral immune

responses. Furthermore, IL-1b serves as an effective mucosal

vaccine adjuvant based on the capacity of attracting both innate

and adaptive immune cells through the induction of chemokines
TABLE 1 Comprehensive overview of cytokine-related vaccines of interleukin class: mechanisms, types, antigens, and references.

Cytokine name Related mechanism of action Vaccine type Antigen References

IL-1b

Promotes T-cell immune responses, enhances levels of IFN-
g and IL-4, and elicits higher serum antibody levels

Recombinant vaccine
Porcine Reproductive and
Respiratory Syndrome
Virus

(9)

Enhances both cellular and humoral immune responses,
specifically induces tissue-resident memory T cells,
improves heterosubtypic immunity against influenza A
viruses

Mucosal vaccine Influenza A viruse (10)

IL-2

Enhances the levels of FMDV-specific antibodies, increases
the proliferative responses of antigen-specific spleen cells

Nanovaccine
Foot-and-mouth disease
virus

(11)

Induces higher levels of neutralizing antibodies and IL-4
expression, while reducing tissue damage upon challenge

DNA vaccine
Rabbit hemorrhagic disease
virus

(12)

IL-4

Induces IgG production, promotes Th2 cell differentiation,
reduces organ damage and virus shedding in vaccinated
chickens

Recombinant vaccine Newcastle disease virus (13)

Elevates Th1/Th2 cytokine levels, alleviates intestinal
damage

DNA vaccine Trichinella spiralis (14)

IL-6

Increases antibody levels, enhances immune responses,
reduces bacterial infection-induced damage, and
significantly decreases mortality

Recombinant DNA vaccine Vibrio harveyi (15)

Induces earlier and higher antibody titers, enhances vaccine
immunogenicity

Inactivated RNA vaccine Rabies virus (16)

IL-12

Promoting Th1-type immune responses and enhancing
antigen presentation, thereby synergistically boosting both
humoral and cellular immunity

DNA vaccine Newcastle disease virus (17)

Increases IgG antibody levels, induces a mixed IgG1/IgG2a
response dominated by IgG2a, enhances IFN-g secretion,
and prolonged the survival of immunized mice

Recombinant vaccine Toxoplasma gondi (18)

IL-15
Supports the long-term persistence of CD8+ T cells and
extends immune duration, improves levels of neutralizing
antibodies and increased Th1 and Th2 responses

Inactivated vaccine
Foot-and-mouth disease
virus

(19)

IL-18
Induces higher antibody titers and stronger CTL responses
in guinea pigs, compensating for the limited cellular
immunity

DNA vaccine
Foot-and-mouth disease
virus

(20)
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and adhesion molecules (22), specifically inducing tissue-resident

memory T cells mediated a rapid clearance of secondary IAV

infections in mice, which improves heterosubtypic immunity

against influenza A viruses (10).
2.2 IL-2

IL-2 is a cytokine that promotes the growth of bone marrow-

derived T lymphocytes and was one of the first cytokines to be

characterized at the molecular level (23). IL-2 enhances the growth

activity of various cells, particularly the proliferation of CD4+ and

CD8+ T lymphocytes (24). Additionally, IL-2 promotes the

production of cytokines by natural killer (NK) cells and synergizes

with IL-12 to enhance NK cell cytotoxic activity (25). In B cells, IL-2

primarily influences antibody secretion (26). There have been

numerous reports on the use of recombinant IL-2 as a vaccine

adjuvant (27, 28). Recombinant IL-2 encapsulated in nano-

liposomes significantly enhances the levels of foot-and-mouth

disease virus (FMDV)-specific antibodies and the concentrations of

IFN-g secreted from spleen cells through Th1 immune response as

well as maintain longer periods of time to stimulate T and B cell

proliferation and differentiation to improve antibody secretion, which

successfully solves the shortcoming of a short half-life of IL-12.

Additionally, it increases the proliferative responses of antigen-

specific spleen cells, demonstrating its effective adjuvant properties

(11). Co-expression of the IL-2 and VP60 genes in a DNA vaccine for

rabbit hemorrhagic disease induced higher levels of neutralizing

antibodies and IL-4 expression, while reducing tissue damage upon

challenge, confirming the effectiveness of IL-2 as an adjuvant (12).
2.3 IL-4

IL-4 is a type I cytokine with a four-a-helix bundle structure

that exhibits pleiotropic effects across multiple lineages. While IL-4

is produced by various immune cells, it is primarily secreted by

activated CD4+ T cells (29). IL-4 mediates host sensitization and

parasitic responses via IgE and induces IgG production, particularly

IgG1 in B cells (30–32). In humans and mice, IL-4 acts as a T-cell

growth factor and promotes Th2 cell differentiation. Studies have

shown that recombinant Newcastle disease virus (NDV) expressing

chicken IL-4 significantly reduced organ damage and virus

shedding in vaccinated chickens compared to wild-type virus,

indicating potential antiviral and protective adjuvant effects of IL-

4 (13). As a genetic adjuvant, IL-4 co-expressed in a Trichinella

spiralis DNA vaccine significantly elevated Th1/Th2 cytokine levels,

alleviated intestinal damage, and demonstrated effective adjuvant

functionality (14).
2.4 IL-6

IL-6 is a multifunctional pro-inflammatory cytokine with

diverse roles in inflammation, immune responses, and
Frontiers in Immunology 04
hematopoiesis. IL-6 synergizes with transforming growth factor-b
(TGF-b) to promote the differentiation of naïve CD4+ T cells,

thereby enhancing adaptive immune responses (33). Furthermore,

IL-6 promotes the production of IL-21, aids in the differentiation of

T follicular helper (Tfh) cells (34) and CD8+ T cells (35), and

induces B cell differentiation into plasma cells (36), thereby

enhancing antibody production. The co-expression of IL-6 as the

molecular adjuvant with FMDV DNA vaccine, induced a higher

ratio ofIgG2a/IgG1, higher levels of expression of IFN-gin CD4+

and CD8+ T cells, IL-4 in CD4+ T cells, and in vivo antigen-specific

cytotoxic response, which confirm both Th1 and Th2 immune

response are activated (37). Both recombinant IL-6 protein and

plasmids expressing the IL-6 gene have been used as adjuvants in

studies on Japanese flounder (Paralichthys olivaceus). These

adjuvants increased antibody levels, enhanced immune responses,

reduced bacterial infection-induced damage, and significantly

decreased mortality (15). Moreover, vaccination of mice with

recombinant rabies virus expressing IL-6 resulted in earlier and

higher antibody titers compared to the wild-type virus,

demonstrating the potential adjuvant activity of IL-6 in

enhancing vaccine immunogenicity (16).
2.5 IL-12

IL-12 is a member of the interleukin-12 (IL-12) family cytokines

with an integral effect in activating cellular immune responses in

mammals (38). When pathogens infect the host, IL-12 stimulates

Th1 cell to release IFN-g, promoting the Th1 cellular immune

response and enhance the host’s property to clear the pathogens.

For intracellular pathogens, IL-12 induces macrophages or

cytotoxic T lymphocytes (CTLs) to destroy infected cells (39, 40).

Macrophages exhibit strengthened activation activities based on

regulation of IL-12 and upregulate the production and release of

nitric oxide (NO) to further enhance the ability for antigen

clearance (41). Multiple functional studies have highlighted IL-12

as a potential vaccine adjuvant with immunomodulatory properties.

Co-delivery of an IL-12-expressing plasmid with an NDV F gene

DNA vaccine using electroporation has been shown to significantly

enhance immune responses in chickens, resulting in higher

neutralizing antibody levels, increased lymphocyte proliferation,

reduced viral shedding, and complete protection compared to the

DNA vaccine alone (17). In addition, co-immunization with an IL-

12 eukaryotic expression plasmid and a Toxoplasma gondii multi-

epitope vaccine (pcROP8) enhanced the Th1 response and IFN-g
secretion, thereby providing heightened vaccine protection (18).
2.6 IL-15

IL-15 is a critical factor for the development, proliferation, and

activation of effector NK cells and CD8+ memory T cells. It plays

important roles in NK cell proliferation, cytotoxicity, cytokine

production, NK cell-macrophage interactions, and the

maintenance of CD4+/CD8+ memory T cell homeostasis (42). IL-
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15 supports the long-term persistence of CD8+ T cells and

effectively extends immune duration, making it a preferred

adjuvant for improving immune responses and vaccine longevity

(43). The inactivated vaccine is short activities to the immune

response, when bovine-derived IL-15 has been used as an adjuvant

in guinea pigs immunized with an inactivated FMDV vaccine, the

IL-15 adjuvanted vaccine maintained neutralizing antibody levels

for up to six months in animals receiving. As well as Compared to

animals immunized with the inactivated vaccine alone, those

vaccinated with IL-15 adjuvants exhibited stronger Th1 and Th2

immune responses (19).
2.6 IL-18

IL-18, initially identified as an interferon-g-inducing factor (44),
synergizes with IL-12, mitogens, or microbial agents to promote

IFN-g production by T cells and NK cells (45–47). IL-18 also

induces the expression of granulocyte-macrophage colony-

stimulating factor (GM-CSF) in peripheral blood mononuclear

cells (PBMCs) (44, 48–50) and stimulates IL-13 production (51).

When IL-18 plasmids encapsulated in PLGA nanoparticles were

used as adjuvants in combination with a foot-and-mouth disease

virus DNA vaccine, they induced higher antibody titers and

stronger CTL responses in guinea pigs, compensating for the

limited cellular immunity often observed with inactivated FMDV

vaccines (20).
3 Interferons

Interferons (IFNs) are a large class of cytokines that are critical in

activating the immune response of the host. IFNs are categorized into

three types: Type I, Type II, and Type III, all of which have the ability

to activate antiviral activity by interacting with their respective

receptors (52). Type I IFNs (primarily IFN-a, -b, and -w)
participate in viral clearance by inducing immune responses and

provide protection against acute viral infections. Type II IFN (IFN-g),
primarily produced by activated NK cells and T cells, plays a pivotal

role in both innate and adaptive immunity (53). Type III IFNs (IFN-

l1, -l2, and -l3) are associated with antiviral immune responses at

epithelial surfaces, with their receptors being most abundantly

expressed in cells of epithelial origin (54, 55). Table 2 presents the

key mechanisms of cytokine-related vaccines of interferons class, the

antigens used, and the corresponding supporting literature.
3.1 Type I IFNs

Type I IFNs possess immunomodulatory properties and can

regulate the activity of other cytokines (62). They enhance the

maturation and activation of dendritic cells (56, 63), promote Th1-

type immune responses, and activate B cells to facilitate antibody

production (64, 65). A combination of recombinant porcine IFN-a
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protein and inactivated influenza vaccine has been shown to

significantly upregulate the expression of immunomodulatory

cytokines such as IL-2, IL-6, IL-10, IL-18, and IFN-g. This

combination also significantly increases the transcription of

homing factors CCR9 and CCR10, induces a strong mucosal

innate immune response, and enhances antibody levels (53). In

another study, immunization with a Venezuelan equine

encephalitis virus (VEEV) vaccine containing an IFN-a plasmid

adjuvant in mice resulted in the robust expression of antiviral

proteins and induced specific immunity against VEEV (57).
3.2 Type II IFN

Type II IFN is primarily produced by activated Th cells and NK

cells (66). It is a multifunctional homodimeric cytokine, with IFN-g
being its sole member (58, 59). The main biological function of IFN-

g is to induce the expression of various immune factors, thereby

enhancing the body’s immune response. Several studies have

demonstrated that IFN-g is an effective adjuvant for veterinary

vaccines. For instance, immunization of mice with a recombinant

Hyalomma asiaticum rHasCPL protein subunit vaccine combined

with an IFN-g adjuvant increased the production of IFN-g and IL-4,
enhanced antibody levels, and improved the protective efficacy of

the vaccine in mice (67). In vitro experiments have shown that the

expression of porcine IFN-g can significantly enhance the pro-

inflammatory immune response in cells infected with PRRSV (68).

Additionally, in Japanese flounder, the use of an IFN-g adjuvant

with an Edwardsiella tarda subunit vaccine effectively increased

survival rates, upregulated the expression of immune-related genes,

and enhanced antibody production (69). Furthermore, a study

assessing the immunoadjuvant effects of a recombinant poIFN-g-
poGM-CSF fusion protein in an inactivated PRRSV vaccine

administered to piglets found that the coadministration of poIFN-

g-linker-poGM-CSF and PRRSV KV significantly increased

neutralizing antibody titers, accelerated viral clearance, reduced

clinical symptoms, and prevented highly pathogenic PRRSV

infection (70). This reinforces the critical role of IFN-g and its

fusion proteins in enhancing vaccine efficacy and providing

protection against viral infections in veterinary medicine.
3.3 Type III IFN

Type III IFNs (IFN-l1, l2, and l3) are structurally related to

Type I IFNs and the IL-10 family (60), and are also known as IL-29,

IL-28a, and IL-28b (61, 71). Their receptor, IL-28Ra, is expressed
on a limited range of cells such as macrophages, peripheral blood

lymphocytes, conventional dendritic cells, epithelial cells, and

plasmacytoid dendritic cells (61, 72). IFN-l primarily acts on

these cell types to regulate antiviral immunity, thus possessing

potential as an adjuvant to enhance immune responses. In studies

where a Porcine Reproductive and Respiratory Syndrome (PRRS)

DNA vaccine expressing IFNl1 was used to immunize mice, there
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was an upregulation of serum antibodies and activation of the STAT

signaling pathway. This suggests that IFNl1 can enhance the

immune protective effect of PRRSV DNA vaccines (73, 74).
4 Chemokines

Chemokines are a class of cytokines that play a significant role

in inducing cell migration and motility, stimulating intracellular

signaling pathways (75). They regulate lymphocyte development,

activation, and effector functions and play a crucial role in immune

surveillance. Many chemokines have been shown to be effective

immunological adjuvants, enhancing the protective effects induced

by viral, bacterial, and parasitic vaccines (76, 77). They are

categorized into four major subclasses based on their conserved

cysteine motifs, known as C, CC, CXC, and CX3C (78). Table 3

presents the key mechanisms of cytokine-related vaccines of

chemokines class, the antigens used, and the corresponding

supporting literature.
4.1 CCL4

CCL4, also known as Macrophage Inflammatory Protein-1b
(MIP-1b) (79), is effective chemoattractant for CD4+CD25+ T cell

populations and is a phenotypic characteristic of regulatory T cells

(80). CCL35.2 in crucian carp has the highest identity with

mammalian CCL4. Using CCL35.2 plasmid adjuvant in

combination with a DNA vaccine to immunize crucian carp can

effectively upregulate the mRNA expression of key immune genes

IL-1b, IL-2, IFN-g2, and viperin in Carassius auratus gibelio. It also

increases the levels of complement C3, lysozyme, and total
Frontiers in Immunology 06
superoxide dismutase, significantly enhancing the resistance of

crucian carp to Cyprinid herpesvirus 2 (81).
4.2 CCL28

CCL28, also known as Mucosa-Associated Epithelial Chemokine

(MEC), has unique immunoregulatory properties in various mucosal

areas, attracting IgA and directing their migration to different

mucosal sites (82, 83). Many chemokines are effective immune

adjuvants in various model systems, enhancing protection induced

by viral, bacterial, and parasitic vaccines, and regulating the direction

and magnitude of induced immune responses produced by DNA,

protein, subunit, or peptide vaccines (77). When used as a virus-like

particle (VLP) vaccine adjuvant for influenza vaccines, CCL28 can act

as an immune stimulant in a membrane-bound form, eliciting a

systemic mucosal immune response and significantly enhancing the

host’s cross-protective efficacy against heterologous viruses (84).

Furthermore, studies have shown that the addition of a CCL28

adjuvant in H3N2 influenza vaccines can induce a significant

increase in IgA levels and hemagglutination inhibition (HI) titers,

enhancing long-term cross-protection against H3N2 influenza virus

(85). A vaccination strategy that employs the intramuscular co-

delivery of CCL27 or CCL28 has been shown to generate strong

systemic and local immune responses, leading to the production of

long-lived antibodies that neutralize influenza (86).
5 Colony-stimulating factors

Members of the CSF superfamily are involved in the generation of

mammalian bone marrow cells, including monocytes, macrophages,
TABLE 2 Comprehensive overview of cytokine-related vaccines of interferon class: mechanisms, types, antigens, and references.

Cytokine name Related mechanism of action Vaccine type Antigen References

Type I IFNs (primarily IFN-
a, -b, and -w)

Upregulates the expression of immunomodulatory
cytokines such as IL-2, IL-6, IL-10, IL-18, and IFN-g,
increases the transcription of homing factors CCR9
and CCR10, induces a strong mucosal innate immune
response, and enhances antibody levels

Combination vaccine Influenza virus (51)

Promotes strong expression of antiviral proteins and
induces specific immunity against VEEV

Recombinant vaccine
Venezuelan equine
encephalitis virus

(56)

Type II IFN (IFN-g)

Induces the expression of various immune factors,
increases the production of IFN-g and IL-4, enhances
the body's immune response and antibody levels,
improves the protective efficacy of the vaccine in mice

Subunit vaccine Hyalomma asiaticum (57)

Increases survival rates, upregulates the expression of
immune-related genes, and enhances antibody
production

Subunit vaccine
Edwardsiella tarda
(enterobacter)

(58)

Increases neutralizing antibody titers, accelerates viral
clearance, reduces clinical symptoms, and prevents
highly pathogenic PRRSV infection

Inactivated vaccine
Porcine reproductive and
respiratory syndrome virus

(59)

Type III IFNs (IFN-l1, l2,
and l3)

Regulates antiviral immunity, upregulates serum
antibodies and activates the STAT signaling pathway,
and enhances the immune protective effect of vaccine

DNA vaccine
Porcine reproductive and
respiratory syndrome virus

(60, 61)
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dendritic cells, and polymorphonuclear phagocytes such as neutrophils

and eosinophils. This family contains three key members: Macrophage

Colony-Stimulating Factor (M-CSF or CSF-1), Granulocyte Colony-

Stimulating Factor (G-CSF or CSF-3), and Granulocyte-Macrophage

Colony-Stimulating Factor (GM-CSF or CSF-2). Among these, GM-

CSF has been extensively studied for its potential as an adjuvant.

Table 4 presents the key mechanisms of cytokine-related vaccines of

colony stimulate factor, the antigens used, and the corresponding

supporting literature.
5.1 GM-CSF

GM-CSF is a hematopoietic growth factor produced by various

immune cells (87). It stimulates the proliferation and differentiation

of bone marrow progenitor cells into granulocytes and

macrophages (88), as well as activating and maintaining mature

bone marrow cells (89). GM-CSF responds to immune cell survival,

differentiation, and proliferation by inducing various signaling

pathways, which is a key step in helping the immune system fight

infections (90). GM-CSF levels significantly increase during

inflammatory responses (90, 91), and multiple studies have

demonstrated that T cell-derived GM-CSF plays an essential role

in immune responses against a variety of pathogens, such as

Mycobacterium tuberculosis, Epstein-Barr virus, and Human
Frontiers in Immunology 07
Immunodeficiency Virus and the rabies virus (92–96). Based on

its pro-inflammatory effects induced by recruiting and activating

bone marrow cells (90), recombinant pGM-CSF has been tested as a

co-adjuvant with pFLIC protein in conjunction with a Porcine

Circovirus (PCV) vaccine to immunize pigs. This approach

significantly elevated PCV-specific antibody levels, stimulated

CD4+ and CD8+ T cell proliferation, and upregulated the

transcription of IL-1, IL-8, and IL-17, indicating a robust

enhancement of both humoral and cellular immune responses

(97). Similarly, the combination of GM-CSF and APS as a

complex immunostimulant in a PRV vaccine model resulted in

higher levels of PRV-specific gB and neutralizing antibodies, and

concurrently increased the production of cytokines including IL-4,

IL-10, IL-2, and IFN-g (98). These findings indicate that GM-CSF-

based adjuvant strategies have promising application prospects.
6 Other cytokines with adjuvant
potential

Other cytokines reported to have potential as veterinary vaccine

adjuvants include Interferon-Induced Transmembrane Proteins

(IFITMs), B-cell Activating Factor (BAFF), a-Galactosylceramide

(a-GalCer), Fms-like Tyrosine Kinase 3 Ligand (FLT3-L), and
TABLE 4 Comprehensive overview of cytokine-related vaccines of colony stimulate factor: mechanisms, types, antigens, and references.

Cytokine name Related mechanism of action Vaccine type Antigen References

GM-CSF

Stimulates the proliferation and differentiation of bone marrow
progenitor cells into granulocytes and macrophages, activates and
maintains mature bone marrow cells, as well as plays an essential
role in immune responses against a variety of pathogens

Recombinant vaccine

Mycobacterium
tuberculosis, Epstein-
Barr virus, Human
Immunodeficiency Virus
and so on

(77, 83–90)

Elevates PCV-specific antibody levels, stimulates CD4+ and CD8+
T cell proliferation, upregulates the transcription of IL-1, IL-8, and
IL-17, and also enhances immune protection

Inactivated vaccines and
subunit vaccines

Porcine circovirus virus (90)
TABLE 3 Comprehensive overview of cytokine-related vaccines of chemokines class: mechanisms, types, antigens, and references.

Cytokine name Related mechanism of action Vaccine type Antigen References

CCL4
Effectively lures CD4+, CD25+ T cells, regulates T
cells

DNA vaccine Vibrio anguillarum (76)

CCL35.2

Upregulates the mRNA expression of key immune
genes IL-1b, IL-2, IFN-g2, and viperin in Carassius
auratus gibelio, increases the levels of complement
C3, lysozyme, and total superoxide dismutase, as
well as enhances resistance to pathogens

DNA vaccine Cyprinid herpesvirus 2 (77)

CCL28

eliciting a systemic mucosal immune response,
significantly enhancing the host's cross-protective
efficacy against heterologous viruses, producing
long-lived antibodies, and improving mucosal
antibody levels and local immune responses.

Chimeric virus-like
particles vaccine

H3N2 subtype Influenza
virus

(79, 80)

Elicited elevated peripheral IFN-gamma and
antigen-specific IgG while driving antigen-specific T-
cell secretion of cytokine and antibody production,
long-lived antibody responses

DNA vaccine
H1N1 subtype Influenza
virus

(81)
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CD40L (Table 5). IFITMs: Transgenic chickens overexpressing

IFITM1 can effectively resist H5N1 influenza virus infection by

inhibiting viral replication within the body (99). Although most

studies on chicken IFITM1 and IFITM3 functionality have been

conducted in vitro or in chicken embryos (100), recent findings

suggest that recombinant avian-derived antiviral proteins, including

cIFITM1, cIFITM3, and cViperin, can serve as effective adjuvants in

inactivated H9N2 subtype avian influenza vaccines (101). This

highlights the potential of these proteins not only in enhancing

viral resistance but also in improving the efficacy of avian influenza

vaccines. BAFF: Incorporating membrane-anchored BAFF into

Rabies Virus (RABV) virus-like particles (VLPs) induced higher

antibody titers compared to inactivated RABV vaccines,

demonstrating that BAFF is an effective membrane-anchored

molecular adjuvant (102) a-GalCer: When used as an adjuvant

with an inactivated H1N1 swine influenza vaccine administered

intranasally, a-GalCer enhanced Th1 cytokine (IFN-g and IL-12)

secretion in the lungs, reduced the levels of immunosuppressive

cytokines (IL-10 and TGF-b), and decreased lung viral loads (103).

FLT3-L: Exogenous FLT3-L addition promoted the proliferation of

CD141+ dendritic cells (DCs) and CD1c+ DCs in mouse blood,

spleen, and bone marrow, thereby improving antigen presentation

capabilities. This indicates its potential to enhance vaccine

immunogenicity and promote antigen recognition, although

research is currently limited and requires further exploration

(104). CD40L: The co-administration of plasmid-expressed

CD40L with Montanide™ GEL01 adjuvant enhanced the

protective efficacy of a Bovine Herpesvirus-1 (BoHV-1) DNA

vaccine. This combination increased the percentage of PBMCs

and upregulated the expression of IFN-g and IL-4 in cattle (105).

The co-expression of CD40L and CD205 also receive the similar

results (106).
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In modern veterinary vaccine industries, vaccine adjuvants are

considered crucial bridges between innate and adaptive immunity.

An effective adjuvant can enhance the immunogenicity of a vaccine

through various mechanisms, including promoting cytokine

production, inducing antibody generation, regulating immune

type switching, optimizing surface delivery to immune tissues,

and improving the uptake efficiency of antigen-presenting cells.

Moreover, the application of nanomaterials holds promise for

further enhancing the effects of cytokine adjuvants by optimizing

release characteristics and improving bioavailability, thus providing

new support for immunological enhancement of vaccines (107,

108). As shown in Figure 2, the potential benefits of cytokines as

vaccine adjuvants include different types of cytokines and their

corresponding mechanisms, which play a crucial role in enhancing

the immunogenicity of vaccines. This review summarizes the

research and applications of different cytokines as veterinary

vaccine adjuvants.

Interleukin enhances humoral and cellular immunity, induces

Th1 and Th2 type responses in key effector cells, thereby prolonging

the duration of immunity and improving the actual protective effect

of vaccines. Interferon can upregulate the expression of immune

regulatory cytokines and activate key signaling pathways such as

STAT. On the one hand, it promotes high-level immune responses

in mucosal areas, and on the other hand, it synergistically enhances

humoral and cellular immunity at the systemic level, activating

multifunctional T cell responses. In addition, interferon can

stimulate strong pro-inflammatory responses while also avoiding

pathological damage by regulating T cells and other mechanisms,

endowing vaccines with faster onset speed, wider cross protection

range, stronger pathogen clearance ability, and significantly
TABLE 5 Comprehensive overview of cytokine-related vaccines of other cytokines: mechanisms, types, antigens, and references.

Cytokine name Related mechanism of action Vaccine type Antigen References

IFITM1

Resists virus infection by inhibiting viral replication within the
body

Inactivated vaccine
H5N1 subtype influenza
virus

(91)

Enhances viral resistance and the efficacy of avian influenza
vaccines, inhibits the replication, invasion, and spread of H9N2
AIV within the host

Inactivated vaccine
H9N2 subtype avian
influenza virus

(93)

BAFF

Induces higher antibody titers, improves the speed and intensity of
anti rabies antibody response, and as an effective membrane-
anchored molecular adjuvant, may enhance the efficacy of
currently used inactivated vaccines based on rabies.

Inactivated vaccine Rabies virus (94)

a-GalCer

Enhances Th1 cytokine (IFN-g and IL-12) secretion in the lungs,
reduces the levels of immunosuppressive cytokines (IL-10 and
TGF-b), and decreases lung viral loads, as well as enhances the
cross protective immunity of vaccines and innate and adaptive
immune responses to antigens

Inactivated vaccine
H1N1 subtype swine
influenza virus

(95)

FLT3-L
Improvs antigen presentation capabilities, enhances vaccine
immunogenicity and promotes antigen recognition

Recombinant vaccine No specific pathogen (96)

CD40L
Enhances the protective efficacy of vaccines, increases the
percentage of peripheral blood mononuclear cells (PBMCs) and
upregulates the expression of IFN-g and IL-4 in cattle

DNA vaccine Bovine Herpesvirus-1 (97)
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prolonged protection duration. Chemokines can precisely regulate

immune cells such as CD4+, CD25+T cells, fully activate immune

molecules, induce the expression of specific antiviral proteins,

enhance immune response, and increase antibody levels. GM-CSF

serves as a bridge between innate and acquired immunity, activating

cells to promote the quantity and function of antigen-presenting

cells, and significantly increasing pathogen specific antibody levels

and enhancing immune protection against pathogens. Due to their

natural presence in the host organism, cytokines exhibit good

biocompatibi l i ty and safe immunomodulatory effects ,

demonstrating significant potential as candidate adjuvants for

vaccines. In recent years, numerous studies have explored the use

of cytokines as vaccine adjuvants, clarifying the mechanisms by

which they enhance immune responses. These studies indicate that

cytokine-based adjuvants can effectively improve the

immunogenicity of vaccines. Furthermore, the combination of

various cytokines as adjuvants represents a promising strategy
Frontiers in Immunology 09
and may become a major focus for future adjuvant research and

development (109, 110).

With the development of new technologies, the advancement of

novel adjuvants is imperative, while their side effects must be

continuously monitored to ensure vaccine safety. For low-cost

veterinary vaccines, reducing the production cost of new

adjuvants is particularly crucial (111). Additionally, research into

the combination of nanomaterials and cytokines will further

promote the application of novel cytokine-based adjuvants,

supporting their feasibility in the veterinary vaccine market.

However, to date, no commercialized cytokine-based veterinary

vaccine adjuvants have been introduced. Given the frequent

occurrence of animal diseases, future research must continuously

improve veterinary vaccines and their adjuvants. This will provide

new solutions to address the ever-evolving challenges posed by

infectious diseases, thus enhancing animal health and the

sustainable development of the livestock industry.
FIGURE 2

Potential benefits of cytokines as adjuvants in in veterinary vaccines.
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